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Abstract

Despite remarkable strides made in the develop-
ment of entity linking systems in recent years,
a comprehensive comparative analysis of these
systems using a unified framework is notably
absent. This paper addresses this oversight by
introducing a new black-box benchmark and
conducting a comprehensive evaluation of all
state-of-the-art entity linking methods. We use
an ablation study to investigate the impact of
candidate sets on the performance of entity link-
ing. Our findings uncover exactly how much
such entity linking systems depend on candi-
date sets, and how much this limits the general
applicability of each system. We present an
alternative approach to candidate sets, demon-
strating that leveraging the entire in-domain
candidate set can serve as a viable substitute
for certain models. We show the trade-off be-
tween less restrictive candidate sets, increased
inference time and memory footprint for some
models’.

1 Introduction

Entity linking? is the task of annotating plain text
with references to pre-defined entries - also known
as entities - in a knowledge base. The annotation
process involves finding specific parts of the text -
also known as mentions - that may contain a knowl-
edge base reference, and linking those to the right
knowledge base record. For example, in the head-
line SOCCER - LATE GOALS GIVE JAPAN WIN OVER
SYRIA, the entity linking system can link JAPAN
(underlined) to Japan national football team.
Candidate generation is an integral part of many
entity linking systems, in which a small set of
candidate knowledge base entities are selected for
each potential candidate span. Many recent entity

'https://github.com/NicolasOng/gerbil_connects contains
all the evaluated models as well as our evaluation source code.

2See Appendix A for an in-depth review of the modules in
the entity linking pipeline.

linking techniques assume the presence of the pre-
existing candidate sets for all potential spans. The
most popular such set is KB+Yago (Ganea and Hof-
mann, 2017) which is used in a number of recent
methods (Kolitsas et al., 2018; Peters et al., 2019;
Poerner et al., 2020; Feng et al., 2022; van Hulst
et al., 2020; De Cao et al., 2021b; Kannan Ravi
et al., 2021; Shavarani and Sarkar, 2023). Another
less popular set is PPRforNED (Pershina et al.,
2015) which assumes the test sets are available to
the annotators. Due to this assumption, very few re-
cent publications evaluate using PPRforNED (Mar-
tins et al., 2019; De Cao et al., 2021b,a; Shavarani
and Sarkar, 2023).

Unified evaluation of the different entity linking
systems with respect to the application of candidate
sets should play a crucial role in a better under-
standing of the strengths and weaknesses of each
system. This will give the research community and
commercial deployments better ways to select the
most suitable system based on their needs while
providing them a platform to identify avenues for
enhancement.

In this paper, we propose a novel unified black-
box evaluation framework for recent state-of-the-
art entity linking systems. Our contributions in this
paper are as follows:

(1) We unify the evaluation setup for the sys-
tems using GERBIL (Roder et al., 2018) and
gerbil_connect (Shavarani and Sarkar, 2023),
and black-box evaluate the systems over the same
benchmark dataset CoNLL/AIDA (Hoffart et al.,
2011) which allows us to abstract away their inter-
nal model structure and decoding algorithms.

(2) We discuss the importance of the pre-built
candidate sets for obtaining good results on bench-
marks in entity linking. However, candidate sets
are not always available, and the literature lacks a
systematic evaluation of the entity linking systems
in absence of the candidate sets. To fill this gap, we
suggest an experimental setup to replace them with
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a feasible set; the entire in-domain vocabulary of
the benchmark dataset. Please note that our focus
in these experiments is not to re-implement each
technique, but rather to evaluate the resilience of
the entity linking systems in absence of the care-
fully hand-crafted candidate sets.

(3) We examine the adaptability of the entity
linking systems in the literature to unseen test data
using the novel AIDA/testc dataset (Shavarani and
Sarkar, 2023) which contains new annotations on
news stories in 2020 with 924 novel entities.

2 Unified Black-Box Evaluation

We benchmark the recent entity linking systems,
unchanged and as provided originally by their au-
thors. In these experiments, we intend to examine
the suitability of these systems as off-the-shelf sys-
tems which can be integrated in future downstream
applications.

We unify the evaluation environment as GER-
BIL (Roder et al., 2018) plus gerbil_connect
(Shavarani and Sarkar, 2023). In the evaluation
procedure, GERBIL will provide the testing docu-
ments to gerbil_connect and receives the entity
annotations in the format of (begin char., end char.,
entity annotation) from gerbil_connect. We im-
plement gerbil_connect tailored to each entity
linking system so that it can transform the evalua-
tion documents to readable inputs for each system.
Specifically, we have (1) utilized NLTK’s word tok-
enizer® to transform raw non-tokenized evaluation
sets into their expected CoNLL tokenized format
for the models that depend on reading from AIDA
test files (Peters et al., 2019; Poerner et al., 2020;
Feng et al., 2022), (2) simulated long text splitting
and result merging strategies for the models with
input length constraints (Peters et al., 2019; Poerner
etal., 2020; Feng et al., 2022; De Cao et al., 2021b),
(3) implemented a subword token id to character
id conversion for the models that output annota-
tions as tokenized subword ids (Peters et al., 2019;
Poerner et al., 2020; Feng et al., 2022), and (4)
provided the external data sources such as the pre-
built candidate sets to the model initializers where
necessary (De Cao et al., 2021b,a). Appendix B
provides more details on the mentioned alterations.
Empirically, running the models without adding
these techniques significantly hurts performance.
Removing the tokenization step alone can drop the
model performance by up to 20 Micro-F1 points.

3https://www.nltk.org/api/nltk.tokenize.html

Once done, gerbil_connect translates the pro-
duced annotations in each system back to the uni-
fied annotation format, understandable for GER-
BIL. We train the models that are not released by
the authors (Poerner et al., 2020; Feng et al., 2022),
using their own released source code, and do not
consider the models which we were not able to
acquire their training source code or were not able
to get their training scripts to converge. (Martins
et al., 2019; Févry et al., 2020; Mrini et al., 2022;
Kannan Ravi et al., 2021; Broscheit, 2019; Xiao
et al., 2023) Appendix C briefly discusses each of
the evaluated systems. We direct the readers to
the original publication of each model for a more
in-depth understanding of their contributions.

We use CoNLL/AIDA evaluation sets testa and
testb - reported by all entity linking systems tested
in different evaluation frameworks - as well as the
newly annotated AIDA/testc evaluation set. The
results tables show the GERBIL InKB Micro-F1
evaluation results.

Table 1 presents the unified black-box evaluation
results. The necessary unification adjustments men-
tioned above and the evaluation format has caused
some evaluation scores to deviate from their origi-
nal reported results. However, we have tried to con-
trol for this as much as possible. The Difference
columns in Table 1 reflects on the mentioned score
deviations.

In our experiments, we found that (Peters et al.,
2019) suffered the most, with an approximate loss
of 5% when comparing our results to the originally
reported scores. The rest of the models were hit
by at most 2%, confirming the reliability of our
framework for further analysis. testc is a more
challenging evaluation set which contains novel
entities that typically hurt model recall. In our
experimental results, we found that text generation
models (from previous work) performed better on
testc. However, the best performing model was
not generative, but rather used structured prediction
(Shavarani and Sarkar, 2023).

3 Candidate Set Ablations

Candidate sets are an integral part of entity linking
systems, many of which assume the presence of
good quality sets to perform well. Although this as-
sumption holds when linking to English Wikipedia,
it does not necessarily hold when considering other
ontologies (e.g. UMLS; Bodenreider, 2004) and
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Micro-F1 Difference
testa testb testc | testa testb

Kolitsas et al. (2018) 89.50 8244 6575 | +0.10 +0.04
Peters et al. (2019)

KnowBert-Wiki 76.74 71.68 54.12 | -346 -2.72

KnowBert-W+W 77.19 71.69 5392 | 491 -2.01
Poerner et al. (2020) 89.40 84.83 6593 | -1.40 -0.17
van Hulst et al. (2020)

Wiki 2014 83.30 8253 71.69 - -0.77

Wiki 2019 79.64 80.10 73.54 - -0.40
De Cao et al. (2021b) 90.09 82.78 75.60 - -0.92
De Cao et al. (2021a) 8729 85.65 47.54 - +0.15
Zhang et al. (2022) 86.81 8430 72.55 - -1.50
Feng et al. (2022) 87.64 8649 65.05 - +0.19
Shavarani and Sarkar (2023)

large-500K (no cnds.) 89.72 8225 77.54 | +0.02 +0.05

large-500K (Kb+Yago) 89.89 82.88 59.50 | +0.09 +0.08

large-500K (PPRforNED) | 91.58 8522 4698 | +0.08 +0.02

Table 1: Comparison of recent entity linking systems within the unified black-box testing framework of GERBIL +
gerbil_connect. Difference column reports the difference between our unified evaluation environment and the
originally reported numbers. We have assessed all models twice for consistency. Except for (De Cao et al., 2021b),
all models yielded identical scores, while De Cao et al. (2021b) showed a low variance of 0.08 in the results. Thus,
the results mirror those reported by GERBIL, with the exception of (De Cao et al., 2021b), which is averaged over

two runs.

languages®*.

In this section, we ablate the mention-specific
candidate sets from the entity linking systems to
study their performance in absence of the hand-
crafted candidate sets. For our experiments, we
selected the candidate-set-independent setting of
the models in any system that provides such a set-
ting. For the other systems that require a candidate
set, and we cannot remove the candidate set de-
pendence, we return the entire in-domain mention
vocabulary of AIDA (the in-domain fixed candidate
set of Shavarani and Sarkar, 2023) as the replace-
ment for the required candidate sets (5598 entities
including the None entity). Where applicable, we
add priors such that each candidate has an equal
probability.

Table 2 demonstrates the evaluation results of
the models with Micro-F1 scores above 1.0 after
considering the candidate-independent version of
the models, or the candidate set expansion.

We experimented with removing candidate sets
altogether, but the models that appear in Table 1
but do not appear in Table 2 essentially failed with-
out candidate sets, resulting in Micro-F1 scores

4See Botha et al. (2020) for more discussion.

Micro-Fl1

testa testb testc

De Cao et al. (2021b) 85.15 78.98 75.62
De Cao et al. (2021a) 62.00 49.51 37.05
Zhang et al. (2022) 86.81 84.30 72.55

Shavarani and Sarkar (2023)|89.72 82.25 77.54

a

—

Poerner et al. (2020) 22.81 18.81 17.56

b Feng et al. (2022) 35.00 32.58 27.48

~

Table 2: Comparison of entity linking systems after
a) running the model with no access to hand-crafted
candidate sets b) modifying the model to consider the
entire AIDA in-domain vocabulary as the candidate set.

close to 0. These results demonstrate that most en-
tity linking systems are too intertwined with their
candidate sets and without this additional data re-
source, the systems do not produce useful results
and are too brittle to be used in real-world produc-
tion deployments.

Table 2 results prove that generation-based sys-
tems are more resilient against candidate sets.
Nonetheless, without given candidate sets, De Cao
et al. (2021b) and De Cao et al. (2021a) lose ap-
proximately 5% and 20-30% of their best perfor-
mance, respectively. Shavarani and Sarkar (2023) -
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Figure 1: Entity linking error distribution in four categories of over-generated (gray, vertical), under-generated (red,
horizontal), incorrect entity (teal, north east) and incorrect mention (blue, north west) before candidate set ablations
(left) and after the ablations (right). The y-axis is the error analysis ratio as described below.

a non-generation-based system, designed without
dependence on candidate sets and only using these
resources to improve performance - suffers the least
and loses only 2% of its best performance without
candidate sets.

The largest performance drop in our experi-
ments correlates with using mention-entity simi-
larity methods for entity disambiguation, where a
representation of the mention and entity are com-
pared to determine the most relevant entity.

In these systems, models that generate mention
representations by combining candidate entity rep-
resentations see their performance decreased to
20%-35%, while models that generate mention
representations by combining the word or token
representations within or surrounding the mention
perform too poorly to be present in Table 2.

Shavarani and Sarkar (2023) and De Cao et al.
(2021b) only show an approximate 2% drop in
performance, showing that they can easily handle
a larger set of candidate entities.

The larger candidate sets lead to longer inference
times. The run time for Feng et al. (2022); Kolitsas
et al. (2018); Poerner et al. (2020); Peters et al.
(2019) that compare the mentions to each entity in
the candidate set increases by 90x, 50x, 25x, and
10x, respectively. van Hulst et al. (2020) does not
follow this trend since it selects the 30 candidate
entities with the highest prior before performing
entity disambiguation.

Error Analysis. We store the produced anno-
tations from each system reported in Table 1 (w/
candidate sets) and Table 2 (w/o candidate sets),
and compare their produced annotations with the
expected annotations of AIDA/testa (4791 anno-
tations). For models with multiple reported settings,
we select the setting correlated to AIDA/testc as it
represents the most generalization-capable setting
for unseen in-domain documents.

We count the number of annotations in four er-
ror categories of over-generated, under-generated,
incorrect mention and incorrect entity, and divide
each by the total number of gold annotations. Fig-
ure 1 presents the calculated error analysis ratios.
Over-generation refers to annotations made by the
model and not in the gold set. Under-generation
refers to annotations in the gold set but not made
by the model. Incorrect entity refers to annotations
where the model linked the wrong entity. Incorrect
mention refers to annotations where the span’s start
or end is incorrect.

Before ablation of candidate sets (Figure 1-left),
(van Hulst et al., 2020) has the highest rate of
over-generation followed by (Zhang et al., 2022),
while (Peters et al., 2019) shows the lowest over-
generation rate. On the other hand (Peters et al.,
2019) has the highest under-generation ratio es-
tablishing itself as a conservative entity linking
system.

Comparing the performance of entity systems w/
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and w/o candidate sets, the biggest increase is seen
in incorrect entity prediction ratios, confirming the
dependence of entity linking systems to candidate
sets. (Poerner et al., 2020) sees the biggest in-
crease in incorrect entity predictions followed by
(Feng et al., 2022). While (Zhang et al., 2022)
and (Shavarani and Sarkar, 2023) report the small-
est rate increase in this category as these methods
are less dependent on candidate sets. (Feng et al.,
2022) on the other hand shows an increase in under-
generation signaling the effect of candidate sets in
prediction confidence for this system.

—66.78

Poerner et al. (2019) 66271

De Cao et al. (2020) -|
De Cao et al. (2021) -|

Zhang et al. (2021)

—48.44 2227
—57.86 221

Shavarani and Sarkar (2023) | —6.31 B .
Il Il Il -

1
—100 -80 —60 —40 —20 0 20
Percentage %

Feng et al. (2022) -|

Figure 2: Entity linking micro precision (blue, north
east) and recall (red, north west) score differences over
testa between model’s original configuration and can-
didate set ablation configuration.

Figure 2 illustrates the disparities in precision
and recall pre- and post-ablation of candidate sets
for the models outlined in Table 2. Our findings
reveal that candidate sets significantly enhance pre-
cision and recall. With the exception of (Zhang
et al., 2022), which generates candidates in real-
time, the other systems show that without candidate
sets there is a substantial decrease in precision and
recall, exceeding 60% for (Poerner et al., 2020).

4 Conclusion

In this study, we have successfully established a
unified black-box evaluation framework for mod-
ern entity linking techniques. We provide an in-
depth ablation analysis to examine the significance
of hand-crafted candidate sets for the entity link-
ing task. Our findings confirm that modern entity
linking systems are excessively dependent on can-
didate sets. Our study shows that we need to be less
reliant on hand-crafted candidate sets in order to
ensure robust, versatile and accurate entity linking
systems.
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A A More In-Depth Literature Review

Entity linking can be viewed as a multi-task
pipeline which performs mention detection, can-
didate generation, and entity disambiguation (see
Broscheit, 2019; van Hulst et al., 2020; Shavarani
and Sarkar, 2023). Mention detection focuses on
the discovery of potential references in the given
text to knowledge base entities. Candidate Genera-
tion short-lists a small set of candidate knowledge
base entities for each potential span. Entity Disam-
biguation selects one of the short-listed entities to
link to the selected span.

Mention Detection. Common approaches in-
clude: (1) listing every possible span of length up
to n (usually 5) tokens (Kolitsas et al., 2018; Peters
et al., 2019; Poerner et al., 2020; Feng et al., 2022),
(2) using a named entity recognition (NER) tool
(van Hulst et al., 2020; Hoffart et al., 2011) such
as Flair (Akbik et al., 2018) or the Stanford NER
Tagger (Finkel et al., 2005), (3) scoring each token
as a potential mention and merging the consecutive
predictions referring to the same entity (Broscheit,
2019; Shavarani and Sarkar, 2023), and (4) prob-
abilistic prediction of tokens beginning, ending,
or outside (BIO) of mentions (Kannan Ravi et al.,
2021; Févry et al., 2020; De Cao et al., 2021a;
Zhang et al., 2022; Xiao et al., 2023).

Candidate Generation. This module selects the
most relevant of all possible entities for a candidate
span in the input text. As previously mentioned,
most models rely on pre-existing candidate sets
such as KB+Yago (Ganea and Hofmann, 2017).
Kannan Ravi et al. (2021) use the BM25 (Robert-
son et al., 1995) algorithm to rank entities for a
mention. Zhang et al. (2022) and Xiao et al. (2023)
explore document-level candidate sets that aid the
mention detection step. Both rank the dot product
scores of entity embeddings by an input document
embedding. Zhang et al. (2022) use a fine-tuned
BLINK (Wu et al., 2020) model. In the extreme
case, some methods assume the entire entity vocab-
ulary as the candidate set (Broscheit, 2019; Févry
et al., 2020; Shavarani and Sarkar, 2023). Such
methods usually limit the size of the entity vocab-
ulary to 500K-700K of the most frequent entities.
Wikipedia contains over 6.5M entities. In candi-
date generation, mentions with an empty candidate
set or the ones with the most probable predicted
entities being either the None entity or not in the
candidate set, will be automatically ignored. Thus
candidate sets help prevent over-generation and

improve the overall quality of entity linking.

Entity Disambiguation. Common methods in-
clude: (1) employing constrained beam search to
generate the entities with the candidate sets con-
straining the search process (De Cao et al., 2021b;
Xiao et al., 2023), (2) argmax selection over the
predicted probability distributions over the candi-
date set (Broscheit, 2019; De Cao et al., 2021a;
Shavarani and Sarkar, 2023), and (3) ranking the
entity candidates using a similarity metric which
scores (entity prediction, mention) representation
pairs.

For the latter method, the mention representa-
tions can be generated by combining the character,
word, or token embeddings within the mention span
(Kolitsas et al., 2018; Peters et al., 2019; Martins
et al., 2019; Févry et al., 2020), or of the context
surrounding the mention (van Hulst et al., 2020;
Martins et al., 2019), or all the embeddings of the
candidates for the mention (Poerner et al., 2020;
Feng et al., 2022). The entity representations can
come from a pre-computed source like KB+Yago
(Ganea and Hofmann, 2017) in (Kolitsas et al.,
2018; van Hulst et al., 2020; Peters et al., 2019),
Wikipedia2Vec (Yamada et al., 2020) in (van Hulst
et al., 2020; Poerner et al., 2020), or PPRforNED
(Pershina et al., 2015) in (Martins et al., 2019). As
well, the entity representations can be textual docu-
ments with items like the entity’s title, aliases, and
description (Kannan Ravi et al., 2021; Hoffart et al.,
2011) or model representations of such documents
(Feng et al., 2022; Févry et al., 2020). Dot prod-
uct is most commonly used to score mention-entity
similarity (Kolitsas et al., 2018; Peters et al., 2019;
Poerner et al., 2020; Feng et al., 2022; Févry et al.,
2020). For representations in the form of natural
language (as opposed to dense embedding vectors),
word overlap, KL-divergence, and n-gram based
measures (Hoffart et al., 2011), as well as docu-
ment similarity prediction using fine-tuned PLMs
(Kannan Ravi et al., 2021) have been used.

Methods using mention-entity similarity tend to
also use mention-entity priors (i.e., p(e|m)) (Kolit-
sas et al., 2018; Peters et al., 2019; van Hulst et al.,
2020; Poerner et al., 2020; Feng et al., 2022) and
thematic coherence (prioritizing entities similar to
other entities in the document) (Hoffart et al., 2011;
Kolitsas et al., 2018; van Hulst et al., 2020) to bias
the results. The priors are commonly taken from
Ganea and Hofmann (2017).

End-to-end entity linking systems usually com-
bine the mention detection and entity disambigua-
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tion steps through sharing the same underlying
pre-trained language model encoders (Kolitsas
et al., 2018; Broscheit, 2019; Shavarani and Sarkar,
2023). Xiao et al. (2023) also combines these steps
with their in-context learning approach, which
queries a LLM (such as GPT-3, GPT-3.5, or Codex)
with a natural language prompt containing the task,
candidate entities, and the text to be linked.

B Model Changes for Unified Black Box
Evaluation

As mentioned, we use GERBIL to evaluate the
models, and gerbil_connect acts as the middle-
ware between GERBIL and the models. GERBIL
provides the model with raw un-tokenized text
and expects annotations in the format (begin char.,
end char., entity annotation). In the unification
process leading to the specific implementations
of gerbil_connect, we altered each reproduced
model to enable them to work within our unified
black-box evaluation environment. The following
sections discuss each alternation in more details.
Table 3 discusses the required alterations to adapt
each model to our evaluation framework.

We encountered limitations in assessing certain
models within our framework. The models from
Martins et al. (2019); Févry et al. (2020); Mrini
et al. (2022) were not included due to the unavail-
ability of their source code. The model from Kan-
nan Ravi et al. (2021) was also excluded, as we
lacked access to their pre-trained model and the
training script was not provided. The models from
Broscheit (2019); Xiao et al. (2023) were not con-
sidered due to the absence of their pre-trained mod-
els and the extended duration of their training pro-
cess, which was not feasible for inclusion in the
manuscript.

For the purpose of facilitating replication and
standardizing the assessment of emerging entity
linking methodologies in subsequent studies, we
strongly advise authors to make their source code,
trained models, and a gerbil_connect integration
with GERBIL publicly available. In the absence of
these, we suggest the provision of a straightforward
function that accepts raw text and outputs a list of
annotations. This approach would streamline the
process of incorporating an entity linking technique
into any evaluation setting.

‘ Modifications

Kolitsas et al. (2018) -
Peters et al. (2019) 1,2,3
Poerner et al. (2020) 1,2,3,5
van Hulst et al. (2020) -

De Cao et al. (2021Db) 2,4
De Cao et al. (2021a) 4
Zhang et al. (2022) -
Feng et al. (2022) 1,2,3,5
Shavarani and Sarkar (2023) -

Table 3: Comparison of major modifications made to
each system to fit into the unified evaluation environ-
ment.

B.1 Input Tokenization

Some models require their input to be tokenized,
but do not have this implemented. Peters et al.
(2019) reads directly from the AIDA dataset file
where each token is on a new line. Our evaluation
environment gives the model text, so we add a
tokenization step before the model so the text is
closer to the expected input. We used NLTK’s word
tokenizer for this, as it tokenizes the text similar to
the expected CoNLL tokenized format. After the
model makes annotations for each of these word-
level tokens, we add another step at the end to
convert the predictions from word level to character
level.

B.2 Document Splitting

Many models have a length limit for the documents
they annotate, and therefore need a document split-
ting strategy. De Cao et al. (2021b) uses a docu-
ment splitting strategy during evaluation >, however
this strategy is not described in the paper and the
code is not in their released repository. We used
the splitting strategy created by Bast et al. (2022)
who were able to replicate De Cao et al. (2021b).

We also add a step at the end to map the an-
notations for each section back into the original
document.

B.3 Token-to-Character Annotations

Many models convert the gold annotations to token-
level, and evaluate on their token-level predictions.
This allows them to forgo converting their token-
level annotations back into character-level anno-
tations. However, our evaluation environment re-
quires character-level annotations as output, so we

Ssee https://github.com/facebookresearch/GENRE/
issues/30

120


https://github.com/facebookresearch/GENRE/issues/30
https://github.com/facebookresearch/GENRE/issues/30

add a step to perform this conversion where neces-
sary.

B.4 Outside or Custom Data

The data used by most models to perform en-
tity linking are available to download. However,
De Cao et al. (2021b) requires custom data that
hasn’t been released®. To fix this, we used the data
created by Bast et al. (2022). De Cao et al. (2021a)
also requires custom data created by the authors,
but this data has been provided in their released
repository.

B.5 Training a New Model

Although some publications have not released their
pre-trained checkpoints, they have released their
training data and scripts. In such cases, we trained
new model checkpoints to reproduce the original
results.

C Evaluated Model Descriptions

Here we provide overviews of the evaluated models
in our benchmarking experiments. For brevity, we
don’t discuss every detail here, and solely rely on
the important design choices in each method.

C.1 Traditional Models

Traditional models rely on pre-computed dictionar-
ies such as KB+Yago (Ganea and Hofmann, 2017)
to provide candidate sets for detected mentions. Re-
placing the dictionary with a static candidate set
for all mentions - such as an empty set or a large
set with 5K entities results in poor performance.

C.1.1 Kolitsas et al. (2018)

For mention detection and candidate generation,
Kolitsas et al. (2018) use KB+Yago (Ganea and
Hofmann, 2017) on all n-length spans in the in-
put text. For entity disambiguation, Kolitsas et al.
(2018) generate mention representations from the
tokens in each mention, then use dot-product simi-
larity to rank each candidate entity using Ganea and
Hofmann (2017) entity representations. In addition,
mention-entity priors and thematic coherence are
used to bias each candidate entity’s score.

C.1.2 Peters et al. (2019)

For mention detection and candidate generation,

Peters et al. (2019) use KB+Yago (Ganea and Hof-

mann, 2017) on all n-length spans in the input text.
%see https://github.com/facebookresearch/GENRE/

issues/37 and Appendix A.2 Setting in De Cao et al.
(2021b).

For entity disambiguation, Peters et al. (2019) gen-
erate mention representations from the word pieces
in each span, then use dot-product similarity to rank
each candidate entity using Ganea and Hofmann
(2017) entity representations. In addition, mention-
entity priors are used to bias each candidate entity’s
score.

C.1.3 van Hulst et al. (2020)

For mention detection, van Hulst et al. (2020) use
Flair (Akbik et al., 2018) NER annotation tool.
Mention representations are generated using their
surrounding 50-word context. For candidate gener-
ation, van Hulst et al. (2020) use KB+Yago (Ganea
and Hofmann, 2017). Then, they refine the candi-
date list by selecting the 4 entities with the highest
priors and 3 with the highest dot-product similar-
ity between the mention representation and their
Ganea and Hofmann (2017) embedding. For en-
tity disambiguation, van Hulst et al. (2020) attempt
to maximize the sum of context coherence (a co-
herence score between an entity and the mention’s
local context) and thematic coherence for all men-
tions. The following providing the context coher-
ence calculation formula:

Y(e,c) =) Blw)z, By
wece
where c is context (made up of words w), e is the
entity, S(w) is a weight for each word and B is a
trainable matrix.

C.1.4 Poerner et al. (2020)

For mention detection and candidate generation,
Poerner et al. (2020) use KB+Yago (Ganea and
Hofmann, 2017) on all n-length spans in the input
text. For entity disambiguation, entity candidates
are ranked using dot-product similarity. Entity
representations are retrieved from Wikipedia2Vec
(Yamada et al., 2020). Mention representations
are generated using a BERT model (Devlin et al.,
2019). The mention span in the input text is masked
by the sum of its candidate entity representations.
The mention representation is the mask’s embed-
ding generated by the BERT model. In addition,
mention-entity priors are used to bias the results.

C.1.5 Kannan Ravi et al. (2021)

For mention detection, each token is classified us-
ing a BERT model fine-tuned for BIO tagging. For
candidate generation, Kannan Ravi et al. (2021)
use KB+Yago (Ganea and Hofmann, 2017) and the
BM25 algorithm (Robertson et al., 1995) to query a
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local index (Sakor et al., 2019) of items from Wiki-
data. For entity disambiguation, Kannan Ravi et al.
(2021) use a BERT model WikiBERT fine-tuned to
predict document similarity. Wikipedia articles are
used as the entity documents, and the local context
of the mention in the text is used as the mention
document.

C.1.6 Feng et al. (2022)

For mention detection and candidate generation,
Feng et al. (2022) use KB+Yago (Ganea and Hof-
mann, 2017) on all n-length spans in the input text.
For entity disambiguation, entity candidates are
ranked using dot-product similarity. Entity repre-
sentations are generated by encoding the labels of
other entities connected through instance_of edges
in the KB. Mention representations are generated
using a BERT model (Devlin et al., 2019). The
mention span in the input text is masked by the sum
of its candidate entity representations. The mention
representation is the mask’s embedding generated
by the BERT model. In addition, mention-entity
priors are used to bias the results.

C.2 Generative Models

Generative models are able to generate candidate
sets without relying on a pre-computed mention-
to-candidates dictionary. This makes them more
robust in settings where these mention-specific can-
didate sets are lacking. However, some can still use
these candidate sets to improve results.

C.2.1 De Cao et al. (2021b)

De Cao et al. (2021b) output an annotated text of
the input by generating it token-by-token. At every
token, the model decides either to continue the in-
put or to start a mention. Once inside a mention,
the model decides at what token the mention span
ends. KB+Yago (Ganea and Hofmann, 2017) is
used to obtain a modified candidate set. For en-
tity disambiguation, a candidate is generated using
beam search constrained with a trie generated from
the candidate entities.

C.2.2 De Cao et al. (2021a)

For mention detection, De Cao et al. (2021a) clas-
sify each token as the start or end of a mention. For
candidate generation, De Cao et al. (2021a) use a
given candidate set for each mention. For entity
disambiguation, the model scores each candidate
with an LSTM then uses a classifier to re-rank the
candidates. When not provided with the candidate

sets, the model can use the LSTM to generate can-
didates using constrained beam search.

C.2.3 Zhang et al. (2022)

For candidate generation, Zhang et al. (2022) gen-
erate document-level candidates by selecting the
top-K entities based on dot-product similarity us-
ing an encoder to create an encoding for both the
input document and all the entities in Wikipedia
(approximately 6M). For mention detection, it clas-
sifies each token as a start or end of a mention for
each entity. For entity disambiguation, it chooses
the entity with the start and end probability scores
above a certain threshold.

C.24 Xiao et al. (2023)

For candidate generation, Xiao et al. (2023) use dot
product similarity to rank entity encodings against
the input document encoding, both generated using
fine-tuned BERT (Devlin et al., 2019) text encoders.
For mention detection, it generates a list of possi-
ble surface forms for each candidate entity using
a modified KB+Yago (Ganea and Hofmann, 2017)
dictionary. Then it searches the text for the gen-
erated surface forms. For entity disambiguation,
it uses constrained beam search to both decide if
each candidate mention is valid, and which entity
is the correct entity for that mention.

They also experiment with another approach,
INSGENEL-ICL, which sends a natural language
prompt to a LLM with the task description, input
document, and candidate entities, and expects a list
of annotations as an answer.

C.3 Structured Prediction Based Models

These models don’t rely on mention-specific can-
didate sets or need to generate their own. They
disambiguate among the entire entity vocabulary.
However, some can still use candidate sets to im-
prove results.

C.3.1 Broscheit (2019)

Broscheit (2019) performs entity linking as a per-
token classification task over the entire entity vo-
cabulary (the 700K most frequent entities in En-
glish Wikipedia). They fine-tune a BERT model
for this task.

C.3.2 Shavarani and Sarkar (2023)

Shavarani and Sarkar (2023) model entity linking
as structured prediction with a variable classifica-
tion vocabulary size. The top-k entities for each
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token are collected, and merged with adjacent to-
kens belonging to the same span. When a mention-
specific candidate set is available, entities not in
this candidate set are filtered out from the mention’s
candidate entities.
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