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Abstract

As research in human-centered NLP advances,
there is a growing recognition of the impor-
tance of incorporating human and social fac-
tors into NLP models. At the same time, our
NLP systems have become heavily reliant on
LLMs, most of which do not model authors. To
build NLP systems that can truly understand hu-
man language, we must better integrate human
contexts into LLMs. This brings to the fore a
range of design considerations and challenges
in terms of what human aspects to capture, how
to represent them, and what modeling strategies
to pursue. To address these, we advocate for
three positions toward creating large human lan-
guage models (LHLMs) using concepts from
psychological and behavioral sciences: First,
LM training should include the human context.
Second, LHLMs should recognize that people
are more than their group(s). Third, LHLMs
should be able to account for the dynamic and
temporally-dependent nature of the human con-
text. We refer to relevant advances and present
open challenges that need to be addressed and
their possible solutions in realizing these goals.

1 Introduction
Language is a fundamental form of human expres-
sion and communication of thoughts, emotions,
and experiences. Learning the meaning of words
extends beyond syntax, semantics, and the neigh-
boring words. To truly understand human language,
we must look at words in the context of the human
generating the language. Figure 1 depicts a view of
how our language is moderated by our somewhat
stable and changing human states of being over
time (Fleeson, 2001; Mehl and Pennebaker, 2003;
Heller et al., 2007).

Progress in human-centered NLP research has
established the importance of modeling human and
social factors, presenting a compelling argument
that learning language from linguistic signals alone
is not adequate (Hovy, 2018; Bisk et al., 2020; Flek,

Figure 1: Language expresses the changing human
states of being over time. To truly understand human
language, language models should have the advantage
of the dynamic human context along with the context of
its neighboring words.

2020), and noting that feelings, knowledge and
mental states of the speaker and listener referred to
as the “Theory of Mind” (Flavell, 2004), along with
other social context variables are vital to language
understanding (Bisk et al., 2020; Hovy and Yang,
2021). This need is backed by a wealth of empirical
evidence demonstrating the benefits of modeling
human and social factors (Volkova et al., 2013; Hu
et al., 2013; Bamman and Smith, 2015; Lynn et al.,
2017; Radfar et al., 2020), and personalized models
(Delasalles et al., 2019; Jaech and Ostendorf, 2018;
King and Cook, 2020; Welch et al., 2020b).

In parallel, with the advent of Transformers
(Vaswani et al., 2017), there have been many ad-
vances in language modeling (Devlin et al., 2019;
Dai et al., 2019; Liu et al., 2019; Radford et al.,
2019) yielding Transformer-based large language
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Figure 2: Language is moderated by multiple fac-
tors like who is speaking to whom, where, when, and
other factors like demographics, personality, occupation,
modes of communication, etc. The author’s language is
highly dependent on their context, which is referred to
as their human context.

models (LLMs) as the base of most current NLP
systems. LLMs train on a pre-training task and
are capable of being applied to a broad set of NLP
tasks producing state-of-the-art results. However,
these language models create word representation
without explicitly accounting for the context of the
authors.

Moreover, a person’s language can be considered
in the rich and complex human context that spans
a multitude of aspects.

[S]peakers design their utterances to be
understood against the common ground
they share with their addressees—their
common experience, expertise, dialect,
and culture. - Schober and Clark (1989)

Figure 2 illustrates an extensive set of factors
that can be considered “human context” which af-
fects how one generates language. A sentence that
begins with the phrase “I’m going to...”, can be con-
tinued in various ways depending on several factors
such as (a) who is speaking, (b) where are they / in
what situation and (c) when are they speaking, and
(d) to whom the sentence is addressed including
their own time and place. Specific examples of fac-
tors include age, personality, occupation, etc., and
the forms and modes of communication like public
speaking, letter writing, books, phone conversa-
tions, etc. The speaker’s language is, thus, highly
dependent on the speaker’s states, traits, social and
environmental factors (Boyd and Schwartz, 2021),
which, collectively, are referred to as the human
context.

LLMs can benefit immensely from integrating
the human context to truly understand human lan-
guage but this entails multiple challenges. LLMs

can be seen as containing a multitude of personas,
and when prompted or primed appropriately can
assume a specific one (Patel et al., 2022). Recently,
such user-centric prompting has been employed
for personalized recommender systems (Doddapa-
neni et al., 2023), dialog systems (Gao et al., 2023),
and measuring political biases and fairness (Feng
et al., 2023). Models such as GPT-3 and ChatGPT
demonstrate potential for simulating some forms of
human context, especially in generative tasks (Reif
et al., 2022). Continued scaling — building bigger
models trained on larger amounts of data — will
continue to improve these abilities. However, there
are two fundamental limitations to this paradigm.
First, models do not explicitly handle the multi-
level structure (documents connected to people)
necessary for modeling the richness of human con-
text. Second, newer paradigms of in-context learn-
ing and user-centric prompting can benefit specific
settings such as personalization but are still limiting
LLMs from making full use of the human context
more broadly. Recent evaluations and benchmarks
reveal that prompting is insufficient to capture the
richness of the human and social context (Salemi
et al., 2023; Choi et al., 2023).

Instead, in this work we call for a more direct
and explicit integration of the human contexts when
building language models. In particular, we advo-
cate for including the human context directly in
language model training, building rich human con-
texts that account for the fact that people are more
than their groups, and the dynamic and temporal-
dependent changes to their states of being. In short,
we call for building large human language models
as a step towards better understanding the human
language. We motivate our positions using insights
from a large body of past work and discuss short-
comings throughout the text. Furthermore, we dis-
cuss open challenges in realizing this vision and
their possible solutions.

Social context (Hovy and Yang, 2021) encom-
passes the human context but is not limited to it.
In this work, we focus our vision of LHLMs in
the scope of human context. Human context goes
far beyond what can be captured from text modal-
ity alone. For example, other modalities such as
gestures, speech, and body language are also a sig-
nificant part of humans and their thought processes
which gives us a more holistic picture of under-
standing human expression. However, in this work,
we limit ourselves to the human context derived
from language. We discuss limitations in detail
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in Section 6. Furthermore, LHLMs by their very
nature are associated with sensitive user informa-
tion and have the potential to be misused. Thus,
it becomes essential to adopt a responsible release
strategy for such models. We discuss a range of
ethical considerations and privacy concerns and
implications in Section 7.

2 Position 1: LM training should include
the human context.

2.1 Motivation

Robinson (1950) describes a fallacy in statistical
models of the world pertaining to modeling indi-
vidual observations that are part of a group, as if
they are independent, a so-called ecological fallacy.
Current LLMs exhibit a form of this ecological fal-
lacy, whereby text sequences written by an author
are treated as if independent and miss the oppor-
tunity to capture dependence (Soni et al., 2022).
Conversely, in the absence of a notion of authors,
the LLMs can be seen as modeling the documents
from many different people as if they were gener-
ated by a single universal author.

Motivated by this need for interpreting language
in its human context and inducing inter-dependence
between different text sequences from an individ-
ual, we posit the need to train our base large lan-
guage models with the human context. One broad
way to frame human context-aware language mod-
eling is as follows:

Pr(X|H) =
n∏

i=1

Pr(xi|X1:i−1, H).

This human language modeling problem gener-
alizes the regular language modeling problem of
predicting the next word conditioned on the previ-
ous words in a text sequence X to also condition on
a human context H1. To train LLMs for this human
language modeling problem, we need methods to
both represent the human context and to include it
in our training objective.

2.2 Past Work

A rich body of prior work sought to include human
contexts in NLP models, broadly falling into two
categories: ones that are closer to the human lan-
guage modeling frame, and others that are post hoc
adaptations of models with human contexts.

1This framing can also be formulated for non-
autoregressive language modeling.

Human context-aware language models. Some
work on personalized language models account for
human contexts through user embeddings and show
improvements in predicting mental health like de-
pression (Wu et al., 2020), and user attributes like
demographics (Benton et al., 2016), and occupation
(Li et al., 2015). These focus more on creating user
representations and less on informing language
models with the human context. Others pursue
continued training on the language of specific users
to build user-specific language models (Wen et al.,
2013; King and Cook, 2020) achieving substantial
gains in perplexity. While these support the call
for integrating human contexts in language mod-
eling, we need to go beyond these user-specific
models. Learning and storing separate models for
each user presents a scalability challenge, as well
as limits the sharing of knowledge across different
users thus limiting generalization.

Delasalles et al. (2019) approach a more gen-
eralized human language model which improves
perplexity by 10 points on the New York Times and
Semantic Scholar corpus. They additionally condi-
tion on a dynamic learned latent representation of
the author to capture the human context using an
LSTM based architecture. However, this learned
vector does not capture the richness of the human
context representative of the human characteristics
and traits in the author’s language (Fleeson, 2001).
Also, the model parameters seem to depend on the
number of authors for the static component of the
user representation. While this is better than ap-
proaches that create one model per user, the growth
in parameters limits scalability and generalization.
Soni et al. (2022) go further towards modeling the
rich dynamic human context from the author’s his-
torical language and including it in the continued
training of a modified GPT-2 based model. They
use social media datasets and show LM improve-
ments with perplexity gains of up to 20 points, and
improved downstream task performance on four
different tasks including sentiment analysis, stance
detection, assessing personality, and estimating age.
This provides one direction of research to scalable
and generalizable LHLMs but limits the amount of
historical language that can be used.

Post hoc human contextualized models. Two
broad groups of methods use human contexts in a
post hoc fashion: Personalized application-focused
models, and debiasing methods using semantic sub-
spaces. Some examples of the first group include
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methods that create user-specific feature vectors
(Jaech and Ostendorf, 2018; Seyler et al., 2020)
or prefixed static user identifiers (Mireshghallah
et al., 2022) or prefixed learned user-specific vec-
tors (Zhong et al., 2021; Li et al., 2021) to the word
vectors and show improved accuracies for personal-
ized sentiment analysis, personalized search query
auto-completion, or personalized explainable rec-
ommendation. Others developed hierarchical mod-
eling using historical text from a user to create per-
sonalized models to improve personality detection
(Lynn et al., 2020) and stance detection (Matero
et al., 2021). In the second group, several stud-
ies focused on identifying and eliminating word
vector subspaces associated with a particular bias
such as gender (Bolukbasi et al., 2016; Wang et al.,
2020; Ravfogel et al., 2020) and religion (Liang
et al., 2020). The broad evidence for personal-
ization and debiasing indicates the performance
and fairness benefits of modeling human contexts.
Moreover, current methods do not take into account
the speaker and addressee which is essential for un-
covering situational bias.

Given the move towards large language models
as the basis for NLP, we argue that if the base LLMs
can be made human context aware, we can learn
better and more fair language representations to
begin with.

2.3 Challenges and Possible Solutions

C1: Including human context. Training LLMs
for the human language modeling problem raises a
wide range of challenges. These include deciding
how to capture the human context effectively and
how to incorporate it in training.
PS1: Before the advent of LLMs, human-centered
NLP mainly infused human context H (e.g. demo-
graphic value of an author) into a feature space F
either using factor additive approaches (Bamman
et al., 2014a; Bamman and Smith, 2015; Kulkarni
et al., 2016; Welch et al., 2020a):

P = g(F +H),

or through user factor adaptation (Lynn et al., 2017;
Huang and Paul, 2019):

O = g(z(F,H)),

where g is a model trained to output predictions P ,
and z represents a form of multiplicative compo-
sitional function that is used to adapt the feature
space to the human context.

We can extend these “pre-LLM” approaches to
LLMs by viewing the hidden states or the contex-
tual word vectors as features. The human context
can thus be added directly to the contextual word
vectors similar to how position embeddings get
added or via composition functions that adapt the
contextual word vectors conditioning on the human
context. More generally, integrating human con-
text into Transformer based LLMs brings up many
challenges in terms of modeling, interaction with
downstream applications, and data processing. We
discuss these next.
C2: Modeling decisions. Architectural decisions
include: which layers to modify, where do we
include the human context, how to alter the self-
attention mechanism if needed, and which compo-
nents (query, key, value) should include the human
context if needed.
PS2: For example, Soni et al. (2022) modify the
language modeling task to include the human con-
text as a user vector, which is derived from the au-
thor’s historical text. The new Transformer-based
architecture modifies the self-attention computa-
tion by using the user vector in the query represen-
tation, and recurrently updates the user vector using
the hidden states from a later layer. Other works
(Zhong et al., 2021; Mireshghallah et al., 2022),
as discussed earlier, simply prefix the user repre-
sentation to the word embeddings when processing
through the Transformer based architectures.

The modeling decision questions and existing
works spur us to explore many other architectural
solutions for large human language models, along
with suitable pre-training tasks or loss functions
that include human contexts.
C3: Model applications. Another key challenge is
in effectively applying the pre-trained large human
language models on the target downstream tasks
and applications.
PS3: For instance, (i) the pre-training task may
be built similar to downstream task training i.e.,
we add a classification or regression head on top
of the pre-trained language model and fine-tune
for target downstream tasks like a traditional large
language model, (ii) the pre-trained model can be
trained with downstream task-specific objective i.e.,
in addition to using the pre-training knowledge, we
train the model parameters specific to the target
downstream task objective alone, (iii) continue the
pre-trained model’s training in a multi-task learning
setup i.e., we train for the pre-training objective as
well as a downstream task-specific objective, or (iv)
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explore different data processing strategies when
fine-tuning the pre-trained model for target down-
stream tasks for example, limiting the historical
language context in the fine-tuning stage.
C4: Data processing. Processing human context
from user’s historical language requires effectively
handling user-level data: approaches to process
user-specific data which can be rather long, and
strategies to choose the right amount and relevance
of the historical language to be used. First, user
information adds another dimension to the data that
may require creative ways of processing. Second,
the runtime and memory complexity of the self-
attention mechanism scales quadratically with the
sequence length, which often limits their abilities
to directly process long input sequences. And third,
answers to questions like: how much historical lan-
guage is sufficient to capture the human context,
whether adding more language will help build a
better human context, and whether we need to pro-
cess even longer documents in a single pass, among
other intriguing considerations.
PS4: Some approaches to address these limitations
include recurrently processing all of a user’s data
together as a single instance (Soni et al., 2022), and
incorporating existing approaches to solve long-
context processing into LHLMs. These have three
broad categories: sparsifying the attention mech-
anism (Beltagy et al., 2020; Kitaev et al., 2020;
Qiu et al., 2020; Ye et al., 2019; Roy et al., 2021),
using auto-regressive recurrence-based methods
(Sukhbaatar et al., 2019; Rae et al., 2019; Dai
et al., 2019; Yoshida et al., 2020), and retrieval-
augmentation mechanisms (Guu et al., 2020). How-
ever, we still need to explore the questions regard-
ing how much and which part of an author’s his-
torical language is sufficient to model the human
context.

3 Position 2: LHLMs should recognize
that people are more than their
group(s).

3.1 Motivation

Human context is not limited to a specific social
and demographic group they belong to. Rather it
is a mix of the multiple human attribute groups
they may belong to and their unique characteristics
and idiosyncrasies. Even with their groups, it is
not always a binary association, there are varying
degrees to which an individual might align with the
group traits.

Psychology and Psychopathology have a wealth
of literature suggesting that people should not be
put in discrete bins but instead should be placed
in a dimensional structure by characterizing them
as a mixture of continuous factors (McCrae and
Costa Jr, 1989; Ruscio and Ruscio, 2000; Widiger
and Samuel, 2005). Further, grouping people into
discrete bins often uses arbitrary boundaries which
may lose the meaningful distinctions in capturing
the human context.

Cross-cultural psychology research has noted
the distinctions in individualism and collectivism
concurring with the predictions from Hofstede’s
model (Hofstede, 1984; Hofstede and Bond, 1984).

"[P]eople from the collectivist culture
produc[e] significantly more group and
fewer idiocentric self-descriptions than
... people from the individualist cultures"
-Bochner (1994)

These suggest that it is vital to allow for flexible
interactions between individualistic and collectivist
aspects of the human context.

Moreover, the rich diversity in people cannot be
captured effectively by modeling a narrow sample
of variation in human factored groups. In behav-
ioral sciences, Henrich et al. (2010) bring to atten-
tion that most of the research in the field is often
limited to humans belonging to the WEIRD (West-
ern, Educated, Industrialized, Rich, and Demo-
cratic) group. They argue that this narrow group is
mostly an outlier as a representative of humanity
in cross-cultural research. This provides a corre-
sponding lesson for NLP research. We should not
limit ourselves to a narrow spectrum of specific hu-
man factors by only modeling outliers in the human
context.

Motivated by these ideas from psychology and
behavioral sciences, we argue for breadth, depth,
and richness in modeling the human context when
training large human language models.

3.2 Past Work

A huge body of work in human-centered NLP
has shown the importance of modeling human at-
tributes like demographic factors and social con-
text, and latent human variables in natural language
processing. These include works that model fac-
tors that are either known explicitly from question-
naires, social profiles, or inferred from the user’s
language, with the aim of grouping people to ana-
lyze language variations among different groups.
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Wide variety of human factors. There are many
types of human factors that can influence a per-
son’s language. Cross-cultural differences and de-
mographics like gender (Volkova et al., 2013) and
age (Hovy, 2015) have been shown to influence the
perceived meaning of words and aid in multiple
text classification tasks (Huang and Paul, 2019),
and machine translation (Mirkin et al., 2015; Rabi-
novich et al., 2017). Several studies have also ex-
ploited benefits from social relations (Huang et al.,
2014; Yang and Eisenstein, 2017; Zeng et al., 2017;
Del Tredici et al., 2019) in sentiment analysis (Hu
et al., 2013) and toxic language detection (Rad-
far et al., 2020). Existing literature has shown
correlations in language variation with personal-
ity (Schwartz et al., 2013), occupation (Preoţiuc-
Pietro et al., 2015), and geographical region (Bam-
man et al., 2014a; Kulkarni et al., 2016; Garimella
et al., 2017) illustrating distinctions in style and
perspectives among different groups of people.

Intersectionality of human factors. A person’s
language is mediated not just by an individual fac-
tor but by the intersection of many factors. Some
works (Bamman and Smith, 2015; Lynn et al.,
2019; Huang and Paul, 2019) have explored us-
ing multiple human factors together in their studies.
Some classification tasks from different domains
(Huang and Paul, 2019) have shown greater ben-
efits in a multi-factored approach of combining
gender, age, country, and region, while tasks like
sarcasm detection (Bamman and Smith, 2015) and
stance detection (Lynn et al., 2019) have performed
better by specific author features. Soni et al. (2024)
find pre-training with individual traits and group
attributes help user-level tasks like assessing per-
sonality, while incorporating only the individual
human context in pre-training benefits document-
level tasks like stance detection. These empirical
studies indicate the need to explore different combi-
nations of human factors for respective downstream
tasks and applications.

Continuous representation of human factors.
A discrete group often relies on arbitrary bound-
aries and a person may belong to multiple groups
in varying degrees. Thus, using a continuous repre-
sentation of human factors may allow us to move
away from hard memberships in arbitrary groups
to a more realistic soft membership along factor
dimensions. Prior work has illustrated language
differences based on social network clusters with
strong gender orientation, treating gender as more

than a binary variable (Bamman et al., 2014b), or
by continuous adaptation of real-valued human fac-
tors like continuous age, gender, and Big Five per-
sonality traits (Lynn et al., 2017).

Latent human factors. A person’s language has
characteristics that go well beyond those of a spe-
cific set of groups they may belong to. To capture a
broader set of characteristics, some works explored
deriving latent factors from a person’s language
(Wen et al., 2013; Lynn et al., 2017; Kulkarni et al.,
2018). Latent linguistic factors have been shown to
capture user attributes (Lynn et al., 2017) and differ-
ences in thoughts and emotions of people (Kulkarni
et al., 2018). Others create latent representations
from user posts using bag-of-words (Benton et al.,
2016), sparse-encoded BERT contextual embed-
dings (Wu et al., 2020), and averaged GRU em-
beddings (Lynn et al., 2020). Another approach
focuses on learning embeddings, i.e., a trainable set
of parameters, as latent representations of users (Li
et al., 2015; Amir et al., 2016; Zeng et al., 2017;
Jaech and Ostendorf, 2018; Welch et al., 2020b).
These latent user representations and learned em-
beddings yield benefits in multiple downstream
tasks and applications.

Modeling the human context in terms of the
groups that people belong to has pioneered ad-
vances in human-centered NLP. However, humans
are more than the discrete groups they belong to.
To go further, we need a representation that recog-
nizes the variety, and intersectionality of human
factors across continuous dimensions, as well as
their unique individual characteristics.

3.3 Challenges and Possible Solutions

C1: Modeling data and representational dispar-
ities. To capture the rich human context, we need
access to datasets that provide relevant informa-
tion covering users who are representative of the
broad and diverse population (Henrich et al., 2010;
Johnson et al., 2022). Specifically, the challenges
lie in obtaining datasets: (1) that provide access
to user identifiers and historical language which
allow us to differentiate the human source of the
language, and associate explicit human attributes
such as sociodemographic or personality attributes,
(2) that do not amplify representational dispari-
ties (Shah et al., 2020) and span multiple domains
such as healthcare (Bean et al., 2023), customer
service (Adam et al., 2021), and education (Klein
and Nabi, 2019).
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PS1: There are multiple avenues for addressing
the challenges above. First, there is a wide-variety
of large scale datasets that contain author Ids as
metadata. For example, Amazon reviews, Red-
dit posts and comments, blogs, books, and news
articles, which can be used to train LHLMs. Sec-
ond, some representational disparities can be ad-
dressed by benchmarking and balancing the types
of disparities. For example, we can use various
text-based human attribute inference methods to
detect and balance for attributes such as age, gen-
der, and other demographics (Tadesse et al., 2018;
Wang et al., 2019). Similarly, we can address cul-
tural disparities by making use of research efforts
to probe (Arora et al., 2023), identify (Gutiérrez
et al., 2016; Lin et al., 2018) and benchmark (Yin
et al., 2022) cross-cultural differences. Third, we
can also use modeling strategies that are better
equipped to handle imbalanced and limited data
settings. For example, there is a large body of work
in low-resource settings for problems such as senti-
ment analysis (Priyadharshini et al., 2021; Muham-
mad et al., 2023), hate speech detection (Modha
et al., 2021), and machine translation (Ranathunga
et al., 2023). Other notable examples include strate-
gies for culturally grounding models using trans-
fer learning (Sun et al., 2021; Zhou et al., 2023),
and adaptation strategies for modeling societal val-
ues (Solaiman and Dennison, 2021).

Additionally, industries with large user bases are
a potential source for language data. Investing in
community-wide efforts for publishing and evalu-
ating research over proprietary data and improved
industry collaborations can provide access to other-
wise unavailable data which can also help further
research in this area.
C2: Privacy issues. Modeling user’s personal char-
acteristics carries the inherent risk of inadvertent
privacy leaks as well as the potential for adversarial
or malicious use. The challenge of guarding the pri-
vacy of individuals can be broadly categorized into
2 aspects: (1) Privacy and data control of the data
subject, and (2) Licensing model usage, policies,
and laws to prevent potential misuse like target
marketing: As seen in the past with Cambridge
Analytica Facebook dataset, a potential misuse of
modeling humans is target marketing (Isaak and
Hanna, 2018; Bakir, 2020).
PS2: Some existing laws aim to protect user
privacy and security, such as requiring data
anonymization and/or asking for consent to share
data. For example, the EU General Data Protection

Regulation (GDPR) (Lewis et al., 2017), is consid-
ered one of the strongest laws. The Italian Data Pro-
tection authority banned the widespread ChatGPT
services (Bertuzzi, 2023; Satariano, 2023) citing
concerns over privacy violations and breaching the
EU GDPR. The Institutional Review Board (IRB)
approvals process is followed in the US to pro-
tect human subjects research with most standards
rooted in ethical standards involved in medical re-
search (Goodyear et al., 2007; Miracle, 2016) such
as protecting the rights of all research subjects or
participants in terms of respect, beneficence, jus-
tice, the right to make informed decisions, and
recognition of vulnerable groups. We should be
vigilant in preventing such leaks and have strict
licensing and policies to safeguard malevolent uses.
Human context aware models themselves can be
used towards some of these goals such as recogniz-
ing target marketing and preventing its spread. A
key part here is in continuing to evolve privacy laws
and policies as the models evolve and investing in
studies that can better inform these decisions.
C3: Model scalability. Targeting human contexts
that go beyond group characteristics and include
unique individual characteristics increases the scal-
ability requirements on the models. The key chal-
lenge is that the model has to simultaneously cap-
ture user-specific contexts as well as scale to multi-
ple users without corresponding increases in model
parameters or creating a new model itself for each
user. Past work on personalized models have been
limited by this scalability issue, whereby either
models are user-specific or do not scale well. In
some, a separate model is created for each user
(King and Cook, 2020), while in others a different
user identifier is used for each user (Li et al., 2021;
Zhong et al., 2021; Mireshghallah et al., 2022).
PS3: Some use a post hoc fix which handles any
new user seen after training by updating the user
embeddings with the new user directly during eval-
uation (Jaech and Ostendorf, 2018). Delasalles
et al. (2019) adopt an LSTM-based approach with
a dynamic author representation which consists
of user-specific static and dynamic components.
These approaches that learn user-specific vectors
are relatively more scalable than the ones that learn
user-specific models. Soni et al. (2022) eliminate
this dependence on user-specific vectors using a
single Transformer-based model, where a recur-
rent user states module is trained to use authors’
historical language. While this improves scalabil-
ity, it is still limited in the amount of historical
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language it can use due to the compute require-
ments and context-length considerations. These
ideas pave the way for further explorations of so-
lutions to this challenge of building scalable large
human language models.

4 Position 3: LHLMs should account for
the dynamic and temporally-dependent
nature of human context.

4.1 Motivation

"[People] are embedded within time, ...
time is fundamentally important to life as
it is lived, and ... personality processes
take place over time." -Larsen (1989)

A person’s static and dynamic human states are
intertwined, where static traits influence the like-
lihood of entering various dynamic states across
time (DeYoung, 2015). Correspondingly, a per-
son’s language expresses the changing human
states and evolving emotions over time (Fleeson,
2001; Mehl and Pennebaker, 2003; Heller et al.,
2007). For the human context to be effective, it
must not only be able to model the static human
traits and attributes but also the more dynamic hu-
man states of being.

Temporal rhythms (e.g. diurnal and seasonal)
are also known to affect human mood and behavior,
which in turn manifests in their language (Golder
and Macy, 2011). We need mechanisms that can
capture the patterns of regularity or change in hu-
man language and human behavior over time. For
example, studies on NLP for mental health also
point to the importance of tracking moments of
change over time for assessing suicidal risk (Tsaka-
lidis et al., 2022).

Motivated by these ideas of changing human
states and the impact of temporal aspects on human
behavior and language, we posit the need for a
dynamic and temporally-dependent human context.

4.2 Past Work

Studies that explore the dynamic nature of hu-
man context fall into two broad categories, those
that: (1) dynamically update user representations
to capture changing human states, and those that
(2) contextualize using temporally ordered texts
and other aspects that demonstrate the recurrent
changes from seasonality or other cyclic patterns.

Recurrently updated user representations. As
discussed earlier, recurrence mechanisms have

been used for building user representations (De-
lasalles et al., 2019; Soni et al., 2022). It is mo-
tivated by the need to capture author-specific fea-
tures that do not change with time, and the au-
thor’s human states, topic evolution, and altering
expressions that change over time. Delasalles et al.
learned a dynamic latent vector using an LSTM
model for this purpose, and Soni et al. go further to
use the target user’s historical texts to recurrently
update the user representation. When learnt over
temporally ordered language, these methods enable
capturing the changing human states and temporal
aspects as exhibited through their language. But,
these methods are limited by either the amount and
specific parts of the author’s historical data used or
by the complete absence of it.

Temporal Modeling. The changing human states
over time highlights the need to consider the tempo-
ral aspect of the human context and its expressions
in language. Considering temporally ordered texts
allows capturing some notion of temporality in an
implicit fashion. Matero et al. (2021) introduced a
missing message prediction task over a sequence of
temporally ordered social media posts of the target
user to build a personalized language model that
helps in stance detection. Tsakalidis et al. (2022)
proposed a shared task to capture drastic and grad-
ual moments of change in an individual’s mood
based on their language on social media and to
identify how this change helps assess suicidal risk
(Boinepelli et al., 2022; V Ganesan et al., 2022).
Zhou et al. (2020) use other temporal aspects like
typical periodicity or cyclical nature, frequency,
and duration to induce common sense in language
models but over generic newswire texts with no
direct relation to the human contexts of the authors.

We propose using recurring patterns or anoma-
lies can better inform our dynamic human context
to capture a better representation of a person as
a whole. This enriched human context capturing
the periodicity or anomalies in human behavior
and their language can also help in multiple mental
health applications and early detection.

4.3 Challenges and Possible Solutions

C1: Modeling data. To model the dynamic and
temporal changes in language, we need time infor-
mation in our datasets. Assessment over time can
be thought as an additional dimension to the dataset,
resulting in a three-dimensional dataset (Larsen,
1989) with user information, text, and time. While

8638



it may be possible to obtain a reasonable history
of a user’s language, obtaining adequate samples
across all timestamps is difficult.
PS1: Thus, datasets are likely to have larger “gaps”
in the time dimension and models may need to learn
to fill or otherwise adequately handle these gaps in
temporal text sequences (Matero et al., 2021).
C2: Modeling temporal language and temporal
aspects. The positional encoding in a temporally
ordered sequence can allow a language model to
learn some temporal aspects (e.g. before/after re-
lationships). However, more complex recurrent
dynamics at different time scales (e.g. diurnal,
weekly, and seasonal) may need other mechanisms
that allow the model to explicitly consider the time
associated with each text. This raises new chal-
lenges in encoding such time information into a
temporal embedding and in getting models to use
this encoded information. Last, pushing models
to consider temporal information may also require
developing new language modeling objectives.
PS2: Predicting what follows can often be modeled
by focusing on the immediate local dependencies
(in a Markovian sense). However, to force models
to consider different temporal scales we can con-
sider objectives that frame predicting what will be
said after a specific temporal interval (e.g. the next
day, the same day next week and so on).

5 Conclusion

Building upon the success of two parallels of
NLP research: large language models and human-
centered NLP, we envision large human language
models (LHLMs) as the base of future NLP sys-
tems. Previous positions taken in human-centered
NLP advocate for modeling human and social fac-
tors (Hovy, 2018; Bisk et al., 2020; Flek, 2020;
Shah et al., 2020; Hovy and Yang, 2021). We go
further and call for modeling a richer and dynamic
human context in our future large language mod-
els. A rich human context captures the personal,
social, and situational attributes of the person, and
represents both static traits and dynamic human
states of being. We put forward three specific po-
sitions as steps toward integrating this rich human
context in language models to realize the vision of
large human language models. Our roadmap draws
on motivations from multiple disciplines, prior ad-
vances in human-centered NLP, and organizes the
range of challenges to be met in realizing this vi-
sion. We call for our NLP research community
to take on the challenge of bringing humans, the

originators of language, into our large language
models.

6 Limitations

We elaborate on the three positions we take to cre-
ate large human language models in terms of the
need, richness, and dynamic nature of the human
context in the main paper. However, the scope
of this position is fairly limited, focusing on the
details of the human context, only giving social
context a brief mention in so far as its relation to
human context. Important social contexts affecting
language include (1) cultural shifts/changes, (2) en-
vironmental events like natural disasters, and (3)
multi-lingual settings (although most of our dis-
cussion is based on the psychological theory that
transcends languages). Similarly, we limit our dis-
cussion on the needs and challenges of the breadth
of the domains of the human context. Finally, our
discussion of privacy issues is also focused on the
human context (refer section 3.3) and thus does
not go into required social policies and its effects
on language models. Furthermore, we note that
human context is not necessarily confined to the
space of language. There is a broader notion of
human context extending to multi-modality (for ex-
ample, speech, gestures, body language, etc.) that
gives us a more holistic understanding of human
expression. We limit our paper’s scope of human
context to that inferred from language alone and
leave envisioning LHLMs in a multi-modal view
as part of future work.

7 Ethical Considerations

Many of the main points of this paper are in them-
selves of ethical consideration. We thus use this
section to discuss the uncovered considerations.
Importantly, while we advocate for large human
language models and training them with a rich and
dynamic human context, we also argue not every
use case of LHLMs are of societal benefit. When
developing LHLMs to better understand human
language and to enable bias correction and fairness,
one should also seek a responsible strategy for the
release and use of user-level information which can
sometimes be sensitive or private. Additionally,
models predicting author attributes and sociode-
mographic information can enable accounting for
human language variation and have the potential
to produce fairer and more inclusive results, but
at the same time need to be considered with par-
ticular scrutiny. With the risk of identifying sensi-
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tive user information, such models can potentially
lead to profiling and stereotyping. For such data,
user consent and privacy protections are important.
Otherwise, such models also present opportunities
for unintended harms, malicious exploitation, and
could be used for targeted content toward training
set users without their awareness. While laws in
some nations, such as the GDPR, outlaw such use
cases, these have not become universal around the
world yet.
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