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Abstract

Dialogue response selection aims to select an
appropriate response from several candidates
based on a given user and system utterance his-
tory. Most existing works primarily focus on
post-training and fine-tuning tailored for cross-
encoders. However, there are no post-training
methods tailored for dense encoders in dialogue
response selection. We argue that when the
current language model, based on dense dia-
logue systems (such as BERT), is employed as
a dense encoder, it separately encodes dialogue
context and response, leading to a struggle to
achieve the alignment of both representations.
Thus, we propose Dial-MAE (Dialogue Contex-
tual Masking Auto-Encoder), a straightforward
yet effective post-training technique tailored
for dense encoders in dialogue response selec-
tion. Dial-MAE uses an asymmetric encoder-
decoder architecture to compress the dialogue
semantics into dense vectors, which achieves
better alignment between the features of the di-
alogue context and response. Our experiments
have demonstrated that Dial-MAE is highly ef-
fective, achieving state-of-the-art performance
on two commonly evaluated benchmarks.

1 Introduction

The retrieval-based dialogue system is a popular re-
search topic. Pre-trained language models (PLMs),
especially deep bidirectional Transformer Lan-
guage Models (LMs) like BERT encoder (Vaswani
et al., 2017; Devlin et al., 2019), have been widely
used in dialogue response. Common uses of deep
LM are cross-encoder and bi-encoder (Gao and
Callan, 2021). Recent works (Gu et al., 2020;
Whang et al., 2021; Xu et al., 2021; Han et al.,
2021; Zhang et al., 2022) on dialogue response re-
trieval systems are mostly based on cross-encoders,
which feed both the dialogue context and response
directly into LM and use attention over all tokens to
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output a relevance score. Although cross-encoders
have relatively stronger performances, they need
to compute the matches for every possible com-
bination of context-response pairs, which is time-
consuming (Lan et al., 2021). In practice, cross-
encoders are often used for re-ranking after dia-
logue retrieval. In contrast, another common use
of deep LM is the dense encoder, i.e. bi-encoder,
which encodes dialogue context and response into
the context vector and response vector respectively.
The correlations between context and responses are
computed using cosine similarity or dot product
functions in vector space (Lan et al., 2021; Gao
et al., 2022). The bi-encoders have a faster compu-
tational speed but usually perform worse than the
cross-encoder.

Bi-encoders generally underperform compared
to cross-encoders due to two main reasons be-
low (Han et al., 2021; Gao and Callan, 2021; Lan
et al., 2021). Firstly, bi-encoders encode dialogue
context and responses separately, which lacks deep
interaction like the cross-encoder (Han et al., 2021).
We consider this as a potential information barrier
that hinders the performance of bi-encoders, result-
ing in significant differences between the dense
vector representations of the dialogue context and
response vectors. Secondly, language models like
BERT (Devlin et al., 2019) have not been trained to
aggregate complex information into a single dense
representation (Gao and Callan, 2021). Although
using contrastive learning during the fine-tuning
can alleviate the above two issues (Lan et al., 2021),
the discussion regarding their mitigation with post-
training remains absent in dialogue response selec-
tion. We argue that post-training a PLM specifically
tailored for the dense dialogue retrieval is essential
for achieving optimal performance.

In this paper, we focus on the above two is-
sues and propose Dial-MAE (Dialogue Contextual
Masking Auto-Encoder), a simple and effective
post-training method tailored for the bi-encoder
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Figure 1: The model design for Dial-MAE. The input of the encoder is the dialogue context, and its next response
and dialogue context embedding output by the encoder is used as the input to the decoder.

to compress dialogue semantic information and
enhance the representation of dialogue-dense vec-
tors. Our method provides a stronger foundation
for model fine-tuning. Specifically, during the mod-
eling process, we consider both the semantics of
the dialogue context and the semantic relevance of
the response.

As shown in Figure 1, we introduce an asym-
metric encoder-decoder architecture. With the help
of the dialogue context embedding [CLS] output
by the encoder, the auxiliary task utilizes a weak
decoder to reconstruct the masked response text. In
other words, we employ the embedding of the dia-
logue context to directly generate responses. There-
fore, even if the encoder side only receives the
inputs of dialogue contexts, the output dialogue
context embedding still needs to consider the cor-
rect response. This enables the dialogue context
embedding [CLS] to incorporate contextual infor-
mation. In addition, the encoder is required to di-
rectly predict the correct response when encoding
the dialogue context, which breaks the informa-
tion barrier between the context and the response.
Therefore, the context and response features output
by Dial-MAE are more similar, and our ablation
experiments also prove this.

Furthermore, it is noteworthy that, similar to
(Xiao et al., 2022; Gao and Callan, 2021), we apply
asymmetric mask rates to the encoder and decoder.
The decoder side has a higher mask rate than the
encoder side. Such a design has the following ad-
vantage. Since the decoder has limited modeling
capacity and high mask rate, the reconstruction on
the decoder side is difficult to accomplish only by
relying on masked response and rely more on the
dialogue embedding output by the encoder, this
forces the encoder to sufficiently aggregate the se-

mantics of the dialogue context to aid the decoder
in its MLM task (Xiao et al., 2022; Gao and Callan,
2021).

Our contributions are as follows:

1. We introduce Dial-MAE, a novel post-training
method designed for bi-encoders, which uti-
lizes dialogue context embeddings to gener-
ate responses, aiming to achieve feature align-
ment.

2. We design a novel asymmetric encoder-
decoder architecture to enhance the represen-
tational power of dialogue embedding.

3. Experimental results show that in dialogue
response retrieval, our method achieves state-
of-the-art on two benchmarks with faster re-
sponse speed.

2 Related Work

In this section, we first discuss traditional retrieval
dialogue systems based on neural networks, and
then we discuss current dialogue systems based on
pre-trained language models.

2.1 Neural Dialogue Response Retrieval

Dialogue response selection aims to select the
most appropriate response from a range of can-
didates. Earlier studies (Kadlec et al., 2015; Lowe
et al., 2015) focused on single-turn response se-
lection. Later, more and more studies paid at-
tention to multi-turn dialogue response selection.
Lowe et al. (2015) introduce a method that calcu-
lates the matching degree between dialogue and
response based on Recurrent Neural Networks
(RNNs). They also contributed a benchmark
dataset named Ubuntu V1. In a similar vein, Kadlec
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et al. (2015) advocate for the use of Convolutional
Neural Networks (CNN) and Long Short-Term
Memory (LSTM) as encoders to represent both
the context and response. However, these meth-
ods do not explicitly treat each utterance as a unit,
making it difficult to capture utterance-level dis-
course information. Zhou et al. (2016) propose
a multi-view model that encodes both word-level
and utterance-level representations. Meanwhile,
to fully reflect the relationship between dialogue
and response, Wu et al. (2017) suggest utilizing
word embeddings and their sequential representa-
tions, encoded by Gated Recurrent Units (GRU), to
construct a matching matrix between the dialogue
context and response. With the popularity of atten-
tion mechanisms(Luong et al., 2015; Vaswani et al.,
2017). Zhou et al. (2018) propose a deep attention-
matching network that applies the attention mech-
anism to the response selection dialogue system.
Furthermore, Tao et al. (2019) advocate for con-
text and response matching by stacking multiple
interaction blocks, providing a nuanced perspective.
In a similar vein, Yuan et al. (2019) introduce a
multi-hop selector network designed to identify rel-
evant utterances in the context of response match-
ing. However, most traditional retrieval models
are lightweight networks, and their performance is
difficult to compare with PLMs.

2.2 PLM-based Dialogue Response Retrieval

Since PLMs show impressive performances in var-
ious downstream NLP tasks(Devlin et al., 2019;
Brown et al., 2020; Touvron et al., 2023; Su et al.,
2023; Wu et al., 2023). More and more studies
apply PLMs to response selection. BERT-VFT
(Whang et al., 2020) first applies the pre-trained
language model BERT to dialogue response se-
lection, and achieves state-of-the-art results. SA-
BERT (Gu et al., 2020) adds speaker embedding
to the model, in order to make the model aware of
the speaker change information. Multi-Task Learn-
ing is also an effective way, UMSpgprr+ (Whang
et al., 2021) proposes a set of strategies, which
aids the response selection model towards main-
taining dialogue coherence. Alternatively, Xu et al.
(2021) propose learning a context-response match-
ing model with multiple auxiliary self-supervised
tasks. However, these methods have the problem
of not fully considering the relationship between
each utterance in the context. BERT-FP (Han
et al., 2021) proposes to classify the relationship

between a given utterance and a target utterance
into more fine-grained labels, which makes the
model learn the semantic relevance and coherence
between the utterances. Zhang et al. (2022) pro-
pose two-level supervised contrastive learning so
that the learned dialogue representations can be fur-
ther separated in the embedding space. In addition,
DR-BERT(Lan et al., 2021) explores the transfer
of techniques from dense passage retrieval com-
munity to dialogue response selection. Although
DR-BERT (Lan et al., 2021) propose fine-tuning
PLMs through contrastive learning to enhance the
representation capability of dialogue-dense vec-
tors, there has been no research on tailoring post-
training tasks to enhance the representation ability
of dialogue-dense vectors.

3 Methodology

This section first introduces masked language
model pre-training as preliminary knowledge.
Then we introduce detailed post-training, includ-
ing the construction of data and the auxiliary task.
Finally, we introduce the details of fine-tuning.

3.1 Masked Language Model Pre-training

MLM is an unsupervised method that masks parts
of the input tokens and requires the Transformers-
based LM to predict them based on the unmasked
tokens. Formally, given an input sentence X =
[x1, X2, ..., x,]. We select a certain percentage of
tokens from X and replace them with a special to-
ken [MASK] to get corrupted X. We denote these
tokens replaced by [MASK] as m/(X). Then, LM
is used to transform the corrupted input into the
hidden states:

[hly,, 0] = LM([CLS], X) ()
Here, [CLS] is a special token that is prepended at
the beginning of the text. hle ; and h! respectively
represent the hidden states of the final layer out-
put after the [CLS] and X pass through the LM,
ie., h!=[h! ,hé,...,hln]. For masked token, its cor-
responding hidden feature is used to predict the
actual label. We formulate this process as:

z;€m(X) 2
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3.2 Dial-MAE: Dialogue Contextual Masking
Auto-Encoder

Dial-MAE learns dialogue context information,
which jointly models the semantics of the tokens
inside a dialogue context and its response. We first
describe how to build training data from all utter-
ances of the dialogue session and then introduce
the Dial-MAE post-training method. We randomly
sample multiple consecutive utterances as context
and the next utterance as its response. Multiple ut-
terances of the context are connected using [SEG].
For each dialogue scene, we sample multiple sets
of such context and response pairs. The sampled
context and response will serve as input to the en-
coder and decoder, respectively.

Then, we introduce the post-training design for
Dial-MAE, as shown in Figure 1, we use an asym-
metric encoder-decoder: A deep encoder to gen-
erate dialogue context embedding, and a shallow
transformer-based decoder (e.g. one or two layers)
for response reconstruction. We apply a BERT
encoder Enc(.) with 12 layers, which receives
masked dialogue context as inputs. The deep en-
coder has enough parameters to learn good dia-
logue representations, following the common prac-
tice, we select the final hidden state from the [CLS]
token as the dialogue context embedding. The de-
coder is designed to assist the encoder in learning a
better semantic representation of the dialogue. The
input of the decoder Dec(.) is the masked response
as well as the dialogue context embedding, and it
reconstructs the masked response tokens with the
help of the context embedding.

Through our design, the encoder Enc(.) needs
to predict the features of the correct response when
encoding the dialogue context. This makes the
dense encoder with behavior similar to that of a
cross-encoder: simultaneously considering both
the dialogue context and the response. The advan-
tage of doing this is to achieve feature alignment
between the dialogue context and response during
the post-training. Meanwhile, since the auxiliary
MLM task breaks down the information barrier
between separately encoding the dialogue context
and response, the encoded output’s [CLS]| hidden
state encompasses information from both. Further-
more, it is worth noting that we employ an asym-
metric masking operation(eg., 30% for encoder,
75% for decoder). On the decoder side, an aggres-
sive mask rate and fewer model parameters will
force its MLLM task to rely more on the encoder’s

context embedding, which helps the encoder side
aggregate complex information about the dialogue
context into a dense vector.

Formally, we denote the dialogue context as ¢
and the response as 7. We apply random mask op-
eration to context to get ¢, denoting these tokens
replaced by [MASK] in context as menc(c). Sim-
ilarly, we apply a random masking operation with a
higher masking ratio for response to get 7, denoting
these tokens replaced by [MLASK] in response as
Mmgec(r). The encoding process can be expressed
as:

[hes, 0] = Enc([CLS], ¢) 3)

[ le? hr] = Dec(hglsv F) (4)

On the encoder side, the original context is learned
to be reconstructed by optimizing the cross-entropy
loss:

»Cenc = - Z

CciEMenc(c)

log p(ci| Enc([CLS], ¢))

)
Differently, on the decoder side, the decoder recon-
structs the original response with the help of the
context embedding h;,. We formulate this process
as:

Liec = — Z

7"ieﬂ’bdec("ﬂ)

log p(ri| Dec(hgs, 7)) (6)

Then, we add the encoder and decoder losses to
obtain a summed loss:

L= Eenc + Edec (7)

3.3 Fine-tuning for dialogue response
selection

At the end of Dial-MAE post-training, fine-tuning
is conducted on the downstream dialogue response
selection to verify the effectiveness of post-training.
As shown in Figure 2, in the fine-tuning stage, we
only keep the encoder and discard the decoder. The
encoder weights are used to initialize a dialogue
context encoder f. and a response encoder f,., re-
spectively.

The dialogue consists of a context c that includes
multiple utterances and a response r with one ut-
terance. After the dialogue context and response
pass through the encoder, the context vector and
response vector are respectively output. We train
a dialogue response selection model using a con-
trastive learning loss function.

_ exp(d(c,rt))
exp(d(c,rt)) +32; exp(d(c, 7} )

®)
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r* is the correct response corresponding to the
dialogue context c. r~ represents negative samples
within a mini-batch. At inference time, we use
the dot product d(c,r) to measure the similarity
between the context vector and the response vector:

dc,r) = fe(c) - fr(r) ©)
Dot Product
CLS CLS
Encoder Encoder
|
CLS Context Embedding } CLS Response Embedding }

!

Dialogue Context Dialogue Response

Figure 2: We discard the decoder, initialize the context
encoder and response encoder using the encoder part
of Dial-MAE, and fine-tune using contrastive learning.
At inference time, We use a dot product to measure
similarity.

4 Experiment

In this section, we first introduce our experimental
details, including datasets, evaluation metrics, post-
training, and fine-tuning. Then we introduce the
experimental results.

4.1 Datasets

We tested our model on widely used benchmarks
that include Ubuntu Corpus and E-commerce Cor-
pus. The statistics for the two datasets are presented
in Table 1.

1. Ubuntu Corpus. Ubuntu IRC Corpus V1
(Lowe et al., 2015) is a publicly available
domain-specific dialogue dataset. Each set of
conversations has two participants discussing
how to troubleshoot Ubuntu systems.

2. E-commerce Corpus. E-commerce Corpus
(Zhang et al., 2018) comprises genuine con-
versations in Chinese between customers and
customer service personnel, collected from
Taobao, a Chinese e-commerce platform.

4.2 Evaluation Metric

We evaluated our model using R1¢@#k, following
previous studies (Han et al., 2021; Zhang et al.,
2022), we evaluate our model using R19@Fk. The
notation R;0@F represents Recall, indicating that

Dataset Ubuntu E-commerce
train val test | train val  test
context-response pairs | IM 500k 500k | IM 10k 10k
pos : neg 1:1 1:9 1:9 1:1 1:1 1:9
avg turns 10.13 10.11 10.11 | 5.11 5.48 5.64

Table 1: Statistics related to data for the Ubuntu and
E-commerce Corpus.

among ten possible responses, the correct answer
is included within the top k options.

4.3 Implementation Details

We first introduce the experimental setup for post-
training, followed by the experimental setup for
contrastive learning.

Post-training. Dial-MAE’s encoder is initial-
ized with a pre-trained 12-layer BERT-base model,
while the decoder is initialized from scratch.
Specifically, following the previous works, for
the E-commerce dataset, we employ bert-base-
chinese!. For the Ubuntu dataset, we utilize the
bert-base-uncased”. We pre-train the model using
the AdamW optimizer for a maximum of 15k steps,
a global batch size of 1k, and a linear schedule with
a warmup ratio of 0.1 on all two datasets. We set
the input sequence lengths to 256 and 64 for the
encoder and decoder, respectively. In fact, for the
Chinese datasets E-commerce, we followed the pa-
rameter settings from Cot-MAE(Wau et al., 2023):
The masking ratio of the encoder is 30%, the mask-
ing rate of the decoder is 45%, the learning ratio is
le-4, and the decoder has two layers. Differently,
for the English dataset Ubuntu, the masking ratio
of the encoder is 30%, the masking ratio of the de-
coder is 75%, and the decoder is one layer. We also
adjust the learning rate to 3e-4 to ensure the loss
function converges. We set a widely used random
seed as 42 for reproducibility. After post-training,
we discard the decoder, only leaving the encoder
for fine-tuning.

Fine-tuning. We fine-tune using contrastive
learning on each dataset. During training, we fol-
low (Lan et al., 2021) regarding every utterance in
the dialogue sense as a response and its previous
utterances as a context. Our model is optimized
by AdamW optimizer, and the linear learning ra-
tio scheduler is used. We tuned the hypermeters
of individual tasks on their development sets. For

"https://huggingface.co/bert-base-chinese
Zhttps://huggingface.co/bert-base-uncased
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Models Ubuntu E-commerce
R10@1 R10@2 R10@5 R10@1 R10@2 R10@5
TF-IDF (Lowe et al., 2015) 0.410 0.545 0.708 0.159 0.256 0.477
RNN (Lowe et al., 2015) 0.403 0.547 0.819 0.118 0.223 0.589
CNN (Kadlec et al., 2015) 0.549 0.684 0.896 0.328 0.515 0.792
LSTM (Kadlec et al., 2015) 0.638 0.784 0.949 0.365 0.536 0.828
SMN (Wu et al., 2017) 0.726 0.847 0.961 0.453 0.654 0.886
DUA (Zhang et al., 2018) 0.752 0.868 0.962 0.501 0.700 0.921
DAM (Zhou et al., 2018) 0.767 0.874 0.969 0.526 0.727 0.933
I0OI (Tao et al., 2019) 0.796 0.894 0.974 0.563 0.768 0.950
ESIM (Chen and Wang, 2019) 0.796 0.894 0.975 0.570 0.767 0.948
MSN (Yuan et al., 2019) 0.800 0.899 0.978 0.606 0.770 0.937
RoBERTa-SS-DA (Lu et al., 2020) | 0.826 0.909 0.978 0.627 0.835 0.980
BERT-VFT (Whang et al., 2020) 0.855 0.928 0.985 - - -
SA-BERT (Gu et al., 2020) 0.855 0.928 0.983 0.704 0.879 0.985
UMSgERrT+ (Whang et al., 2021) | 0.875 0.942 0.988 0.764 0.905 0.986
BERT-SL (Xu et al., 2021) 0.884 0.946 0.990 0.776 0.919 0.991
DR-BERT (Lan et al., 2021) & 0.910 0.962 0.993 - - -
BERT-FP (Han et al., 2021) 0911  0.962 0.994 0.870 0.956 0.993
BERT-TL (Zhang et al., 2022) 0910 0.962  0.993 0.927 0.974 0.997
BERT, ¢, 0.887 0.948 0.989 0.849 0.937 0.991
Dial-MAE 0.918* 0.964* 0.993 | 0.930* 0.977* 0.997
diff. %p +3.1% +2.4% +0.4% | +8.1% +4% +0.6%

Table 2: Main experiment results on E-commerce Corpus and Ubuntu Corpus. BERT | 1, means fine-tuning BERT
using contrastive learning. The best score on a given dataset is marked in bold, and the second best is underlined.
& : According to the published code, for E-commerce, they adjusted the hyperparameters on the test set without
cross-validation, we think the results are misleading, and this part has been removed. Two-tailed t-tests demonstrate
statistically significant improvements of Dial-MAE over baselines (x < 0.01).

Ubuntu, we fine-tune for 5 epochs, the learning
rate is set to Se-5, and the batch size is set to 64.
For E-commerce, we fine-tune for 2 epochs, the
learning rate is set to le-4, and the batch size is set
to 128. We set a widely used random seed as 42
for reproducibility.

4.4 Results and Discussions

We show the main results in Table 2, which shows
that Dial-MAE achieves new state-of-the-art on
the Ubuntu dataset and E-commerce dataset. We
are able to achieve comparable performance to the
state-of-the-art cross-encoders using a bi-encoder,
and we have lower computational requirements
compared to cross-encoders. Compared to BERT-
FP, our model achieved an absolute improvement
of 0.7%p in R17@1 on the Ubuntu Corpus and 6%p
in R1p@1 on the E-commerce. Compared to BERT-
TL, our model achieves an absolute improvement
of 0.8%p in R;p@1 on the Ubuntu Corpus and a
slight improvement of 0.3%p in E-commerce. This
suggests that our carefully tailored post-training

method for the bi-encoder can achieve compara-
ble performance to the complex-designed cross-
encoder.

BERT, ¢, means fine-tuning BERT using con-
trastive learning. In comparison to BERT ¢z,
Dial-MAE achieve an absolute improvement in
R10@1 by 3.1%p, 8.1%p on Ubuntu Corpus and
E-commerce Corpus, respectively. This suggests
that our custom post-training approach for dialogue
retrieval models is effective. Aligning the features
of the dialogue context and response during post-
training enables improvements in contrastive fine-
tuning. We believe the improvement comes from
two aspects. On the one hand, the post-training
method considers both the semantics of the tokens
inside the context and its response. On the other
hand, the asymmetric encoder-decoder structure
with an asymmetric masking strategy facilitates
post-training, which forces the encoder to learn
better dialogue embeddings.
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Models Ubuntu E-commerce
R10@1 R10@2 R10@5 Rlo@l R10@2 R10@5
BERT, ¢, 0.887 0.948 0.989 0.849 0.937 0.991
w/o Contrastive loss | 0.205 0.341 0.647 0.141 0.242 0.466
Dial-MAE 0.918 0.964  0.993 0930 0977 0.997
w/o Contrastive loss | 0.783 0.867 0.950 0.483 0.639 0.853

Table 3: Ablation results on the test sets of the two benchmarks.

4.5 Ablation Study

In this section, we analyze the experimental results
to demonstrate the effectiveness of the proposed
Dial-MAE method. In the following experimen-
tal analysis, due to high computing budgets, most
experiments use Ubuntu Corpus.

The Impact of Auxilary Network. We remove
the contrastive loss in BERT | ¢, and Dial-MAE,
then evaluate their performance changes. As shown
in Table 3, Dial-MAE achieved an absolute im-
provement in R1p@1 by 57.7%p, and 34.2%p on
Ubuntu Corpus and E-commerce Corpus, respec-
tively.

This suggests that our proposed post-training
method effectively achieves the alignment of con-
textual representations, making the dialogue con-
text more similar to the features of the response.
We believe the gain comes from our auxiliary net-
work helping the encoder aggregate dialogue con-
textual information. First, the encoder achieves
feature alignment in the dialogue’s contextual in-
formation by predicting the features of the correct
response during the encoding of the context. Sec-
ondly, due to the small number of parameters of
the decoder and the high mask rate on the decoder
side, this will force the MLLM task of the decoder
to rely more on the dialogue context embedding
output by the encoder. This enables the decoder to
aggregate complex information about the dialogue
context into a dense vector.

We then use contrastive learning to fine-tune the
post-training models, and the performance of the
models can be further improved. We also give the
fine-tuning schedule on Ubuntu Corpus as shown
in Figure 3, with the accuracy steadily improv-
ing as the training time increases, and Dial- MAE
consistently outperforms BERT . This result
shows that both the contrastive loss and the aux-
iliary MLM loss are crucial in our method. Both
contrastive learning and our post-training method
are effective in achieving dialogue context and re-

sponse feature alignment, and their effects can be
additive.

92.5

e

—— BERT4¢
DialMAE

———

1k 3k 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k

Steps

Figure 3: Fine-tuning schedules on the dev set of Ubuntu
Corpus. A longer fine-tuning schedule gives a notice-
able improvement. The performance of Dial-MAE is
always better than BERT ¢y,

Enc Dec R10@1 R10@2 R10@5
0.15 0 91.0 96.0 99.2
0.15 0.15 91.3 96.1 99.2
0.15 045 91.5 96.2 99.3
0.15 0.75 91.5 96.3 99.3
0.30 0.45 91.7 96.5 99.3
0.30 0.75 91.9 96.5 99.3
0.30 0.90 91.6 96.4 99.3
0.45 0.75 91.8 96.4 99.4

Table 4: Impact of mask rate on the dev set of Ubuntu
Corpus. "Enc" denotes encoder, "Dec" denotes decoder.
"Enc=0.15 Dec=0" means only using BERT’s native
MLM task without the decoder part.

Impact of Mask Rate. Wu et al. (2023) find
that using a larger mask rate in both the encoder
and decoder can enhance the performance of the
contextual masking Auto-Encoder. As shown in
Table 4, in our experiments, we find that an ag-
gressive mask rate helps the learning of Dial-MAE.
when the encoder mask rate equals 30%, and the
decoder mask rate equals 75%, Dial-MAE achieves
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the best performance. When the encoder mask rate
stays below 30%, the performance of Dial-MAE
improves as the decoder mask rate increases. When
the encoder mask rate rises to 45%, Dial-MAE’s
performance declines slightly. We believe this is
due to the encoder doesn’t provide enough dialogue
context semantic information when its mask rate
is too high. In addition, from the experimental re-
sults, no matter what set of mask rates, Dial-MAE
obviously exceeds the result of post-training for
MLM tasks alone, which proves the robustness of
Dial-MAE.

Impact of Decoder Layer Number. As shown in
Figure 4, we further explore the impact of different
decoder layer numbers on Dial-MAE performance.
we find that using only one layer of the decoder
yields the best results. Fewer decoder parameters
can force the auxiliary MLM task to rely more on
dialogue context embeddings output by the encoder.
We believe that the more layers of the decoder, the
stronger the decoding ability, and the decoder’s
dependence on context embedding will decrease,
leading to insufficient constraints on encoder train-
ing. In general, no matter what set of layers, R@1
obviously exceeds the result of post-training for
MLM tasks alone (Enc=0.15 Dec=0), as shown in
Table 4, which proves the robustness of Dial-MAE.

91.8 99.40
017 99.38
99.36
91.6
o 99.34
® ®
5915 99.325
o o
91.4 99.30
91.3] —— R10@1 99.28
—— R10@5 99.26
91277 2 3 ) 5 3

Layer

Figure 4: Impact of layer number on Ubuntu Corpus.

Compared with Dense Models. To further il-
lustrate the effectiveness of our custom approach
for bi-encoders in dialogue response selection, we
compared it with state-of-the-art dense models in
the Information Retrieval(IR) community. On the
Ubuntu dataset, we fine-tune the dense models
proposed by the IR community using contrastive
learning, and the experimental results are shown
in the table 5. During pre-training, the corpus of
CoT-MAE(Wu et al., 2023) and RetroMAE(Xiao

et al., 2022) contains an additional 3.2M documents
dataset MS-MARCO(Nguyen et al., 2016) in addi-
tion to BooksCorpus and Wikipedia. However, our
experimental results show that although the results
of the three dense models have improved compared
with BERT ¢, they are still not as good as our
proposed Dial-MAE. This shows that our proposed
method is better suited for encoding dense vectors
of dialogue than other dense models.

Models ‘ Rl()@l Ru)@? Rl[]@f)
BERT. ¢/, 89.2 95.1 99.2
Condenser(Gao and Callan, 2021) 89.4 95.4 99.1
RetroMAE(Xiao et al., 2022) 89.3 95.3 99.1
Cot-MAE(Wu et al., 2023) 89.8 95.9 99.2
Dial-MAE | 919 965 993

Table 5: Comparison results of Dial-MAE and dense
retrieval models on the Ubuntu dev set.

Qualitative Analysis. To qualitatively analyze
our post-training method, as shown in Table 6, we
provide the example. Dial-MAE can sort out the
most appropriate response more accurately than
BERT 1. The response sorted by BERT, o1
have some token overlap with the dialogue context
but are not semantically related. Compared with
BERT, ¢, Dial-MAE can better understand dia-
logue semantics due to the joint modeling of con-
text and response through post-training. This fur-
ther demonstrates the effectiveness of our method.

Relevant Model Rank 1st response

USER_A:I already have these
disks in my system just want to
migrate my current homefolder
to the new drive.
USER_B:Mount your new disk
to a temporarely mount point
move or copy your home folder
to the new disc after that delete
you old homedir than mount the
new disk to _path_.

USER_A: Do you use the
ubuntu desktop or server i am
using the desktop on my laptop i
have only started with the server
a little before _number_ came
out maybe before april.

USER_A: I presume i use
gparted to get the mountpoints
correct or am i wrong

X  BERT.cp

/  Dia-MAE

Table 6: Examples of rank 1st response recalled by
different models on the the Ubuntu Corpus.
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5 Conclusion

In this paper, we propose a post-training method
tailored for dialogue response, considering the se-
mantics of dialogue context and its corresponding
responses. Precisely, we leverage a shallow de-
coder to force the encoder output dialogue embed-
dings to be more expressive. Experimental results
show that our post-training method leads to consid-
erable improvements, achieving state-of-the-art on
two benchmark datasets. We also demonstrate the
effectiveness of Dial-MAE through ablation exper-
iments. Specifically, both contrastive learning and
our post-training method are effective in achieving
dialogue context and response feature alignment,
and their effects can be additive.

6 Limitations

Recently, generative conversational models based
on large language models (LLMs) have demon-
strated powerful performance. Despite the advan-
tages of retrieval-based dialogue models in terms of
computational cost and answer controllability, gen-
erative conversational systems based on LLMs sur-
pass retrieval-based models in terms of answer di-
versity and flexibility. Furthermore, there has been
much recent work exploring retrieval-augmented
generation (RAG). In the future, we will further
expand Dial-MAE to explore the effective integra-
tion with LL.Ms, using a dialogue response selec-
tion approach to attempt to address issues such as
large model hallucinations and challenges related
to knowledge updates. We hope that our work can
also bring benefits to large language models.
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