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Abstract

Understanding event descriptions is a central
aspect of language processing, but current ap-
proaches focus overwhelmingly on single sen-
tences or documents. Aggregating information
about an event across documents can offer a
much richer understanding. To this end, we
present FAMuS, a new corpus of Wikipedia pas-
sages that report on some event, paired with un-
derlying, genre-diverse (non-Wikipedia) source
articles for the same event. Events and (cross-
sentence) arguments in both report and source
are annotated against FrameNet, providing
broad coverage of different event types. We
present results on two key event understanding
tasks enabled by FAMuS: source validation—
determining whether a document is a valid
source for a target report event—and cross-
document argument extraction—full-document
argument extraction for a target event from both
its report and the correct source article.

1 Introduction

Recent years have witnessed a resurgence of inter-
est in document-level event and argument extrac-
tion tasks, such as template filling (Du et al., 2021b;
Chen et al., 2023b; Gantt et al., 2022), role-filler
entity extraction (Du et al., 2021a; Huang et al.,
2021), and event argument extraction (Ebner et al.,
2020; Li et al., 2021; Tong et al., 2022). Indeed,
the earliest goals of information extraction (IE), as
advanced by the Message Understanding Confer-
ences (MUCs), were to develop systems capable of
extracting document-level event structures (Grish-
man and Sundheim, 1996; Grishman, 2019). While
the renewed interest in these goals represents clear
progress beyond the longstanding and dominant fo-
cus on sentence-level event extraction, recent work
in this area suffers from two key shortcomings.

For one, major benchmarks on these tasks, in-
cluding MUC-4 (muc, 1992), RAMS (Ebner et al.,
2020), WikiEvents (Li et al., 2021), and DocEE
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Figure 1: Schematic of the two FAMuS tasks: source
validation and cross-document argument extraction.

(Tong et al., 2022) feature highly domain-specific
event ontologies. Even when the absolute num-
ber of types is relatively large (e.g. the 139 event
types covered by RAMS), they tend to be tightly
clustered within a small handful of categories.

For another, although whole-document extrac-
tion enables a richer understanding of an event than
its sentence-level analogue, it is still constrained
by the input document’s description of that event,
which may lack key details. The task of event link-
ing partly remedies this by linking event mentions
to a canonical entry in a knowledge base, but stops
there, providing no actual extractions from those
entries (Nothman et al., 2012; Yu et al., 2023).

This work introduces FAMuS (Frames Across
Multiple Sources), a dataset and benchmark aimed
at addressing both of these shortcomings. FAMuS
provides event and cross-sentence argument an-
notations on over 1,255 Wikipedia passages (or
reports), each paired with cross-sentence argument
annotations for the same event as described in the
document cited as the passage’s source. Events and
arguments are annotated against FrameNet (Baker
et al., 1998), providing genuinely broad coverage
with 253 diverse event types and five supporting
documents per type. Beyond the dataset itself, we
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On 16 July 2007 the inquiry was adjourned until 4 
September with a final deadline for the submission of 
evidence of 14 August 2007 . On 11 September 2007 the 
inquiry was again adjourned until 19 September to 
allow the Highways Agency to review traffic 
evidence , with further adjournments until 18 
December .

Report

Source 

THE public inquiry into the controversial Mottram - 
Tintwistle bypass was dramatically halted when the 
Highways Agency admitted it had got its figures 
wrong . All the traffic evidence it has put before 
the inquiry , which has been running since June , 
will now have to be reviewed ... 

The agency told the inquiry , at Stalybridge Civic 
Hall , it had made a ` significant error ' in its 
estimation of how much traffic would use the road by 
underestimating journey times on the A616 trunk 
road ...

Inspector John Watson , chairing the inquiry , 
adjourned the hearing ... and said the new evidence 
should be heard and parties who have already given 
evidence be allowed to return .

Roles Source

Activity

Place

Time

“THE public inquiry into 
the controversial 

Mottram - Tintwistle 
bypass”

Agent
“Stalybridge Civic Hall”

Event Type: Activity_pause 

“the inquiry”

“16 July 2007”

Report

“John Watson”

“when the Highways 
Agency admitted it had 
got its figures wrong”

-

-

Is the highlighted event in Report 
mentioned in the Source?

YES

Source Validation

Cross Document 
Argument Extraction

Figure 2: An example from FAMuS. The Source Validation task asks whether the event denoted by the trigger
highlighted in the report text (adjourned) is also described in the source text. If so, the system must then identify and
extract all arguments of that event in both the report and the source in the Cross-Document Argument Extraction
task. FAMuS contains genre-diverse (report, source) pairs selected from the MegaWika dataset (Barham et al.,
2023) and annotates a single target event trigger in the report, along with all arguments in both report and source,
against FrameNet (Baker et al., 1998), enabling broad coverage of different event types.

make the following further contributions:

• We introduce a novel cross-document objec-
tive (Figure 1), supported by FAMuS, com-
prising two challenging tasks: (i) Source Val-
idation, which requires determining whether
an input document is a valid source for a
tagged event in a given report; and (ii) Cross-
Document Argument Extraction, which re-
quires extracting arguments for a tagged re-
port event from both the report and its source.

• We present results from a diverse suite of mod-
els on both tasks, including heuristic base-
lines, fine-tuned models using off-the-shelf
encoders, and few-shot LLMs.

• We propose a new evaluation metric for argu-
ment extraction that computes an edit distance-
based soft match between predicted and ref-
erence arguments to provide a richer picture
of systems’ argument extraction performance
than traditional exact match.

The FAMuS dataset and baselines are available at
https://github.com/FACTSlab/FAMuS.

2 Task Definitions

To situate FAMuS in the context of prior work, we
first give a formal statement of the tasks it presents:

1. Source Validation (SV). Given a report text
R, a target event trigger (mention) e occurring
in R, and a candidate source text S, determine
whether S contains a description of the same
event as the one denoted by e.

2. Cross-Document Argument Extraction
(CDAE). Given a report text R, a target
event trigger e in R, and a correct source
text S, extract all arguments of e in both R
and S. We assume e is assigned an event
type from some underlying ontology of event
types E1, . . . EN , where each Ei has roles
R

(i)
1 , . . . , R

(i)
Mi

, and where e’s arguments must
each be assigned one of these roles.1

Both tasks are schematically depicted in Figure 1
and detailed in Figure 2. Collectively, these tasks
formalize informal reading habits common to re-
searchers and internet users: during reading, we

1Note that we do not require S to contain an explicit event
trigger e′ coreferent with e. We require only that S refers
somehow to the event denoted by e, even if this reference is
made more obliquely than with a single lexical item.
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discover intriguing events and then we seek further
details about them in other relevant sources.

3 Background

We are aware of no prior work that combines iden-
tification of a report event’s source document (SV)
with argument extraction from both the report and
the source (CDAE). However, both closely relate
to a number of established tasks in the literature,
which we survey briefly below.

Event Linking (EL) or event grounding is the
task of associating an event description (typically,
a single mention) with a canonical entry for that
event in some knowledge base. It resembles SV
in attempting to ground a target event mention in
a text to a more comprehensive description of the
same event in a source text. But whereas SV takes
a candidate source text as input (along with the re-
port), EL aims to produce (a link to) one as output.

Introduced by Nothman et al. (2012) as an event-
centric analogue to the more popular entity link-
ing objective (Bunescu and Paşca, 2006; Ji and
Grishman, 2011), EL has received comparatively
little attention. While Nothman et al. used Aus-
tralian news articles for both report and source,
more recent efforts have focused on Wikipedia and
Wikidata. Yu et al. (2023) use Wikipedia articles
as source documents and present evaluations with
both Wikipedia and New York Times report articles.
Ou et al. (2023), extending work by Pratapa et al.
(2022), propose an interesting hierarchical variant
of the task, in which mentions must be linked to a
set of hierarchically related events in WikiData.

Cross-Document Event Coreference (CDEC)
involves identifying all coreferring event mentions
across a collection of documents (Bagga and Bald-
win, 1999). Various benchmarks exist for the task,
including ECB+ (Cybulska and Vossen, 2014),
MEANTIME (Minard et al., 2016), the Gun Vi-
olence Corpus (GVC; Vossen et al., 2018b), and
WEC (Eirew et al., 2021, 2022). From one angle,
CDEC can be viewed as a kind of generalization
of EL, insofar as the latter is concerned only with
matching up pairs of documents that describe the
same event, and the former with matching up (po-
tentially) multiple. However, CDEC usually ex-
pressly clusters event mentions, whereas EL and
SV often do not.

Claim Verification SV is also structurally simi-
lar to fact or claim verification, in which the goal

is to determine whether some target statement (the
claim) is supported, unverified, or refuted by a
source text.2 Notable benchmarks here include
Emergent (Ferreira and Vlachos, 2016), the Fake
News Challenge (Pomerleau and Rao, 2017), LIAR
(Wang, 2017), and FEVER (Thorne et al., 2018).
Although they are structurally similar, the under-
lying relations governing each task (event corefer-
ence and evidentiary support) are clearly distinct.

Event Argument Extraction (EAE) is a general-
ization of semantic role labeling (SRL; Gildea and
Jurafsky, 2002) that additionally assigns roles to a
predicate’s extra-sentential arguments.3 Our CDAE
subtask is just EAE applied to both the report and
the source texts. SemEval 2010 Task 10 (Ruppen-
hofer et al., 2010) and Beyond NomBank (Gerber
and Chai, 2010) represent the first true benchmarks
for EAE, with the former consisting of a set of Sher-
lock Holmes stories annotated against FrameNet,
and the latter annotating the arguments of a set
of 10 nominal predicates from NomBank (Meyers
et al., 2004) on the Penn Tree Bank corpus (Mar-
cus et al., 1993). Other resources include ONV5
(Moor et al., 2013) and MS-AMR (O’Gorman et al.,
2018). Unfortunately, these datasets are all quite
small: the largest, MS-AMR, still contains only
about 2,400 implicit arguments. EAE has lately
seen renewed interest due mainly to the much larger
RAMS (Ebner et al., 2020) and WikiEvents (Li
et al., 2021) benchmarks (20-30k arguments each).
The more recent DocEE (Tong et al., 2022) bench-
mark is an order of magnitude larger still (180k ar-
guments). One disadvantage of these three datasets
relative to their predecessors, however, is their use
of domain-specific ontologies. FAMuS aims to
address both of the above issues by providing a
relatively large dataset annotated against a broad-
coverage ontology.

Predicate-Argument Alignment Related to
CDAE (and CDEC), some prior work has studied
cross-document alignment of predicate-argument
structures. Roth and Frank (2012b), for instance,
annotate gold predicate alignments in 70 pairs of
topically related documents from GigaPairs (Roth
and Frank, 2012a) and introduce a graph-based

2In some cases, the relevant evidentiary sentences from
the source must also be provided.

3EAE is synonymous with multi-sentence argument linking
and arguably also with implicit semantic role labeling, though
exact task definitions differ. See O’Gorman (2019) and Gantt
(2021) for surveys.
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Train Dev

Event Types 253 253
Role Types (R) 712 580
Role Types (S) 749 643
SV Examples (+) 759 253
SV Examples (−) 759 253
Avg. Tokens (R) 59 60
Avg. Tokens (S) 1,084 1,511
Avg. Filled Roles (R) 2.97 3.45
Avg. Filled Roles (S) 3.45 3.89
Avg. Args (R) 3.07 3.55
Avg. Args (S) 3.70 4.28

Table 1: Summary statistics for the FAMuS train and
dev splits (test deliberately omitted). “(R)” and “(S)”
denote report and source, respectively. Note that CDAE
examples (not shown) are the same as “SV Examples
(+),” as these consist of the same documents (see §4).

clustering model for the task. Wolfe et al. (2013)
present PARMA, a feature-rich, regularized logis-
tic regression model for the same task that makes
independent alignment decisions for each predicate
and argument. While CDAE demands neither iden-
tification of a predicate in the source document nor
an explicit argument-to-argument alignment, it is
similar to this work in identifying aligned sets of
arguments of the same event across documents.

4 Data Collection

The FAMuS documents represent a subset of En-
glish documents from MegaWika (Barham et al.,
2023), a dataset comprising millions of (report,
source) pairs across 50 languages. Below, we dis-
cuss data collection for our SV and CDAE tasks.

4.1 Source Validation

Overview Verifying the quality of a web page
as the source for a given report text is imperative.
Barham et al. (2023) introduced a source valida-
tion task where annotators determine the correct
FrameNet frame for a tagged event in a report and
assess if the corresponding source describes the
same event as is tagged in the report. Barham et al.
observe relatively low inter-annotator agreement
on this task (Krippendorff’s α of 0.41 (Krippen-
dorff, 2018)), and just under half of their source
documents were deemed valid.

Refining their approach, we only accept posi-
tive source validation (SV) examples when (i) at
least two-thirds of annotators agree on the correct
FrameNet frame, and (ii) all three annotators, or a

two-thirds majority plus one of the authors, agree
on the source’s validity. Negative examples are
identified through a combinatnion of manual and
automated techniques, which are detailed below.

Positive Examples We prioritize broad cover-
age in event types and examples per type while
balancing the trade-offs within a constrained an-
notation budget. Our methodology seeks an op-
timal compromise to meet these dual objectives.
At a high level, we rely on the FrameNet inheri-
tance hierarchy to identify a subset of 328 frames
that denote a situation—i.e. an EVENT, STATE, or
PROCESS in FrameNet.4 We then iterate Barham
et al.’s annotation protocol until we obtain at least
five (report, source) pairs per frame that satisfy our
two criteria—(i) and (ii) above—for positive exam-
ples, for at least 75% (250) of the 328 situation-
denoting frames. We used Barham et al. (2023)’s
oversampling technique with the LOME FrameNet
parser (Xia et al., 2021) and a Longformer-based
SV model (see §5) to estimate the number of anno-
tations needed to secure five positive examples per
frame. This estimation used a negative binomial
model, considering the parser’s precision and the
SV model’s accuracy, with adjustments for frames
with limited test support. Through seven iterations,
we ensured diversity in our annotations using strat-
ified sampling and k-means clustering on Span-
BERT embeddings of the source text, selecting var-
ied report-source pairs within each frame category
(refer to Appendix A for further details).

Negative Examples To build a balanced dataset
for the SV task, we include five negative examples
per frame. Most of these are taken from the an-
notated documents described above, provided all
annotators unanimously agree they do not match
the report event.

Some frames were short of five negative exam-
ples after the main annotation process. To address
this, we supplemented the dataset with additional
silver negative examples as needed. We also en-
sured that each example in the test set is either a
gold standard example or has undergone manual
platinum annotation by one of this paper’s authors
for the generated examples.5

Our method involves matching unannotated re-
ports with a new source text that is semantically
close but does not describe the same event, ensur-

4Details on the frame selection process are in Appendix D.
5The test set includes 11 platinum-annotated examples.
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ing a challenging task. For each frame fi, we take
the same candidate example set ci described above,
remove annotated examples to form c′i ⊂ ci, and
randomly choose a pair (r

(j)
i , s

(j)
i ) from c′i. We

then find a pair (r(k)i , s
(k)
i ) from the remaining set

c′i − (r
(j)
i , s

(j)
i ) where s

(k)
i is most similar to r

(j)
i

based on SimLM scores (Wang et al., 2023), creat-
ing a new negative example (r(j)i , s

(k)
i ) with j ̸= k.

The chance that s(k)i describes the same event as
r
(j)
i is low due to the vast number of sources. Ad-

ditionally, distributions of report-source similarity
scores for the positive examples and for these “sil-
ver” negative examples shown in Appendix E are
quite divergent, underscoring this point.

Annotation Quality In our two-stage qualifica-
tion for Amazon Mechanical Turk workers for the
CDAE task (Section 4.2), successful candidates
from the second phase joined the source validation
task. Additionally, 11 new workers who matched
the majority on ten gold-standard validations were
added, totaling 26 workers for source validation,
with each task triple-checked. Each Human Intel-
ligence Task (HIT) consisted of one report-source
pair and offered $0.20.

Krippendorff’s α for frame identification was
0.62, demonstrating reliable agreement, compara-
ble or superior to other crowd-sourced tasks (Hong
and Baker, 2011; Fossati et al., 2013; Vossen et al.,
2018a, 2020; Dumitrache et al., 2018, and others).
For source validation, all examples had either unan-
imous agreement or majority agreement with addi-
tional author approval for positive cases.

4.2 Cross-Document Argument Extraction
Overview In each round, after SV annotation,
we collect full-document6 role annotations on both
the report and the (valid) source for the annotated
report event. We annotate only the core roles of
each frame, plus TIME and PLACE.7 Here, anno-
tators select roles from the role set for the report
trigger’s frame and then select a contiguous span
from the report or source text as an argument for
that role. The interface also supports annotating
multiple arguments for the same role. When a role
is selected, its FrameNet definition and an example
are displayed. Annotators are strongly encouraged
to annotate based on the highlighted frame (chosen

6In contrast to much prior work on EAE, we do not im-
pose fixed-size context windows during annotation, allowing
arguments to be annotated anywhere in the document.

7Annotation interface shown in Appendix A.

during SV annotation) but are permitted to change
the frame in the rare case they deem it incorrect. Of
the 1,255 CDAE examples annotated, only 4.6% ac-
tually had their frame types changed—a testament
to the high quality of the SV frame annotations.

While we do not annotate for coreference, we do
provide model-predicted (silver) coreference clus-
ters for all annotated arguments, which are used in
one evaluation setting (see §5). We use F-COREF
(Otmazgin et al., 2022) as the coreference model.

Annotation Quality We conducted 2 selection
stages on Amazon Mechanical Turk for CDAE task
annotators. Initially, candidates provided annota-
tions for a short (∼ 250-token) document, followed
by a longer (∼ 4k-token) document in the second
phase. Two paper authors assessed their work, ad-
vancing only those who passed the first phase to the
second. This resulted in 15 annotators for the main
task, each paid $1 per task with a bonus opportunity
of up to $4 for exceptional work.

To maintain high-quality annotations, we com-
bined automatic checks with manual reviews. Post-
initial annotation iteration, authors corrected all
entries, comparing unedited with edited annota-
tions using the metric in Appendix B, yielding a
0.94 F1 mean score for report annotations and a
0.92 F1 for source annotations, with many showing
perfect agreement.

As manually reviewing all annotations was im-
practical, subsequent rounds used a hybrid verifica-
tion approach. We compared ChatGPT predictions
with Turker annotations, manually correcting only
those in the lowest agreement quartile.8 We re-
moved some examples for poor document quality,
like excessive non-English text.

5 Experiments

We now describe the models and setup for experi-
ments on SV and CDAE. Model hyperparameters,
prompts and details can be found in Appendix C.

5.1 Source Validation

Per §2, SV is a binary classification task that takes
as input a report R, a (typed) event trigger e ∈
R, and a candidate source text S, and outputs a
binary judgment indicating whether S contains a
description of the same event as is denoted by e.
We consider three models for this task, in addition
to a majority-class baseline.

8See Appendix B for details.
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Lemma Baseline This model simply predicts
YES if the lemma of the report’s event trigger exists
in the (lemmatized) source, and NO otherwise. We
use NLTK’s WordNetLemmatizer to obtain lem-
mas (Bird et al., 2009).

Longformer We use Longformer (Beltagy et al.,
2020) with a classification head and fine-tune it
on FAMuS. The input sequence to the Longformer
model is a </s>-delimited concatenation of the re-
port and source text, with the report event’s trigger
marked by <event> tags.9

Few-Shot LLMs Inspired by the successes of
recent large language models (LLMs) on many
IE tasks (Wei et al., 2023), we also evaluate
ChatGPT (gpt-3.5-turbo-0301) and Llama 2
(llama-2-13b; Touvron et al., 2023) on FAMuS
in the few-shot setting. The prompt (which is the
same for both models) describes the task and in-
cludes two positive and two negative examples
handwritten by one of the authors. We set model
temperature to 0 to ensure consistent generations.

5.2 Cross Document Argument Extraction

In CDAE, the input is a valid (report, source) pair,
along with a (typed) event trigger in the report.
The output is a set of arguments for the trigger,
extracted from both report and source. Below, we
present results on three CDAE models, training and
evaluating each separately on report and source.

IterX The IterX model by (Chen et al., 2023b)
sets a new benchmark in template filling, excelling
on MUC-4 (Sundheim, 1992; muc, 1992) and
SciREX (Jain et al., 2020) by approaching tem-
plate prediction as autoregressive span assignment.
IterX methodically assigns input spans roles within
a template, updating candidate embeddings based
on those assignments and repeating the process un-
til all candidates are labeled null. Designed for
multiple templates per document, we tailored IterX
for CDAE to output one template each for sources
and reports.

IterX operates with predefined candidate spans.
Depending on the setting (see below), these spans
are drawn from different subsets of the follow-
ing three sources: (i) gold-standard CDAE annota-
tions; (ii) LOME FrameNet parser arguments; (iii)
Stanza’s NER identified entities (Qi et al., 2020).
Training and evaluation settings vary: gold spans

9The SV model we use for oversampling (see §4) is the
same, except that we fine-tune it on Barham et al.’s SV data.

uses only (i), predicted spans trains on all but tests
on (ii) and (iii), and gold and predicted spans
involves all three during both training and testing,
reflecting the value of gold-span access.

For template type input, IterX uniquely inte-
grates both frame type and lexical triggers from
the CDAE input, using <event> tags to include
triggers as input spans but assigns them a null role
(ϵ). This incorporation leverages the Transformer
encoder’s self-attention (Vaswani et al., 2017) to
condition each span’s role on the trigger. Example
inputs are shown in Appendix subsection C.2 (Fig-
ure 13). Following Chen et al., we use IterX with a
T5-large encoder (Raffel et al., 2020).

Longformer QA Our second model recasts
CDAE as extractive question answering (QA) in
the style of SQuAD 2.0 (Rajpurkar et al., 2018),
following much recent work in IE that takes a QA-
based approach (Du and Cardie, 2020; Liu et al.,
2020; Holzenberger et al., 2022, i.a.).

We map each possible role of each report trig-
ger’s FrameNet frame, together with that role’s
gold argument(s), to a single QA pair. Separate QA
datasets are created for the source and report anno-
tations. For the report dataset, the context passage
for each QA pair is the report text, the “question”10

is the concatenated names of the event and role,
and the answer is the gold report argument(s) for
that event and role. For the source dataset, the con-
text passage is the source text; the question is the
same as in the report model, but with the full report
text (with marked event trigger) concatenated at
the end; and the answer is again the gold source ar-
gument(s) for the given event and role. For the QA
recast setting, if a role had multiple gold arguments,
we only create a single instance for that role choos-
ing the first appearing argument in the text. Both
datasets’ examples are in Appendix subsection C.2
(Figure 13).

Few-Shot LLMs As with SV, we present few-
shot evaluations on CDAE using Llama and Chat-
GPT in the few-shot setting.11 The prompt (again,
the same for both models) describes the task and
includes two examples from the FAMuS training
split, each consisting of a document (report or
source) and its CDAE annotations.

10The “questions” in QA-recasted IE datasets are often not
syntactically interrogative (Du and Cardie, 2020); we follow
this looser notion of a question here.

11We use llama-2-13b-chat (not llama-2-13b, as in SV).
The ChatGPT version is unchanged.
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Report Baseline For the source document, we
present a baseline score by predicting gold argu-
ments from the report document. This baseline,
focusing solely on report-derived arguments, offers
a relative measure—not a direct comparison—of
the additional context sources provide compared to
reports. A low score from this baseline would indi-
cate sources furnish significant extra information.

Additionally, we mention ensembled model vari-
ations with the report baseline (+rb) in Tables 3
and 5. These variants supplement a model’s predic-
tions with report arguments for any role r lacking
arguments, without altering other roles r′ ̸= r.

Evaluation We assess CDAE using the CEAF-
RME metric from Chen et al. (2023b), which
adapts argument P/R/F1 for models predicting ar-
gument mentions against references with complete
coreference data.12 We present two metric versions.
The CEAF-RMEϕ3 gives full credit for an exact
mention match pr with any mention gr in reference
entity Cgr for role r.

We also use a modified version to reflect span
boundary variability,13 employing normalized edit
distance (Â) for leniency:

Â(pr, gr) = 1 − E(pr, gr)

(S − 1)min(Lpr , Lgr ) + max(Lpr , Lgr )
(1)

Here, E is Levenshtein distance with substitution
cost S=2, and Lpr and Lgr are the token counts in
pr and gr. We define a as the highest Â across all
gr ∈ Cgr :

a = max
gr∈Cgr

Â(gr, pr) (2)

This second metric is CEAF-RMEa. We report
both metrics using single gold-annotated mentions
(Table 3) and full predicted coreference clusters
from F-COREF (Table 5).

6 Results

6.1 Source Validation

Performance metrics for SV models and a majority
baseline are outlined in Table 2, considering our
balanced SV dataset.14 The lemma baseline leads
in precision and accuracy, indicating the trigger’s

12Predicted mentions are treated as singletons that can align
with reference entities, as detailed by Chen et al. (2023a) and
Chen et al. (2023b).

13Differences in annotator practices regarding determiners
and relative clauses affect span marking.

14The dataset has an equal class distribution.

Model Accuracy P R F1

Majority 50.00 100.00 50.00 66.66
Lemma 75.89 89.70 58.50 70.81
Longformer 71.94 66.67 87.75 75.77
ChatGPT 67.98 84.21 44.27 58.03
Llama-2-13b 58.50 65.93 35.18 45.88

Table 2: FAMuS Source Validation (SV) results.

lemma in a source document is a reliable validity
signal and an effective overall heuristic.

The Longformer model, however, records the
best recall (87.75%) and F1 score (75.77%). The
near 30-point recall advantage over the lemma base-
line suggests it better identifies valid sources with
paraphrased event descriptions. Users might favor
the Longformer’s recall over the lemma baseline’s
precision since CDAE can subsequently filter out
falsely validated sources by contrasting source and
report arguments.

Conversely, ChatGPT lags behind in accuracy
and F1, even falling short of the majority baseline
in F1 due to its lower recall. Its precision (84.21%)
hints at a possible overemphasis on simple lexical
signals. Llama 2 displays a comparable trend but
with reduced metrics compared to ChatGPT.

6.2 Cross-Document Argument Extraction
Full CDAE results on the FAMuS test set are
shown in Table 3.15 A key (if unsurprising) theme
that emerges is the value of high-quality candi-
date spans. The IterXgold results ablate span ex-
traction and reflect argument labeling performance
on gold spans for the target document. Unsurpris-
ingly, these are the best absolute numbers, with
CEAF-RME F1 scores in the high 60s and low
70s. Setting aside the report baseline (rb) ensem-
bles, Longformer-QA shows the best performance
among models that do not have access to gold ar-
guments, but even these results consistently trail F1

scores of IterXgold by huge margins.
A second, related theme is the difficulty of

CDAE on source documents relative to report doc-
uments. All models without access to gold spans
(both few-shot and fine-tuned) see a significant
drop in performance when moving from report ex-
traction to source extraction: even the smallest such
drop (CEAF-RMEϕ3 for Llama) is still almost 7 F1.
This is likely a result of models having to consider

15As noted in §5, results in Table 3 use only the human-
annotated argument mentions in the reference. Results with
full reference argument coreference clusters (generated by
F-COREF) are in Table 5.
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Report Source
CEAF-RMEϕ3 CEAF-RMEa CEAF-RMEϕ3 CEAF-RMEa

Model P R F1 P R F1 P R F1 P R F1

−rb

IterXgold 73.11 72.00 72.55 73.56 72.44 73.00 70.46 69.16 69.80 70.58 69.28 69.92
IterXgold+pred 40.57 29.38 34.08 42.24 30.59 35.48 25.07 10.82 15.11 29.85 12.88 18.00
IterXpred 37.63 24.14 29.41 42.16 27.04 32.94 20.83 8.63 12.21 27.63 11.45 16.19
Longformer-QA 43.56 40.14 41.78 56.01 51.61 53.72 25.53 22.21 23.75 38.85 33.80 36.15
ChatGPT 33.67 32.00 32.81 51.28 48.73 49.97 14.00 12.77 13.36 33.31 30.39 31.78
Llama-2-13b-chat 12.97 22.76 16.52 23.65 41.49 30.13 11.14 8.52 9.65 20.11 15.36 17.42

+rb

Report Baseline (rb) - - - - - - 23.59 19.68 21.46 47.80 39.88 43.48
IterXgold - - - - - - 60.38 75.95 67.28 64.12 80.65 71.45
IterXgold+pred - - - - - - 24.43 19.56 21.73 38.47 30.82 34.22
IterXpred - - - - - - 22.24 17.38 19.51 37.42 29.24 32.83
Longformer-QA - - - - - - 24.12 25.89 24.97 38.41 41.24 39.77
ChatGPT - - - - - - 15.93 17.95 16.88 34.99 39.42 37.07
Llama-2-13b-chat - - - - - - 11.11 8.52 9.64 20.24 15.51 17.56

Table 3: CEAF-RME scores for CDAE on FAMuS test set. The Report Baseline (rb) predicts the gold report
arguments as the arguments for the source. IterX and Longformer-QA are fine-tuned on FAMuS. ChatGPT and
Llama results are evaluated in the few-shot setting. “+/−rb” indicates whether the model is ensembled with the
report baseline (see §5). Bolded results are best across models within the same +/−rb setting that do not have
access to gold spans for the target document.

a much larger set of candidate arguments in the
source to identify a set of correct ones that is gen-
erally comparable in size to the set of gold report
arguments (see Table 1).

We also note that few-shot results with Chat-
GPT are notably close to those of fine-tuned
models, surpassing IterXpred and IterXgold+pred on
CEAF-RMEa for both report and source tasks, and
only slightly trailing Longformer-QA.16

While the report baseline (predicting gold argu-
ments from the report) isn’t directly comparable to
models in the −rb group, it outperforms all non-
gold models. Ensembling models with the report
baseline usually boosts recall (and sometimes pre-
cision), but only the ensembled Longformer-QA
beats the report baseline on CEAF-RMEϕ3 , yet it
still lags on CEAF-RMEa. These outcomes hint
at the models’ struggle to extract new information
beyond what is present in the report.

Finally, we note that the generally large ab-
solute differences between CEAF-RMEϕ3 and
CEAF-RMEa results for the same model and set-
tings suggest that many predicted arguments are
at least partially correct, but do not receive credit
under exact match. These results point to the addi-
tional information about model performance that
incorporating partial span matching into existing
metrics can provide for argument extraction. Cau-
tion is warranted here though: weakening the re-
quirement for exact matches increases the possibil-

16ChatGPT has larger gaps under CEAF-RMEϕ3 due to
challenges in exactly matching annotated mentions.

Figure 3: Source Validation F1 on the FAMuS dev set,
broken down by source document length percentile (0-
10%, 10-25%, 25-50%, 50-75%, 75-90%, 90-100%).

ity that models get credit for mentions of incorrect
referents—e.g. getting credit for responding New
York when the correct mention is New York Times.
Future work on incorporating partial matching into
these metrics might investigate using coreference
information to penalize models in these cases.

6.3 Model Performance & Document Length

Next, we consider how model performance changes
on both tasks as a function of the length of the
source document. Figure 3 shows dev set source
validation performance of models reported in Ta-
ble 2, broken down by source length percentile.
Several observations stand out. For one, ChatGPT
performs exceptionally well on the shortest docu-
ments, achieving 84 F1 and actually outperforming
both the lemma baseline (75 F1) and Longformer
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Figure 4: CEAF-RMEa F1 on Cross-Document Argu-
ment Extraction on source documents, broken down by
document length. Percentile bins are the same as in
Figure 3. IterX=IterXpred (see Table 3).

(60 F1) by wide margins. Across the remaining
bins, however, ChatGPT’s performance decreases
monotonically, faring worse than either of these
models, suggesting its strong few-shot capabilities
on this task (see above) may be limited to shorter
texts. By contrast, Longformer exhibits remarkable
consistency across source documents of different
lengths: while its performance trails ChatGPT and
the lemma baseline on the shortest documents, it
outperforms them on all bins of greater length, sus-
taining F1 scores between 77 and 82. Llama 2 ex-
hibits the most inconsistent performance, showing
wide variation across bins.

CDAE results in Figure 4 contrast with SV find-
ings, showing a consistent trend of performance
decline from shorter to longer documents across
all models. Notably, IterX and Llama 2 exhibit
a pronounced drop, with CEAF-RMEa F1 scores
plummeting below 10 for documents at or beyond
the 25th percentile and reaching zero for those in
the top quartile. ChatGPT and Longformer-QA
perform slightly better, yet their F1 scores remain
below 20 for the longest 10% of documents. This
highlights the significant need for argument extrac-
tion models that are more robust on long texts.

7 Conclusion

We have presented FAMuS, a new dataset com-
prising reports (Wikipedia passages) that de-
scribe an event, along with source documents
for those events—featuring high-quality, full-
document FrameNet frame and role annotations
on both. We have also introduced two event un-
derstanding tasks enabled by FAMuS: source val-
idation—determining whether a candidate docu-
ment is a valid source for a given report event—and
cross-document argument extraction—extracting

the arguments of an identified report event in both
the report and its source. We have provided base-
lines for both tasks, along with detailed analysis of
their performance, and release both these models
and our data to facilitate future research.

Limitations

One limitation of FAMuS is that its annotations are
non-exhaustive: only the arguments of the (single)
target event are annotated in the report and source.
This makes it unsuited to training models for full
(document-level) event extraction, in which sys-
tems typically may have to extract multiple events.
Remedying this shortcoming is one of our primary
goals for follow-up work.

Additionally, while FAMuS provides annota-
tions for argument coreference, these are model-
predicted, and thus will contain some noise.
(Granted, this is irrelevant for evaluation against
only the gold annotated spans, as in Table 3.)

Finally, because the valid source documents in
FAMuS are cited by their corresponding reports,
this may result in artificially high agreement be-
tween the arguments in the report and those in the
source. Different internet sources routinely give
somewhat differing, and even conflicting, accounts
of the same event, and insofar as Wikipedia articles
overwhelmingly cite documents in support of the
claims they make, FAMuS likely overestimates the
level of inter-document consensus present on the
internet more broadly.
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A Annotation Details

A.1 Source Validation
Barham et al. (2023) devise their own source vali-
dation task for (report, source) pairs in MegaWika,
in which annotators on Amazon Mechanical Turk
are presented with a highlighted event trigger in
the report text and are asked two questions:

1. What is the most likely FrameNet frame for
the highlighted text in the report?17

2. Does the source describe the same event as is
denoted by the highlighted report trigger?

In this work, we refine Barham et al.’s methodology
for our own SV annotation. To ensure high-quality
annotations, we restrict positive SV examples to
the set of (report, source) pairs where (i) a majority
(2/3) agrees on the report event’s correct frame, and
(ii) either all three annotators unanimously agree
that the source is a valid one for the report event or
2/3 agree and an expert (one of the authors) agrees
with the majority.18

Positive Examples
To select (report, source) pairs for annotation, we
rely on the oversampling technique from Barham
et al. (2023), which leverages the LOME FrameNet
parser of Xia et al. (2021) and a simple Longformer-
based model for the SV task (see §5). Broadly, for
each frame, we want to estimate how many total
examples we need to annotate in order obtain five
positive ones. This count (X) is modeled as a nega-
tive binomial random variable X ∼ NB(r, p) with
r = 5 denoting the desired number of positive
examples and p denoting the probability of an ex-
ample being positive. Given our two criteria for
positive examples, p can be expressed as p = Pi ·v,
where Pi is the precision of the parser on frames of
type fi and where v is the test set accuracy of our
SV model.19 For frames for which the FrameNet
test set has poor support (< 10 examples), we use
the average precision across all frames, Pavg, in
lieu of Pi, for a more robust estimate. Thus, the
expected number of examples needed to obtain five
positive ones, Di = E[X], is:

Di =

{
⌈ 5
Pi∗v ⌉, if count(fi) ≥ 10

⌈ 5
Pavg∗v ⌉, otherwise

(3)

17Annotators are shown the top five candidate frames from
a FrameNet parser along with a “none” option.

18A subset of the authors inspected all 2/3 majority cases.
19Pi and v correspond to our models’ ability to correctly

answer questions (1) and (2) above, respectively.

While annotating Di examples for frame fi will
yield five positive examples in expectation for fi,
multiple rounds of annotation are needed to actu-
ally obtain five positive examples for all frames. In
total, we conducted seven rounds. In each round,
for each frame fi, we use stratified sampling to en-
sure diversity among the Di (report, source) pairs
selected for annotation. We first identify a candi-
date set ci of 250 pairs from MegaWika for which
the FrameNet parser has identified at least one in-
stance of frame fi in the report.20 We then perform
k-means clustering on all pairs, clustering on the
SpanBERT (Joshi et al., 2020) CLS token embed-
ding of the first five sentences of the source text for
each pair, fixing k = Di. We then sample one pair
from each cluster, aiming to select pairs for which
the report trigger’s lemma differs from those in all
other pairs chosen for fi.

Figure 5 shows an example of the source val-
idation annotation interface with the report text
displayed. Figure 6 shows the same example, but
with the source text displayed, highlighting that the
document is a valid source for the report event.

A.2 CDAE

Figure 7 shows an example of an annotated role
instance from our role annotation task interface.

B IAA and Annotation Correction

This appendix offers additional details on annotator
agreement and annotation correction for CDAE.

B.1 Agreement

Here, we describe the agreement metric used for
computing inter-annotator agreement (IAA) for
CDAE annotation. We compute a F1 score based on
the maximum normalized edit distance (a) between
annotated and reference argument mentions given
in Eq. (2). If r is a role in the role set Rf for a frame
f ; pr is a predicted mention; gr is a reference men-
tion; Cgr is the reference entity containing mention
gr; and ϵ is the “null” span (indicating the absence
of an argument), we compute this F1 score based
on the following counts of true positive (TP), false
positive (FP), and false negative (FN) arguments:

TP =
∑

Cgr ̸=ϕ ∩ pr ̸=ϵ
r∈Rf

a

20If fewer than 250 pairs are available for fi, we include all
Ni < 250 pairs.

8263



Figure 5: The source validation annotation interface,
with the report (“passage”) text displayed. Annotators
are shown the report with a highlighted event trigger and
are asked to select the correct frame for the trigger from
among the top five predictions of a FrameNet parser (or
none, if all candidates are wrong). When a candidate
frame is selected, its definition and an example from
FrameNet are displayed.

FP =
∑

Cgr ̸=ϕ ∩ pr ̸=ϵ
r∈Rf

1− a

2 +

∑

Cgr=ϕ ∩ pr ̸=ϵ
r∈Rf

1

FN =
∑

Cgr ̸=ϕ ∩ pr ̸=ϵ
r∈Rf

1− a

2 +

∑

Cgr ̸=ϕ ∩ pr=ϵ
r∈Rf

1

B.2 Annotation Correction

As discussed in §4, we use the agreement metric
above to evaluate the similarity between annotators’
CDAE annotations on the source text and those
produced by ChatGPT (gpt-3.5-turbo-0301) in
order to identify potentially lower quality human
annotations. At the end of each round of CDAE an-
notation, (report, source) pairs for which the source
agreement score with ChatGPT falls in the bot-
tom quartile are manually verified and corrected
by the authors. The prompt template we use to
obtain source document CDAE annotations with
ChatGPT is shown in Figure 9. The prompt in-
cludes two examples in the chat history, where the

Figure 6: The same example as in Figure 5, but with (a
portion of) the source text displayed. Here, the source
document does describe the same report event (relevant
text underlined in green) as shown in Figure 5, and so is
a valid source. Role annotation (§4.2) is done only on
examples with valid source texts.

first is the same across report documents, while
the second uses the gold annotation from the re-
port associated with the target source document.
We set max_tokens to 128, top_p to 1.0, and
temperature to 0, with no presence or frequency
penalties. Figure 8 shows boxplots of the agree-
ment F1 scores between the report and source an-
notations before and after manual correction by the
authors, aggregated over all rounds of annotation.
Note that the majority of corrected annotations ac-
tually exhibit perfect agreement with their uncor-
rected counterparts, resulting in high mean scores
of 0.90 and 0.85 for reports and sources, respec-
tively, and offering compelling evidence for the
quality of the annotations overall.

C Model Details

This appendix presents model implementation de-
tails, hyperparameters, and prompts. The train-
ing of all Longformer models was conducted on
a single NVIDIA GeForce GTX 1080 Ti graphics
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Figure 7: The role annotation interface for the same
example as in Figure 5. Here, annotators identify argu-
ments of the highlighted report (“passage”) event in the
full texts of both the report and source.

Figure 8: Boxplots for agreement F1 between bottom
quartile report and source CDAE annotations before and
after correction by the authors.

processing unit (GPU), equipped with 12 GB of
RAM. The training of all Iter-X models was per-
formed using an NVIDIA Quadro RTX 6000/8000
GPU, with 26 GB of RAM. For all experiments
conducted within this study, we employed Stanza
version 1.2.3 and the Hugging Face ‘transformers’
library version 4.12.5. Additionally, the Natural
Language Toolkit (NLTK) version 3.6.3 was uti-
lized for text-processing tasks.

C.1 Source Validation

Longformer We use the LongformerForSe-
quenceClassification class from the HuggingFace
Transformers library (Wolf et al., 2020) to fine-tune
Longformer for source validation. We fine-tune for
15 epochs with a batch size of 2, and an initial
warmup phase of 400 steps. We conduct limited
hyperparameter search using Optuna (Akiba et al.,
2019), targeting the learning rate and weight de-

cay, and varying them logarithmically from 1e-6
to 1e-4 and from 1e-6 to 1e-1 respectively. This
process is conducted over 5 trials, with the opti-
mal setting selected based on the highest validation
accuracy. We then fine-tune a final Longformer
model for 30 epochs using the best hyperparameter
configuration, using the checkpoint with highest
dev accuracy across all 30 epochs for the final eval-
uation.

ChatGPT We use gpt-3.5-turbo-0301 and do
not perform any fine-tuning or hyperparameter
search, evaluating only in the few-shot setting. Fig-
ure 10 presents a sketch of the prompt we use.
We set max_tokens to 128, top_p to 1.0, and
temperature to 0, with no presence or frequency
penalties.

Llama 2 We use llama-2-13b for source val-
idation and do not perform any fine-tuning or
hyperparameter search (just as with ChatGPT).
We use the default hyperparameters, except for
max_seq_len (5,000), max_gen_len (128), top_p
(0.9), and temperature (0.0). The prompt is the
same as the one used for ChatGPT on SV (Fig-
ure 10).

C.2 Cross-Document Argument Extraction
Example Inputs Figure 13 shows model inputs
to the Iter-X model and to the Longformer-QA
model.

Longformer We use the LongformerForQuestio-
nAnswering class from the HuggingFace transform-
ers library to fine-tune the Longformer-QA model
on the recasted CDAE datasets for both report and
source. We fine-tune for a maximum of 10 epochs
with a batch size of 1. As with Longformer for
SV, we use the Optuna library for hyperparame-
ter tuning to optimize the learning rate and weight
decay, varying them logarithmically from 1e-6 to
1e-4 and 1e-6 to 1e-1 respectively. This process
is conducted over 5 trials, with the optimal setting
selected based on the lowest validation loss.

IterX We base our IterX hyperparameters on the
best ones reported for the MUC-4 task in Table 6
of Chen et al. (2023b), though with two important
differences. First, as noted in §5, the CDAE task
requires extraction of only a single template per
document. As such, we set the maximum number
of templates to decode (“#Max Iterations”) to 1.
Second, Chen et al. train their model for MUC-4
on predicted spans only, whereas we use different
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You are a system that generates high quality data for document-level role annotations based on 
Framenet.
The following inputs are given to you:
1. Event Type: A Frame name from the FrameNet ontology (eg: Hiring, Arrest, etc.)
2. Event Definition: Definition of the event type along with an optional example. 
3. Roles: All roles (or participants) of the event type (or frame) followed with an optional 
example.
4. Document: A document from which the roles are to be extracted.
You should output the extracted spans from the document for each role in the order they are listed 
in the roles section.
Note that you can leave a N/A if no span is found for that role.

System Prompt

User
Event Type: Hiring 
Event Definition: definition + example
Roles: 
1.Employee: definition + example
2.Employer: definition + example
…
Document: 
John Smith is a recent graduate of the University of Washington. He interned at Microsoft Research 
in Seattle, Washington. His research includes machine learning, computer vision, and natural 
language processing. After 6 rounds of interviewing, he was hired as a Research Scientist by 
Microsoft to work on their new chatbot.

Assistant
1. Employee: John Smith 
2. Employer: Microsoft 
3. Task: to work on their new chatbot 
4. Position: Research Scientist 
5. Field: N/A

First prompt example (Fixed template)

Second prompt example (Gold report annotation)

User
Event Type: <gold_frame>
Event Definition: definition + example
Roles: 
<definitions + examples for the gold_frame’s roles>
…
Document: 
<source_text>

Target Example (Source)

User
Event Type: <gold_frame> 
Event Definition: definition + example
Roles: 
<definitions + examples for the gold_frame’s roles>

Document: 
<report_text>

Assistant
<report_gold_annotation>

Figure 9: Prompt template used to generate CDAE annotations on the source for annotation correction. Note the use
of gold report annotation as the second prompt example.
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In this task, you are given a report document marked up an XML tag 'report'.
The report describes an event denoted with an XML tag 'event'. You are also given a source 
document marked up an XML tag 'source'. Your task is to determine whether the 'source' document 
contains the 'event' described in the 'report' or not. This is equivalent to determining whether 
the source is a valid reference for the tagged event in the report.
Steps to follow to arrive at the answer:
    1. Summarize the 'event' described in the 'report' in one line.
    2. Check if the 'source' document describes the summarized 'event' or not.
    If the 'source' document describes the summarized 'event', then 
    in one line explain how the 'source' document describes the 'event' and answer 'yes'.
    If the 'source' document does not describe the summarized 'event', then
    in one line explain how the 'source' document does not describe the 'event' and answer 'no'.

The answer 'Yes' or 'No' should be in a separate line at the end inside the <valid_source> tag. 
Below are some examples.

<report> Jon <event> picked </event> up the gun. </report>
<source> Jon enjoyed hunting. One day, he grabbed his gun and went to the forest. </source>
<answer>
   The report focuses on the event of Jon picking up the gun. 
   The source describes Jon grabbing his gun which is the same event tagged in the report.
  <valid_source> Yes <valid_source> 
</answer>

<report> Jon  <event> picked </event> up Janice. </report>
<source> Jon enjoyed driving a lot. One day, he picked up Daniel from a store. </source>
<answer>
   The report focuses on the event of Jon picking up Janice.
   The source describes Jon picking up Daniel which is not the same event tagged in the report.
    <valid_source> No <valid_source> 
</answer>

<report> <event> Riots </event>  erupted in various parts of the city after the violent speech. 
</report>
<source> Various violent acts were seen in the city after the minister's controversial hate 
speech. </source>
<answer>
   The report focuses on the event of riots erupting in various parts of the city.
   The source describes various violent acts in the city which is the same event tagged in the 
report.
   <valid_source> Yes <valid_source> 
</answer>

<report>  Osama Bin Laden was <event> killed </event> in Abbottabad, Pakistan on May 2, 2011 </
report>
<source> Osama bin Mohammed bin Awad bin Laden was a Saudi Arabian-born militant and founder of 
the pan-Islamic militant organization Al-Qaeda. </source>
<answer>
   The report focuses on the killing of Osama Bin Laden.
   The source does not mention anything about the killing of Osama Bin Laden.
   <valid_source> No <valid_source> 
</answer>

Prompt Prefix

Prompt Suffix
<report> {report} </report>
<source> {source} </source>
<answer>

Figure 10: Prompt template used for ChatGPT and Llama 2 on SV.
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You are a system that generates high quality document role annotations based on Framenet ontology.
The following inputs are given to you:
1. Event Type <event_type>: A Frame name from the FrameNet ontology (eg: Hiring, Arrest, etc.)
2. Event Definition <event_definition>: Definition of the event type along with an optional
   example. 
3. Roles <event_roles>: All roles (or participants) of the event type (or frame) followed with an
   optional example.
4. Report Document <report_document>: A report document with a tagged event '<event>' of the given 
   event type.

Your job is to extract all the roles of the tagged Report <event> from the <report_document>. The 
ouput should be in a JSON string
where each key represents the role name as provided in the <event_roles> and its corresponding 
value should be a
list of contiguous text spans from the <report_document> that are valid for that role. 
Note that if no text span is found for a role, the value should be an empty list. 
Your text spans should strictly come from the <report_document>. DO NOT use spans from Event 
Definition or Roles sections.

System Prompt

User
<event_type> Hiring </event_type>
<event_definition> {event_definition_from_framenet} </event_definition>
<event_roles>
1.Employee: definition + example
2.Employer: definition + example
…
</event_roles>
<report_document> He was <event> hired </event> as a Research Scientist by Microsoft. </
report_document>
Assistant
{
  "Employee": ["He"],
  "Employer": ["Microsoft"],
  "Task": [],
  "Position": ["as a Research Scientist"],
  "Field": []
}

First prompt example (Fixed)

Target Example

Second Prompt Example (Fixed)
User
<event_type> Clemency </event_type>
<event_definition> {event_definition_from_framenet} </event_definition>
<event_roles>
{role definition + examples from FrameNet}
…
</event_roles>
<report_document> In 2023, the governor granted <event> clemency </event> to the prisoner who had 
been wrongly convicted. </report_document>

Assistant
{
  "Offender": ["the prisoner"],
  "Crime": [],
  "Executive_authority": ["The governor"],
  "Time": ["2023"],
  "Place": []
}

User
<event_type> {gold_frame} </event_type>
<event_definition> {event_definition_from_framenet} </event_definition>
<event_roles>
{role definition + examples from FrameNet}
…
</event_roles>
<report_document> {report} </report_document>

Figure 11: Prompt template used for ChatGPT and Llama 2 on CDAE for report documents.
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You are a system that generates high quality cross-document role annotations based on Framenet 
ontology.
The following inputs are given to you:
1. Event Type <event_type>: A Frame name from the FrameNet ontology (eg: Hiring, Arrest, etc.)
2. Event Definition <event_definition>: Definition of the event type along with an optional 
   example. 
3. Roles <event_roles>: All roles (or participants) of the event type (or frame) followed with an
   optional example.
4. Report Document <report_document>: A report document with a tagged event '<event>' of the
   given event type.
5. Source Document <source_document>: A document from which the roles are to be extracted.

Your job is to extract all the roles of the tagged Report <event> from the <source_document>. 
The ouput should be in a JSON string where each key represents the role name as provided in 
the <event_roles> and its corresponding value should be a contiguous text span from the 
<source_document>. Note that if no text span is found for a role, the value should be an empty 
string. Your text spans should strictly come from the <source_document>. DO NOT use spans from 
Event Definition, Roles, or Report Document sections.

System Prompt

User
<event_type> Hiring </event_type>
<event_definition> {event_definition_from_framenet} </event_definition>
<event_roles>
1.Employee: definition + example
2.Employer: definition + example
…
</event_roles>
<report_document> He was <event> hired </event> as a Research Scientist by Microsoft. </
report_document>
<source_document> John Smith is a recent graduate of the University of Washington. He interned at 
Microsoft Research in Seattle, Washington. After 6 rounds of interviewing, he was hired as a 
Research Scientist by Microsoft to work on their new chatbot. </source_document>
Assistant
{
  "Employee": ["John Smith"],
  "Employer": ["Microsoft"],
  "Task": ["to work on their new chatbot"],
  "Position": ["as a Research Scientist"],
  "Field": []
}

First Prompt Example (Fixed)

Target Example

Second Prompt Example (Fixed)
User
<event_type> Clemency </event_type>
<event_definition> {event_definition_from_framenet} </event_definition>
<event_roles>
{role definition + examples from FrameNet}
…
</event_roles>
<report_document> In 2023, the governor granted <event> clemency </event> to the prisoner who had 
been wrongly convicted. </report_document>
<source_document> In 2023, Governor Rick granted clemency to John Doe, who had been wrongly 
convicted of murder in 1993. Doe was exonerated in 2012 after DNA testing proved that he was 
innocent. He spent 19 years in prison before being released. </source_document>
Assistant
{
  "Offender": ["John Doe"],
  "Crime": ["murder"],
  "Executive_authority": ["Governor Rick"],
  "Time": ["2023"],
  "Place": []
}

User 
<event_type> {gold_frame} </event_type>
<event_definition> {event_definition_from_framenet} </event_definition>
<event_roles>
{role definition + examples from FrameNet}
…
</event_roles>
<report_document> {report} </report_document>
<source_document> {source }</source_document>

Figure 12: Prompt template used for ChatGPT and Llama 2 on CDAE for source documents.
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Candidate 
Spans

1. <event> adjourned </event>
2. 16 July 2007
3. the inquiry
4. until 4 September
…

Context 
<event> adjourned </event> On 16 July 
2007 the inquiry was adjourned until …

Report Model Source Model

On 16 July 2007 the inquiry was <event> adjourned </
event> until 4 September …
THE public inquiry into the controversial Mottram - 
Tintwistle bypass was …

1. <event> adjourned </event>
2. THE public inquiry into the controversial Mottram 
- Tintwistle bypass
3. public
4. the controversial Mottram - Tintwistle bypass
…

Question Event: Activity_pause, Role: Activity, 
Trigger: adjourned 

Context On 16 July 2007 the inquiry was 
adjourned until 4 September with a …

Answer THE public inquiry into the controversial Mottram - 
Tintwistle bypass

Event: Activity_pause, Role: Activity, Report: On 16 
July 2007 the inquiry was <event> adjourned </event> 
until 4 September with a …
THE public inquiry into the controversial Mottram - 
Tintwistle bypass was dramatically halted when the Highways 
Agency admitted it had got its figures wrong …

the inquiry

IterX

Longformer

Figure 13: Top: IterX inputs for the example in Figure 2, including the set of candidate spans (first row) and the
document text (second row) for the report (left) and source (right) models. Bottom: Longformer QA report (left)
and source (right) model inputs for the Activity role for the example in Figure 2. Note that the question for the
source model has the report text prepended, with the event trigger highlighted. This is done to condition extraction
specifically on that trigger. See §5 for details.

sets of spans for training depending on the setting
(gold, predicted, or gold and predicted). All
models are trained for a maximum of 150 epochs
with a patience of 30, using CEAF-RMEϕ3 on the
dev set as the validation metric.

ChatGPT As with SV, we do not perform
any fine-tuning or hyperparameter search
on ChatGPT for CDAE. The model version
(gpt-3.5-turbo-0301) and hyperparameters
used here are also identical to those used for
ChatGPT on SV. We use separate prompts for
extraction on report and source documents. The
prompt used for source documents is sketched in
Figure 12. It consists of a system prompt, two
example extractions (included in the chat history),
followed by the target example on which extraction
is to be performed. Note that this is different from
the prompt used to generate CDAE annotations for
purposes of annotation correction (Figure 9).

Llama 2 We use llama-2-13b-chat in lieu of
llama-2-13b (used in SV), though all hyperparam-
eters are the same as those used for Llama on SV.
The prompt is the same as that used for ChatGPT
for CDAE.

D Frame Selection

We follow the frame selection methodology of
Barham et al. (2023) for selecting situation-
denoting frames. Drawing inspiration from Moens
and Steedman (1988), we focus on the top-level
EVENT, STATE, and PROCESS FrameNet frames.

We initially take these three frames and all those
related to them via the INHERITANCE, SUBFRAME,
or PRECEDES relations, on the assumption that the
set of situation-denoting frames is closed under
these relations, yielding 387 frames.21

However, some of these frames also inherit
from other top-level frames that are not situation-
denoting (i.e. RELATION, ENTITY, and LOCALE).
We remove all such frames from the set above,
which leaves 369 frames remaining.

Finally, because we are reliant on an existing
FrameNet parser for data collection (Xia et al.,
2021), we must further subset to those frames for
which there is FrameNet training data and that
therefore exist in the model’s vocabulary. This
yields the final set of 328 frames reported in §4.

E Additional Statistics

E.1 Similarity Between Report and Source

As discussed in §4, we use SimLM to compute
the similarity between (report, source) pairs when
automatically generating negative examples for the
SV task. Figure 14 presents the distributions of the
SimLM scores for all positive SV examples (top
left), all negative SV examples (top right), human-
annotated (gold) negative examples (bottom left),
and automatically curated (silver) negative exam-
ples (bottom right). As may be expected, the modal
similarity in the negative example plots is less than

21See the FrameNet Lattice List: https://framenet.
icsi.berkeley.edu/FrameLatticeList
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Figure 14: Histogram of SimLM similarity scores be-
tween the Report and the Source Text across SV train
and dev examples.

Train Dev

Mean 20.5 25.6
Report Median 16.5 22.0

Std Dev 18.2 18.9

Mean 193.7 310.4
Source Median 67.3 122.0

Std Dev 353.6 529.0

Table 4: Statistics for word distances between the first
and last arguments in report and source documents.

that of the positive examples. This is true even for
the silver negative examples, for which we delib-
erately selected sources based on similarity to a
target report, which offers further evidence that we
are unlikely to be accidentally including positive
source documents in the automatically generated
negative examples.

E.2 Argument Distances

Here, we report distributions and statistics for word
distances between (1) event triggers and their ar-
guments in training split report documents (Fig-
ure 15); and (2) the first and last arguments an-
notated in each report and source document (Ta-
ble 4, Figure 16) in the training split. Recall that
in contrast to a number of resources for event argu-
ment extraction (EAE; Ebner et al., 2020; Li et al.,
2021), FAMuS permits arguments to be annotated
anywhere in the report and source documents.

Figure 15: Histogram of word distances between trig-
gers and their arguments in report documents from train.

Figure 16: Histogram of word distances between the
first and last arguments in report documents (top) and
source documents (bottom) from the train split.
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F Additional Results

Table 5 presents CEAF-RME scores on the same
models as in Table 3, but using the full coreference
cluster for each gold argument (as predicted by F-
COREF) in the metric computation. The results
are qualitatively similar (Longformer-QA remains
dominant in the −rb setting and the Report Base-
line still generally outperforms models in the +rb
setting), though absolute F1 scores are noticeably
reduced. This reduction in F1 scores when using
coreference information may seem counterintuitive,
as one might expect higher scores due to increased
leniency in what counts as a correctly identified
argument. However, the models are still predicting
singleton entities while being evaluated with the ϕ3

and soft-match ϕ3 scoring functions, which only
award full credit if all and only the mentions in
the reference entity are predicted. As this is im-
possible for models predicting singleton entities,
the coreference-based evaluation results in lower
scores compared to the non-coreference evaluation.

8272



Report Source
CEAF-RMEϕ3 CEAF-RMEa CEAF-RMEϕ3 CEAF-RMEa

Model P R F1 P R F1 P R F1 P R F1

−rb

IterXgold 73.11 57.17 64.17 73.56 57.53 64.56 70.46 30.26 42.34 70.61 30.33 42.43
IterXgold+pred 40.95 23.55 29.90 42.24 24.29 30.84 27.47 5.19 8.73 31.63 5.97 10.05
IterXpred 38.06 19.39 25.69 42.33 21.56 28.57 23.61 4.28 7.25 29.80 5.40 9.15
Longformer-QA 44.31 32.42 37.44 56.92 41.65 48.10 29.10 11.08 16.05 41.86 15.93 23.08
ChatGPT 35.85 27.05 30.84 53.27 40.20 45.82 17.28 6.90 9.86 36.48 14.56 20.82
Llama-2-13b-chat 13.68 19.06 15.93 24.20 33.72 28.18 12.35 4.13 6.19 21.41 7.16 10.73

+rb

Report Baseline (rb) - - - - - - 28.69 10.47 15.34 51.08 18.65 27.32
IterXgold - - - - - - 61.21 33.69 43.46 64.91 35.72 46.09
IterXgold+pred - - - - - - 27.16 9.52 14.09 40.55 14.21 21.05
IterXpred - - - - - - 25.04 8.56 12.76 39.93 13.65 20.35
Longformer-QA - - - - - - 26.90 12.64 17.20 41.30 19.40 26.40
ChatGPT - - - - - - 19.10 9.42 12.61 38.24 18.85 25.26
Llama-2-13b-chat - - - - - - 12.31 4.13 6.18 21.44 7.19 10.77

Table 5: Results for the same models as reported in Table 3, but using full (F-COREF-predicted) coreference clusters
for the reference arguments when computing CEAF-RME scores.
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