
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 7239–7252

June 16-21, 2024 ©2024 Association for Computational Linguistics

The Impact of Depth on Compositional Generalization in
Transformer Language Models

Jackson Petty†∗ Sjoerd van Steenkiste§ Ishita Dasgupta★ Fei Sha§
Dan Garrette★ Tal Linzen§

† New York University § Google Research ★ Google DeepMind
petty@nyu.edu {svansteenkiste,idg,fsha,dhgarrette,linzen}@google.com

Abstract

To process novel sentences, language mod-
els (LMs) must generalize compositionally—
combine familiar elements in new ways. What
aspects of a model’s structure promote com-
positional generalization? Focusing on trans-
formers, we test the hypothesis, motivated by
theoretical and empirical work, that deeper
transformers generalize more compositionally.
Simply adding layers increases the total num-
ber of parameters; to address this confound
between depth and size, we construct three
classes of models which trade off depth for
width such that the total number of parame-
ters is kept constant (41M, 134M and 374M
parameters). We pretrain all models as LMs
and fine-tune them on tasks that test for compo-
sitional generalization. We report three main
conclusions: (1) after fine-tuning, deeper mod-
els generalize more compositionally than shal-
lower models do, but the benefit of additional
layers diminishes rapidly; (2) within each fam-
ily, deeper models show better language mod-
eling performance, but returns are similarly di-
minishing; (3) the benefits of depth for com-
positional generalization cannot be attributed
solely to better performance on language mod-
eling. Because model latency is approximately
linear in the number of layers, these results
lead us to the recommendation that, with a
given total parameter budget, transformers can
be made shallower than is typical without sac-
rificing performance.

1 Introduction

The number of possible sentences in natural lan-
guage is enormous; regardless of the size of its
training set, a language model (LM) will regu-
larly encounter sentences it has never seen before.
The ability to interpret such sentences relies on
compositional generalization: the capacity to com-
bine familiar words and syntactic structures in new

∗Work completed as part of a Google Student Researcher
project.

ways (Montague, 1970; Fodor and Pylyshyn, 1988).
Transformer LMs (Vaswani et al., 2017), while
highly successful in many settings, often struggle
when tested on benchmarks that require compo-
sitional generalization (Kim and Linzen, 2020).
What architectural factors affect a transformer’s
ability to generalize compositionally?

In this paper, we test the hypothesis that increas-
ing a transformer’s depth—the number of layers
it has—improves its performance on tasks that re-
quire compositional generalization. This hypothe-
sis is motivated both by theoretical work, which has
shown that adding layers increases the expressive
capacity of neural networks in general (Raghu et al.,
2017) and transformers in particular (Merrill et al.,
2021), and by experimental work suggesting that
deeper models generalize more compositionally
than shallower ones (Mueller et al., 2022; Murty
et al., 2023).

While existing empirical work lends some credi-
bility to this hypothesis, to directly confirm it we
must address the confound between depth and size
(number of parameters). As each additional layer
introduces a new set of parameters, deeper models
are also larger, all else being equal, and LMs’ per-
formance on a wide variety of tasks is known to
be correlated with their size (Kaplan et al., 2020;
Hoffmann et al., 2022; Muennighoff et al., 2023).
To address this confound, we construct classes of
models with an equal total number of parameters
but differing depths; we do so by reducing the
model’s feed-forward dimension to compensate for
added depth. We pretrain all models as language
models and fine-tune them on four compositional
generalization tasks: the semantic parsing tasks
COGS (Kim and Linzen, 2020), COGS-vf (Qiu
et al., 2022a) and GeoQuery (Zelle and Mooney,
1996), and the English passivization portion of Mul-
tilingual Transformations (Mueller et al., 2022). In
all of these tasks, the model is trained on a particu-
lar data distribution and is expected to generalize to

7239

another distribution by composing together familiar
elements in novel ways.

In addition to any possible direct effect on com-
positional generalization, depth may also be corre-
lated with other factors which may themselves pre-
dict compositional generalization, such as language
modeling loss during pretraining or in-distribution
performance on the fine-tuning task. This com-
plicates the interpretation of any relationship we
might find between depth and generalization perfor-
mance. To address this concern, we also investigate
and correct for the effect of depth on language mod-
eling performance and in-distribution loss.

We report the following findings, across three
model size classes (41M, 134M, and 374M param-
eters):

1. In general, deeper models have lower perplexity
(Section 3.1). The marginal increase in perfor-
mance gained from additional layers diminishes
rapidly as models get deeper, and performance
begins to degrade when the feed-forward di-
mension approaches the dimensionality of the
model’s contextualized embeddings.

2. In general, deeper models display better com-
positional generalization (Section 3.2). Again,
most of the benefit of depth accrues from the
first few layers; for several of the compositional
generalization benchmarks we use, performance
saturates very quickly as models get deeper.

3. Deeper models generalize more composition-
ally even after correcting for the fact that their
language modeling perplexity is lower and their
in-distribution performance on the fine-tuning
task is higher (Section 3.3).

4. Since transformers’ latency is approximately
linear in their depth, it is in many case more effi-
cient to make a model wider rather than deeper,
given a fixed parameter budget (Section 4).

2 Methodology

2.1 Constructing Families of Models with
Equal Numbers of Parameters

To make a transformer deeper without increasing
the total number of parameters, we need to also
make it narrower. There are several ways to do
so: we can reduce the size of the feed-forward
dimension 3ff, reduce the size of the contextual
embeddings 3model, or reduce the size of the atten-
tion outputs 3attn (see Appendix B for a diagram

of a transformer layer annotated with dimension-
ality labels). Vaswani et al. (2017) coupled these
variables at 3model = 3attn = 3ff/4. Most trans-
former LMs have adopted this ratio (Devlin et al.,
2019; Kaplan et al., 2020; Hoffmann et al., 2022,
inter alia), though Raffel et al. (2019) increased the
size of 3ff relative to 3model and 3attn for their two
largest models. By contrast, we vary 3ff with depth
(while holding 3model = 3attn constant). By keeping
the attention mechanism identical across models
of varying depths, we rule out the possibility that
depth will be confounded with the capacity of the
self-attention mechanism. We refer to 3model/3ff,
conventionally set to 1/4, as the feed-forward ratio.

Deriving hyperparameter relations. As a start-
ing point for our size classes of models, we use
hyperparameters taken from T5-base and T5-large
(Raffel et al., 2019) as well as a smaller model
from Kim and Linzen (2020) which has identi-
cal layer-internal hyperparameters to T5-small but
fewer layers.1 We implement models using t5x
(Roberts et al., 2022). We then calculate how much
the feed-forward dimension must change to accom-
modate adding or removing layers. Starting from
the formula in Kaplan et al. (2020), the number of
parameters " in a layer is

" (3ff) = 23model3ff + 43model3attn = V · 3ff + �,

where the constant V represents the contribution
of the parameters of the feed-forward block which
projects vectors from R3model into R3ff and back into
R3model ; and the constant � represents the param-
eters of everything aside from the feed-forward
block, including the attention mechanism. The to-
tal parameter count of a full model # in terms of
3ff and =layers is then

(=layers, 3ff) = =layers · " (3ff) + 23model=vocab.

Given initial values (=0
layers, 3

0
ff) which character-

ize the baseline model in each size class (e.g., T5-
large), our goal is to find pairs :, F(:) such that

(=0
layers + :, 30

ff − F(:)) = # (=0
layers, 3

0
ff).

Solving for F as a function of : tells us how much
to increase (or decrease) 30

ff if we remove (or add)

1Unlike T5 and the original transformer, we implement
GPT-style causal decoder-only language models; following
Wang et al. (2022) we consider decoder-only models with half
as many total layers as their encoder-decoder variants.

7240

: layers from an existing model:

F(:) =
⌊(

1 −
=0

layers

=0
layers + :

) (
30

ff +
�

V

)⌉
. (1)

Since adding or removing : layers might require
changing 30

ff by a fractional amount, we round
F(:) to the nearest integer. Table 2 reports the
exact hyperparameter values we use for each of
our three size classes, derived from Equation 1
above, and Figure 1 shows each size class plotted
as (=layers, 3ff) pairs.

2.2 Datasets and Training
2.2.1 Language Modeling
We use the Colossal Clean Crawled Corpus (C4;
Raffel et al. 2019) for pretraining. We use a context
size =ctx of 1024 tokens and a batch size of 128
sequences ≈ 131k tokens. We pretrain each model
for 1M steps, resulting in a total training dataset of
roughly 131B tokens.

2.2.2 Compositional Generalization
In compositional generalization datasets, models
are tested on a distribution that contains novel com-
binations of pieces, each of which has been previ-
ously seen independently during training. We fine-
tune our pretrained models on the training portion
of the dataset for 10,000 steps with a batch size of
128. Validation loss continued to decrease through-
out training runs on each dataset, so we report val-
ues from the end of each fine-tuning run without
early stopping. We use the following datasets (for
examples of instances of these tasks, see Table 1):

1. COGS (Kim and Linzen, 2020) is a semantic
parsing dataset consisting of natural-language
sentences paired with formal semantic repre-
sentations. It is constructed such that the out-
of-domain generalization distribution contains
two generalization types: new combinations of
familiar words (lexical generalization, such as
using the word ‘hedgehog’ as the object of a sen-
tence when this word has only been seen during
training as a subject); or new combinations of
familiar syntactic structures (structural gener-
alization, such as relative clauses that are more
deeply nested than seen in training).

2. Variable-free COGS (COGS-vf; Qiu et al.
2022a) is a simplified variant of COGS where
the semantic representations do not use num-
bered variables (see Table 1 for a comparison

between COGS and COGS-vf). Removing vari-
ables from the representation has the benefit of
lowering the associated computational cost of
training by making sequences shorter. This con-
version has been previously shown to improve
the performance of models by reducing the com-
plexity of the output space (Qiu et al., 2022b),
but comes at the cost of limiting the capacity
of the formal language to represent phenomena
that require coordination of variable identity,
such as control and anaphor binding.

3. GeoQuery (Zelle and Mooney, 1996) contains
natural-language questions about US geography
paired with SQL-style database queries repre-
senting those questions. We report results on
the GeoQuery Standard split.

4. English passivization (Mueller et al., 2022) is a
dataset of English active-voice sentences paired
with their passive-voice counterparts (adapted
from Mulligan et al. 2021). This benchmark
is designed to test whether models use shallow,
positional heuristics or syntactically principled
ones. While Mueller et al. (2022) implemented
a number of transformations in different lan-
guages, we focus on the English Passivization
task.

3 Results

3.1 Language Modeling

Deeper models have lower perplexity. Depth
has a significant impact on language modeling per-
formance. At the shallow end of the spectrum,
increasing depth results in a dramatic improvement
in perplexity (Figure 2). In Figure 3a we com-
pare the perplexity of each model in a size class
relative to that of the best-performing model of
that size. In the extreme case, the perplexity of a
single-layer model can be nearly twice that of the
optimal model in the class. Moreover, as parameter
count increases the disparity between the worse,
shallower models and the better, deeper models in-
creases as well: For 41M-parameter models the ra-
tio between the perplexity of the single-layer model
and that of the optimal (5-layer) model is 1.59; for
the 134M-parameter models, the ratio is 1.86; and
for the 374M-parameter models, the ratio is 1.99.

Performance increases most rapidly within the
first few layers. While deeper models do, in gen-
eral, perform better than shallower ones, the in-

7241

Figure 1: Models for the 41M-, 134M-,
and 374M-parameter size classes. Points
indicate models trained in this paper, and
black diamonds represent the baseline
models for each class whose hyperparam-
eters were taken from Kim and Linzen
(2020) and Raffel et al. (2019).

COGS G : A hedgehog ate the cake .
H : ∗cake(G4); hedgehog(G1) AND eat.agent(G2, G1) AND eat.theme(G2, G4)

COGS-vf G : A hedgehog ate the cake on the bed .
H : eat(agent = hedgehog, theme = ∗cake(nmod.on = ∗bed))

GeoQuery G : which states have cities named m0
H : answer(intersection(state, loc_1(intersection(city,m0))))

English Passivization G : our vultures admired her walrus above some zebra .
H : her walrus above some zebra was admired by our vultures .

Table 1: Examples of inputs (G) and targets (H) from each compositional generalization dataset.

crease in performance that comes from adding lay-
ers diminishes rapidly as models become deeper
(Figure 3a). The performance difference between
1-layer and 2-layer models is dramatic across all
size classes; moving from 2 to 4 layers results in
a much more modest performance improvement.
We also note that as models get larger in our setup,
they are able to make productive use of increasingly
more layers: the optimal 41M-parameter model in
our setup has 5 layers, while the optimal 134M-
parameter model has 12; among 374M-parameter
models, the 24-layer model had the best perfor-
mance. At the same time, the pattern of the dimin-
ishing utility of depth holds even for the largest
models we study.

Performance degrades when models become
too narrow. At the deeper end of our scale,
adding layers is not only unhelpful for performance,
but begins to harm it (see the right-hand sides of
each size-class curve in Figure 3a). As previously
noted, the point at which trading width for depth
becomes harmful is not an absolute function of
depth, since the depth of the optimal model dif-
fers across classes. However, comparing the rela-
tive performance of models within a size class to
the feed-forward ratio 3model/3ff shows that model
performance begins to worsen once 3ff becomes
smaller than 3model (to the right of the red dashed
line in Figure 3b); when this happens, the affine
projection of the vectors from R3model into R3ff be-
comes a non-injective map. In Section 5 we ana-
lyze the weight matrices of the affine transforms in

the feed-forward network of each layer and demon-
strate that as 3model/3ff increases the transforms
become increasingly rank-deficient.

Larger models can tolerate more extreme feed-
forward ratios. Varying 3ff while keeping 3model
constant results in feed-forward ratios 3model/3ff
which deviate significantly from the ratio of 1/4,
which is the de-facto standard in the literature
(black vertical rule in Figure 3b). We find that
smaller models are more sensitive to the particu-
lar value of the feed-forward ratio, and that for
small models the standard ratio may not be optimal.
Within the 41M-parameter size class there is a nar-
row range of feed-forward ratios in which model
performance is within a few percentage points of
the best-in-class model. As models get larger, this
range expands leftward to include models which
have increasingly wide feed-forward networks rel-
ative to the size of their contextual embeddings.
In other words, larger models have more leeway
to trade depth for width, becoming wider in pro-
portion to their model dimension 3model without
incurring large penalties for their perplexity. Fur-
thermore, when 3model/3ff < 1 the feed-forward
ratio does not predict the relative perplexity of a
model independent of its size.

3.2 Compositional Generalization

We next fine-tune the models pretrained in the pre-
vious section on the training portions of each com-
positional generalization dataset, and measure the
full-sequence (exact match) accuracy of the models

7242

Figure 2: Deeper models achieve lower perplexities than shallower ones after equal amounts of training data
regardless of size, but the benefits of adding layers diminish quickly with depth. Mean over 5 runs shown with
error bars.

(a) (b)

Figure 3: Relative perplexity compared to the best model in each size class. (a) Perplexity goes down rapidly as
models get deeper; only a few layers are needed to obtain most of the value of depth. (b) When 3model/3ff > 1 (red
dashed rule), perplexity slowly increases. As models get larger, the range of 3model/3ff ratios where performance
is close-to-optimal expands leftward to include smaller and smaller values.

on the out-of-distribution generalization set.

Deeper models generalize better. As with
language-modeling performance, deeper models
tend to attain higher generalization accuracies than
shallower models in the same size class (Figure 4).
The effect of depth on compositional generaliza-
tion is more variable than it is for language mod-
eling, however: for COGS, COGS-vf, and Geo-
Query there is some small non-monotonicity in
the generalization accuracy as a function of depth.
On English Passivization, the 41M- and 134M-
parameter classes show largely-consistent trends
where deeper models perform better than shallower
ones; the 374M-parameter models show more sig-
nificant non-monotonicity, though the deepest mod-
els do still outperform the shallowest ones.

The benefit of depth saturates quickly for some
tasks. As with language modeling, most of the
benefit of depth is gained by having only a few
layers. For three of the tasks—COGS, COGS-
vf, and GeoQuery—we see threshold depths after
which generalization accuracy stays relatively con-
stant as depth increases. These threshold depths
are low and constant across model sizes, but vary

by dataset: 4–6 layers for COGS, and 2–4 lay-
ers for COGS-vf and GeoQuery. Performance on
COGS-vf appears to saturate with fewer layers than
on COGS despite the fact that the two datasets ex-
press the same linguistic phenomena; this suggests
that the saturation we observe on some datasets is
closely linked to the complexity of the output rep-
resentation independent from the complexity of the
compositional generalization expressed in the data.
On English Passivization, the impact of depth is
more variable, which makes it difficult to identify
a size-independent threshold.

The threshold effects suggest that some subsets
of the datasets can be addressed with relatively
simple models. We investigate this hypothesis by
separately analyzing the models’ performance on
the two types of generalization cases included in
COGS and COGS-vf: lexical generalization, where
a familiar word needs to be interpreted in a familiar
syntactic context in which it has not been observed;
and structural generalization, where the syntactic
structure is novel and needs to be constructed from
familiar syntactic pieces. We find that even deep
models at the largest model size systematically fail
to generalize structurally (Figure 5); the benefit of

7243

Figure 4: Deeper models generalize better than shallower models on compositional tasks across datasets and
size classes. Error bars (easily visible only on the English Passivization data) report 95% confidence intervals in
estimation of the mean, taken over 5 runs.

depth is largely limited to the easier lexical gener-
alization cases. This supports the hypothesis that
the saturated effect of depth is due to the existence
of easier subsets of the datasets, and shows that in-
creasing depth alone does not substantially improve
the models’ ability to learn the correct inductive
bias for these structural tasks.

3.3 Depth Effects are Independent between
Upstream and Downstream Tasks

We have shown that deeper models generalize
better than shallower models do. But in Sec-
tion 3.1 we also showed that deeper models attain
lower validation perplexity in pretraining than shal-
lower models; and deeper models achieve lower
in-distribution loss on the fine-tuning tasks than
shallower ones (Figure 7a). Both of these observa-
tions constitute potential confounds for the interpre-
tation of the previous section: it could be that depth
does not directly improve generalization accuracy,
but only does so indirectly by improving language
modeling performance or in-distribution accuracy
on the fine-tuning task, which in turn lead to better
generalization. To determine if this is the case, we
correct for both of these potential confounds.

First, to correct for the deeper models’ lower
pretraining loss, we repeat our fine-tuning experi-
ments using intermediate checkpoints of pretrained
models that have equal validation perplexity within
a size class. We pick the least-performant (i.e.,
shallowest) model within a size class as the ref-
erence model and note its validation perplexity at
the end of pretraining. We then pick the intermedi-
ate checkpoints of all deeper2 models at the point

2We only consider models deeper than the reference model
since, in general, shallower models will never attain the per-
plexity of the reference model at the end of its pretraining.
This assumption breaks down when considering the deepest
models in each size class, but these are far deeper than the
depth at which compositional generalization performance sat-

during pretraining when they achieved this refer-
ence perplexity (Figure 6a). Finally, we fine-tune
each of these checkpoints on the compositional
generalization tasks. We repeat this process for
successively deeper reference models. We find that
even when fine-tuning from checkpoints of equal
validation perplexity, deeper models still generalize
better than shallower models (Figure 6b).

Next, to correct for the fact that deeper mod-
els perform better than shallower ones on the in-
distribution split of the compositional generaliza-
tion tasks, we compare the models’ generalization
accuracy at points during fine-tuning when they
have equal in-distribution loss. Figure 7b shows
that even after adjusting for in-distribution perfor-
mance, deeper models still achieve higher accuracy
on the out-of-distribution generalization set than
shallower models do.

4 Training and Inference Latency

What are the practical implications of the fact that
the benefit of depth saturates after a handful of
layers? Empirically, the compute cost of training
and running our equal-parameter models exhibits
a strongly linear relationship with depth. Figure 8
shows (for our largest models) that the latency dur-
ing training grows linearly with the depth of the
model. The causes of this penalty are two-fold.
First, our choice to use narrower feed-forward di-
mension for deeper models to maintain constant
total parameter count leads to a slightly higher float-
ing point operation (FLOP) count for deeper mod-
els. To see this, we start from the cost formula
introduced in Kaplan et al. (2020):

�forward = 2# + 2=layers=ctx3attn,

where # is total parameter count. Since both =ctx
and 3attn are constant for all models of a particular

urates, so we do not extensively explore this regime.

7244

Figure 5: Increasing depth improves lexical generalization (solid lines) in both COGS and COGS-vf, but does not
meaningfully improve structural generalization performance (dashed lines). Data shown is from a single run per
condition.

(a) (b)

Figure 6: (a) To correct for the potential effect of deeper models’ lower pretraining loss on their generalization
accuracy, we pick a reference model depth (red) and use checkpoints (black) from deeper models (blue) which
have equal validation perplexity as the reference model does at the end of its pretraining. We then fine-tune these
‘pretraining-corrected’ checkpoints on the compositional tasks. (b) Even when fine-tuning checkpoints with equal
validation perplexity, deeper models still generalize better than shallower models do up through six layers. The
figure shows generalization accuracies from 134M-parameter models on COGS (single run per condition).

size (as 3attn and 3ff are decoupled from one an-
other), the total FLOP count of a model is linear
in depth, though this term is dominated by the 2#
term unless model depth, attention size, or context
length become very large.

The second and likely more important reason
that deeper models are slower is because the com-
putations at layer : depend on the results of the
computations at layer : − 1. Because of this se-
quential dependency, parallelism cannot be applied
across layers (Tay et al., 2021).

Combined with the diminishing utility of depth
for performance, the linear latency cost of depth as
total size is kept constant leads us to the following
practical recommendations:

1. When trying to minimize GPU-hours for fixed
data volume, shallower models can train in far
less time than deeper models while still attaining
acceptable levels of performance relative to the
best-performing model in a given size class.

2. With a fixed budget of GPU-hours for training,
shallower models can train on more data than

deeper models can over any fixed amount of
time, since shallower models have lower latency,
potentially resulting in better performance than
deeper models trained on less data.

These benefits are not confined to training:
deeper models also incur a per-layer cost during
inference. This means that the penalty a deeper
model pays must be amortized over the lifetime
cost of using a model for inference. Here too, re-
ducing the GPU-time spent on inference by us-
ing shallower models of comparable performance
could reduce compute costs, both for cloud-served
models and for on-device inference (Strubell et al.,
2019; Pope et al., 2022; Gupta and Agrawal, 2022).

5 Analysis of Feed-Forward Transforms

At extreme feed-forward ratios, we observe that
model performance degrades. We investigate the
role that the feed-forward ratio plays in the ob-
served performance of our models. When 3ff is
smaller than 3model, this transform is lossy, but
small values of 3ff could nevertheless impact per-
formance even when 3ff is still larger than 3model.

7245

(a) (b)

Figure 7: (a) Deeper models attain lower (better) in-domain loss values on compositional tasks. (b) Deeper models
generalize better than shallower ones on COGS, even at points during fine-tuning when models have equal loss
(0.0002) on the in-distribution portion of the dataset. Data shown is from a single run per condition.

Figure 8: Deeper models train more slowly than shal-
lower ones when controlling for total parameter count.
We report relative latency [seconds per training step]
for a subset of our 374M-parameter models that were
trained on the same accelerator, showing a strongly-
linear relationship between depth and latency. Simi-
lar relative trends are observed for other model sizes
classes.

To determine if that is the case, we conduct rank
analysis on the affine transforms which comprise
the feed-forward block. For a given affine trans-
form) , we compute the ordered singular values
{f1, f2, . . . , f: } where : = min(3model, 3ff) is the
rank of) and f8 ≥ f8+1. We then normalize each
value by dividing by the ℓ1 norm of {f1, . . . , f: }
to calculate how much of)’s image is accounted
for by the best 8-rank approximation of) for 8 ≤ : .
Figure 9 shows how in deeper models (i.e., those
with increasingly large 3model/3ff ratios) the trans-
forms become increasingly skewed away from mak-
ing full-use of their available ranks.

6 Related Work

Compositionality. Previous work has explored
the degree to which neural models exhibit compo-
sitional behavior by training or fine-tuning mod-
els on compositional tasks such as simple com-
mand sequences (Lake and Baroni, 2018) or se-
mantic parsing (Kim and Linzen, 2020; Keysers

et al., 2020). Other work has explored methods
to improve the compositional behavior of models,
including through data augmentation (Qiu et al.,
2022a), larger models (Qiu et al., 2022b), and
architectural changes (Gordon et al., 2019; Csor-
dás et al., 2021; Ontanon et al., 2022). Our work
complements these approaches by exploring a spe-
cific architecture change: increasing depth without
changing total model size.

Impacts of depth. Theoretical work has shown
that the expressive capacity of neural networks in
general (Raghu et al., 2017) and transformer mod-
els in particular (Merrill et al., 2021) grows ex-
ponentially in depth. Empirical work also points
to the role of depth in model performance. In a
more general setting, Tay et al. (2021) found that
scaling by depth is generally more helpful than
scaling by width on downstream tasks, though they
do not attempt to control for size. For composi-
tional generalization in particular, Mueller et al.
(2022) found that reducing depth was more harm-
ful than reducing width for pretrained encoder-
decoder models. Murty et al. (2023) observed that
deeper transformer encoders often have more tree-
like representations and higher parsing accuracies
on some compositional tasks. Tempering these pos-
itive results, Veit et al. (2016) noted that in models
with residual connections, even very deep networks
leveraged only shallow subnetworks of roughly
constant depth. Brown et al. (2022) also concluded
that wide, shallow transformer models can attain
roughly-equal performance to deeper ones. Both
sets of results, however, are confounded by a lack
of control for total parameter count. Very recently,
Gromov et al. (2024) found that nearly half of the
layers of deep language models can be pruned after
training without substantially harming performance

7246

Figure 9: As models get deeper and 3model/3ff ratio gets larger (values between 0.01 for the shallowest model
shown and 1 for the deepest), the input (left) and output (right) projections in the feed-forward block become
increasingly close to rank-deficient transforms. A graph of H = G here would indicate that models spread their rank
equally across all singular values. Data from 134M-parameter models.

on downstream tasks.

Early-exit schemes. Early-exit research (Zhou
et al. 2020; Schuster et al. 2022, inter alia) shows
that deep models can dynamically be made shal-
lower by skipping later layers of computation once
a heuristic deems a computed representation “good
enough.” We view our work as complementing
this approach; while early-exit reduces the com-
putational cost of a model’s inference on an input-
dependent basis, our work shows that the cost can
be reduced for all inputs during both training and
inference. However, since we do not explore early-
exit training or inference with our equal-parameter
models here, it is possible that even our shallower
models could benefit from early-exit schemes that
would further reduce computational costs.

Controlling for model size. There are different
possible approaches to studying the impact of hy-
perparameter choices without affecting the net
model size. Kaplan et al. (2020) covaried num-
ber of layers =layers with the contextual embed-
ding dimension 3model, which they coupled to the
attention-internal 3attn and feed-forward dimension
at the standard ratio of 3model = 3attn = 3ff/4. They
concluded that performance increases are largely
driven by increasing the total parameter count of
models, and that within “reasonable limits” lan-
guage modeling perplexity is only weakly depen-
dent on shape (though Tay et al. 2021 concluded
that the same was not true for performance on
downstream tasks, but did so without controlling
for the impact of size). Our work investigates the
role that depth plays on both pretraining and fine-
tuning tasks while controlling for total parameter
count.

7 Conclusion

Compositional generalization is essential for inter-
preting novel sentences. What aspects of the trans-
former LM architecture contribute to an inductive
bias favoring compositional generalization? In a
controlled experiment that teases apart depth from
total number of parameters, we find that deeper
transformers show better compositional generaliza-
tion, and better language modeling performance,
independent of their total number of parameters.
At the same time, in most cases the usefulness
of adding layers decreases rapidly as models get
deeper: comparatively shallow models can achieve
generalization accuracy on compositional tasks that
is comparable to that of much deeper models, and
language modeling perplexity within a few per-
centage points of the best-in-class model. Because
deeper transformers have higher latency, this indi-
cates that for a given parameter budget, shallower
models can be significantly faster with a minimal
sacrifice in performance.

8 Limitations

Attention heads. We do not investigate the role
that attention heads play in compositional gener-
alization broadly, nor how the function of heads
changes with depth. Previous work (Michel et al.
2019, inter alia) showed that reducing the number
of attention heads in a transformer (pre- or post-
training) does not significantly harm performance.
Mechanistic interpretability work has found that
specific attention heads in transformers learn to
compute task-specific functions (Voita et al., 2019;
Htut et al., 2019; Olsson et al., 2022). Our findings
here raise two questions which should be further in-
vestigated: first, does the relative unimportance of
the number of attention heads still hold in regimes

7247

when a model is significantly shallower and wider
than convention; and second, do any of the atten-
tion heads in our models learn to perform specif-
ically compositional computations, and does this
vary as models get deeper or shallower?

Alternative approaches to controlling for total
size. Our approach to controlling for total param-
eter count necessitates making depth-width trade-
offs. An alternative approach would be to construct
Universal Transformers (Dehghani et al., 2018),
where each model in a size class has a transformer
layer with the same parameters repeated =layers
times. Such a weight-sharing approach would al-
low for deeper models to have arbitrarily-wide feed-
forward networks, mitigating the impact of making
models too narrow. While such weight sharing
prevents models from performing different compu-
tation in different layers, such restriction may in
fact be beneficial for compositional generalization
where similar computations (e.g., combining two
syntactic phrases to a larger phrase) may need to
apply recursively at different scales.

Pretraining corpus effects. We consider models
pretrained on natural-language data. For our par-
ticular choice of compositional generalization ex-
periments, the presence of lexical items in both the
pretraining corpus and the generalization datasets
represents a potential confounder of generalization
performance which could be mitigated by modify-
ing compositional datasets (Kim et al., 2022). More
generally, we do not study how the distribution of
pretraining data affects the inductive biases con-
ferred to LMs (Papadimitriou and Jurafsky, 2023).
As a particular area of interest for future work, we
point out the hypothesis that including source code
in the pretraining corpus (OpenAI, 2023; Google
et al., 2023) will improve compositional general-
ization.

Fine-tuning vs. in-context learning. We use
fine-tuning to adapt our pretrained models to the
compositional tasks. Due to its computational cost
and task-specificity, fine-tuning is less useful in
practice than in-context learning as model size
grows (Brown et al., 2020). Because in-context
learning only becomes reliable at scales far larger
than we are able to train, we did not explore the
effect of depth on compositional generalization ac-
curacy in in-context learning (Si et al., 2022); we
point this out as an avenue for future research.

9 Ethics Statement

Throughout our experimental process, we sought to
comply with best practices to mitigate any risks as-
sociated with LLM research. We use open-source
datasets which are inspectable by third-parties for
issues such as bias, and toxicity. We do not release
any public checkpoints for the models we train, so
there is no risk to misuse of any created artifacts,
though we note that we derive our implemented
models from existing publicly-available T5 models.
We train models on English-only natural-language
data, and fuller exploration should be done to ex-
plore how language impacts the results found here.

Acknowledgements

We thank Pete Shaw and Slav Petrov for helpful
feedback on previous versions of this paper.

References
Jason Ross Brown, Yiren Zhao, Ilia Shumailov, and

Robert D Mullins. 2022. Wide attention is the way
forward for Transformers? In Workshop: All Things
Attention: Bridging Different Perspectives on Atten-
tion.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language Models are Few-Shot Learners. In
Advances in Neural Information Processing Systems
33, volume 33, page 1877–1901. Curran Associates,
Inc.

Róbert Csordás, Kazuki Irie, and Juergen Schmidhu-
ber. 2021. The devil is in the detail: Simple tricks
improve systematic generalization of transformers.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
619–634, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,
Jakob Uszkoreit, and Łukasz Kaiser. 2018. Univer-
sal Transformers. In International Conference on
Learning Representations.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association

7248

http://arxiv.org/abs/2210.00640
http://arxiv.org/abs/2210.00640
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/v1/2021.emnlp-main.49
https://doi.org/10.18653/v1/2021.emnlp-main.49
https://arxiv.org/abs/1807.03819
https://arxiv.org/abs/1807.03819
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
page 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Jerry A Fodor and Zenon W Pylyshyn. 1988. Connec-
tionism and cognitive architecture: a critical analy-
sis. Cognition, 28(1-2):3–71.

Google, Rohan Anil, Andrew M Dai, Orhan Fi-
rat, Melvin Johnson, Dmitry Lepikhin, Alexandre
Passos, Siamak Shakeri, Emanuel Taropa, Paige
Bailey, Zhifeng Chen, Eric Chu, Jonathan H
Clark, Laurent El Shafey, Yanping Huang, Kathy
Meier-Hellstern, Gaurav Mishra, Erica Moreira,
Mark Omernick, Kevin Robinson, Sebastian Ruder,
Yi Tay, Kefan Xiao, Yuanzhong Xu, Yujing Zhang,
Gustavo Hernandez Abrego, Junwhan Ahn, Ja-
cob Austin, Paul Barham, Jan Botha, James Brad-
bury, Siddhartha Brahma, Kevin Brooks, Michele
Catasta, Yong Cheng, Colin Cherry, Christopher A
Choquette-Choo, Aakanksha Chowdhery, Clément
Crepy, Shachi Dave, Mostafa Dehghani, Sunipa Dev,
Jacob Devlin, Mark Díaz, Nan Du, Ethan Dyer, Vlad
Feinberg, Fangxiaoyu Feng, Vlad Fienber, Markus
Freitag, Xavier Garcia, Sebastian Gehrmann, Lu-
cas Gonzalez, Guy Gur-Ari, Steven Hand, Hadi
Hashemi, Le Hou, Joshua Howland, Andrea Hu,
Jeffrey Hui, Jeremy Hurwitz, Michael Isard, Abe
Ittycheriah, Matthew Jagielski, Wenhao Jia, Kath-
leen Kenealy, Maxim Krikun, Sneha Kudugunta,
Chang Lan, Katherine Lee, Benjamin Lee, Eric Li,
Li, Music, Wei Li, Yaguang Li, Jian Li, Hyeon-
taek Lim, Hanzhao Lin, Zhongtao Liu, Freder-
ick Liu, Marcello Maggioni, Aroma Mahendru,
Joshua Maynez, Vedant Misra, Maysam Moussalem,
Zachary Nado, John Nham, Eric Ni, Andrew Nys-
trom, Alicia Parrish, Marie Pellat, Martin Polacek,
Alex Polozov, Reiner Pope, Siyuan Qiao, Emily
Reif, Bryan Richter, Parker Riley, Alex Castro
Ros, Aurko Roy, Brennan Saeta, Rajkumar Samuel,
Renee Shelby, Ambrose Slone, Daniel Smilkov,
David R So, Daniel Sohn, Simon Tokumine, Dasha
Valter, Vijay Vasudevan, Kiran Vodrahalli, Xuezhi
Wang, Pidong Wang, Zirui Wang, Tao Wang, John
Wieting, Yuhuai Wu, Kelvin Xu, Yunhan Xu, Lint-
ing Xue, Pengcheng Yin, Jiahui Yu, Qiao Zhang,
Steven Zheng, Ce Zheng, Weikang Zhou, Denny
Zhou, Slav Petrov, and Yonghui Wu. 2023. PaLM
2 Technical Report. Technical report, Google.

Jonathan Gordon, David Lopez-Paz, Marco Baroni,
and Diane Bouchacourt. 2019. Permutation Equiv-
ariant Models for Compositional Generalization in
Language. In ICLR 2020 (OpenReview).

Andrey Gromov, Kushal Tirumala, Hassan Shapourian,
Paolo Glorioso, and Daniel A. Roberts. 2024. The
unreasonable ineffectiveness of the deeper layers.
Technical Report MIT-CTP/5694, Center for Theo-
retical Physics, Massachusetts Institute of Technol-
ogy, Cambridge, MA.

Manish Gupta and Puneet Agrawal. 2022. Compres-

sion of deep learning models for text: A survey.
ACM Trans. Knowl. Discov. Data, 16(4).

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de Las Casas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, Tom Hennigan, Eric
Noland, Katie Millican, George van den Driess-
che, Bogdan Damoc, Aurelia Guy, Simon Osin-
dero, Karen Simonyan, Erich Elsen, Jack W Rae,
Oriol Vinyals, and Laurent Sifre. 2022. Training
Compute-Optimal Large Language Models.

Phu Mon Htut, Jason Phang, Shikha Bordia, and
Samuel R. Bowman. 2019. Do attention heads in
bert track syntactic dependencies?

Jared Kaplan, Sam McCandlish, Tom Henighan,
Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei.
2020. Scaling laws for neural language models.

Daniel Keysers, Nathanael Schärli, Nathan Scales,
Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz
Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao Wang,
Marc van Zee, and Olivier Bousquet. 2020. Measur-
ing Compositional Generalization: A Comprehen-
sive Method on Realistic Data.

Najoung Kim and Tal Linzen. 2020. COGS: A Compo-
sitional Generalization Challenge Based on Seman-
tic Interpretation. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), page 9087–9105, Online. As-
sociation for Computational Linguistics.

Najoung Kim, Tal Linzen, and Paul Smolensky. 2022.
Uncontrolled lexical exposure leads to overestima-
tion of compositional generalization in pretrained
models.

Brenden Lake and Marco Baroni. 2018. Generalization
without Systematicity: On the Compositional Skills
of Sequence-to-Sequence Recurrent Networks. In
Proceedings of the 35th International Conference on
Machine Learning, pages 2873–2882. PMLR.

William Merrill, Ashish Sabharwal, and Noah A Smith.
2021. Saturated Transformers are Constant-Depth
Threshold Circuits. Transactions of the Association
for Computational Linguistics, pages 843–856.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In Ad-
vances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

Richard Montague. 1970. Universal grammar. Theo-
ria, 36(3):373–398.

Aaron Mueller, Robert Frank, Tal Linzen, Luheng
Wang, and Sebastian Schuster. 2022. Coloring the
Blank Slate: Pre-training Imparts a Hierarchical In-
ductive Bias to Sequence-to-sequence Models. In

7249

https://doi.org/10.1016/0010-0277(88)90031-5
https://doi.org/10.1016/0010-0277(88)90031-5
https://doi.org/10.1016/0010-0277(88)90031-5
https://arxiv.org/abs/2305.10403
https://arxiv.org/abs/2305.10403
https://openreview.net/forum?id=SylVNerFvr
https://openreview.net/forum?id=SylVNerFvr
https://openreview.net/forum?id=SylVNerFvr
https://arxiv.org/abs/2403.17887v1
https://arxiv.org/abs/2403.17887v1
https://doi.org/10.1145/3487045
https://doi.org/10.1145/3487045
https://doi.org/10.48550/arXiv.2203.15556
https://doi.org/10.48550/arXiv.2203.15556
http://arxiv.org/abs/1911.12246
http://arxiv.org/abs/1911.12246
http://arxiv.org/abs/2001.08361
https://doi.org/10.48550/arXiv.1912.09713
https://doi.org/10.48550/arXiv.1912.09713
https://doi.org/10.48550/arXiv.1912.09713
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
http://arxiv.org/abs/2212.10769
http://arxiv.org/abs/2212.10769
http://arxiv.org/abs/2212.10769
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://doi.org/10.1162/tacl_a_00493
https://doi.org/10.1162/tacl_a_00493
https://proceedings.neurips.cc/paper_files/paper/2019/file/2c601ad9d2ff9bc8b282670cdd54f69f-Paper.pdf
https://doi.org/10.1111/j.1755-2567.1970.tb00434.x
https://doi.org/10.18653/v1/2022.findings-acl.106
https://doi.org/10.18653/v1/2022.findings-acl.106
https://doi.org/10.18653/v1/2022.findings-acl.106

Findings of the Association for Computational Lin-
guistics: ACL 2022, page 1352–1368, Dublin, Ire-
land. Association for Computational Linguistics.

Niklas Muennighoff, Alexander M Rush, Boaz Barak,
Teven Le Scao, Aleksandra Piktus, Nouamane Tazi,
Sampo Pyysalo, Thomas Wolf, and Colin Raffel.
2023. Scaling data-constrained language models. In
37th Conference on Neural Information Processing
Systems (NeurIPS 2023).

Karl Mulligan, Robert Frank, and Tal Linzen. 2021.
Structure Here, Bias There: Hierarchical Generaliza-
tion by Jointly Learning Syntactic Transformations.
In Proceedings of the Society for Computation in
Linguistics 2021, pages 125–135.

Shikhar Murty, Pratyusha Sharma, Jacob Andreas, and
Christopher D Manning. 2023. Characterizing In-
trinsic Compositionality in Transformers with Tree
Projections. In The Eleventh International Confer-
ence on Learning Representations.

Catherine Olsson, Nelson Elhage, Neel Nanda,
Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen,
Tom Conerly, Dawn Drain, Deep Ganguli, Zac
Hatfield-Dodds, Danny Hernandez, Scott Johnston,
Andy Jones, Jackson Kernion, Liane Lovitt, Kamal
Ndousse, Dario Amodei, Tom Brown, Jack Clark,
Jared Kaplan, Sam McCandlish, and Chris Olah.
2022. In-context learning and induction heads.

Santiago Ontanon, Joshua Ainslie, Zachary Fisher, and
Vaclav Cvicek. 2022. Making transformers solve
compositional tasks. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 3591–
3607, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

OpenAI. 2023. GPT-4 Technical Report.

Isabel Papadimitriou and Dan Jurafsky. 2023. Inject-
ing structural hints: Using language models to study
inductive biases in language learning. In Findings
of the Association for Computational Linguistics:
EMNLP 2023, pages 8402–8413, Singapore. Asso-
ciation for Computational Linguistics.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery,
Jacob Devlin, James Bradbury, Anselm Levskaya,
Jonathan Heek, Kefan Xiao, Shivani Agrawal, and
Jeff Dean. 2022. Efficiently scaling transformer in-
ference.

Linlu Qiu, Peter Shaw, Panupong Pasupat, Pawel
Nowak, Tal Linzen, Fei Sha, and Kristina Toutanova.
2022a. Improving compositional generalization
with latent structure and data augmentation. In Pro-
ceedings of the 2022 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
4341–4362, Seattle, United States. Association for
Computational Linguistics.

Linlu Qiu, Peter Shaw, Panupong Pasupat, Tianze Shi,
Jonathan Herzig, Emily Pitler, Fei Sha, and Kristina
Toutanova. 2022b. Evaluating the impact of model
scale for compositional generalization in semantic
parsing. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 9157–9179, Abu Dhabi, United Arab Emi-
rates. Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research:
JMLR, 21(2020):1–67.

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Gan-
guli, and Jascha Sohl-Dickstein. 2017. On the Ex-
pressive Power of Deep Neural Networks. In In-
ternational Conference on Machine Learning, pages
2847–2854. PMLR.

Adam Roberts, Hyung Won Chung, Anselm Levskaya,
Gaurav Mishra, James Bradbury, Daniel Andor, Sha-
ran Narang, Brian Lester, Colin Gaffney, Afroz
Mohiuddin, Curtis Hawthorne, Aitor Lewkowycz,
Alex Salcianu, Marc van Zee, Jacob Austin, Sebas-
tian Goodman, Livio Baldini Soares, Haitang Hu,
Sasha Tsvyashchenko, Aakanksha Chowdhery, Jas-
mijn Bastings, Jannis Bulian, Xavier Garcia, Jianmo
Ni, Andrew Chen, Kathleen Kenealy, Jonathan H.
Clark, Stephan Lee, Dan Garrette, James Lee-Thorp,
Colin Raffel, Noam Shazeer, Marvin Ritter, Maarten
Bosma, Alexandre Passos, Jeremy Maitin-Shepard,
Noah Fiedel, Mark Omernick, Brennan Saeta, Ryan
Sepassi, Alexander Spiridonov, Joshua Newlan, and
Andrea Gesmundo. 2022. Scaling up models and
data with t5x and seqio.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa De-
hghani, Dara Bahri, Vinh Tran, Yi Tay, and Donald
Metzler. 2022. Confident adaptive language mod-
eling. In Advances in Neural Information Process-
ing Systems, volume 35, pages 17456–17472. Cur-
ran Associates, Inc.

Chenglei Si, Zhe Gan, Zhengyuan Yang, Shuohang
Wang, Jianfeng Wang, Jordan Boyd-Graber, and Li-
juan Wang. 2022. Prompting GPT-3 to be reliable.
In The Eleventh International Conference on Learn-
ing Representations.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 3645–3650, Florence, Italy.
Association for Computational Linguistics.

Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fe-
dus, Samira Abnar, Hyung Won Chung, Sharan
Narang, Dani Yogatama, Ashish Vaswani, and Don-
ald Metzler. 2021. Scale efficiently: Insights from
pre-training and fine-tuning Transformers. In Inter-
national Conference on Learning Representations.

7250

http://arxiv.org/abs/2305.16264
https://aclanthology.org/2021.scil-1.12.pdf
https://aclanthology.org/2021.scil-1.12.pdf
https://doi.org/10.48550/arXiv.2211.01288
https://doi.org/10.48550/arXiv.2211.01288
https://doi.org/10.48550/arXiv.2211.01288
http://arxiv.org/abs/2209.11895
https://doi.org/10.18653/v1/2022.acl-long.251
https://doi.org/10.18653/v1/2022.acl-long.251
http://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2023.findings-emnlp.563
https://doi.org/10.18653/v1/2023.findings-emnlp.563
https://doi.org/10.18653/v1/2023.findings-emnlp.563
http://arxiv.org/abs/2211.05102
http://arxiv.org/abs/2211.05102
https://doi.org/10.18653/v1/2022.naacl-main.323
https://doi.org/10.18653/v1/2022.naacl-main.323
https://doi.org/10.18653/v1/2022.emnlp-main.624
https://doi.org/10.18653/v1/2022.emnlp-main.624
https://doi.org/10.18653/v1/2022.emnlp-main.624
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
https://proceedings.mlr.press/v70/raghu17a.html
https://proceedings.mlr.press/v70/raghu17a.html
http://arxiv.org/abs/2203.17189
http://arxiv.org/abs/2203.17189
https://proceedings.neurips.cc/paper_files/paper/2022/file/6fac9e316a4ae75ea244ddcef1982c71-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6fac9e316a4ae75ea244ddcef1982c71-Paper-Conference.pdf
https://arxiv.org/abs/2210.09150
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://arxiv.org/abs/2109.10686
https://arxiv.org/abs/2109.10686

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, NIPS’17, page 6000–6010, Red Hook, NY,
USA. Curran Associates Inc.

Andreas Veit, Michael Wilber, and Serge Belongie.
2016. Residual networks behave like ensembles of
relatively shallow networks. In Proceedings of the
30th International Conference on Neural Informa-
tion Processing Systems, NIPS’16, page 550–558,
Red Hook, NY, USA. Curran Associates Inc.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5797–5808, Florence,
Italy. Association for Computational Linguistics.

Thomas Wang, Adam Roberts, Daniel Hesslow,
Teven Le Scao, Hyung Won Chung, Iz Beltagy,
Julien Launay, and Colin Raffel. 2022. What lan-
guage model architecture and pretraining objective
works best for zero-shot generalization? In Pro-
ceedings of the 39th International Conference on
Machine Learning, volume 162 of Proceedings of
Machine Learning Research, pages 22964–22984.
PMLR.

John M Zelle and Raymond J Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the thirteenth na-
tional conference on Artificial intelligence - Volume
2, AAAI’96, pages 1050–1055. AAAI Press.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian
McAuley, Ke Xu, and Furu Wei. 2020. BERT loses
patience: Fast and robust inference with early exit.
In Advances in Neural Information Processing Sys-
tems, volume 33, pages 18330–18341. Curran Asso-
ciates, Inc.

A Design and Result Tables

Table 2 reports exact hyperparameters for the
model classes trained. Table 3 displays pretraining
and compositional generalization accuracy on all
model sizes and tasks.

B Annotated Transformer Layer

Figure 10 shows the schematic for a single trans-
former layer. The layers input enters on the left
and passes through the various model components
(grey boxes), being combined with the residual con-
nections before exiting right to subsequent layers.
Blue boxes show the dimensionality of the vectors
after transformation; we are primarily concerned

with the size of the embedding vectors 3model and
the internal dimension of the feed-forward block
3ff. The size of the vectors internal to the atten-
tion mechanism, 3attn, is not shown here but is
usually set to be equal with 3model; we follow this
convention here. Non-learned operations like ad-
dition, layer normalization, and the feed-forward
network’s nonlinearity are shown in grey circles.

7251

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1605.06431
https://arxiv.org/abs/1605.06431
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://proceedings.mlr.press/v162/wang22u.html
https://proceedings.mlr.press/v162/wang22u.html
https://proceedings.mlr.press/v162/wang22u.html
https://doi.org/10.5555/1864519.1864543
https://doi.org/10.5555/1864519.1864543
https://doi.org/10.5555/1864519.1864543
https://proceedings.neurips.cc/paper_files/paper/2020/file/d4dd111a4fd973394238aca5c05bebe3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/d4dd111a4fd973394238aca5c05bebe3-Paper.pdf

41M 134M 374M

=layers 1 2 3 4 5 6 7 1 2 4 6 8 12 16 21 26 32 1 2 4 6 8 12 16 24 32
3ff 4779 2048 1138 682 409 227 97 36k 17k 8193 5121 3584 2048 1280 731 393 128 99k 49k 24k 15k 11k 6998 4907 2816 1770

3model = 3attn = 512, =heads = 8 3model = 3attn = 768, =heads = 8 3model = 3attn = 1024, =heads = 64

Table 2: Models of varying depths across three size classes. Bolded variants are the baseline models whose
hyperparameters were taken from Kim and Linzen (2020) and Raffel et al. (2019).

size =layers C4 val. PPL (↓) COGS (↑) COGS-vf (↑) GeoQuery Standard (↑) English Passivization (↑)

41M

1 45.7 12.4 25.7 68.2 0.00
2 31.1 58.2 78.3 76.4 9.88
3 29.3 63.1 80.8 79.6 26.2
4 28.8 68.5 82.5 78.6 28.0
5 28.8 63.4 82.5 76.8 89.9
6 29.1 68.4 82.6 77.5 74.1
7 29.6 72.3 83.0 77.1 78.3

134M

1 33.6 19.4 26.3 72.5 0.00
2 22.3 65.5 83.0 81.4 29.9
4 19.4 71.1 83.6 78.2 59.3
6 18.7 74.3 83.2 80.0 49.4
8 18.3 72.9 83.7 73.6 91.9
12 18.1 73.0 84.7 82.9 87.1
16 18.2 75.0 83.8 81.1 93.2
21 18.3 75.1 84.8 80.0 88.1
26 18.6 75.4 84.1 82.1 98.4
32 19.2 75.7 84.0 78.9 94.8

374M

1 28.4 21.5 36.8 72.9 0.00
2 18.6 66.2 82.2 80.7 13.6
4 15.9 72.4 71.9 80.0 89.8
6 15.2 75.1 83.1 78.2 18.8
8 14.9 75.2 82.6 80.7 84.3
12 14.6 76.3 84.3 80.0 81.0
16 14.5 76.3 85.1 81.1 87.2
24 14.4 78.0 83.1 83.2 89.6
32 14.7 78.8 79.7 84.6 90.2

Table 3: Validation perplexity (↓, lower is better) on C4 after pretraining and generalization accuracy (%; ↑, higher
is better) on compositional datasets after 10 k steps of fine-tuning. Bold values indicate best-in-size-class perfor-
mance. Data is from a single run per condition.

~

+

dmodel dff dff dmodel
Multi-head
Attention

ǁ+

dmodel

dmodel

Affine Affine

Nonlinearity

Addition

Layer Normalization

ǁ

Figure 10: Diagram of a single transformer layer, annotated with the dimensions (blue) of each vector. Information
is passed from left to right, through each component (grey box), and added back to the residual embeddings before
normalization.

7252

