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Abstract

Text image machine translation (TIMT) is a
task that translates source texts embedded in
the image to target translations. The existing
TIMT task mainly focuses on text-line-level
images. In this paper, we extend the current
TIMT task and propose a novel task, Document
Image Machine Translation to Markdown
(DIMT2Markdown), which aims to translate
a source document image with long context
and complex layout structure to markdown-
formatted target translation. We also introduce
a novel framework, Document Image Machine
Translation with Dynamic multi-pre-trained
models Assembling (DIMTDA). A dynamic
model assembler is used to integrate multiple
pre-trained models to enhance the model’s un-
derstanding of layout and translation capabil-
ities. Moreover, we build a novel large-scale
Document image machine Translation dataset
of ArXiv articles in markdown format (DoTA),
containing 126K image-translation pairs. Ex-
tensive experiments demonstrate the feasibility
of end-to-end translation of rich-text document
images and the effectiveness of DIMTDA.1

1 Introduction

Text Image Machine Translation (TIMT) is an
emerging field focused on translating text from
one language to another within images, as explored
by Lan et al. (2023). Recent studies in TIMT fall
into two primary categories: (1) Cascade systems
(Sable et al., 2023; Lan et al., 2023; Zhang et al.,
2023), which involve sequential multi-model oper-
ations. These systems often grapple with structural
redundancy, error propagation, and high latency.
(2) End-to-end models (Jain et al., 2021; Ma et al.,
2022; Zhu et al., 2023), optimizing the entire model
through a unified training objective with more effi-
cient structure.

∗Corresponding author.
1Our dataset and code are available at: https://github.com/

liangyupu/DIMTDA
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Figure 1: The illustration of different text image ma-
chine translation tasks.

Text-line-level
Images

Document
Images

ItNet (Jain et al., 2021) 39.30 3.84
E2ETIT (Ma et al., 2022) 15.69 1.51
PEIT (Zhu et al., 2023) 47.20 5.81

Table 1: BLEU scores of end-to-end TIMT models on
different image scenarios. All methods achieve com-
mendable results on text-line-level images but fail on
document images.

Existing end-to-end methods (Jain et al., 2021;
Ma et al., 2022; Zhu et al., 2023) have shown
promising results on the TIMT task. However, as
shown in Figure 1, these methods are primarily
tailored for text-line-level applications with short
texts, such as road signs, shop billboards, and sub-
titles. But document images are also prevalent
in real-world scenarios, such as academic papers,
magazines, and scanned documents. Unfortunately,
direct application of these end-to-end TIMT meth-
ods to document images with long context and
complex layout encounters significant challenges.
As shown in Table 12, we verify the applicability
of these on document images, including ItNet (Jain
et al., 2021), E2ETIT (Ma et al., 2022) and PEIT

2For text-line-level images, we directly report the results
from their corresponding papers. For document images, we
train the models on our DoTA dataset.
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(Zhu et al., 2023). We observe that while these
end-to-end TIMT methods exhibit satisfactory per-
formance on text-line-level images, they all strug-
gle to handle document images. For example, the
best model, PEIT, achieves a BLEU score of 47.20
for text-line-level images, while only achieving a
BLEU score of 5.81 for document images.

We think there are three reasons for the poor per-
formance of the current TIMT models on document
images: (1) Long context: the number of tokens
contained in text-line-level images is typically less
than 50, whereas the number of tokens in docu-
ment images ranges from several hundred to over
a thousand; (2) Complex layout: document im-
ages contain complex layouts, like title, paragraph,
table, figure, and formula, which severely hinder
the performance of the model; (3) Data scarcity:
there is no large-scale public dataset available for
the end-to-end Document Image Machine Trans-
lation (DIMT) task. These three reasons lead to
the slow convergence and poor performance of the
end-to-end model.3

To address the above issues, we extend the cur-
rent end-to-end TIMT task and introduce a novel
Document Image Machine Translation to Mark-
down (DIMT2Markdown) task. This novel task
aims to translate document images from one lan-
guage to another while meticulously preserving the
logical layout in markdown format, as shown in
Figure 1.

Moreover, to alleviate the convergence prob-
lem of the end-to-end model, we propose a
novel framework for Document Image Machine
Translation with Dynamic multi-pre-trained mod-
els Assembling (DIMTDA), which leverages the
multiple pre-trained models to initialize the end-
to-end DIMT model. DIMTDA is a pure end-to-
end framework that contains a model assembler
to dynamically connect multi-pre-trained models.
Specifically, it contains four components: (1) a pre-
trained optical character recognition (OCR) model
to capture the textual information; (2) a pre-trained
layout model to encode the layout structure infor-
mation; (3) a pre-trained translation decoder to
generate translated texts; (4) a dynamic model as-
sembler to fuse the pre-trained models.

Besides, to alleviate data scarcity, we construct a
large-scale dataset for the DIMT2Markdown task,
DoTA, containing 126K scientific document im-
ages collected from arXiv paired with Chinese

3This can be confirmed by Table 4 line 10 and 11.

translation texts in markdown format.
Our main contributions are concluded as follows:

• We introduce a novel image translation task,
DIMT2Markdown, translating a source docu-
ment image into target text in markdown for-
mat, which expands the research scope in text
image machine translation.

• We propose a novel end-to-end framework,
DIMTDA, that can dynamically assemble
multi-pre-trained models to complete the
DIMT2Markdown task.

• We build a large-scale dataset, DoTA, to fa-
cilitate the training and evaluation of the
DIMT2Markdown task.

2 Related Work

Text image machine translation is to translate the
source text image to target translations. In re-
cent years, various end-to-end methods (Mansi-
mov et al., 2020; Jain et al., 2021; Ma et al., 2022,
2023a,b,c; Zhu et al., 2023) have been proposed.
Jain et al. (2021) uses a convolutional encoder and
an autoregressive Transformer decoder to build the
model. Ma et al. (2022) trains the end-to-end TIMT
model with text translation as an auxiliary task.
Zhu et al. (2023) proposes an end-to-end TIMT
framework that bridges the modality gap with pre-
trained models. While these end-to-end methods
have demonstrated satisfactory performance, their
effectiveness is limited to images with short context
and simple layout structure.

Multi-model machine translation aims to im-
prove text machine translation performance by in-
corporating visual information (Huang et al., 2021).
There have been many studies (Yao and Wan, 2020;
Caglayan et al., 2021; Li et al., 2022a; Guo et al.,
2023) focused on this area of research. The biggest
distinction between multi-model machine transla-
tion and our DIMT2Markdwon task lies in the input
difference. Multi-model machine translation takes
source text as input with images as auxiliary, while
the only input for our task is a document image.

With the advancement of document image re-
search, numerous pre-trained models (Kim et al.,
2022; Bao et al., 2022; Li et al., 2022b, 2023b;
Blecher et al., 2023; Lv et al., 2023), especially for
document images, have emerged. These models
have shown excellent performance in their respec-
tive downstream tasks, demonstrating robust capa-
bilities in understanding document images. This
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Figure 2: The diagram of the proposed DIMTDA with an OCR encoder, a layout encoder, a dynamic model
assembler, and a translation decoder. The OCR encoder, layout encoder, and translation decoder are initialized from
pre-trained models.

inspires us to leverage the knowledge of multi-pre-
trained models for the DIMT2Markdown system.

3 Method Description

3.1 Task Formulation

The input of the DIMT2Markdown task is a source
document image with complex layout structure.
The output is target translations in markdown
format. The dataset can be denoted as D =
{(I,Y )}, where I denotes the input image and
Y = {y1, y2, ..., yn} denotes the structured target
text. The goal of an end-to-end model can be for-
mulated as:

LDIMT2Markdown = −
n∑

t=1

log p(yt|y<t, I;θ) (1)

where θ is the parameter of the whole model.

3.2 Model Architecture

The model architecture of DIMTDA is illustrated
in Figure 2.

OCR Encoder It encodes the input image I to
its semantic representation. We use Swin Trans-
former (Liu et al., 2021) to construct the OCR en-

coder.4 Given the input image I ∈ RH×W×3, the
feature sequence Eocr output by the OCR encoder
can be formulated as:

Eocr = Encoderocr(I) ∈ Rlocr×docr (2)

where locr and docr are the sequence length and
dimension of the feature separately.

Layout Encoder This encoder encodes the
global structure information into a series of vectors.
ViT (Dosovitskiy et al., 2020) is used to construct
the layout encoder.5 It takes the split image patches
and 1D position embeddings as inputs and outputs
a series of encoded vectors which can be denoted
as Elay. Formally, Elay is calculated as follows:

Elay = FFN(Encoderlay(I)) ∈ Rllay×docr (3)

where llay is the number of output vectors and an
FFN is required to map the dimension to docr.

4In preliminary experiments, we experimented with CNN-
based, ViT-based, and Swin Transformer-based encoders, ul-
timately selecting the Swin Transformer for the best perfor-
mance.

5In preliminary experiments, we experimented with CNN-
based and ViT-based encoders, ultimately selecting the ViT
for the best performance.
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Dynamic Model Assembler It is the core mod-
ule of our framework. Two Qformer modules
(Li et al., 2023a) are used to unify the feature se-
quences from encoders to the same length. Each
Qformer module is a one-layer Transformer with
a self-attention module, a cross-attention module,
and a feed-forward network. We also create two set
numbers of learnable query tokens Q ∈ RN×docr

as input to the two Qformer modules separately,
where N is the number of query tokens.

Let Hocr and Hlay denote the output sequences
of OCR Qformer and layout Qformer, respectively.
They can be calculated in the following way:

Hocr = Qformerocr(Qocr,Eocr) ∈ RN×docr (4)

Hlay = Qformerlay(Qlay,Elay) ∈ RN×docr (5)

We employ a soft gate mechanism to dynami-
cally merge the two types of information, allowing
the model to determine the relative importance of
each. Formally, this process can be shown as fol-
lows:

Hgate = FFN(λ⊙Hocr + (1− λ)⊙Hlay) (6)

λ = Sigmoid(WocrHocr +WlayHlay + b) (7)

where Hgate is the fused feature, and Wocr, Wlay, b
are trainable parameters. An FFN is needed to map
the output feature dimension docr to the dimension
of translation decoder dtrans.

Translation Decoder Similar to the vanilla
Transformer’s decoder, this decoder receives the
fused feature from the dynamic model assembler
for cross-attention computing and generates trans-
lation texts in an auto-regressive manner. At each
decoding timestep t, the translation decoder takes
the fused feature Hgate and generated target to-
kens y<t = y1, y2, ..., yt−1 as input and outputs
the probability distribution of next target token yt.
This process is defined as follows:

p(yt|y<t, I;θ) = Decoder(y<t,Hgate) (8)

where θ denotes the parameters of the whole
model.

3.3 Training Strategy
As shown in Figure 2, the OCR encoder, layout en-
coder, and translation decoder are initialized from
pre-trained models, while the dynamic model as-
sembler is randomly initialized. Then, we use the
DoTA dataset to fine-tune the whole model. The
training objective is as follows:

L = −
n∑

t=1

log p(yt|y<t, I;θ) (9)

where θ denotes the parameters of the entire model.

4 DoTA Dataset

To facilitate the research community, we build
a novel large-scale Document image machine
Translation dataset of ArXiv articles in markdown
format (DoTA). Specifically, we randomly select
18,496 papers published on arXiv from 2020 to
2023 and download the corresponding PDF files
and LATEX source codes. The category distribution
of these articles is shown in Table 2.

Category # Articles Percentage (%)

Physics 6,754 36.5
Mathematics 3,035 16.4
Computer Science 6,536 35.3
Quantitative Biology 225 1.2
Quantitative Finance 88 0.5
Statistics 563 3.0
Electrical Engineering 1,193 6.5
Economics 102 0.6
Total 18,496 100

Table 2: Category distribution of DoTA dataset. # Arti-
cles denotes the number of articles.

Following Blecher et al. (2023), we employ
LaTeXML to process source codes, transforming
them into HTML files, and then to markdown files.
Throughout this process, formulas and tables are
retained in their original LATEX source code, while
figures are omitted. Then, we split the markdown
files according to the page breaks in the PDF file
and rasterize each page as an image to create the
final paired dataset. Several techniques are used
to ensure the quality of the dataset. See the Ap-
pendix A for details.

For translation, we translate English texts in the
markdown files of the train set into Chinese with
Google Translate API. The valid set and test set are
translated by professional translators. For formu-
las and tables, we utilize special tokens to substi-
tute them before the translation process, reinstating
them after the translation is completed.

To guarantee translation quality, we use COMET
(Rei et al., 2020) to score each translation pair and
remove the lowest scoring 10% of pairs.6 Besides,
we randomly sample 1000 translation pairs and
employ three professional translators to evaluate
these translation texts on a scale of 1 to 5, with 1
indicating the lowest quality and 5 indicating the
highest, in terms of fluency and fidelity. The aver-
age score of fluency and fidelity are 3.70 and 3.53,

6We use wmt22-cometkiwi-da in reference-free mode.
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Train Set Valid Set Test Set

# Articles 18,229 147 120
# Page Images 124,338 1,004 1,003
# AvgTokens (En) 466 474 447
# AvgTokens (Zh) 1,307 1,342 1,258

Table 3: The statistics of the DoTA dataset. Each image
in the dataset is paired with an English markdown file
and a Chinese markdown file. # Articles and # Page
Images denote the number of articles and the number
of page images, respectively. # AvgTokens (En) and #
AvgTokens (Zh) denote the average number of English
words and the average number of Chinese characters in
each image, separately.

(a) (b)

Figure 3: Dataset sample. (a) is the original document
image. (b) is the translated text in markdown format af-
ter rendering. The blocks with the same color represent
the corresponding original text and translated text.

respectively, indicating an acceptable translation
quality.

Finally, 126,345 paired images, English mark-
down files, and their corresponding Chinese trans-
lations are obtained. More details are illustrated in
Table 3. Figure 3 presents a sample of our dataset.

5 Experiments

5.1 Dataset & Metrics

We use the DoTA dataset to train and evaluate our
method and baselines. In addition, we select sam-
ples of physics and computer science domains from
the test set to form domain-specific test sets.

The evaluation metrics are as follows:
BLEU We calculate the BLEU score (Papineni

et al., 2002) between raw prediction and reference,
which contains plain texts, formulas, and tables in
markdown format.

BLEU-PT As the translated texts contain formu-
las and tables in markdown format that influence
the BLEU computing, we remove them from both

reference texts and predictions, keep the plain texts,
and calculate BLEU noted as BLEU-PT.

STEDS As the markdown format contains the
hierarchical structure of document images, rely-
ing solely on a string-based comparison metric,
like BLEU, can be insufficient. We adopt struc-
ture tree-edit-distance-based similarity (STEDS)
(Zhong et al., 2020) as an additional evaluation met-
ric to measure the performance of produced layout
results. We apply a rule-based method to convert
each of the prediction and reference texts into a tree
T . Each inner node is a title and each leaf node is a
paragraph, a line formula, or a table. Then, the tree
edit distance (TED) is calculated through the ZSS
algorithm (Zhang and Shasha, 1989).7 The STEDS
can be formulated as:

STEDS(Tpred, Tref) = 1− TED(Tpred, Tref)

max(|Tpred|, |Tref |)
(10)

where |T | denotes the number of nodes in T .

5.2 Settings
Pre-trained Models Selecting The encoder

of the pre-trained OCR model Nougat (Blecher
et al., 2023) is used to initialize the OCR encoder
in DIMTDA. The layout encoder is initialized
from a pre-trained layout analysis model DiT (Li
et al., 2022b). We follow the vanilla Transformer-
base (Vaswani et al., 2017) setting, pre-train an
English-Chinese translation model on UN Corpus
En-Zh (Ziemski et al., 2016), and use the pre-
trained decoder to initialize the translation decoder
in DIMTDA.

Other Settings Each Qformer is a one-layer
Transformer with 1024 queries and is randomly
initialized. During fine-tuning, we employ a linear
decay learning rate schedule with a learning rate
of 5e-5. The maximum number of training epochs
is 30 and batch size is 128. For inference, we use
beam search with a beam size of 4. More detailed
experimental settings are in Appendix B.

5.3 Baselines
We compare our method against both cascade meth-
ods and end-to-end text image translation methods.

Text-only MT We use the DoTA dataset to fine-
tune the Transformer-base model pre-trained on
UN Corpus En-Zh.

Docxchain + Tesseract + Trans (DTT) This
cascade system first employs a layout analysis

7We only consider the differences in tree structure and do
not take into account the similarity of content for nodes at the
same position.

7088



All Test data Physics Domain Computer Science Domain # Param (M) ↓ Time (s/page) ↓BLEU BLEU-PT STEDS BLEU BLEU-PT STEDS BLEU BLEU-PT STEDS

1 Text-only MT 47.61 54.16 92.89 47.32 52.85 95.09 51.93 55.76 93.68 99.5 8.81

Cascade Baselines

2 DTT 35.58 41.75 75.83 31.28 39.09 74.23 38.52 42.51 73.73 99.5 + α 12.46
3 NT 43.37 50.79 88.16 44.16 49.73 90.19 48.57 52.88 88.78 346.9 17.03

End-to-end TIMT Baselines (Document-level)

4 ItNet 3.84 2.27 48.46 3.68 3.60 47.66 4.10 4.35 48.69 97.5 8.43
5 E2ETIT 1.51 1.69 32.90 1.29 0.81 32.66 1.79 0.29 34.84 122.0 8.19
6 PEIT 5.81 4.52 55.79 5.06 5.72 51.65 6.62 6.71 60.73 135.1 2.57

End-to-end TIMT Baselines (Text-line-level)

7 ItNet 21.75 23.52 75.83 19.39 21.19 74.23 26.22 28.36 73.73 97.5 + β 7.20
8 E2ETIT 17.42 17.74 75.83 15.91 15.44 74.23 20.82 21.95 73.73 122.0 + β 7.59
9 PEIT 27.43 31.29 75.83 24.80 29.10 74.23 32.75 36.71 73.73 135.1 + β 2.42

Pre-trained Model Assembling

10 Base 37.60 40.85 83.08 36.55 38.22 83.73 39.97 41.52 81.03 127.6 9.16
11 Base (Random) 1.26 1.69 34.31 1.61 0.28 33.67 1.45 0.36 31.09 127.6 12.95
12 Addition 38.26 39.66 83.67 37.55 37.59 83.86 39.30 40.88 81.36 242.6 10.15
13 Attention 31.12 32.30 79.31 30.55 30.96 79.54 31.23 31.44 74.69 245.7 11.12
14 Concatenation 37.99 38.97 83.73 37.69 39.77 83.88 39.53 40.03 82.33 242.6 10.76
15 DIMTDA 38.68 42.34 84.44 36.75 40.38 85.06 39.33 42.06 81.33 242.6 9.82

Table 4: Results on the English-Chinese test set. Time is the average inference time on a single V100 GPU. α
denotes the parameters of the layout analysis model and OCR model. β denotes the parameters of the parameters of
the layout analysis model and sentence splitting model. Random means random initialization.

model (Yao, 2023) to recognize each layout block
and its label. Then, the OCR tool tesseract8 extracts
texts from each layout block. Finally, the text-only
MT mentioned above is used to do translation.

Nougat + Trans (NT) We utilize the Nougat
model (Blecher et al., 2023) for combined layout
analysis and OCR, which outputs the recognized
text in markdown format. Additionally, the text-
only MT is employed for translation.

For end-to-end TIMT baselines, we first make a
Document-level experiment: directly inputting the
entire image into the model for translation. Further-
more, we notice that all end-to-end TIMT baselines
are designed for text-line-level images, rather than
document-level ones. To make a fair comparison,
we also conduct a Text-line-level experiment: uti-
lizing the pre-trained layout analysis model and
text-line detection model to extract text-line im-
ages, followed by text-line-level image machine
translation and reconstruction into the original doc-
ument.

ItNet (Jain et al., 2021) This is an end-to-end
TIMT system. It first pre-trains a vanilla Trans-
former on a text parallel dataset. Then, the com-
bination of the image encoder and pre-trained de-
coder is fine-tuned.

E2ETIT (Ma et al., 2022) This end-to-end
model uses a TPSNet and a ResNet as an image
encoder combined with a Transformer decoder and
utilizes text translation as an auxiliary task.

8https://github.com/tesseract-ocr/tesseract/

PEIT (Zhu et al., 2023) This end-to-end TIT
system employs a vision-text representation aligner
and a cross-model regularize to bridge the modality
gap between visual inputs and textual inputs.

Besides, we also implement four conventional
model assembling methods for comparison.

Base The feature sequences of the OCR encoder
are directly sent to the translation decoder for cross-
attention computation. Random initialization is
made for comparison.

Addition The outputs of the two Qformers are
directly combined through element-wise addition,
which can be formulated as:

Hfuse = FFN(0.5⊙Hocr + 0.5⊙Hlay) (11)

Attention We employ eight attention heads
for attention computation, configuring the OCR
Qformer’s output for Q, and utilizing the layout
Qformer’s output for K/V.

Concatenation The output sequence of the lay-
out Qformer is concatenated after that of the OCR
Qformer. This can be formulated as:

Hfuse = FFN([Hocr : Hlay]) (12)

6 Results & Analysis

6.1 Main Results
Table 4 reports the performance of all models. We
can observe (line 2 vs. line 15) that our method
outperforms the cascade method DTT, while the
inference time of DIMTDA is only 79% that of the
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(a) (b) (c) (d)

Figure 4: The output samples of DIMTDA. (a) and (c) are the original document images. (b) and (d) are the output
translated texts in markdown format after rendering.

All Valid Data Simple Layout Set Complex Layout Set
BLEU BLEU-PT STEDS BLEU BLEU-PT STEDS BLEU BLEU-PT STEDS

1 DIMTDA 38.71 42.58 84.52 55.24 55.26 90.54 30.30 35.16 84.57
2 w/o Layout Encoder 37.67 39.88 83.55 54.98 55.65 90.75 26.40 30.96 79.83
3 w/o OCR Encoder 2.39 1.11 49.46 1.26 1.23 53.02 3.71 0.80 38.82
4 w/o Model Assembler 36.97 41.08 83.73 53.41 53.89 90.26 29.77 33.11 82.80
5 Base 37.25 40.58 83.27 54.68 54.88 90.76 27.44 33.00 81.21

Table 5: Ablation study results of our model on the English-Chinese valid set.

DTT. Although DIMTDA is inferior to the cascade
method NT in translation performance (line 3 vs.
line 15), the parameter of DIMTDA is reduced by
30% compared to NT, and inference time decreases
by 42%.

Besides, our method outperforms all the end-
to-end TIMT baselines on both document-level
and text-line-level settings. Although all TIMT
baselines show a significant improvement in perfor-
mance under the text-line-level setting compared
to the document-level setting, DIMTDA still sur-
passes the highest-performing TIMT model (line 9
vs. line 15) by a margin of 11.25 BLEU and 8.61
STEDS points on all test data.

The comparison between line 10 and line 15 re-
veals an increase of 1.08 BLEU and 1.36 STEDS
points on all test data, underscoring the significance
of layout information. To validate the effectiveness
of the proposed dynamic fusion mechanism in this
paper, we conduct comparative experiments with
addition, attention, and concatenation fusion meth-
ods. Results in Table 4 lines 12-15 indicate that the
dynamic fusion mechanism surpasses other model
fusion methods.

The output samples of DIMTDA are shown in
Figure 4. More samples are in Appendix C.

6.2 Ablation Study

To investigate the effectiveness of different mod-
ules, we conduct ablation experiments. Besides, to
examine whether the model effectively leverages
layout information, we select two subsets from the
valid set, one with simple layouts and the other
with complex layouts.9 The results are in Table 5.

w/o Layout Encoder We remove the layout
encoder, layout Qformer, and gate module. By
comparing line 1 and 2, the performance declines
on both the simple and complex layout test sets,
with a more pronounced decrease on the complex
layout test set. It suggests that the layout informa-
tion indeed enhances the model’s understanding of
layout structure, with more notable improvements
observed on images with complex layouts.

w/o OCR Encoder We remove the OCR en-
coder, OCR Qformer, and gate module. As the
result of line 3 suggests, without textual informa-
tion, only the layout information can hardly guide
the decoder to generate translation texts.

w/o Model Assembler We remove the model
assembler and concatenate the output of the layout
encoder after that of the OCR encoder, which is

9We transform samples from the valid set into trees, select-
ing the 100 trees with the fewest nodes as simple layout set
and the 100 trees with the most nodes as complex layout set.
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Figure 5: Results of different context lengths.

formulated as:

Hfuse = FFN([Hocr : FFN(Hlay)]) (13)

The comparison between line 1 and line 4 shows a
decline of 1.74 BLEU and 0.79 STEDS points on
all valid data, which demonstrates the effectiveness
of the model assembler.

6.3 Effect of Context Length

To investigate the impact of context length in im-
ages on the model, we select samples from the valid
set within different lengths.10 Results are shown
in Figure 5, where the X-axis and Y-axis represent
context length and BLEU score, respectively.

As the context length increases, the performance
of DIMTDA gradually declines but remains sig-
nificantly superior to PEIT, which demonstrates
DIMTDA’s capability to model document images
with long context.

6.4 Effect of Different Initialization

There are various OCR pre-trained models, layout
pre-trained models, and language models. There-
fore, to investigate the effect of different mod-
ule structures and parameter initializations on the
model, we substitute the OCR encoder, layout en-
coder, and translation decoder with TrOCR (Li
et al., 2023b), BEiT (Bao et al., 2022), and mBART
(Liu et al., 2020), respectively. We also retain the
structure of the model from the main experiment
but perform separate random initializations for each
module. Table 6 presents the results of different
settings on the DoTA valid set.

By comparing lines 1-3, it can be observed that
the OCR encoder significantly impacts the model’s
performance, and nougat pre-trained on document

10To shield the impact of layout difference and keep the
layout consistent across different lengths, we select images
with a single column and without line formulas, tables, or
figures. Context length refers to the number of English words
in the image.

BLEU STEDS

1 Nougat + DiT + Trans-dec 38.71 84.52

2 TrOCR + DiT + Trans-dec 2.45 51.20
3 Nougat (Random) + DiT + Trans-dec 2.11 46.99

4 Nougat + BEiT + Trans-dec 32.89 78.59
5 Nougat + DiT (Random) + Trans-dec 35.09 81.47

6 Nougat + DiT + mBART-dec 34.11 80.88
7 Nougat + DiT + Trans-dec (Random) 6.25 59.31

Table 6: Results of different initialization settings.
Trans-dec and mBART-dec denote the decoder of pre-
trained Transformer-base and mBART respectively.
Random means random initialization.

images achieves the best performance. Regarding
the layout encoder, the results (line 1, 4, and 5)
indicate that DiT initialization is more suitable for
the DIMT2Markdown task. As for the decoder, the
use of language model decoder initialization (line
6) yields inferior results compared to the initializa-
tion with a translation model (line 1). Therefore,
our experimental results suggest that it is better to
initialize the OCR encoder parameters with Nougat
encoder, layout encoder with DiT, and translation
decoder with pre-trained translation model decoder.

6.5 Effect of Hyper Parameter

To explore the impact of different numbers of
queries, we vary the number of queries from 16
to 2048. The results on the valid set are illustrated
in Figure 6, where the X-axis and Y-axis represent
the number of queries and scores, separately.
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Figure 6: Results of the different number of queries.

It can be observed that when the number of
queries is less than 128, there is a significant im-
provement in the model’s performance with an in-
crease in query quantity. However, after reaching
1024 queries, the improvement becomes marginal.
To balance the number of parameters and perfor-
mance, we set 1024 queries in the main experiment.
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Test Data Physics Domain Computer Science Domain
BLEU BLEU-PT STEDS BLEU BLEU-PT STEDS BLEU BLEU-PT STEDS

1 Text-only MT 48.59 57.41 91.10 44.62 51.97 98.98 57.05 58.28 92.06
2 GPT-4V 21.51 26.89 57.77 20.58 22.77 62.24 17.95 22.51 63.33
3 Gemini 26.88 29.34 54.00 27.09 30.69 58.89 32.30 37.32 61.63
4 DIMTDA 47.39 49.26 88.21 25.96 28.14 80.33 45.43 47.19 88.39

Table 7: Results on comparison with commercial MLLMs.

6.6 Comparision with Multimodal Large
Language Models

With the rapid development of multimodal large
language models (MLLM), some commercial
MLLMs (Yang et al., 2023; Team et al., 2023) have
also demonstrated the capability of understanding
text-rich document images. To assess their ability
to accomplish the DIMT2Markdown task, we ran-
domly choose 20 samples from each test set in the
main experiment, then prompt GPT-4V (Yang et al.,
2023) and Gemini (Team et al., 2023) with "Output
the Chinese translations of this image in markdwon
format." As the output format of MLLMs may be
unstable, we filter the English parts of the output
and only keep the Chinese parts.

Table 7 reveals that both GPT-4V and Gemini
exhibit inferior performance compared to DITDA.
The commercial MLLMs are not trained on the
DoTA dataset, so their output format is different
from the reference. Besides, despite their gener-
ations being fluent and faithful, their actual per-
formance can not be fully reflected by BLEU and
STEDS scores.

6.7 Evaluation on Other Languages
We evaluate our DIMTDA on English-French and
English-German DIMT2Markdown tasks. The MT
models are pre-trained on UN Corpus En-Fr and
WMT14 En-De. We employ the Google Translate
API to obtain English-French and English-German
translation pairs for the DoTA dataset. The rest
of the settings remain the same as the main exper-
iment. Table 8 demonstrates the effectiveness of
DIMTDA on other languages.

En-Fr En-De
BLEU STEDS BLEU STEDS

1 Text-only MT 59.68 95.93 49.25 96.04
2 DTT 42.79 75.59 32.65 75.59
3 NT 55.82 90.77 43.73 89.92
4 DIMTDA 45.82 84.84 37.83 85.92

Table 8: Results on the English-French and English-
German test sets.

7 Conclusion

In this paper, we propose a novel text image ma-
chine translation task, DIMT2Markdown, taking
a source document image as input and outputting
translations in markdown format, which broadens
the research of text image machine translation. We
also construct a large-scale dataset named DoTA
for this task. Besides, a novel end-to-end frame-
work, DIMTDA, is introduced, which dynamically
assembles multi-pre-trained models to fulfill this
task. Comprehensive experiments demonstrate
promising prospects for the direct translation of
document images into markdown-formatted texts
and the effectiveness of DIMTDA.

Limitations

Although DIMTDA achieves end-to-end image ma-
chine translation on text-rich document images,
the performance on images with line formulas and
tables is unsatisfactory, which may be caused by
dense numerical information, abbreviated alphanu-
meric characters, and complex table structure. We
will consider modeling tables and formulas specifi-
cally in the future.
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Appendix

A Dataset Quality Control

As the collected articles are mainly scientific pa-
pers, there are about 10% of images that only con-
tain references, which may introduce noise into the
dataset. We remove these image-markdown pairs
from the dataset. Besides, we divide the dataset
into a train set, a valid set, and a test set, and ensure
that images of the same article are not divided into
different sets to avoid data leakage.

B Setting Details

We segment the Chinese texts with jieba and apply
WordPiece to segment both English and Chinese
texts and the vocabulary size of both English and
Chinese is 52K. We use the pre-trained OCR model
Nougat’s encoder (Blecher et al., 2023) to initialize
the OCR encoder. It is a Swin Transformer-based
(Liu et al., 2021) encoder and the layer numbers
and window size are {2, 2, 14, 2} and 7. The hid-
den size of each layer is 1024 and the patch size
is 4. The input image size for the OCR encoder
is 896×672. The layout encoder is initialized by
a pre-trained DiT model (Li et al., 2022b) which
has 12 transformer layers. Each layer has 12 at-
tention heads and the hidden size of each layer is
768. The input image size for the layout encoder
is 224×224. As for Qformer, each Qformer is
a one-layer Transformer with 1024 query tokens.
Its hidden size and number of attention heads are
1024 and 8. We follow the vanilla Transformer-
base (Vaswani et al., 2017) setting and pre-train an
English-Chinese translation model on UN Corpus.
We set the decoder’s max length and max position
embeddings to 1536 to cover most input texts.
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Figure 7: The output samples of DIMTDA. For each image pair, the left one is the input document image, and the
right one is the output translations in markdown format after rendering.

During translation model pre-training, the maxi-
mum training step is 100K and the maximum token
per batch is 4096. A linear decay learning rate
schedule with a learning rate of 7e-4 and a warmup
ratio of 0.05 is used. During fine-tuning, the maxi-
mum number of training epochs is 30 and the batch
size is 128. We use a linear decay learning rate
schedule with a learning rate of 5e-5 and a warmup
ratio of 0.05. We early-stop the fine-tuning if the
loss on the valid set does not decrease for 1 epoch.
We use Adam optimizer with β1=0.9, β2=0.999,
ϵ=1e-8 for both pre-training and fine-tuning. For
inference, we use beam search with 4 beams.

C Output Samples

More samples are shown in Figure 7.
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