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Abstract

For nearly three decades, language models de-
rived from the n-gram assumption held the state
of the art on the task. The key to their suc-
cess lay in the application of various smooth-
ing techniques that served to combat overfit-
ting. However, when neural language models
toppled n-gram models as the best perform-
ers, n-gram smoothing techniques became less
relevant. Indeed, it would hardly be an under-
statement to suggest that the line of inquiry
into n-gram smoothing techniques became dor-
mant. This paper re-opens the role classical
n-gram smoothing techniques may play in the
age of neural language models. First, we draw
a formal equivalence between label smoothing,
a popular regularization technique for neural
language models, and add-λ smoothing. Sec-
ond, we derive a generalized framework for
converting any n-gram smoothing technique
into a regularizer compatible with neural lan-
guage models. Our empirical results find that
our novel regularizers are comparable to and,
indeed, sometimes outperform label smoothing
on language modeling and machine translation.

https://github.com/rycolab/
ngram_regularizers

1 Introduction

Let Σ be an alphabet.1 A language model is a
probability distribution p over Σ∗, the set of all
strings x = x1 · · ·xT with symbols xt drawn
from Σ. A fundamental task in natural language
processing (NLP) is to estimate a language
model—often from a parametric family—that
places a high probability on held-out, human-
generated text. A common design choice is to
construct a locally normalized language model,
i.e., one which factorizes autoregressively2 as
p(x) = p(EOS | x)

∏|x|
t=1 p(xt | x<t), where

EOS ̸∈ Σ is a distinguished end-of-string symbol
and x<t

def
= x1 · · ·xt−1 is a prefix of x.

1An alphabet is a finite, non-empty set.
2Autoregressivization is without loss of generality (Cot-

terell et al., 2023, Theorem 2.4.2).
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Figure 1: An illustration of the introduced framework.
With maximum-likelihood estimation (MLE), a
language model qθ is trained to match pD, the empirical
distribution induced by a dataset D. However, we
can also modify (smooth) pD into p̃nD and train a
language model q̃θ on p̃nD. We show that the latter
can be thought of as training q̃θ with a regularized
maximum-likelihood objective.

For years, the best parametric families of lan-
guage models for this estimation task applied the
n-gram assumption, detailed below.

Assumption 1.1 (n-gram assumption). A language
model obeys the n-gram assumption if the follow-
ing conditional independence holds

p(xt | x<t)
def
= p(xt | x1 · · ·xt−1)

= p(xt | xt−n+1 · · ·xt−1)
def
= p (xt | xn

t )

(1)

where xt for t < 1 is treated as a distinguished
padding symbol BOS ̸∈ Σ.3 We will call xn

t
def
=

xt−n+1 · · ·xt−1 the history of xt. We use xn for
histories where the time step t is irrelevant.

Assumption 1.1 was, historically, considered a prac-
tically effective manner to fight the curse of dimen-
sionality, despite its inability to attend to contexts
longer than n−1 words and thus capture long-range
dependencies.4

3The symbol BOS stands for beginning of string.
4n-gram LMs are linguistically very primitive. They are

an instance of strictly local languages, one of the simplest
language classes (Jäger and Rogers, 2012). It has long been
argued that we require LMs that are more expressive and cap-
ture more complex phenomena in human language (Chomsky,
1957; Chelba and Jelinek, 1998; Abney et al., 1999).
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The maximum-likelihood estimator of a model
qnMLE under the n-gram assumption is straightfor-
ward to derive.5 Indeed, one can express it simply
using counts of sub-string occurrences:

qnMLE (x | xn) =
#(xnx)

#(xn)
(2)

where, intuitively, #(y) denotes the number of
times substring y occurs in the training dataset.6

Critically, the simplicity enforced by Assump-
tion 1.1 alone is not enough to prevent overfitting
for reasonably sized n: a minimally parameter-
ized n-gram model has O (|Σ|n) free parameters,
one for each n-gram. Therefore, the maximum-
likelihood solution of an n-gram language model
overfits on its training data by assigning probabil-
ity 0 to any string containing an n-gram that does
not occur in the training dataset, which is unde-
sirable. To solve this issue, in addition to making
the n-gram assumption, modelers applied a variety
of smoothing techniques to regularize the estima-
tion of n-gram probabilities and obtain smoothed
probabilities q̃nMLE.

One of the simplest n-gram smoothing tech-
niques is known as add-λ smoothing,7 which can
be informally described as hallucinating n-grams
in the training dataset that occur at frequency λ. In
other words, the counts of all n-grams—including
those that are unobserved in the dataset—are aug-
mented by λ:

q̃nMLE (x | xn)
def
=

#(xnx) + λ

#(xn) + (|Σ|+ 1)λ
. (3)

In the context of NLP, add-λ smoothing has
often served a pedagogical purpose and is thus
commonly taught, but its efficacy in practice
was considered limited (Eisner, 2023). However,
researchers developed more sophisticated related
smoothing methods (Jelinek, 1980; Katz, 1987;
Ney et al., 1995) that were useful in practice. Ney
et al. (1995), for example, was long considered the
best available method (Chen and Goodman, 1999)
and its popularity inspired a principled Bayesian
interpretation (Teh, 2006). Interestingly though,
add-λ smoothing still has a place in today’s
literature; as we prove in §2, it is identical to a
regularization technique called label smoothing,

5We discuss the MLE of language models in detail in §2.1.
6We formally introduce the counting function # in §2.1

accounting for the presence of EOS at the end of each string.
7In the special case that λ = 1, this technique is generally

referred to as Lidstone smoothing.

common in the training of (conditional) neural
language models (Pereyra et al., 2017; Meister
et al., 2020), and particularly common in machine
translation (Costa-jussà et al., 2022).

In this context, we present the primary theoret-
ical research question addressed in our paper. If
add-λ smoothing is equivalent to label smoothing—
an effective regularization technique for training
today’s neural language models—can we reverse-
engineer further regularization methods starting
from other n-gram smoothing methods? Given that
add-λ smoothing was not known to perform well
compared to other smoothing techniques in the con-
text of n-gram language models, it is natural to sus-
pect that reverse-engineered regularizers based on
empirically more successful smoothing techniques
may indeed outperform label smoothing.

To this end, we derive a straightforward rela-
tionship between training on a smoothed empirical
distribution and additive regularization methods,
e.g., entropy regularization. Using that relationship,
we further show that any smoothing method can
be reformulated as an additive regularization of
the standard maximum-likelihood objective, and,
hence, we provide an explicit way to construct
the regularizer that can be applied to the training
of any (neural) language model, helping connect
classical smoothing methods and modern language
models by introducing a way to incorporate
smoothing techniques into the training of neural
language models. We complement our theoretical
analysis by empirically verifying the validity of
our proposed methods on two small-scale datasets
and observe that some regularizers based on more
complex n-gram smoothing techniques do indeed
perform better than label smoothing on language
modeling and machine translation.

2 Label Smoothing and add-λ Smoothing

In this section, we derive a formal relationship
between the add-λ smoothing applied to n-gram
models and label smoothing. The relationship
is based on a regularizer that, when applied
during MLE, simulates add-λ smoothing exactly.
Additionally, we contend that, in this sense, label
smoothing generalizes add-λ smoothing from
a method applicable only to n-gram language
models to one that can be used with neural
language models.8 To the best of the authors’

8There is no obvious manner to apply add-λ smoothing to
the training of a neural language model since it is designed as
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knowledge, this derivation and the relationship it
exposes are novel. We re-use this meta paradigm
in §4 to derive novel regularizers, which we then
compare experimentally to label smoothing.

2.1 Preliminaries
Some Notation. We define Σ

def
= Σ ∪ {EOS}. To

make it possible to always condition on exactly
n − 1 symbols, whenever the history is shorter
than n− 1 symbols, we prepend a string with the
appropriate number of BOS symbols. Thus, we
define Σn−1

BOS
def
=
⋃n−1

ℓ=1 {BOS}ℓ×Σn−1−ℓ (the set of
all possible histories) and Σ∗

BOS
def
= Σn−1

BOS ∪⋃∞
ℓ=nΣ

ℓ

as the set of all strings that are either prefixed by
BOS or contain more than n− 1 symbols.

Maximum-likelihood Estimation. We now in-
troduce maximum-likelihood estimation in the con-
text of language modeling. Suppose we observe
a collection of samples D = {x(m)}Mm=1 where
x(m) ∼ p and p is the distribution over strings
that we are trying to model. Let pD be the empiri-
cal distribution induced by D, i.e., the probability
distribution defined as

pD(x) =
1

M

M∑

m=1

1{x = x(m)}. (4)

Choosing a model qθ that minimizes the forward
KL divergence DKL(pD || qθ) is known as
maximum-likelihood estimation. Under regularity
conditions (Le Cam, 1952), MLE is consistent, i.e.,
in the limit of infinite data, we arrive at the true
parameters of the data-generating distribution if
the data-generating distribution indeed came from
the model’s parametric family.

Counting Substrings in a Dataset. As discussed
in §1, estimation of n-gram language models relies
on counting the occurrences of various substrings
in a dataset. Given the dataset D = {x(m)}Mm=1,
we define the counting function # as

#(x)
def
=

M∑

m=1

|x|+1∑

t=1

|x|+1∑

s=t+1

1

{
x = x

(m)
t:s

}
(5a)

#(xEOS)
def
=

M∑

m=1

|x|+1∑

t=1

1

{
x = x

(m)
t:

}
, (5b)

where xt:s
def
= xt · · ·xs−1 and xt:

def
= xt:|x|+1. As

hinted at in §1, # counts the number of times the

an operation on count-based data.

string x appears as a substring of a string in D.9

This is to be distinguished from simply counting
the number of occurrences of x in D.

Empirical Distributions. Using the counting
functions defined in Eq. (5), we define two empiri-
cal probability distributions. The autoregressive
empirical probability distribution is defined as

pD(y | x) def
=

#(xy)

#(x)
, (6)

where x<t ∈ Σ∗ and y ∈ Σ. Eq. (6) is the au-
toregressive decomposition of Eq. (4). Then, the
autoregressive empirical n-gram probability dis-
tribution is defined as follows

pnD(y | xn)
def
=

#(xny)

#(xn)
, (7)

where xn ∈ Σn−1
BOS and y ∈ Σ. Note that the autore-

gressive empirical n-gram probabilities are equiv-
alent to the maximum-likelihood estimator of an
n-gram model qnMLE, as seen in Eq. (2).

Prefix Probabilities. Prefix probabilities (Cot-
terell et al., 2023, §2.4.2) are useful quantities in
language modeling and are found both in the lan-
guage model’s autoregressive factorization as well
as in maximum-likelihood estimation (Jelinek and
Lafferty, 1991; Nowak and Cotterell, 2023). We
give a formal definition below.

Definition 2.1. We define the prefix probability
function π of a language model p over Σ∗ as

π(x)
def
=
∑

y∈Σ∗
p(y)1{x ⪯ y} =

∑

y∈Σ∗
p(xy), (8)

where x ⪯ y indicates that x is a prefix of y.

We now relate the MLE of a language model
to the matching of next-symbol conditional distri-
butions. It will later allow us to reason about the
relationship between smoothing and regularized
maximum-likelihood estimation.

Theorem 2.2. Let p and q be two language models
over Σ and π the prefix probability function of p.
Furthermore, we assume that H(p, q) < ∞. Then,
the following equality holds

DKL(p || q)
=
∑

x∈Σ∗
π(x)DKL(p(· | x) || q(· | x)). (9)

9Note that, for complete generality, # should also take
the dataset D as argument. For conciseness, we leave this
parameter implicit.
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Proof. App. A.1.2. ■

We also consider the following corollary for p =
pD and an n-gram language model q.

Corollary 2.3. Let pD be an empirical distribu-
tion induced by a dataset D. Let q be an n-gram
language model. Then, it holds that:

DKL (pD || q) (10)

∝
∑

xn∈Σn−1
BOS

#(xn)DKL (pD(· | xn) || q(· | xn)) .

Proof. App. A.2. ■

Crucially, the n-gram assumption allows us to
reduce the infinite sum over Σ∗ in the definition
of DKL (pD || qnMLE) to one over Σn−1

BOS due to
the resulting conditional independence of xt and
x1 · · ·xt−n given xn

t = xt−n+1 · · ·xt−1. Further,
it allows us to restrict the summation to the
n-grams that are present in the training corpus.

2.2 Label Smoothing of n-gram LMs

Let qθ be a language model parametrized by pa-
rameters θ ∈ Θ. We further assume that qθ is a
differentiable function in θ and that Θ is compact.
Optimizing the objective in Eq. (10) gives us the
maximum-likelihood estimate of model parameters
θ. To prevent overfitting and improve generaliza-
tion abilities, this estimation can be regularized.

Principle 2.4. The principle of regularization
states that we should add an inductive bias to the
parameter estimation procedure, the goal of which
is to help the model generalize to unseen data at the
expense of its ability to better fit the training data.

By Principle 2.4, we can intuitively see that
smoothing techniques are a form of regularization.
However, they form regularization that is defined
procedurally in terms of the manipulation of count-
based estimates. Label smoothing, on the other
hand, is defined as an additive augmentation of the
training objective—it represents the addition of the
following regularizer to the training objective

RLS(θ,x) = DKL (u || qθ(· | x)) , (11)

where u = 1/|Σ| · 1 is the uniform distribution
over Σ. In words, label smoothing regularizes the
maximum-likelihood objective toward a uniform
distribution over the next symbol. In the case of an

n-gram model, we have the regularized objective
∑

xn∈Σn−1
BOS

#(xn)
[
DKL

(
pD(· | xn) || qθ(· | xn)

)

+ γRLS(θ,x
n)
]
. (12)

The optimum of Eq. (12), q̃θ, is then what we refer
to as the label-smoothed version of the maximum-
likelihood solution.10

In §1, we introduced add-λ smoothing of n-gram
language models as a way to improve their gen-
eralization. However, regularization of the form
Eq. (12) can be applied to any language model
qθ whose parameters are learned through standard
maximum-likelihood estimation—usually via gra-
dient descent. Attractively, we can show that, if qθ
is a n-gram language model, regularization from
Eq. (12) is equivalent to add-λ smoothing of n-
gram counts in the sense that its optimum recovers
the same model. We believe this to be the first
formal connection made between add-λ smoothing
and label smoothing of n-gram language models.11

Theorem 2.5. Estimating an n-gram model
under regularized MLE with regularizer RLS with
strength parameter γ is equivalent to estimating
an n-gram model and applying add-λ smoothing
with λ = γ

|Σ|+1 .

Proof. App. A.2 ■

Theorem 2.5 establishes an interpretable connec-
tion between a smoothing technique—in this case,
add-λ smoothing, which can only be performed in
the context of n-gram language models—and an
additive regularizer, which can be applied to gen-
eral language models. While additive regularizers
are not common in the context of n-gram language
models, where an augmentation of counts is usu-
ally more appropriate, this framing will facilitate
the connection to more modern neural language
models, as we showcase in §4.

3 Smoothing n-Gram Counts

In the context of n-gram models, smoothing proce-
dures generally modify the count-based MLE com-
putation to address the fact that not all n-grams oc-

10Throughout the paper, we will use the notation q̃ for the
smoothed version of the distribution q.

11The restriction to n-gram language models is natural since
the simple nature of n-gram language models permits the
augmentation with hallucinated substring counts. Later in the
paper, we show how this can be translated to neural language
models by pre-processing the empirical data distribution.
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cur in the training data. We follow Chen and Good-
man (1999) and review four well-known smooth-
ing techniques of n-gram language models before
connecting them to a generalized framework of
regularization in §4.

3.1 Good–Turing (1953)

Good–Turing (GT) smoothing is one of the earliest
methods devised to compute a smoothed n-gram
model q̃nMLE from a n-gram model qnMLE. GT
smoothing assigns cumulative probability mass to
n-grams that appear i times in the training data to
be equal to the total probability mass of n-grams
that appear i + 1 times in the training data. To
do so, adjusted n-gram counts #GT(x

nx) are
computed as

#GT(x
nx) = (#(xnx) + 1)

r#(xnx)+1

r#(xnx)
, (13)

where r#(xnx) is the total number of n-grams
that occur #(xnx) times in the training data, i.e.,
ri

def
=
∑

xn∈Σn−1
BOS

1{#(xnx) = i}. The probability
of xn is then defined as

q̃nGT(x | xn) =
#GT(x

nx)∑∞
i=1 iri

, (14)

where the denominator in Eq. (14) is equivalent
to the total number of tokens in D. Note that any
symbol whose successive count of counts is null
is also assigned a null smoothed count. To avoid
this issue, Gale and Sampson (1995) propose
to interpolate the missing counts through linear
regression and use the regressed counts to compute
the smoothed probabilities.

3.2 Jelinek–Mercer (1980)

Jelinek–Mercer (JM) smoothing relies on interpola-
tion between higher-order and lower-order n-gram
models to smooth qnMLE. The interpolation is ap-
plied recursively according to the following convex
combination

q̃nJM(x | xn) = λnq
n
MLE(x | xn)

+ (1− λn)q̃
n−1
JM (x | xn−1).

(15)

The recursion can be grounded either at the uni-
gram level or with a uniform distribution over Σ.

3.3 Katz (1987)

Katz smoothing relies on smoothed counts to com-
pute its smoothed probabilities. These counts are

computed as follows

#K(x
nx)

def
=





#K(x
nx)

if #K(x
nx) > k

d#K(xnx)#K(x
nx)

if 0 < #K(x
nx) ≤ k

α(xn)qnMLE(x
n−1x)

otherwise ,

(16)

where k is a hyperparameter whose value is usually
assigned to a high-range, single-digit integer. For
large counts, smoothed counts are equivalent to the
empirical n-gram counts as the latter are assumed
to be reliable. Small non-zero counts, however,
are discounted using count-specific discount fac-
tors d#K

, which are derived from the Good–Turing
counts in Eq. (13) and computed as

d#K(xnx) =

#GT(x
nx)

#(xnx) − (k+1)rk+1

r1

1− (k+1)rk+1

r1

. (17)

The total amount obtained by discounting is then
redistributed to the n-grams with null counts,
weighted by the probability of the lower-order
n-gram and according to the normalization factor

α(xn) =
1−∑x:#(xnx)>0 q̃

n
K(x | xn)

1−∑x:#(xnx)>0 q
n
MLE(x

n−1x)
. (18)

Finally, smoothed probabilities are computed by
normalizing the smoothed counts according to the
following formula

q̃nK(x | xn) =
#K(x

nx)∑
y∈Σ#K(xny)

. (19)

3.4 Kneser–Essen–Ney (1995)
Kneser–Essen–Ney (KEN) smoothing is similar
to Katz smoothing in that it also computes higher-
order n-gram probabilities as a function of lower-
order n-gram probabilities. However, in contrast
to other smoothing methods, KEN smoothing does
not construct n-gram probability distributions us-
ing simple counts, but rather using type counts. The
type count of an n-gram is defined as the number
of distinct histories that the n-gram follows, rather
than the absolute number of its occurrences in the
data. Formally, the type count function #n

T of order
n is defined as

#n
T (x

n, x)
def
=

{
1 if #(xnx) > 0

0 otherwise.
(20)
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We further define #n
T (•, x), #n

T (x
n, •) and

#n
T (•, •) as the type count function with bulleted

arguments summed out. Type counts allow us to
reduce the probability assigned to n-grams that
occur many times in the data, but whose constituent
(n − 1)-grams have low probability. A common
illustrative example in the literature (Chen and
Goodman, 1999) is the bigram San Francisco.
If the term San Francisco appears frequently in
a dataset, then the unigram probability assigned
to Francisco by smoothing methods that rely
on lower-order n-gram distributions to compute
higher-order n-gram distributions will be quite
high. However, this is arguably undesirable in
many situations, since the unigram Francisco does
not often appear after words other than San.

At the unigram level, the probability estimates of
a KEN-smoothed distribution are computed using
type counts for unigrams and bigrams as

q̃1KEN(x) =
#1

T(•, x)
#1

T(•, •)
. (21)

These probabilities are then used to ground the
recursion that computes the smoothed probabilities
q̃nKEN for higher-order n-grams according to the
following formula

q̃nKEN(x | xn) =
max{#(xnx)−D, 0}∑

y∈Σ#(xny)

+
D ·#n

T (x
n•) · q̃n−1

KEN(x | xn−1)∑
y∈Σ#(xny)

.

(22)

4 A Generalized Framework

In §2, we evince a connection between add-λ
smoothing and regularization of the maximum-
likelihood objective. However, the derivation we
formalize (cf. App. A.1.2) is tedious and long.
Moreover, it exploits several specific properties of
add-λ smoothing. Performing such a derivation
for each smoothing technique individually would
be laborious and further, it would hinder building
intuitions about the relationships between different
methods. Luckily, we can introduce a more
general framework. Specifically, in this section,
we propose a framework that allows us to formu-
late equivalent regularizers for any smoothing
technique and apply them to the training of neural
language models.

4.1 n-Gram Smoothing as Regularization
Without further ado, we now introduce our frame-
work for connecting the smoothing of n-gram

language models to the regularization of the
maximum-likelihood objective. This allows us to
expand the notion of n-gram smoothing to neural
language models. To this end, we first revisit MLE.

One way of framing MLE is using the KL diver-
gence. Specifically, given an empirical distribution
pD, the principle of MLE dictates that we should
choose a model qθ such that DKL (pD || qθ) = 0.
In comparison, n-gram smoothing techniques are
often not defined so declaratively. Instead, they are
presented as procedures that directly modify the
empirical counts derived from a large dataset (e.g.,
Eq. (3) in the simple case of add-λ smoothing). The
crucial observation in this work is that we can treat
n-gram smoothing as a two-step process. First, we
view the smoother as a map pnD 7→ p̃nD that outputs
a smoothed empirical n-gram distribution. Then,
we choose the qθ that minimizes DKL (p̃

n
D || qθ)

where we have replaced pD with p̃nD.
In that context, the question we ask is this:

Rather than minimizing DKL (p̃
n
D || qθ), can

we always find a regularizer R(θ) such that
DKL (p̃

n
D || qθ) = DKL (pD || qθ)+R(θ)? Such a

result would be a natural generalization of the add-
λ case, discussed in Theorem 2.5 that would apply
to any n-gram smoothing techniques, including all
of those presented in §3.

4.2 Smoothing as Regularization
Now we turn to the primary question of this paper.
How do we construct a regularizer that corresponds
to an arbitrary n-gram smoothing technique? We
begin by defining the following two probability
distributions that together capture the difference be-
tween the empirical distribution and the smoothed
empirical n-gram distribution:

p+(x)
def
=

1

Z+
max(0, p̃nD(x)− pD(x)) (23a)

p−(x)
def
=

1

Z−
max(0, pD(x)− p̃nD(x)), (23b)

where the normalization constants are defined as

Z+
def
=
∑

x∈Σ∗
max(0, p̃nD(x)− pD(x)) (24a)

Z−
def
=
∑

x∈Σ∗
max(0, pD(x)− p̃nD(x)). (24b)

This results in the following simple decomposition:

p̃nD(x) = pD(x) + Z+p+(x)− Z−p−(x). (25)

Why does the above formulation help? Fundamen-
tal to our derivation in §2 was the idea that we could
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think of add-λ smoothing as adding a regulariza-
tion term to the maximum-likelihood objective that
penalizes diverging from a simple distribution—in
the case of add-λ smoothing, the uniform distribu-
tion over Σ. Similarly, the decomposition of p̃nD
given in Eq. (25) facilitates the interpretation of
training a language model on p̃nD as training pD
with the addition of regularization. Concretely, we
define the following regularizer

R(θ)
def
=Z+DKL(p+ || qθ)
+Z−DKL(p− || qθ).

(26)

Now, the relation between estimating an n-gram
model with a smoothing technique and using the
regularizer formalized in Eq. (26) is given by the
following theorem.

Theorem 4.1. Let pD be the empirical distribution
induced by the dataset D and p̃nD a smoothed empir-
ical n-gram distribution. For γ = 1, the following
holds

DKL(p̃
n
D || qθ)
= DKL(pD || qθ) + γR(θ) + C,

(27)

where C is constant with respect to qθ.

Proof. App. A.2 ■

Theorem 4.1 formalizes how training on the
smoothed distribution p̃nD computed by smoothing
the n-gram counts affects the maximum-likelihood
objective. It brings us to an interesting observa-
tion about smoothing methods in general—they
can all be formalized as solutions to a regular-
ized maximum-likelihood objective. Inspecting
Eq. (27), we see that, crucially, only the first
term depends on the original empirical distribution
pD—indeed, it represents the original maximum-
likelihood objective. The other two terms depend
both on the empirical data distribution as well
as its smoothed variant. We can therefore inter-
pret Eq. (27) as a regularized loss where the last
two terms correspond to the equivalent regularizer
of the smoothing method used to construct p̃nD. In
practice, we might want to modulate the strength
of the regularization towards the smoothed distribu-
tion p̃nD. We can achieve such an effect through an
additional hyperparameter γ, by which we multiply
our regularizer in Eq. (27) to control its influence.
The regularized loss can be decomposed further by
splitting the γ hyperparameter into two terms γ+

and γ− and applying them separately to the positive
and negative terms of the regularizer R

DKL(pD || qθ)+γ+Z+DKL(p+ || qθ)
+γ−Z−DKL(p− || qθ),

(28)

where Eq. (28) is equivalent to DKL(p̃
n
D || qθ)

when both γ+ and γ− are equal to 1.
Our generalized framework, therefore, presents

a novel way of constructing regularizers to be
used in the language modeling objective based
on insights from classical methods for smoothing
n-gram language models. Importantly, it provides
a direct mechanism by which smoothing-based
regularization can be applied to any language
model qθ. In the following section, we use this
framework to explore the empirical effects of using
regularizers constructed from smoothing methods
(cf. §3) in the training of neural language models.

Runtime Analysis. The distributions p+ and p−
require O (|Σ|n) space to represent where n is the
n-gram order, i.e., the space complexity is of the or-
der of the number of n-gram contexts in the model.
While the exponential increase in n of O (|Σ|n)
is one of the main limitations for scalability of n-
gram models, our method does not require increas-
ing n to large values, as it leverages (smoothed)
n-gram models only in the construction of a reg-
ularizer for the training of a much larger neural
model. Further, the scalability issues of n-gram
models can be circumvented by using bespoke data
structures (Liu et al., 2024).

5 Experiments

5.1 Setup
We validate our proposed regularization framework
on two tasks: language modeling and machine
translation. We rely on the small-scale WikiText-
2 (Merity et al., 2017) and IWSLT-14 (Cettolo et al.,
2014) data sets, respectively, and compare the
performance of standard MLE and label smoothing
to the performance obtained by using regularizers
based on the smoothing methods illustrated in §3.
For both tasks, we perform our experiments via the
fairseq library (Ott et al., 2019) on Transformer-
based (Vaswani et al., 2017) language models.

Our implementation of (Simple) Good–Turing
smoothing in fairseq builds on an open-source
implementation,12 while we leverage the efficient
implementation of Kneser–Essen–Ney smoothing

12github.com/maxbane/simplegoodturing
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Smoothing Method ppl ↓
None 147.12±0.34

add-λ (γ+ = 0.1, γ− = 0.05, γLS = 0.01) 142.10†±0.65

GT (γ+ = 0.1, γ− = 0.05) 141.93†±0.73

JM (γ+ = 0.1, γ− = 0.5, λ1 = 0.75) 137.41†±0.40

Katz (γ+ = 0.1, γ− = 0.01, k = 5) 142.69†±0.54

KEN (γ+ = 0.1, γ− = 0.1) 142.30†±0.29

Table 1: Perplexity on WikiText-2 test set. Included are
performances of models trained with no regularization
(None), and with various smoothing methods. Reported
perplexities are mean values for 5 independently trained
models, together with their standard errors. The best-
performing method is in bold, while the second-best
is underlined. † indicates statistical significance with
respect to the unregularized baseline with p < 0.05.

available through the KenLM (Heafield, 2011;
Heafield et al., 2013) library.13 The remaining
smoothing methods were implemented natively
in fairseq. Note that, as all data sets are
small in scale, we limit the maximum n-gram
order to 2 (i.e., bigrams) for all smoothing
methods. We use dropout for all experiments
fixing the dropout probability to 0.1 and 0.3
for language modeling and machine translation,
respectively. For all smoothing techniques,
we set Γ

def
= {0.005, 0.01, 0.05, 0.1, 0.5} and

grid search regularization hyperparameter pairs
γ+, γ− ∈ Γ × Γ. For smoothing methods that
have additional hyperparameters, we extend the
grid search described above to include them.
We provide the complete list of method-specific
hyperparameter values in Tab. 3. Additional
dataset details are provided in Tab. 4.

5.2 Language Modeling
For language modeling, we evaluate the perfor-
mance of our regularizers on the raw version
of the WikiText-2 dataset (Merity et al., 2017)
which we preprocess to remove all empty sam-
ples. We tokenize the data using BPE (Sennrich
et al., 2016) with 16,000 merge operations through
the subword-nmt library.14 For modeling, we use
the decoder-only Transformer architecture denoted
as transformer-lm in fairseq while adopting
standard hyperparameter settings as suggested by
fairseq15 to encourage reproducibility. We train

13github.com/kpu/kenlm
14github.com/rsennrich/subword-nmt
15github.com/facebookresearch/fairseq/tree/

main/examples/language_model

Smoothing Method BLEU ↑
None 32.86±0.04

add-λ (γ+ = 0.1, γ− = 0.01, γLS = 0.01) 33.23†±0.03

GT (γ+ = 0.05, γ− = 0.5) 33.37†±0.01

JM (γ+ = 0.1, γ− = 0.5, λ1 = 0.5) 33.67†±0.05

Katz (γ+ = 0.1, γ− = 0.1, k = 5) 33.23†±0.02

KEN (γ+ = 0.1, γ− = 0.1) 33.38†±0.03

Table 2: BLEU on test set of IWSLT-14 DE-EN. Dif-
ferent regularized methods are compared to no regu-
larization (None). Reported values are means over 5
independently trained models together with their stan-
dard errors. The best-performing method is in bold,
while the second-best is underlined. † indicates sta-
tistical significance with respect to the unregularized
baseline with p < 0.05.

all models using early stopping and take as the
best-performing models the ones with the lowest
perplexity on the validation set. For each method,
the best-performing hyperparameter setting is then
trained over 5 different seeds. We summarize the
results for the best-performing hyperparameter set-
tings in Tab. 1. We find that all regularized objec-
tives outperform the unregularized baseline, with
Jelinek–Mercer obtaining the lowest perplexity. We
test for mean separation using the Wilcoxon rank-
sum test finding that all smoothing methods ob-
tain statistically significant improvements over the
unregularized baseline. Perplexity scores for the
best-performing runs are shown in App. C together
with p-value under a paired permutation test.

5.3 Machine Translation

We evaluate the performance of our proposed reg-
ularizers on machine translation on the German-to-
English task of the IWLST-14 dataset. In the trans-
lation setting, we limit the application of smooth-
ing only to distributions over the vocabulary of
the target language. We preprocess the data set
by following the processing script provided by
fairseq16 and tokenize the dataset with BPE us-
ing 10,000 merge operations for both languages.
As our model, we use the small-sized trans-
former_iwslt_de_en encoder–decoder Trans-
former and its corresponding standard training hy-
perparameters.17 We repeat the same grid search
procedure over regularization hyperparameters as

16github.com/facebookresearch/fairseq/blob/
main/examples/translation/prepare-iwslt14.sh

17github.com/facebookresearch/fairseq/tree/
main/examples/translation
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Method Hyperparameters

add-λ γLS ∈ {0.01, 0.05, 0.1}
GT None
JM λ1 ∈ {0.25, 0.5, 0.75}
Katz k ∈ {5, 7, 10}
KEN None

Table 3: Method-specific hyperparameters on which a
grid search was performed for both tasks. Note that in
Jelinek–Mercer, λ2 is obtained following its normaliza-
tion constraint.

previously outlined, and use BLEU (Papineni et al.,
2002) on the validation set to determine the best-
performing model checkpoints. To decode text
from the model, we use beam search with a beam
size of 5. We evaluate the generated transla-
tions with sacreBLEU (Post, 2018).18,19 Tab. 2 con-
tains our results. All smoothing methods improve
over the baseline (no regularizer), and Jelinek–
Mercer smoothing is the best-performing technique.
We repeat the mean separation tests outlined in
the language modeling subsection and find that
all smoothing methods obtain statistically signif-
icant improvements over the unregularized base-
line. In App. C we additionally show the results
of the best-performing models for each method
and test their significance using paired bootstrap
resampling (Koehn, 2004). Further, in App. C.1 we
present the results of a preliminary evaluation of
our methods on the English-to-German task of the
larger WMT14 machine translation dataset.

6 Related Work

Hybrid Neural and n-gram Models. The
relationship between neural networks and n-gram
models has been explored in previous work. For
instance, Bengio et al. (2000) famously introduced
a neural parameterization of an n-gram model,
achieving state-of-the-art results at the time. More
recently, Sun and Iyyer (2021) scaled Bengio
et al.’s (2000) model on modern hardware and
demonstrated a small performance increase on
language modeling over a Transformer model
using a hybrid n-gram–Transformer model.
Schwenk (2007) explored interpolating neural
and n-gram language models. Neubig and Dyer
(2016) expanded Schwenk’s (2007) approach by

18github.com/mjpost/sacrebleu
19SacreBLEU signature: nrefs:1|case:mixed|eff:no|

tok:13a|smooth:exp|version:2.3.2

exploring various ways to combine neural and
n-gram language models.

Regularization. On the topic of smoothing-
based regularization, Lee et al. (2022) propose dy-
namically adjusting the strength of label smoothing
regularization based on the entropy of the model
distribution and using an earlier version of the
model as a regularizer. In a similar vein, Bazi-
otis et al. (2020) propose using a monolingual
language model as a regularizer for a translation
model. The idea is that monolingual data is far
more abundant than bilingual data, so a language
model of the target language is used to guide the tar-
get distribution of the translation model. Peters and
Martins (2021) generalize label smoothing to the
broader family of Fenchel–Young losses, making it
applicable to entmax-based models, while Meister
et al. (2020) generalize label smoothing to a set of
entropy-based regularizers.

7 Conclusion

In this work, we re-imagine the application of
classical n-gram smoothing techniques in the
context of modern neural NLP models. For several
of these historic methods, we derive equivalent,
differentiable regularizers that can be added to
neural models’ training objectives. We present
these results within a generalized framework that
allows for insights about the smoothing methods
themselves and their relationships to each other.
We apply these smoothing methods in the training
of neural language models and machine translation
models. We find that our smoothing-based
regularizers outperform label smoothing and
standard MLE in language modeling, while some
methods also achieve competitive results with
label smoothing for machine translation.

Limitations

We present results only for English (for language
modeling) and between German and English (for
machine translation). Most experiments are limited
to small datasets for both language modeling and
machine translation. Future work could verify
how scaling the amount of data impacts present
results and whether the observed performance
improvements are also achievable in a wider set
of languages. While in some experimental settings,
we observed performance improvements for some
smoothing methods, the additional computational
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complexity required by their use may not be a
worthwhile trade-off for their performance benefits.
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A Proofs

This section contains the proofs of all the theorems in the main text. We begin by discussing prefix
probabilities in App. A.1 as a tool for analyzing the relationship between the full Kullback–Leibler diver-
gence DKL (p || q) and the divergences between the conditional probabilities DKL (p (· | x) || q (· | x))
for x ∈ Σ∗. We then move on to the proofs of the results characterizing the aforementioned relationship
in App. A.2.

A.1 Prefix Probabilities

A.1.1 Introductory Notes on Prefix Probabilities
In this section, we provide supplementary commentary on prefix probabilities. First, proving the second
equality in Eq. (8) is a useful exercise; indeed, the last author often assigns the task to his students (Cotterell,
2023). Second, it is important to keep in mind that while π(x) is the probability of a certain event—
namely, the event that a string starts with the prefix x, π itself is not a valid probability distribution, i.e.,∑

x∈Σ∗ π(x) ̸= 1. Indeed, π may not even be normalizable, i.e., we may have that
∑

x∈Σ∗ π(x) → ∞.
This property should make intuitive sense: By the definition of π, we count the probability of certain
events under p in our computation of prefix probabilities under π multiple times. For example, in the case
that Σ = {a}, p(a) counts towards both π(a) and π(aa). Since p is a valid probability distribution, i.e.,
its probabilities sum to 1, then our prefix probabilities will often sum to > 1.

In the special case of empirical distributions, the prefix probability of a substring is proportional to the
number of times the substring appears in the dataset D. Concretely, we have that

πD(x) ∝ number of strings in D starting with x, (29)

which means that
∑

y∈Σ∗
πD(yx) ∝

∑

y∈Σ∗
number of strings in D starting with yx (30a)

∝ #(x). (30b)

That is, the number of occurrences of x in D is proportional to
∑

y∈Σ∗ πD(yx). Why is Eq. (30b) true?
Because every time we observe a x in the training dataset it must have some prefix that starts with the
beginning of a string.

A.1.2 Prefix Probabilities and Local Kullback–Leibler Divergences
We now move on to proving a crucial component of analyzing the relationship between dataset smoothing
and regularized training—the relationship between the global Kullback–Leibler divergence and the local
Kullback–Leibler divergences of the next-symbol conditional probabilities. Intuitively, we show that the
global Kullback–Leibler divergence DKL(p || q) can be written as a prefix-probability-weighted sum of
local next-symbol probability distributions DKL (p (· | x) || q (· | x)) for x ∈ Σ∗. This result, which we
believe to be novel, is formally captured by Theorem 2.2.

Theorem 2.2. Let p and q be two language models over Σ and π the prefix probability function of p.
Furthermore, we assume that H(p, q) < ∞. Then, the following equality holds

DKL(p || q)
=
∑

x∈Σ∗
π(x)DKL(p(· | x) || q(· | x)). (9)

Proof. Let Σ be an alphabet and let p and q be distributions over Σ∗. We make use of the following
definition. Let x ∈ Σ∗ be a string and T ∈ N≥0. The bounded prefix probability of x is defined as

πT (x)
def
=
∑

y∈Σ∗
1{x ⪯ y}p(y | T ), (31)
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where x ⪯ y indicates that x is a prefix of y, p(y | T ) is the conditional of language model p to strings
of length T , and p(T ) =

∑
x∈ΣT p(x). Note that the following equality relates π and πT

π(x) =

∞∑

T=0

p(T )πT (x). (32)

To prove Eq. (9), we split DKL into a cross-entropy and an entropy term as follows

DKL(p || q) def
=
∑

x∈Σ∗
p(x) log

(
p(x)

q(x)

)
(33a)

= −
∑

x∈Σ∗
p(x) log(q(x)) +

∑

x∈Σ∗
p(x) log(p(x)) (33b)

= H(p, q)−H(p). (33c)

We show the equivalence of cross-entropy, as entropy is the special case when H(p, p).20 Starting with the
cross-entropy we have

H(p, q)
def
= −

∑

x∈Σ∗
p(x) log q(x) (34a)

= −
∑

x∈Σ∗
p(x)

[
log

(
q(EOS | x)

T∏

t=1

q(xt | x<t)

)]
(34b)

= −
∑

x∈Σ∗

∞∑

T=0

p(T )p(x | T )
[
log

(
q(EOS | x)

T∏

t=1

q(xt | x<t)

)]
(34c)

= −
∞∑

T=0

p(T )
∑

x∈Σ∗
p(x | T )

[
log

(
q(EOS | x)

T∏

t=1

q(xt | x<t)

)]
(34d)

= −
∞∑

T=0

p(T )

[ ∑

x∈Σ∗
p(x | T ) log q(EOS | x) (34e)

+

T∑

t=1

∑

x∈Σ∗
p(x | T ) log q(xt | x<t)

]
(distribute log and p(x | T ))

= −
∞∑

T=0

p(T )


∑

x∈Σ∗
p(x | T ) log q(EOS | x) +

T∑

t=1

∑

y∈Σ∗

∑

x≤t∈Σt

p(x≤ty | T ) log q(xt | x<t)


 (34f)

= −
∞∑

T=0

p(T )


∑

x∈Σ∗
p(x | T ) log q(EOS | x) +

T∑

t=1

∑

x≤t∈Σt

log q(xt | x<t)
∑

y∈Σ∗
p(x≤ty | T )


 (34g)

= −
∞∑

T=0

p(T )

[ ∑

x∈Σ∗
p(x | T ) log q(EOS | x) (34h)

+

T∑

t=1

∑

x≤t∈Σt

log q(xt | x<t)πT (x≤t)

]
(definition of πT )

= −
∞∑

T=0

p(T )


∑

x∈Σ∗
p(x | T ) log q(EOS | x) +

T∑

t=1

∑

x∈Σ

∑

x<t∈Σt−1

log q(x | x<t)πT (x<tx)


 (34i)

20In what follows, we will frequently interchange infinite sums. Since the terms involved are either all ≥ 0 or all ≤ 0, Tonelli’s
theorem guarantees that such interchanges are valid (Folland, 1999, Theorem 2.37.a applied to discrete measures).
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= −
∞∑

T=0

p(T )


∑

x∈Σ∗
p(x | T ) log q(EOS | x) +

∑

x∈Σ

T∑

t=1

∑

x<t∈Σt−1

log q(x | x<t)πT (x<tx)


 (34j)

= −
∞∑

T=0

p(T )


∑

x∈Σ∗
p(x | T ) log q(EOS | x) +

∑

x∈Σ

∑

x∈Σ<T

log q(x | x)πT (xx)


 (34k)

= −
∞∑

T=0

p(T )

[∑

x∈Σ∗
p(x | T ) log q(EOS | x) +

∑

x∈Σ

∑

x∈Σ∗
log q(x | x)πT (xx)

]
(34l)

= −
∑

x∈Σ∗

∞∑

T=0

p(T )p(x | T ) log q(EOS | x) +
∑

x∈Σ

∑

x∈Σ∗

∞∑

T=0

p(T )πT (xx) log q(x | x) (34m)

= −
∑

x∈Σ∗
p(x) log q(EOS | x)−

∑

x∈Σ

∑

x∈Σ∗
π(xx) log q(x | x) (34n)

= −
∑

x∈Σ∗
π(x)p(EOS | x) log q(EOS | x)−

∑

x∈Σ∗
π(x)

∑

x∈Σ
p(x | x) log q(x | x) (34o)

= −
∑

x∈Σ∗
π(x)

∑

x∈Σ̄
p(x | x) log q(x | x) (34p)

=
∑

x∈Σ∗
π(x)H (p(· | x), q(· | x)) . (34q)

Now, we substitute Eq. (34q) into the following equation

DKL(p || q) =
∑

x∈Σ∗
p(x) log

(
p(x)

q(x)

)
(35a)

= H(p, q)−H(p) (35b)

=
∑

x∈Σ∗
π(x)H (p(· | x), q(· | x))−

∑

x∈Σ∗
π(x)H (p(· | x)) (35c)

=
∑

x∈Σ∗
π(x)


−

∑

x∈Σ
p(x | x) log q(x | x)


−

∑

x∈Σ∗
π(x)


−

∑

x∈Σ
p(x | x) log p(x | x)


 (35d)

=
∑

x∈Σ∗
π(x)


∑

x∈Σ
p(x | x) log p(x | x)

q(x | x)


 (35e)

=
∑

x∈Σ∗
π(x)DKL(p(· | x) || q(· | x)). (35f)

Note that because we have assumed that H(p, q) < ∞ and H(p) ≤ H(p, q), we have that both additive
terms in the KL divergence are finite. This is sufficient to avoid ∞ − ∞ and the unpleasantries that
follow. ■

A.2 Smoothing and Regularization
Corollary 2.3. Let pD be an empirical distribution induced by a dataset D. Let q be an n-gram language
model. Then, it holds that:

DKL (pD || q) (10)

∝
∑

xn∈Σn−1
BOS

#(xn)DKL (pD(· | xn) || q(· | xn)) .

Proof. Then, we have

DKL (pD || qnMLE) =
∑

x∈Σ∗
πD(x)DKL (pD(· | x) || q(· | x)) (Theorem 2.2) (36a)
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∝
∑

x∈Σ∗
#(x)DKL (pD(· | x) || q(· | x)) (Eq. (29)) (36b)

=
∑

x∈Σ∗
#(x)DKL (pD(· | xn) || q(· | xn)) (Assumption 1.1) (36c)

=
∑

xn∈Σn−1
BOS

#(xn)DKL (pD(· | xn) || q(· | xn)) , (36d)

in which the final manipulation follows by Assumption 1.1 and rearranging the terms in the sum. This
finishes the proof. ■

Theorem 2.5. Estimating an n-gram model under regularized MLE with regularizer RLS with strength
parameter γ is equivalent to estimating an n-gram model and applying add-λ smoothing with λ = γ

|Σ|+1 .

Proof. Let q be an n-gram model. As introduced in Eq. (3), add-λ smoothing defines the following
smoothed n-gram probability distribution for x ∈ Σ given a history xn:21

q̃nMLE(x | xn)
def
=

#(xnx) + λ

#(xn) + λ(|Σ|+ 1)
. (37)

We want to show that the λ-count-augmented maximum-likelihood solution q̃nMLE is also the optimum of
the label smoothing objective. We first decompose the KL divergence, which is the objective we optimize
under the principle of maximum likelihood

DKL (p
n
D || q) +RLS(θ) = (38a)

=
∑

xn∈Σn−1
BOS

#(xn)DKL (p
n
D (· | xn) || q (· | xn)) + γ

∑

xn∈Σn−1
BOS

DKL (u (· | xn) || q (· | xn)) (38b)

=
∑

xn∈Σn−1
BOS

[#(xn)DKL (p
n
D (· | xn) || q (· | xn)) + γDKL (u (· | xn) || q (· | xn))] (38c)

=
∑

xn∈Σn−1
BOS

[
#(xn)

[∑

x∈Σ
pnD (x | xn) log q (x | xn)

]
(38d)

+ γ
[∑

x∈Σ
u (x | xn) log q (x | xn)

]]
+ const.

=
∑

xn∈Σn−1
BOS

∑

x∈Σ
[#(xn)pnD (x | xn) log q (x | xn) + γu (x | xn) log q (x | xn)] + const. (38e)

=
∑

xn∈Σn−1
BOS

∑

x∈Σ
[#(xn)pnD (x | xn) + γu (x | xn)] log q (x | xn) + const. (38f)

=
∑

xn∈Σn−1
BOS

∑

x∈Σ

[
#(xn)

#(xnx)

#(xn)
+

γ

|Σ|+ 1

]
log q (x | xn) + const. (38g)

=
∑

xn∈Σn−1
BOS

∑

x∈Σ

[
#(xnx) +

γ

|Σ|+ 1

]
log q (x | xn) + const., (38h)

where the constant terms are independent of q. Next, note that we can optimize each q (x | xn) indepen-
dently, i.e., we can find the distribution q (x | xn) that minimizes the following expression

[
#(xnx) +

γ

|Σ|+ 1

]
log q (x | xn) , (39)

21Note that |Σ| = |Σ|+ 1 due to the inclusion of the EOS symbol. We use the more explicit notation |Σ|+ 1 for clarity of
exposition.
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under the constraint that
∑

x∈Σ q(x | xn) = 1 and q(x | xn) ≥ 0, ∀x ∈ Σ independently. It is a standard
result that the minimizing q (· | xn) for any xn ∈ Σn−1

BOS is given by

q̃nMLE (· | xn) =
#(xnx) + γ

|Σ|+1

#(xn) + γ
∝
[
#(xnx) +

γ

|Σ|+ 1

]
, (40)

in which we recognize the λ = γ
|Σ|+1 add-λ smoothed maximum-likelihood solution q̃nMLE from Eq. (37).

■

Theorem 4.1. Let pD be the empirical distribution induced by the dataset D and p̃nD a smoothed empirical
n-gram distribution. For γ = 1, the following holds

DKL(p̃
n
D || qθ)
= DKL(pD || qθ) + γR(θ) + C,

(27)

where C is constant with respect to qθ.

Proof. The definitions of p+, p−, Z+, Z− from Eq. (23a), (23b), (24a) and (25), respectively, results in
the following simple decomposition:

p̃nD(x) = pD(x) + Z+p+(x)− Z−p−(x). (41)

Then, we proceed with some basic manipulations

DKL(p̃
n
D || qθ) def

= H(p̃nD, qθ)−H(p̃nD)︸ ︷︷ ︸
def
=C

(42a)

= H(p̃nD, qθ) + C (independence of H(p̃nD) with respect to qθ) (42b)

= H(pD + Z+p+(x) + Z−p−(x), qθ) + C (definitions of p+, p−, Z+, Z−) (42c)

= H(pD, qθ) + Z+H(p+, qθ) + Z−H(p−, qθ) + C (linearity of cross-entropy) (42d)

= DKL(pD || qθ) + Z+DKL(p+ || qθ) + Z−DKL(p− || qθ)︸ ︷︷ ︸
def
=R(qθ)

+C (definition of R) (42e)

= DKL(pD || qθ) + γ︸︷︷︸
=1

R(qθ) + C. (42f)

This proves the result. ■

B Experimental Details

Experiments on WikiText-2 and IWSLT-14 were run on a shared cluster on NVIDIA Quadro RTX 6000
GPUs. The Transformer models used for language modeling and machine translation have 58,145,792
and 39,469,056 parameters, respectively.
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Dataset Split Language Vocabulary size Samples Number of tokens

WikiText-2 Train English 16,932 23,767 2,389,674
WikiText-2 Validation English 16,932 2461 255,327
WikiText-2 Test English 16,932 2891 292,710

IWSLT-14 Train English 6628 160,239 3,788,875
IWSLT-14 Validation English 6628 7283 171,339
IWSLT-14 Test English 6628 6750 150,178

IWSLT-14 Train German 8844 160,239 3,875,352
IWSLT-14 Validation German 8844 7283 175,309
IWSLT-14 Test German 8844 6750 155,088

Table 4: Dataset details

C Additional Experimental Results

Tab. 5 and Tab. 6 show the performance of the best-performing seed for each model. JM smoothing
remains the best-performing technique on both datasets. For language modeling, we test for statistical
significance using a paired permutation test over sentence-level log-likelihoods, using the mean of the
observation differences as the test statistic. For machine translation, we test for statistical significance
using paired bootstrap resampling as implemented in sacreBLEU. Different tests are performed using
either the unregularized results or the add-λ results as the baseline. In Tab. 5 and Tab. 6, the first symbol
in †/† refers to statistical significance with respect to the unregularized model, while the second refers
to statistical significance over the add-λ results. † indicates p < 0.05; ‡ indicates p < 0.01. In language
modeling, all regularization methods perform significantly better than no regularization. However, only
GT and JM smoothing perform better than add-λ smoothing. For machine translation, we see that all
regularized methods except for Katz smoothing perform significantly better than the unregularized baseline
model, while only JM smoothing performs significantly better than add-λ smoothing.

Smoothing Method ppl ↓
None 144.67
add-λ (γ+ = 0.1, γ− = 0.05, γLS = 0.01) 138.72‡

GT (γ+ = 0.1, γ− = 0.05) 137.00‡/‡

JM (γ+ = 0.1, γ− = 0.5, λ1 = 0.75) 134.63‡/‡

Katz (γ+ = 0.1, γ− = 0.01, k = 5) 139.44‡

KEN (γ+ = 0.1, γ− = 0.1) 140.71‡

Table 5: Perplexity on WikiText-2 test set. Included
are performances of models trained with no
regularization (None), and with various smoothing
methods. We report the best perplexity over 5
independently trained models.

Smoothing Method BLEU ↑
None 33.11
add-λ (γ+ = 0.1, γ− = 0.01, γLS = 0.01) 33.41†

GT (γ+ = 0.05, γ− = 0.5) 33.44†

JM (γ+ = 0.1, γ− = 0.5, λ1 = 0.5) 33.97‡/‡

Katz (γ+ = 0.1, γ− = 0.1, k = 5) 33.31
KEN (γ+ = 0.1, γ− = 0.1) 33.58‡

Table 6: BLEU on test set of IWSLT-14 DE-EN.
Different regularized methods are compared to no
regularization (None). We report the best BLEU
score over 5 independently trained models.

C.1 WMT-14 results
To evaluate the performance of our regularizers on larger datasets, we perform a preliminary evaluation of
our methods on the WMT-14 machine translation dataset. We download and preprocess the data following
a script provided by fairseq.22 Experiments on WMT were run on two NVIDIA Tesla V100 GPUs.
Given our computational constraints, we limit our experiments to our best-performing smoothing method
(Jelinek–Mercer), add-λ smoothing, and the unregularized baseline. We also use the same hyperparameter

22https://github.com/facebookresearch/fairseq/blob/main/examples/translation/prepare-wmt14en2de.sh
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set as in the IWSLT-14 experiments for all methods. Tab. 7 shows the results of our experiments. JM
smoothing obtains the best performance out of the three methods. Using paired bootstrap resampling,
we assessed that the improvements of JM smoothing are statistically significant over the unregularized
baseline, while they are not significant over the results obtained using add-λ smoothing (p = 0.07). A
regularization hyperparameter search on the new dataset might yield larger performance improvements
for all smoothing-based methods.

Smoothing Method BLEU ↑
None 26.75
add-λ (γ+ = 0.1, γ− = 0.01, γLS = 0.01) 27.07
JM (γ+ = 0.1, γ− = 0.5, λ1 = 0.5) 27.35‡

Table 7: BLEU scores on the (EN-DE) WMT14/full
test set. JM and add-λ smoothing are compared to
no regularization.
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