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Abstract

Active learning (AL), which aims to construct
an effective training set by iteratively curating
the most formative unlabeled data for anno-
tation, has been widely used in low-resource
tasks. Most active learning techniques in classi-
fication rely on the model’s uncertainty or dis-
agreement to choose unlabeled data, suffering
from the problem of over-confidence in superfi-
cial patterns and a lack of exploration. Inspired
by the cognitive processes in which humans
deduce and predict through causal information,
we take an initial attempt towards integrating
rationales into AL and propose a novel Explain-
able Active Learning framework (XAL) for
low-resource text classification, which aims to
encourage classifiers to justify their inferences
and delve into unlabeled data for which they
cannot provide reasonable explanations. Specif-
ically, besides using a pre-trained bi-directional
encoder for classification, we employ a pre-
trained uni-directional decoder to generate and
score the explanation. We further facilitate the
alignment of the model with human reason-
ing preference through a proposed ranking loss.
During the selection of unlabeled data, the pre-
dicted uncertainty of the encoder and the expla-
nation score of the decoder complement each
other as the final metric to acquire informative
data. Extensive experiments on six datasets
show that XAL achieves consistent improve-
ment over 9 strong baselines. Analysis indi-
cates that the proposed method can generate
corresponding explanations for its predictions.

1 Introduction

Active learning (AL) is a machine-learning
paradigm that efficiently acquires data for anno-
tation from a (typically large) unlabeled data pool
and iteratively trains models (Lewis and Catlett,
1994; Margatina et al., 2021). AL frameworks have
attracted considerable attention from researchers
due to their high realistic values reduce the data an-
notation costs by concentrating the human labeling

effort on the most informative data points, which
can be applied in low-resources tasks (Lewis and
Catlett, 1994; Settles, 2009; Zhang et al., 2022b).

Most previous AL methods rely on model predic-
tive uncertainty or disagreement for unlabeled data,
and the most uncertain data are believed to be the
most informative and worthful ones to be annotated
(Lewis, 1995; Houlsby et al., 2011; Margatina et al.,
2021; Zhang et al., 2022a). However, previous
studies have indicated that existing models struggle
to accurately quantify predictive uncertainty (Guo
et al., 2017; Lakshminarayanan et al., 2017), lead-
ing to overconfidence and insufficient exploration,
i.e., models tend to choose data instances that are
uncertain yet repetitively uninformative (Margatina
et al., 2021). This issue arises because training
can lead cross-entropy-based classifiers to learn
superficial or spurious patterns (Guo et al., 2022,
2023; Srivastava et al., 2020), rather than the causal
information between inputs and labels.

In the context of cognitive science and psycho-
logical science, humans make decisions or infer-
ences by exploring causal information (Frye et al.,
1996; Joyce, 1999; Rottman and Hastie, 2014). For
example, when learning to differentiate animals,
humans do not merely rely on statistical features
such as colors or feathers. They also consider the
creatures’ habits, such as dietary patterns, and kin-
ship, such as the species of the parents, to engage
in exploring rationales, thereby determining the
species of the organism. Intuitively, explanations
of the rational can help the model confirm whether
it understands how to make classifications, and ex-
plaining the reasons behind the classification also
enhances the justification of the inference confi-
dence. It motivates us to encourage classifiers to
learn the rationales behind inferences and explore
unlabeled data for which the model cannot provide
reasonable explanations. In doing so, the model
can learn rationales between labels and texts and
reduce reliance on superficial patterns, which leads
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Figure 1: Data selection strategy in AL. Previous work selects the unlabeled data mostly relying on the model’s
uncertainly (a), but we propose to further leverage the model’s explanation of its prediction (b).

to improved generalization and more effective ex-
ploration within AL frameworks. The intuition is
illustrated in Figure 1.

Given the above observations, we introduce an
Explainable Active Learning Framework (XAL)
for text classification tasks. This framework con-
sists of two main components: the training process
and the data selection process. Primarily, we adopt
a pre-trained bi-directional encoder for classifica-
tion and a pre-trained uni-directional decoder to
generate and score explanations that serve as ex-
pressions of rationales in human language. In the
training phase, we use the classification labels and
explanations to optimize the model parameters. Be-
sides, to further enhance the decoder’s ability to
score explanations, we design a ranking loss that
optimizes the model to differentiate between rea-
sonable and unreasonable explanations. To imple-
ment this ranking loss, we generate a variety of
explanations (both reasonable and unreasonable)
for labeled data by querying ChatGPT with dif-
ferent prompts, thereby eliminating the need for
additional human annotation effort. Subsequently,
during the data selection phase, we amalgamate
the predictive uncertainty of the encoder and the
explanation score of the decoder to rank unlabeled
data. The most informative data are then annotated
and incorporated into further training.

We conduct experiments on various text classi-
fication tasks involving different level of difficulty
in understanding rationals. Experimental results
manifest that XAL can achieve substantial improve-
ment in all tasks. Ablation studies demonstrate
the effectiveness of each component, and human
evaluation shows that the model trained in XAL
works well in explaining its prediction. XAL also
demonstrates superior performance with only 500
instances when compared to in-context learning
by ChatGPT, underscoring the effectiveness of our

model at a minimal cost. To our knowledge, we
are the first to incorporate the model’s explanation
(explanation score) to improve the effectiveness of
data selection in AL process. The codes and data
have been released in the link to facilitate further
research 1.

2 Related Work

Active Learning is widely studied in the natu-
ral language processing area, ranging from text
classification (Roy and McCallum, 2001; Zhang
et al., 2017; Maekawa et al., 2022), and sequence
labeling (Settles and Craven, 2008) to text genera-
tion (Zhao et al., 2020). Previous methods can be
roughly divided into informativeness-based selec-
tion strategies, representativeness-based selection
strategies, and hybrid selection strategies (Zhang
et al., 2022a). The most mainstream methods,
i.e., informativeness-based methods, are mostly
characterized using model uncertainty, disagree-
ment, or performance prediction, which suffers
from over-confidence and a lack of exploration
(Guo et al., 2017; Margatina et al., 2021). On the
other hand, the representativeness-based methods
rely on model inputs such as the representations
of texts, which tends to select simple data samples
and results in unsatisfactory performance (Roy and
McCallum, 2001; Margatina et al., 2021).

Large Language Model. Recently, LLMs of
generative schema have shown excellent perfor-
mance in various NLP tasks (?). However, some
studies show that in-context learning based on
LLMs (Radford et al., 2019; Brown et al., 2020)
suffers from practical issues such as high compu-
tation costs for inference (Liu et al., 2022), in-
clination to their internal knowledge (Yan et al.,
2024), catastrophic forgetting during instruction

1https://github.com/LuoXiaoHeics/XAL
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Figure 2: Our proposed XAL framework, which can be divided into two main parts – the training process (red
arrows) and the data selection process (blue arrows). The training process aims to train the encoder-decoder model
to learn classification and explanation generation. The data selection process aims to select unlabeled data using
predictive entropy and explanation scores.

tuning (Luo et al., 2023), over-sensitive to example
choices and instruction wording (Gao et al., 2020;
Schick and Schütze, 2021). Considering the prob-
lems, LLMs are also applied to improve the gener-
alization of smaller models for specific tasks. Some
studies distill the knowledge of large language mod-
els to a smaller one (Hsieh et al., 2023) and some
also use LLMs to augment data to achieve stronger
text classification performance (Ye et al., 2022;
Yu et al., 2023). LLMs has also demonstrated a
strong capability in generating high-quality rea-
soning steps (Hsieh et al., 2023; Wei et al., 2022;
Kojima et al., 2022). In this study we aim to distill
the reasoning ability of LLMs to smaller models,
and encourage the models to distinguish the reason-
ablity of explanations to identify informative data
in AL scenario.

Explanation Information, as external knowl-
edge, has been proven useful for a wide range of
tasks in natural language processing (Hase and
Bansal, 2022). Hase et al. (2020) used explanations
as additional information and directly fed them into
models. Narang et al. (2020) and Shen et al. (2023)
took the explanations as outputs and trained NLP
models to generate them. How to leverage expla-
nations is still an open problem (Hase and Bansal,
2022). In the active learning schema, some studies
also attempt to leverage the explanations (Liang
et al., 2020; Wang et al., 2021), but they mainly
focus on promoting the generalization abilities of

models trained on low-resource data. These AL
studies are also hard to implement in text classifi-
cation tasks and unlike these studies, we explore
how to leverage explanations to identify informa-
tive unlabeled data for annotation.

3 Method

3.1 Overview

Task Formulation We mainly consider a C class
text classification task defined on a compact set
X and a label space Y = {1, ..., C}. The data
points are sampled i.i.d over the space Z = X ×
Y as {xi, yi} ∼ pz , which can be divided into
two sets – the labeled set Dl and the unlabeled
set Du. At the beginning of an active learning
algorithm, only a small number of data points are
randomly selected into the labeled set Dl and we
have only access to data points in Dl for training
the classification model. Then L data from Du are
selected for annotation and added to Dl (removed
from Du simultaneously) inM multiple rounds.

Model Architecture Following previous work
(Devlin et al., 2018), we adopt a pre-trained bi-
directional encoder as the backbone for classifica-
tion. In addition to the encoder, a corresponding
uni-directional decoder is applied to generate and
score the explanation for the label prediction. Dur-
ing training, we construct k different explanations
er, i.e., {er}i, r = 0, ..., k − 1, for each example
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{xi, yi}, where e0 is the reasonable explanation and
{er>0} are k − 1 unreasonable explanations. We
leave the construction process of explanations in
Section 3.4 for further descriptions. Before that,
we will first present the model training and data se-
lection in Section 3.2 and Section 3.3 respectively.
The framework of XAL is shown in Figure 2 and
the workflow can be found in Algorithm 1.

3.2 Training
For each text input x (we omit all the subscripts of i
for simplicity in this subsection), we first prepend it
with a special token [CLS] and then obtain the con-
textual representation by feeding it into the encoder.
The contextual representation of the jth token is
calculated as:

hj = Encoder([CLS] + x)[j]. (1)

The representation for [CLS], i.e., h0 is taken as the
sentence representation and fed into the classifica-
tion layer, which is composed of a linear layer and
a softmax function. The probability distribution on
label space Y can be formulated as:

P (y|x) = Softmax(Linear(h0)). (2)

The cross-entropy loss is adopted to optimize the
encoder parameters:

Lcls = −
∑

P (y|x) log P (y|x). (3)

On the decoder side, the model is trained with
teacher forcing to generate the golden explanation
e0. The generation loss is calculated as:

Lgen = −
∑

t

log P (e0,t|h, e0,<t). (4)

To make the decoder a good scorer to rank the
reasonable and unreasonable explanations, we ad-
ditionally adopt a ranking loss to optimize the de-
coder. In particular, the model is trained to rank
between reasonable and unreasonable explanations.
The ranking loss can be formulated as:

Lrank =
∑

r>0

max(0, pr − p0), (5)

where pr is the explanation score for er, calculated
as the length-normalized conditional log probabil-
ity:

pr =

∑
t logP (er,t|x, er,<t)

||er||
. (6)

The hyper-parameters are adopted to balance the
weights of each loss, and the overall loss is formal-
ized as follows:

L = Lcls + λ1Lgen + λ2Lrank. (7)

3.3 Data Selection in AL
After training the model in each iteration, we can
obtain an intermediate model π. To select the in-
formative data in the unlabeled set Du, we adopt a
combination of the predictive entropy and explana-
tion score. Specifically, for each raw data xi ∈ Du,
we first generate the explanation ei by selecting
the top-1 output in the beam search. Then, we cal-
culate the explanation score pi as Eq. 6 and the
predictive entropy ci as Eq. 3. The final score si
for example xi is calculated as the weighted sum
of the normalized explanation score and predictive
entropy:

si =
λ

1 + λ

e−pi
∑

i e
−pi

+
1

1 + λ

eci∑
i e

ci
(8)

where the λ is the hyper-parameter to balance the
explanation score and the predictive entropy. With
the final score for each example, we rank the whole
unlabeled instances and select the top L instances
for annotation.

3.4 Generation of Golden Explanations
Previous work has shown that LLMs are good at
reasoning (Bang et al., 2023; Rajasekharan et al.,
2023; Hsieh et al., 2023). Inspired by these studies,
we take the LLMs, such as ChatGPT and GPT4,
as the teacher models, and query them to generate
explanations for each selected labeled data, elimi-
nating the annotation cost of human labor. In partic-
ular, we design slightly different prompt templates
for different tasks, and the prompt for each task is
shown in Appendix A. Taking stance detection as
an example, its prompt template is designed as ‘The
stance of this tweet to the target {Target} is {La-
bel}, explain the reason within 50 words’, where
the Target is the corresponding stance target, and
the Label is the classification label. The final query
to the teacher model is the concatenation of the text
and the prompt. We construct a reasonable explana-
tion by feeding the golden label into the query and
generate several unreasonable explanations by feed-
ing wrong labels. Figure 7 shows an example that
we generate explanations by querying ChatGPT,
where we can observe that ChatGPT could provide
different explanations according to the given label.

4 Experiments

4.1 Tasks and Dataset
We conduct experiments on six different text clas-
sification tasks: (1) Natural Language Inference
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Task Dataset # Labels Train Dev Test
Natural Language Inference RTE (Bentivogli et al., 2009) 2 2,240 250 278
Paraphrase Detection MRPC (Dolan et al., 2004) 2 3,667 409 1,726
Stance Detection COVID19 (Glandt et al., 2021) 3 4,533 800 800
Category Sentiment Classification MAMS (Jiang et al., 2019) 3 7,090 888 901
(Dis)agreement Detection DEBA (Pougué-Biyong et al.,

2021)
3 4,617 578 580

Relevance Classification CLEF (Kanoulas et al., 2017) 2 7,847 981 982

Table 1: All the six text classification tasks used in our experiments. The extent of difficulty is roughly in an
increasing tendency. RTE and MRPC are fundamental natural language tasks and are included in the widely used
benchmark GLUE. MAMS, COVID19, and DEBA require the model to understand the text and give suitable
inferences towards a specific target or text, and CLEF further provides a difficult dataset with imbalanced label
distribution.

aims to detect whether the meaning of one text
is entailed (can be inferred) from the other text;
(2) Paraphrase Detection requires identifying
whether each sequence pair is paraphrased; (3)
Category Sentiment Classification aims to iden-
tify the sentiment (Positive/Negative/Neutral) of a
given review to a category of the target such as food
and staff; (4) Stance Detection aims to identify the
stance (Favor/Against/Neutral) of a given text to
a target; (5) (Dis)agreement Detection aims to
detect the stance (Agree/Disagree/Neutral) of one
reply to a comment; (6) Relevance Classification
aims to detect whether a scientific document is rel-
evant to a given topic. The details of the dataset
we used are shown in Table 1. Appendix A demon-
strates the details and prompts of six datasets with
examples. 2

4.2 Baselines

To demonstrate the effectiveness of our proposed
method, we compare XAL with the following nine
AL baselines: (1) Random uniformly selects unla-
beled data for annotation; (2) Max-Entropy (ME)
(Lewis, 1995; Schohn and Cohn, 2000) calculates
the predictive entropy in the current model and se-
lects data with max entropy ; (3) Bayesian Active
Learning by Disagreement (BALD) (Houlsby
et al., 2011) exploits the uncertainty of unlabeled
data by applying different dropouts at test time;
(4) Breaking Ties (BK) (Scheffer et al., 2001) se-
lects instances with the minimum margin between
the top two most likely probabilities ; (5) Least
Confidence (LC) (Culotta and McCallum, 2005)
adopts instances whose most likely label has the
least predictive confidence; (6) Coreset (Sener and
Savarese, 2018; Chai et al., 2023) treats the repre-

2Without losing generality, we randomly split the training
set in RTE, and MRPC into train/dev set with proportion
9:1. In DEBA, we adopt the topic of climate change for
experiments.

sentations in Du as cluster centers, and selects the
unlabeled data with the most significant distance
from its nearest centers; (7) Batch Active learn-
ing by Diverse Gradient Embeddings (BADGE)
(Ash et al., 2019) measures uncertainty as the
gradient magnitude and collects examples where
these gradients span a diverse set of directions; (8)
Bayesian Estimate of Mean Proper Scores (BE-
MPS) (Tan et al., 2021) encourages diversity in
the vector of expected changes in scores for un-
labelled data; (9) Contrastive Active Learning
(CAL) (Margatina et al., 2021) selects instances
with the maximum mean Kullback-Leibler (KL)
divergence between its m nearest neighbors.

5 Results and Discussion

5.1 Main Results

We mainly consider two different settings: (1)
Given the data selection budget, we observe the
trend of changes in model performance; (2) Given
the performance upper bound, we observe the num-
ber of required instances that the model needs to
achieve 90% of the upper-bound performance. We
utilize FLAN-T5-large (Chung et al., 2022) as our
backbone network 3, ChatGPT is adopted to gener-
ate the explanations. The implemented details can
be found in Appendix D and the detailed values of
the result can be found in Appendix E.1.

Given Data Selection Budget Following previ-
ous work (Zhang et al., 2017; Schröder et al., 2022),
we set the data selection budget as 500 instances
and select 100 instances for annotation in each it-
eration. The results are presented in Figure 3. We
can observe that the proposed XAL model consis-
tently outperforms other active learning methods.
For instance, in MAMS, our model attains a macro-
F1 score of 74.04% at the end, which is 2.21%

3We implement baselines using FLAN-T5-large as well.
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Figure 3: Results given the data selection budget 500 instances in six text classification tasks, where 100 instances
are selected for annotation in each iteration. Here we plot the specific values of XAL and the second significant
performance when using 500 instances, and the detailed performance values can be found in Appendix E.1.

Figure 4: Experimental results demonstrate how much data, when selected using AL methods, is required for the
models to achieve 90% of the performance of those trained on the complete training datasets. In each iteration, we
annotate 50 instances. The performance of models trained on the whole training sets is, (a) RTE – 83.11%, (b)
MRPC – 84.74%, (c) COVID19 – 75.45%, and (d) DEBA – 65.71%. The green triangles refer to the average values
of the experiments on three different initial sets Dl and three different random seeds. The circles refer to outliers.
Detailed results can be seen in Appendix E.2.

higher than the second-best result (LC at 71.83%).
Similarly, in DEBA, XAL surpasses the second-
best result (BADGE at 58.13%) by 1.78%. These
results demonstrate the effectiveness of our XAL
framework in addressing text classification tasks.

In COVID19, while the model does not signif-
icantly outperform the baselines at the beginning
(possibly due to the relatively high complexity of
the task), it still exhibits stronger performance with
a data count of 300-500, which underscores the ef-
fectiveness of the data selection in XAL. In CLEF,
we notice that the performance of baseline models
is notably unstable due to the significant imbalance
in label distribution (the ratio between relevant and
irrelevant is approximately 1:21). However, our

XAL model achieves superior performance and
more consistent improvements over baselines dur-
ing the data selection process, which validates the
effectiveness of XAL, even in challenging scenar-
ios of imbalanced data.

Given Performance Upper Bound It’s also valu-
able to evaluate the amount of data required for
models to achieve comparable performance with
those trained on the entire training dataset. Specifi-
cally, we begin with an initial labeled set of 100 in-
stances and select a certain number of instances to
annotate in each selection iteration 4, and cease the

4To balance the training efficiency and the performance
gap, we set the selection number as 50.
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AL process once the model performance reaches
90% of the upper-bound performance. Experimen-
tal results are depicted in Figure 4.5 As observed,
XAL requires the least amount of data to reach
the performance goal. For instance, in the task of
DEBA, XAL necessitates an average of 461.11 data
points, which is 55.56 less than the second lowest
value (BK–516.67). To conclude, XAL models
only require 6%, 3%, 16%, and 10% of the data
from RTE, MRPC, COVID19, and DEBA tasks re-
spectively to achieve 90% performance of models
that are trained on the entire datasets, which signif-
icantly reduces the annotation cost. These results
show that the proposed XAL is very cost-efficient
in selecting informative unlabeled data.

5.2 Ablation Study
We conduct an ablation study to investigate the
impact of each module in our model. The results
are displayed in Figure 5. Firstly, we conduct a
comparison among ME, ME-Exp, and XAL, where
ME-Exp has the same model structure as XAL
but it selects the unlabeled data with the predicted
classification entropy. We observe that ME-Exp
can achieve superior performance on most datasets
compared to ME, which demonstrates the effec-
tiveness of using explanations. However, XAL fur-
ther achieves noticeably better performance over
ME-Exp, indicating that the improvement in XAL
comes not only from the introduction of explana-
tions but also from the data selection strategy (with
explanation scores). Next, we compare XAL with a
version that removes the ranking loss (w/o Rank in
Figure 5). XAL also achieves better performance
on most datasets and with different numbers of
labeled data, indicating that the ranking loss can
enhance the effectiveness of data selection in the
AL process. Furthermore, the performance of se-
lecting data solely using the explanation score but
without using predictive entropy is also illustrated
in Figure 5 (w/o ME). We observe that removing
ME leads to significant performance drops on most
datasets, implying that the predictive entropy and
explanation score can complement each other.

To further evaluate how the ranking loss works
in XAL, we also compare the model’s capability to
rank explanations between XAL and its counterpart
without ranking loss. Experimental results show
that XAL achieves superior performance. For in-
stance, the ranking accuracy in RTE and MRPC for

5For ease of presentation and training efficiency, we only
report results on four tasks.

100 200 300 400 500
ChatGPT 60.79 63.47 68.51 71.54 73.24
ALPACA-7B 59.52 61.75 67.77 71.12 72.24
GPT4 59.67 64.28 69.51 72.96 74.63

Table 2: Model performance on MAMS using different
explanation generations. We compare the performance
in a certain initial set and random seed.

MRPC COVID19 DEBA CLEF
Zero-shot 72.46 66.67 48.96 34.21
Few-shot 78.32 67.73 54.69 42.44
Silver 74.32 53.66 47.12 36.09
XAL (500) 83.91 67.16 59.91 66.94

Table 3: Performance of ChatGPT and performance of
models trained on ‘silver’ data.

XAL are 73.93% and 78.62%, which are 5.36% and
4.30% higher than those without ranking loss, re-
spectively (detailed results are shown in Appendix
E.4). These results suggest that the ranking loss
can enhance the model’s ability to score the expla-
nations. It is evident that XAL consistently outper-
forms these alternatives in most time, while there
are some fluctuations across different scenarios.

5.3 Explanation Generation

We also carry out experiments to analyze how the
generation of explanations impacts model perfor-
mance. Specifically, we replace ChatGPT with
ALPACA-7B (Taori et al., 2023), and GPT4 6 to
generate explanations on the MAMS dataset. The
results are presented in Table 2. We also observe
that the ALPACA-7B can also provide useful ex-
planations to some extent and enhance the model
performance compared with ME through our frame-
work. This suggests that LLMs, when used as an as-
sistant in XAL, can provide consistent explanation
generation and enhance model performance. The
results also indicate that the model performance can
be affected by the explanation generation model
and it is applicable to use open-source LLMs. The
results of human annotation are also discussed in
Appendix F.

5.4 Comparison with ChatGPT

We assess ChatGPT on these datasets in both zero-
shot and few-shot scenarios, and the outcomes are
presented in Table 3. The models, when subjected
to supervised fine-tuning with 500 labeled data
points in XAL, exhibit either notably improved or
comparable performance to ChatGPT across these
datasets. This suggests that our model can achieve
satisfactory results with minimal cost.

6https://openai.com/gpt-4
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Figure 5: Results of ablation study in the six text classification tasks. We select 100 instances in each iteration and
conduct 4 iterations (the same with Section 5.1). The results are measured using macro-F1 scores and they are the
average values on three different initial sets Dl and three different random seeds.

Since XAL queries ChatGPT for generating ex-
planations with extra cost (API calls) to implement
AL, we also analyze if we could obtain a better
model through querying ChatGPT for more labeled
data, i.e. ‘silver data’ (the labels are probably in-
correct). In detail, we use the actively selected
data with golden labels, and randomly selected
data with ‘silver’ labels from ChatGPT to train the
model in each active iteration. For this process,
ChatGPT is employed to annotate a random selec-
tion of data from Du, which is three times the size
of Dl—mirroring the frequency of queries made
for explanations in XAL. We report the final model
performance with 500 golden labels and 1500 sil-
ver labels in Table 3. We observe that despite the
increase in silver data obtained from ChatGPT, our
model can still perform more significantly. This
outcome is primarily attributed to the uncertain
accuracy of ChatGPT’s annotations. The lack of re-
liability in these pseudo labels suggests that merely
increasing the quantity of labeled data, without en-
suring its quality, may not be an effective strategy
for improving model performance.

5.5 Human Evaluation on Interpretability

We evaluate our model’s ability to explain its pre-
diction by examining the consistency between the
generated explanation and the classification label.
Specifically, we randomly select 50 test instances
and use the model trained on 500 instances (see
Section 5.1) to generate the labels and explana-

tions. Then we ask humans to infer the classifica-
tion labels based solely on the generated explana-
tions. The consistency is measured by whether the
human-inferred label equals the label predicted by
the model. We report the consistency rate across all
the test sets: MRPC-94%, RTE-94%, COVID19-
96%, DEBA-94%, MAMS-94%, CLEF-100%. We
find that the consistency rates on all six tasks ex-
ceed 94%, which demonstrates that XAL explains
its classification prediction very well. Case studies
for the generated explanations and the predicted
labels are presented in Appendix I.

5.6 Representation Visualization

To understand the potential of XAL in exploring
informative unlabeled data, we use t-SNE (van der
Maaten and Hinton, 2008) to “visualize” the data
selection procedure of ME and XAL on the task
DEBA. Specifically, with the intermediate model
in Section 5.1 (trained with 200 labeled instances),
100 instances from the unlabeled set Du are then
selected for annotation. Then, we feed all the la-
beled and unlabeled instances into the model and
get their sentence representations (h0 in Eq. 1).
Finally, we apply the t-SNE toolkit to map these
representations into a two-dimensional embedding
space, which is shown in Figure 6. We can observe
that the data are obviously partioned into differ-
ent clusters, which shows the overconfidence prob-
lem in ME, and the unlabeled data selected by ME
is only distributed around the decision boundary,
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Figure 6: t-SNE visualizations of contextual representa-
tions. To facilitate identification, we outline the areas of
labeled data with dashed squares. The colors, i.e. red,
blue, and green, refer to the different labels.

showing that the model can only select the high-
uncertainty data it believes. However, the proposed
XAL can select more diverse data, some of which
are wrongly classified by the current model. These
results demonstrate that the data selection strategy
in XAL can identify more informative data and mit-
igate the problem of overconfidence to some extent.
More visualizations are shown in Appendix J.

6 Conclusion

In this paper, we proposed a novel Explainable
Active Learning (XAL) framework for text clas-
sification. Experiments demonstrated that XAL
achieves substantial improvements compared with
previous AL methods. Further analysis indicated
that the proposed method can generate correspond-
ing explanations for its predictions.

7 Limitations

XAL takes an initial attempt towards integrating
rationales information into active learning. While
acknowledging that this approach may necessitate
additional computational resources, this augmenta-
tion empowers the trained classifier to be both more
explainable and more generalized, as the model can
generate explanations for its predictions and obtain

enhanced performance. Our model, which incor-
porates a decoder module to obtain the generation
score, necessitates more time for data selection,
which is detailed in Appendix G, but during the
inference, since we use an encoder-decoder models
for training, we can directly use the encoder for in-
ference if the explanation generation is not in need.
In our experiments, we evaluated our model’s ef-
fectiveness across six classification tasks in a low-
resource setting, but XAL can be used for other
tasks with more label classes and industrial down-
stream applications.
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A Tasks and Corresponding Prompts

We show the tasks and examples for experiments
in Table 4, including natural language inference,
paraphrase detection, category sentiment classifi-
cation, stance detection, (dis)agreement detection,
and relevance classification. Then we show how we
obtain different explanations in Figure 7 with an ex-
ample of COVID19. We also show the prompts we
used for explanation generation through querying
ChatGPT (Table 5).

B Explanation Examples

Using the prompts in Appendix A, we show some
examples of the obtained explanations in Table 6
by querying ChatGPT.

C Algorithm

We show the detailed algorithm of XAL in Algo-
rithm 1.

D Implementation Details

In our experiments, we directly utilize a pre-trained
encoder-decoder language model for its strong abil-
ity in text understanding and generation. Specifi-
cally, we adopt the officially released pre-trained
FLAN-T5-Large model (Chung et al., 2022) from
Huggingface 7. All models in our experiments are
trained on a single GPU (Tesla V100) using the
Adam optimizer (Kingma and Ba, 2014). We set
the learning rate at 1e-4, with a linear scheduler.
The batch size is consistently set to 1 across all
tasks. The models are trained for 10 epochs in
each iteration. Hyper-parameters λ1, λ2, and λ
are set to 0.1, 0.01, and 0.5, respectively, based on
preliminary experiments. Note that here we don
not specially tune the hyperparameters using grid
search, but select the parameters considering their
magnitude and keep the same across different tasks,
and we further implement sensitivity analysis in
Appendix H. The performance for all tasks is eval-
uated based on macro-averaged F1. The reported
results are the average of three initial sets Dl and
three random seeds (the average of 9 experimental
results overall).

E Detailed Results

E.1 Main Results
The details of the main results are shown in Table
7.

7https://huggingface.co/

Algorithm 1 Explainable Active Learning Algo-
rithm

1: Initialization: dataset Du, iteration stepsM,
selective number L, training epoch T .

2: Randomly select L data from Du, denoted as
Ds and remove them in Du.

3: Annotate the data xi ∈ Ds for yci with human
annotators.

4: Query ChatGPT for diverse explanations ygri
for the data {xi, yci } ∈ Ds.

5: Add {xi, yci , ygri } ∈ Ds to Dl, and empty the
set Ds.

6: m = 1.
7: repeat
8: m← m+ 1
9: Initialize an explainable classifier π and t =

0.
10: repeat
11: t← t+ 1
12: Calculate optimization loss using data

{xi, yci , ygri } ∈ Dl.
13: Optimize the explainable classifier π.
14: until t > T
15: Calculate the predictive entropy pi and ex-

planation scores ci of data xi ∈ Du uing Eq.
6.

16: Calculate the rank score using Eq. 8.
17: Select L data with the largest score from Du

to Ds.
18: Annotate the data in Du following the steps

3-5.
19: until m >M
Output: Explainable classifier π.

E.2 Given upper bound
We show the average number of data required for
the model to achieve 90% performance of those
trained on all the training data (Table 8).

E.3 Ablation Study
The detailed results of the ablation study are shown
in Table 9.

E.4 Capacity of Score
To assess our model’s capability to distinguish be-
tween reasonable and unreasonable explanations,
we evaluate its ranking performance on the test set.
Specifically, after four iterations of the AL process
as per section 5.1, we prompt ChatGPT to gener-
ate diverse explanations for the test data and score
them using Eq. 6. In each test step, we feed both
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Figure 7: The process to generate diverse explanations from LLMs. We can obtain reasonable and unreasonable
explanations by querying ChatGPT with correct and incorrect labels, respectively.

a reasonable and an unreasonable explanation to
our model and calculate the accuracy in predicting
the reasonable ones based on the computed expla-
nation score (Table 10). As seen in the results, the
model incorporating ranking loss achieves supe-
rior performance compared to the model without it.
For instance, the accuracy in RTE and MRPC are
73.93% and 78.62% in the model with ranking loss,
which are 5.36% and 4.30% higher than those with-
out ranking loss, respectively. The improvement
in prediction accuracy suggests that the ranking
loss can enhance the model’s ability to score the
reasonability of explanations.

F Human Annotation

We also carry out experiments to analyze how
the human generation of explanations impacts
model performance. Specifically, we replace Chat-
GPT with human annotation to generate explana-
tions on the MAMS dataset. For human anno-
tation, three PhD students specializing in NLP
annotate the labels and explanations. Specifi-
cally, the models achieve the macro-F1 scores
of RTE-62.13%, MRPC-63.36%, MAMS-67.38%,
COVID19-69.70%, and CLEF-71.56%, which are
relatively lower compared to ChatGPT, which
could be due to inconsistent annotation styles
among annotators and changes in the annotation
scheme from the original dataset (Gilardi et al.,
2023; Zhu et al., 2023). The results also demon-
strate the effectiveness of explanation generation
through LLMs in XAL.

G Cost Analysis

We conduct experiments (on one GPU V100 Tesla)
to analyze the time consumption during each data
query process in the MAMS task, which involves
7,090 training data instances. The results are as fol-

lows: ME-2 minutes, CA-2 minutes, BK-2 minutes,
LC-2 minutes, BALD-11 minutes, Coreset-54 min-
utes, and our model XAL-21 minutes. Upon obser-
vation, it’s apparent that our model requires more
time for querying unlabeled data when compared to
methods that leverage model uncertainty. However,
it consumes less time than the representativeness-
based method Coreset.

H Sensitivity Analysis

In this study, we establish our hyper-parameters
based on the relative magnitude and importance of
various loss functions, consistently applying these
across all datasets without resorting to grid search
for optimization. This section further explores the
sensitivity of our model to these hyper-parameters.
Initially, we examine the impact of different λ1

values, as depicted in Figure 8. Our observations
reveal that the model’s performance remains rela-
tively stable with λ1 values of 0.3 and 0.1. How-
ever, a notable decline in performance occurs when
λ1 is increased to 0.5, attributed to the generative
loss becoming approximately ten times greater than
the classification loss. Conversely, reducing λ1 to
0.05 results in a significant deterioration in model
performance, suggesting that excessively minimiz-
ing the generative loss is detrimental. Subsequently,
we assess the model’s response to various λ2 values,
detailed in Figure 9. These findings indicate that
higher λ2 values can adversely affect the model’s
performance. Yet, the model exhibits lesser sensi-
tivity to changes in λ2 when it is equal to or less
than 0.01.

I Case Study

I.1 Model Generation
Some generation cases are shown (Table 11) from
the models trained for 500 data in the AL process

6689



56.00

60.00

64.00

68.00

72.00

76.00

100 200 300 400 500

0.5 0.3

0.1 0.05

Figure 8: The experimental results with different hyper-
parameter λ1 in MAMS.
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Figure 9: The experimental results with different hyper-
parameter λ2 in MAMS.

of Section 5.1. In these cases, we can find that
our model can generate reasonable explanations
for the label, which indicates the interpretability
of our inference. But in some cases such as the
case iv., although the explanation generates the cor-
rect label Agree, it explains the label with a wrong
reason, which implies that the explainer does not
perform perfectly in the small number of data. But
it also indicates that we can enhance the model per-
formance in inference and generation by selecting
the data with unreasonable explanations through
human beings.

I.2 Unreasonable Generation
We also show some cases that our model believes
have high unreasonability in the training set (Ta-
ble 12). It is noted that in these cases the model
generates some unreasonable explanations.

J Representation Visualization

We further demonstrate more visualizations (Figure
10) in DEBA and Covid19 to show the effectivness
of XAL in exploring informative data.
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Task Text
Natural Language Inference Sentence 1: Danny Kennedy, Greenpeace campaigns director, said: "The

burden of proof in the Scott Parkin expulsion case lies morally with the
Commonwealth, to prove that he is a danger. When the Government
brought in anti-terror legislation, they promised the public that these laws
would only be used to confront a real and present risk of a terrorist attack,
not a sweep-all approach against citizens. Peace is not terrorism. Peace
is not a threat to national security. No democratic government should
expel a foreign citizen because [it] opposes his political opinions."
Sentence 2: Greenpeace director said that peace is terrorism.
Label: Not Entailment.

Paraphrase Detection Sentence 1: Last week the power station’s US owners, AES Corp,
walked away from the plant after banks and bondholders refused to
accept its financial restructuring offer .",
Sentence 2: "The news comes after Drax’s American owner, AES Corp.
AES.N, last week walked away from the plant after banks and bondhold-
ers refused to accept its restructuring offer.
Label: Paraphrase/Semantic Equivalent.

Category Sentiment Classification Text: I left feeling unsatisfied, except for having a nice chance to people
watch in the cozy atmosphere with my over-priced pasta bolognese.
Target: Ambience
Label: Positive

Stance Detection Text: Michigan is fining individuals 500$ for not wearing a mask in
public. How do y’all feel about this? Curious because I am torn about
being so forceful but agree that people should wear masks. #MaskOn.
Target: Face Mask
Label: Favor

(Dis)agreement Detection Text 1: True, but with lower power usage, you have less heat to dissipate,
meaning you can overclock it even more.
Text 2: AMD creates a chip that saves energy by over 31 times. Someone
show this to r/PCMasterRace cause we need to switch to AMD.
Label: Agree.

Relevance Classification Document: 99mtechnetium penicillamine: a renal cortical scanning
agent. 99mTechnetium penicillamine, a renal cortical imaging agent,
can be used to provide a rapid, safe, and non-invasive assessment of
renal morphology and the renal vascular supply. Since this agent is not
excreted significantly during the imaging procedure cortical scans of
high quality can be obtained without image deterioration owing to a
superimposed collecting system. These scans, which are clearly superior
in anatomical detail to earlier scans using 131I hippuran, can be obtained
along with the 131I hippuran renogram when the patient comes to the
nuclear medicine department. Herein we demonstrate the anatomical
detail it is now possible to achieve by presenting the cortical renal
scans and accompanying radiograms from 5 patients with different renal
pathology.
Topic: Procalcitonin, C-reactive protein, and erythrocyte sedimentation
rate for the diagnosis of acute pyelonephritis in children.
Label: Not Relevant.

Table 4: Tasks and examples for experiments.
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Task Prompts Label set
Natural Language
Inference

Sentence 1: {Text 1}. Sentence 2: {Text 2}. Sentence
1 can {Label} sentence 2, explain the reason within 50
words.

{Entail, Not Entail}

Paraphrase Detec-
tion

Sentence 1: {Text 1}. Sentence 2: {Text 2}. The relation
between the above two sentences is {Label}, explain the
reason within 50 words.

{Paraphrase Equivalent, Not
Paraphrase Equivalent}

Category Sentiment
Classification

{Text}. {Positive, Negative, Neu-
tral}

Stance Detection {Text}. The stance of this tweet to the target {Target} is
{Label}, explain the reason within 50 words.

{Favor, Neutral, Against}

(Dis)agreement De-
tection

Sentence 1: {Text 1}. Sentence 2: {Text 2}. The stance
of sentence 2 is {Label} to sentence 1, explain the reason
within 50 words.

{Agree, Neutral, Disagree}

Relevance Classifi-
cation

{Document}. The scientific document is {Label}’ to the
research topic {Topic}, explain the reason within 100
words.

{Relevant, Not Relevant}

Table 5: The prompts we adopted for the tasks in our experiments.
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Input Label Explanation
RTE
Sentence 1: The main institutionalised forms
of recognition for those who have made a sig-
nificant contribution in the fields of physics,
chemistry, medicine, literature, as well as for
those working for peace (and more recently in
the area of economics), are the Nobel prizes.
Sentence 2: Nobel Peace Prize candidates
have been chosen.

Not En-
tailment

Sentence 1 states that the Nobel prizes are the
main forms of recognition for various fields,
including peace. However, sentence 2 only
mentions that candidates have been chosen for
the Nobel Peace Prize, without specifying if
they have actually received the prize. There-
fore, sentence 2 does not necessarily follow
from sentence 1.

Entailment Sentence 1 can entail sentence 2 because sen-
tence 1 mentions that one of the main forms
of recognition for those working for peace is
the Nobel prizes. Therefore, it is reasonable
to assume that candidates for the Nobel Peace
Prize have been chosen.

MRPC
Sentence 1: Maddox, 87, cracked two ribs
when he fell about 10 days ago at an assisted
living home where he was recovering from
intestinal surgery, Virginia Carnes said.
Sentence 2: Maddox, who had battled cancer
since 1983, cracked two ribs earlier this month
when he fell at an assisted living home where
he was recovering from surgery.

Equiva-
lent

The two sentences provide similar information
but are expressed differently. Sentence 1 men-
tions that Maddox fell about 10 days ago, while
Sentence 2 specifies that the fall occurred ear-
lier this month. Despite the slight difference
in wording, both sentences convey the same
meaning.

Not
Equiva-
lent

The reason why the two sentences are not para-
phrases or semantic equivalents is because they
provide different information about the timing
and reason for Maddox’s rib injury. In the first
sentence, it mentions that Maddox fell about
10 days ago while recovering from intestinal
surgery, whereas the second sentence states
that he fell earlier this month while recovering
from surgery without specifying the exact time
frame.

COVID19
Tweet: Placed2nd @AngelaBelcamino Omg
people say I have to wear a mask and I’m cry-
ing because I have to wear a mask to save lives
boo hoo!! MAGAts are stupid!!!

Favor The stance of this tweet towards face masks is
favorable. The reason for this is that the tweet
expresses support for wearing masks to save
lives and criticizes those who oppose wearing
masks, referring to them as ""MAGAts"" (a
term often used to describe supporters of for-
mer President Donald Trump)."

Against The reason behind the stance against face
masks in this tweet seems to be frustration
and ridicule towards those who oppose wear-
ing masks. The tweet suggests that the person
finds the idea of wearing masks to save lives un-
necessary and mocks those who support it, par-
ticularly referring to them as ""MAGAts,"" a
derogatory term for supporters of former Presi-
dent Trump.

Neutral The tweet expresses a neutral stance towards
face masks by mocking the idea of crying over
having to wear one. While it criticizes MAGA
supporters, it does not explicitly state a nega-
tive or positive opinion about face masks them-
selves."

Table 6: Diverse explanations generated from ChatGPT. The golden label is marked in bold.
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Random ME BALD BK LC Coreset CAL BADGE BMEPS XAL
RTE
100 67.34 67.34 67.34 67.34 67.34 67.34 67.34 67.34 67.34 73.40
200 70.64 73.37 68.06 72.80 72.91 71.12 72.22 72.76 70.36 78.22
300 72.16 76.15 71.09 76.85 75.60 74.90 74.81 78.64 75.53 80.51
400 74.71 78.35 73.11 76.90 78.15 75.16 76.15 80.37 78.29 81.50
500 75.54 77.69 74.30 79.44 79.22 77.69 75.42 81.52 80.66 83.02

MRPC
100 69.80 69.80 69.80 69.80 69.80 69.80 69.80 69.80 69.80 75.31
200 75.44 76.26 73.95 76.35 77.10 76.54 76.22 74.78 76.21 80.73
300 78.12 80.14 76.07 80.23 79.87 79.39 78.52 79.21 80.02 81.31
400 80.28 80.74 77.64 81.95 81.21 79.85 79.76 80.67 81.91 82.76
500 80.63 80.90 79.90 82.33 81.53 80.06 80.60 82.11 82.44 83.91

MAMS
100 56.73 56.73 56.73 56.73 56.73 56.73 56.73 56.73 56.73 59.32
200 61.77 63.01 58.75 62.34 62.83 62.59 61.89 64.57 59.64 66.19
300 66.38 65.90 62.68 66.92 66.72 64.83 65.96 67.18 64.48 69.16
400 67.88 69.44 64.33 69.67 69.74 68.93 67.54 70.26 69.88 71.74
500 70.05 71.23 66.69 71.78 71.83 69.50 69.59 71.35 70.51 74.04

COVID19
100 52.29 52.29 52.29 52.29 52.29 52.29 52.29 52.29 52.29 52.24
200 57.19 54.84 53.19 57.22 55.67 56.18 55.67 55.14 55.62 57.57
300 57.95 59.80 54.74 60.10 58.45 58.18 58.45 59.13 58.67 60.48
400 59.85 61.73 55.98 62.30 61.38 60.62 61.38 61.01 59.63 63.63
500 61.78 64.30 56.01 64.36 64.48 61.45 64.48 63.25 62.88 67.16

DEBA
100 42.09 42.09 42.09 42.09 42.09 42.09 42.09 42.09 42.09 46.21
200 50.60 48.74 46.81 50.65 49.73 49.18 49.26 47.35 49.24 53.16
300 53.93 52.43 51.54 54.87 54.57 53.97 53.43 54.21 55.22 57.35
400 57.03 56.58 53.18 57.02 57.15 56.37 55.06 56.75 57.12 58.03
500 57.45 57.25 55.66 57.78 57.64 56.95 55.82 57.88 58.13 59.91

CLEF
100 57.72 57.72 57.72 57.72 57.72 57.72 57.72 57.72 57.72 60.02
200 57.95 59.50 57.38 59.82 58.44 59.62 60.67 58.42 58.14 60.13
300 57.37 60.23 58.80 60.66 61.72 59.60 58.44 59.88 60.12 61.97
400 60.04 63.52 59.14 63.48 63.81 61.46 59.04 61.34 61.22 63.97
500 61.04 62.57 59.03 64.66 65.16 59.84 61.53 64.12 63.27 66.94

Table 7: Main results in the six text classification tasks. We select 100 instances in each iteration and conduct 4
iterations. The results are measured using macro-F1 scores and they are the average values on three different initial
sets Dl and three different random seeds.

Random ME BK Coreset CAL XAL
RTE 388.89 283.33 255.56 344.44 377.78 133.33
MRPC 227.78 222.22 211.11 216.67 205.56 122.22
COVID19 1305.56 877.78 888.89 1172.22 1088.89 761.11
DEBA 605.56 594.44 516.67 594.44 566.67 461.11

Table 8: The detailed experimental results about how much data queried by AL methods can the model achieve
90% performance of the models trained on the whole training data. In each iteration, we select 50 data. The model
performances trained on the whole training sets are, (a) RTE – 83.11%, (b) MRPC – 84.74%, (c) COVID19 –
75.45%, and (d) DEBA – 65.71%. The green triangles refer to the average values of the nine-times experiments.
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ME ME-Exp w/o Rank w/o ME XAL
RTE
100 67.34 72.09 72.77 71.96 73.40
200 73.37 76.68 76.17 75.10 78.22
300 76.15 80.23 80.22 75.77 80.51
400 78.35 80.05 80.42 78.46 81.50
500 77.69 80.08 82.01 78.36 83.02

MRPC
100 69.80 71.58 75.18 75.64 75.31
200 76.26 77.32 80.37 80.53 80.73
300 80.14 80.93 81.50 82.19 81.31
400 80.74 82.72 82.40 81.61 82.76
500 80.90 82.09 83.02 82.42 83.91

MAMS
100 56.73 59.77 60.69 60.73 59.32
200 63.01 64.57 65.90 65.11 66.19
300 65.90 69.32 69.79 69.32 69.16
400 69.44 71.71 71.38 70.83 71.74
500 71.23 72.97 72.79 71.71 74.04

COVID19
100 52.29 50.83 50.94 51.19 52.24
200 54.84 54.13 55.56 55.25 57.57
300 59.80 58.48 58.51 59.48 60.48
400 61.73 62.63 62.66 61.53 63.63
500 64.30 63.88 64.29 62.90 67.16

DEBA
100 42.11 45.06 47.16 45.48 46.21
200 48.74 51.86 52.26 53.11 53.16
300 52.43 55.74 57.15 56.59 57.35
400 56.58 57.51 57.65 57.35 58.03
500 57.25 58.08 59.09 59.11 59.91

CLEF
100 57.72 57.74 57.91 57.99 60.02
200 59.50 59.24 57.80 58.63 60.13
300 60.23 63.00 61.58 60.58 61.97
400 63.52 63.78 63.40 61.87 63.97
500 62.57 66.20 65.57 62.35 66.94

Table 9: Detailed results of ablation study in the six text classification tasks. We select 100 instances in each iteration
and conduct 4 iterations. The results are measured using macro-F1 scores and they are the average values on three
different initial sets Dl and three different random seeds.

RTE MRPC MAMS COVID19 DEBA CLEF
w Ranking Loss 73.93 78.62 68.64 62.25 59.78 90.73
w/o Ranking Loss 68.57 74.32 62.04 58.34 55.04 87.39

Table 10: The performance of scoring the explanations w/o ranking loss.
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Input Golden Explanation
i. RTE
Sentence 1: Dana Reeve, the widow of the ac-
tor Christopher Reeve, has died of lung cancer
at age 44, according to the Christopher Reeve
Foundation.
Sentence 2: Christopher Reeve had an accident.

Not
Entail-
ment

Sentence 1 states that Dana Reeve, the widow of
Christopher Reeve, has died of lung cancer at the
age of 44. It does not provide any information
about what caused Christopher Reeve’s accident.
Therefore, sentence 1 does not entail sentence 2.

ii. MRPC
Sentence 1: Air Commodore Quaife said the
Hornets remained on three-minute alert through-
out the operation.
Sentence 2: Air Commodore John Quaife said
the security operation was unprecedented.

Not
Equiva-
lent

The reason why the two sentences are not para-
phrases or semantic equivalents is because they
provide different information. Sentence 1 states
that the Hornets were on three-minute alert dur-
ing the operation, while Sentence 2 states that
the security operation was unprecedented.

iii. MAMS
Review: Waiter took our drink order and then
we didn’t see him for 15 minutes.
Category: Stuff.

Negative The reason for the negative sentiment towards
the staff in this review is because the waiter took
the drink order and disappeared after 15 min-
utes. This indicates a lack of professionalism
and attentiveness, which can be frustrating for
customers.

iv. COVID19
Tweet: @WCheesemaker @StephenKing No.
You’re missing the point. And from the way I
phrased my statement I can understand why. I
was attempting to point out masks work! They
help stop the spread of disease. I should have
stated it more clearly. I’m a scientist; a big fan
of masks- and science!! :relaxed:
Target: Face mask.

Favor The stance of this tweet is in favor of face masks.
The reason given is that the tweeter believes
masks are effective in stopping the spread of
disease, and therefore should be encouraged to
use them.

v. DEBA
Sentence 1: Best thing you can do is simply not
drive. Take public transportation instead.
Sentence 2: That’s hugely unrealistic for many
people living in places with poor public transport
provisions (rural areas, poorer areas) or who live
in poorly planned towns where amenities are
spatially distant.

Disagree Sentence 2 disagrees with Sentence 1 because it
argues that taking public transportation instead
of driving is not feasible for many people living
in places with poor public transport provisions
or in poorly planned towns.

vi. DEBA
Sentence 1: I can’t imagine believing Joe "Noth-
ing Will Fundamentally Change" Biden is going
to do anything except continue to serve his cor-
porate masters. This is... uh, not a guy who’s
gonna accomplish much in office.
Sentence 2: Biden has surprised me with some
of his action but on the whole it’s still up to
activists and local politicians to get stuff done.
Shame

Agree Sentence 2 agrees with Sentence 1 because it ac-
knowledges that Biden has made some progress,
but it also emphasizes that it is up to activists
and local politicians to bring about meaningful
change.

Table 11: Case study of the explanation generation of our model. The model is trained on 500 labeled data instances
following the AL process in Section 5.1.
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Input Golden Explanation
i. MAMS
Review: I like the smaller portion size for din-
ner.
Category: miscellaneous

Positive The reason for the neutral sentiment polarity to-
wards the aspect "miscellaneous" in the review
is that the reviewer prefers the smaller portion
size for dinner. This suggests that the overall
dining experience is more enjoyable and satisfy-
ing, resulting in a neutral sentiment polarity.

ii. MAMS
Review: After ordering drinks, we both decided
on the Paella Vallenciana, brought out on hot
plates.
Category: food

Neutral The positive sentiment polarity of the review to-
wards the aspect of food is due to the description
of the Paella Vallenciana being brought out on
hot plates. This suggests that the dish was served
fresh and hot, enhancing the dining experience
and leaving a positive impression.

iii. COVID19
Tweet: @Timewalkproject @BBCNormanS
@BBCNews A lot less palaver than being
hooked up to a life support machine! #WearA-
Mask
Target: Face Mask

Favor The tweet expresses a negative stance towards
face masks, referring to them as COVID-19. The
reason for this stance is not provided within the
given word limit.

iv. DEBA
Sentence 1: Energy mostly controls nuclear
weapons and nuclear power plants, not fossil
fuels. That’s why they put a nuclear physicist
(Muniz) in charge of it. What do people think
Muniz going to do that will be harmful to the
environment? Is this just an indirect anti-nuclear
attack? Or just ignorance by insignificant, fringe
environmental groups?
Sentence 2: DoE also has the National Renew-
able Energy Lab, where a lot of the tech develop-
ment used for renewable energy has happened.
The DoE funded the development of fracking.
There’s a history of recent appointees using posi-
tions there to champion the fossil fuels industry,
even if most of what the DoE does is nuclear.

Agree Sentence 2 disagrees with sentence 1 because it
suggests that governments have not used taxes
for the intended purposes. This implies that they
raid the education budget to raise taxes for edu-
cation, contradicting the claim in sentence 1 that
the purpose of a carbon tax is to.

v. DEBA
Sentence 1: I can’t imagine believing Joe "Noth-
ing Will Fundamentally Change" Biden is going
to do anything except continue to serve his cor-
porate masters. This is... uh, not a guy who’s
gonna accomplish much in office
Sentence 2: And that will please you, because
you’d rather complain about it and have your
cynicism be validated.

Disagree Sentence 2 agrees with Sentence 1 because it ar-
gues that the person who posts here is not trying
to debate, but rather to annoy. It suggests that
the solution is to simply out-annoy them and ban
them.

Table 12: Case study of the unreasonable explanation of our model. The model is trained on 500 labeled data
instances following the AL process in Section 5.1.
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Figure 10: The t-SNE visualization of sentence representations in the data selection process.
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