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Abstract

Entity disambiguation (ED), which links the
mentions of ambiguous entities to their referent
entities in a knowledge base, serves as a core
component in entity linking (EL). Existing gen-
erative approaches demonstrate improved accu-
racy compared to classification approaches un-
der the standardized ZELDA benchmark. Nev-
ertheless, generative approaches suffer from the
need for large-scale pre-training and inefficient
generation. Most importantly, entity descrip-
tions, which could contain crucial information
to distinguish similar entities from each other,
are often overlooked. We propose an encoder-
decoder model to disambiguate entities with
more detailed entity descriptions. Given text
and candidate entities, the encoder learns in-
teractions between the text and each candidate
entity, producing representations for each entity
candidate. The decoder then fuses the represen-
tations of entity candidates together and selects
the correct entity. Our experiments, conducted
on various entity disambiguation benchmarks,
demonstrate the strong and robust performance
of this model, particularly +1.5% in the ZELDA
benchmark compared with GENRE. Further-
more, we integrate this approach into the re-
trieval/reader framework and observe +1.5%
improvements in end-to-end entity linking in
the GERBIL benchmark compared with En-
tQA.

1 Introduction

Entity linking (EL) extracts references (a.k.a. men-
tions) to entities within a document and associates
these mentions with their corresponding entries in
a knowledge base (KB). EL is a fundamental com-
ponent in automatic text comprehension, with vari-
ous practical applications such as question answer-
ing, text analysis, recommender systems, semantic
search, and information retrieval.

∗Work done as an intern at Apple.
†Work done as an intern at Apple.
‡Work done while at Apple.

As the most critical component of EL workflows,
entity disambiguation (ED) aims to select the cor-
rect entity from a set of candidate entities, given
textual references. For instance, the entity men-
tion ‘Bert’ may stand for ‘the famous language
model’ (Devlin et al., 2018) or ‘the golden yellow
Muppet character’ depending on the given context.
Therefore, models need to understand context to
disambiguate entities correctly.

Owing to its practical significance in the industry
and the latest developments in utilizing pre-trained
language models (Devlin et al., 2018; Lewis et al.,
2020; Liu et al., 2019; Raffel et al., 2020), various
approaches for entity disambiguation have been in-
troduced in recent years. Primarily, existing meth-
ods can be categorized into two styles: classifica-
tion approaches (Logeswaran et al., 2019; Yamada
et al., 2022; Févry et al., 2020) or generative ap-
proaches (De Cao et al., 2021). Classification ap-
proaches such as (Yamada et al., 2022) predict the
masked entity titles while generative approaches
such as (De Cao et al., 2021) directly decode entity
titles.

The recently proposed ZELDA benchmark
(Milich and Akbik, 2023) standardizes the exper-
imental setup (consistent training data, entity vo-
cabulary, and candidate lists) and shows that gen-
erative approaches such as (De Cao et al., 2021)
have significantly stronger performance under this
experimental setup.

However, Zhang et al. (2022) argues that gen-
erative approaches require large scale pre-training.
In particular, De Cao et al. (2021) critically relies
on a prefix tree (also known as a trie) derived from
Wikipedia to constrain the beam search in order to
produce a valid entity title in a given knowledge
base (KB), which might be inefficient memory-
wise. In addition, since it directly generates a valid
entity without reading their descriptions, crucial
information in the descriptions might be ignored.
Therefore, disentangling significantly similar enti-
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ties proves challenging with this method (Milich
and Akbik, 2023).

To better disentangle similar entities, in this pa-
per we propose an encoder-decoder model that de-
codes entities by utilizing their descriptions. Our
approach is mainly inspired by a recent work on
question answering (Izacard and Grave, 2021). In
particular, we make the following contributions:
We summarize our contributions in the following:

• We propose a new ED approach, using an
encoder-decoder model. Given text and entity
candidates, the encoder learns the interactions
between the text and each entity candidate,
generating representations for each candidate.
Subsequently, the decoder fuses these candi-
date entity representations and generates cor-
rect entities. At inference, instead of relying
on a constrained beam search, it only needs
simple greedy decoding.

• We follow the standard evaluation practice
(ensuring consistent knowledge base, training
corpus and entity candidate lists) and rigor-
ously evaluate this approach in several ED
benchmarks (Milich and Akbik, 2023) and
show its strong and robust performance.

• We integrate our approach into an end-to-end
entity linking pipeline and show large im-
provements compared with the current state-
of-the-art in GERBIL (Usbeck et al., 2015)
benchmark. To the best of our knowledge,
our approach is the first retrieval-augmented
generation approach in EL.

• We propose retrieval augmented entity linking
using Large Language Models (LLMs), e.g.,
GPT-4 and evaluate it in GERBIL (Usbeck
et al., 2015) benchmark. Our results show that
with augmented entity retrieval, GPT-4 out-
performs the current SoTA on some datasets
but in general, it underperforms compared to
fine-tuning-based approaches.

Our approach outperforms strongest ED base-
lines (De Cao et al., 2021; Févry et al., 2020; Ya-
mada et al., 2022) on ZELDA benchmark and EL
baselines (De Cao et al., 2021; Zhang et al., 2022;
Shavarani and Sarkar, 2023) on GEBIL benchmark
(Usbeck et al., 2015).

2 Related Work

Entity Disambiguation. Existing ED ap-
proaches typically fall into two main categories:
classification approaches and generative ap-
proaches.

For classification approaches, LUKE (Yamada
et al., 2022) and FEVRY (Févry et al., 2020) are
two of the most well-known approaches due to their
strong performance. LUKE is based on masked
entity prediction. During the pre-training, LUKE
combines input text and ground-truth entities as
input tokens. Then, it randomly masks entities
from those ground-truth entities and predict those
masked entities by leveraging both the input text
and those unmasked entities. Their model is trained
on a large entity-annotated corpus obtained from
Wikipedia and achieves the current SoTA in several
ED benchmark datasets.

For generative approaches, GENRE (De Cao
et al., 2021) uses BART weights from (Lewis et al.,
2020) and is trained on a Wikipedia corpus, learn-
ing to generate entity names in an autoregressive
manner, conditioned on the provided context. At
inference, GENRE employs a constrained beam
search strategy that forces each generated name to
be in a predefined entity set.

Conventionally, ED methods are evaluated on six
datasets, MSNBC, AQUAINT, ACE2004, WNED-
CWEB (CWEB) and WNED-WIKI (WIKI)
(Gabrilovich et al., 2013; Guo and Barbosa, 2018).
Nevertheless, as shown in Milich and Akbik (2023),
those different ED methods use significantly dif-
ferent amounts of training data (ranging from 2 to
20 million annotated text) obtained with diverse
sampling methodologies and enhanced weak labels
(Orr et al., 2020; Broscheit, 2020), and completely
different knowledge bases (ranging from few thou-
sands to over 6 million) from different sources,
YAGO (Suchanek et al., 2007) or KILT (Petroni
et al., 2021) and different candidate lists (Hoffart
et al., 2011; Pershina et al., 2015). Thus, compar-
ing various approaches is highly challenging. It is
impossible to conclude which approach performs
best (Milich and Akbik, 2023).

ZELDA (Milich and Akbik, 2023) benchmark
is proposed to unify the training data set, entity
vocabulary, and candidate lists to facilitate direct
comparability of ED approaches. For this reason,
we compare our approach with SoTA approaches
on ZELDA benchmark. Our experiment is rigor-
ously conducted using the same training data, entity
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vocabulary, and candidate lists without additional
information from Wikipedia or using weak labels.

Entity Linking. Different from ED, the key chal-
lenge of EL is its significantly large search space.
A system can potentially generate any subset of
conceivable spans in the document, each of which
could correspond to an entity in a large KB, typ-
ically containing millions of entities. To manage
this overwhelming scale, existing approaches break
down EL into two stage tasks: mention detection
(MD) and entity disambiguation (ED). These tasks
are often tackled with varying degrees of indepen-
dence.

In most of these approaches, the sequence of
subproblems is consistent: first, the system identi-
fies possible entity mentions, and then it links these
mentions to specific entries in the given knowledge
base. This MD→ED classic pipeline is utilized
in most methods. They either assume that men-
tions are provided in advance, following the ex-
ample of Gupta et al. (2017) or take a different
route by employing readily available entity recog-
nition systems to first identify mentions and then
disambiguate them through the ED process, as evi-
denced in the works of Hoffart et al. (2011); Li et al.
(2020). Furthermore, some research (De Cao et al.,
2021) trains an end-to-end autoregressive model
that jointly performs MD→ED by beam search.

Recently, Zhang et al. (2022) has shown that the
classic MD → ED approach suffers from identi-
fying mentions without prior knowledge of their
corresponding entities, which is unnatural and chal-
lenging. To fix this problem, the authors flip the
order of MD and ED, and propose an ED → MD
pipeline. Their key observation is that finding rele-
vant candidate entities is easy without the knowl-
edge of their specific mentions. Their ED → MD
approach achieves SoTA results on the in-domain
AIDA-CoNLL dataset (Hoffart et al., 2011) and
GERBIL benchmark (Usbeck et al., 2015). Al-
though their retriever (select top-k candidate en-
tities) performs remarkably well, the majority of
errors are attributed to their reader (which predicts
the final entities and mention spans).

A recent work (Shavarani and Sarkar, 2023)
proposes a structured prediction approach and
achieves 88.6% on AIDA-CoNLL test-b by using
the PPRforNED (Pershina et al., 2015) candidate
list. However, Yang et al. (2018); Milich and Akbik
(2023) question this candidate list since it is unclear
how candidates were pruned. The entity candidates

generated by PPRforNED (Pershina et al., 2015)
were found to be well-tailored to the AIDA-CoNLL
test-b evaluation dataset, with high recall and low
ambiguity. Models (Yamada et al., 2022; Févry
et al., 2020) improve significantly when using these
lists instead of the more generic lists by (Hoffart
et al., 2011) and (Ganea and Hofmann, 2017), re-
spectively. Without the handcrafted PPRforNED
(Pershina et al., 2015) candidate list, the result
of AIDA-CONLL test-b in (Shavarani and Sarkar,
2023) is the same as (Zhang et al., 2022), 85.8%.

As discussed in ZELDA (Milich and Akbik,
2023), using additional signals makes comparison
unfair and indirect. Moreover, in real world en-
tity linking applications, additional signals such as
pruned candidate lists may not be available. There-
fore, same as our comparison methodology in ED,
we do not bring any additional signals and aim to
conduct an end-to-end direct entity linking compar-
ison precisely by using the same training data and
same knowledge base, KILT (Petroni et al., 2021)
as EntQA (Zhang et al., 2022) and GENRE (De
Cao et al., 2021).

3 Model

3.1 Entity Disambiguation

We formalize the ED task as follows. Given a set
of candidate entities denoted as E in a Knowledge
Base (KB), and an input text D with a single men-
tion flagged with two special start token and end
token, the goal is to find the proper entity e ∈ E
that corresponds to the mention in D.

In Figure 1, we show an example of entity disam-
biguation. Given a text with annotated mention that
represents what we want to disambiguate, we add
special tokens <s1> and <e1> before and after the
mention to denote the corresponding mention that
we want to disambiguate. We concatenate input
text with information from each entity candidate
including entity title and entity description, and
feed it into the encoder model to form an entity rep-
resentation and the decoder model takes the fused
entity representations from all those candidates to
generate the correct entity name.

3.2 Entity Linking

We formalize the EL task as follows. Given a set
of entities denoted as E in a Knowledge Base (KB),
and an input document D, the objective is to iden-
tify every entity e ∈ E along with a mention m
such that m ∈ D and m links to e. Typically,
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Figure 1: Pipeline of the fusion entity decoding for entity disambiguation. Given a text ‘DUBLIN 1996-12-07 Jack
Charlton’s relationship with the people of Ireland was cemented on Saturday when the Englishman was officially
declared one of their own. (few sentences are abbreviated here) That is why this is so emotional a night for me ,
<s1> Charlton <e1> said’. Follow (De Cao et al., 2021), we add special tokens <s1> and <e1> to denote the
corresponding mention to disambiguate. Given candidate entities ‘Charlton Athletic F.C.’, ‘Jack Charlton’, ‘Bobby
Charlton’, ‘Suzanne Charlton’ from KB, we concatenate text with each entity candidate, including its entity title and
its description. The Encoder learns interactions between the text and each entity candidate and produces suitable
representations for each entity candidate; decoder concatenates those representations and selects the correct entity.

the length of D varies from few words (e.g., short
queries) to few thousands of words (e.g., news).
To handle long document entity linking, previous
research (Zhang et al., 2022) typically segments
each document D into sentence chunks. For each
sentence chunk p, most approaches (Hoffart et al.,
2011; Li et al., 2020) commonly break down the
task of EL for a sentence chunk p into two main
components: mention detection (MD) and entity
disambiguation (ED), and first extract mentions
from passages (MD) and then link to entities (ED).

Zhang et al. (2022) introduce a different two-
stage process, instead of first identifying mentions
and then link them entities, it first retrieve top-k
candidate entities, followed by the reader’s task
of picking up the accurate entities along with pre-
dicting their associated mention spans. Figure 2
illustrates an instance of end-to-end EL employing
the retrieval-plus-reader approach. Our approach
follow this pipeline.

3.2.1 Bi-encoder EL Retrieval

Entity Embedding. Following (Wu et al., 2019),
we represent an entity e as a combination of its
title and description using the format: [CLS]
title(e) [ENT] description(e) [SEP].
[ENT] is a special token to separate the entity ti-
tle and description representation. For Wikipedia
entities, we consider up to 128 tokens for their de-
scriptions. We use an encoder encE to produce an
embedding for an entity e.

Passage Embedding. For each passages p with
its document topics t, we also concatenate those
information using the following format: [CLS] p
[SEP] t [SEP]. We use another encoder encP to
produce an embedding for a passage p.

Training. The score of an entity e and a passage
p is given as s(e, p) = encE(e)⊤encP (p). Same
as (Zhang et al., 2022), we train the retriever using
a multi-label variant of noise contrastive estimation
(NCE) (Zhang and Stratos, 2021).

Figure 2: Example of document level entity linking
from AIDA test. Given a document, FUSIONED splits it
into smaller passage chunks. Given the current passage
‘That is why this is so emotional a night for me, Charlton
said.’, the bi-encoder entity retrieval picks up top 100
entity candidates, e.g., ‘Charlton Athletic F.C.’, ‘Bobby
Charlton’, ‘Jack Charlton’. FUSIONED then decodes
linked entities and mentions using entity candidate lists.

3.2.2 Fusion EL Reader

We use a similar architecture to the one we used for
ED (Figure 1), while the model generates both en-
tity names and mentions instead of only generating
entity names as this was the case in ED.
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Given a passage chunk p along with its
truncated original document D, the retrieval
retrieves the top-k candidate entities e1, · · · , ek.
Then, for each retrieved candidate entity ei,
we concatenate the document D, the current
passage chunk p, the entity title of ei, and
the entity description of ei. We add special
tokens <extra_id_0>, <extra_id_1>,
<extra_id_2>, <extra_id_3> be-
fore the document, the current passage
chunk, the entity name, and the entity de-
scription, respectively. The input format
becomes <extra_id_0> D <extra_id_1>
p <extra_id_2> title(ei)
<extra_id_3> description(ei).

The encoder independently processes input
data for each entity candidate ei and then
merges the resulting representations from all
the candidates. Finally, the decoder performs
the attention over the merged representations
of all the retrieved entities. If no candidate
entities are linked, the decoder output an empty
string. Otherwise, for each linked entity ei,
it outputs ei <extra_id_4> mi1, · · · ,min

where mi1, · · · ,min are all mentions from p
which links to ei. Finally, we use a special token
<extra_id_5> to split the decoding output
from each entity ei. Therefore, the final output
sting is e1 <extra_id_4> m11, · · ·m1n

<extra_id_5> e2 <extra_id_4>
m21, · · ·m2n <extra_id_5> · · · ei
<extra_id_4> mi1, · · · ,min.

4 Experiment

We conduct extensive experiments to demon-
strate the performance of our proposed approach
(FUSIONED) over 20 datasets, addressing both
single-entity disambiguation and end-to-end entity
linking. The goal of our experiments is to facilitate
a direct comparison, illustrating that under identi-
cal conditions (without incorporating extra training
data or taking additional signals into account), our
approach outperforms the current SoTA.

4.1 Entity Disambiguation

Setup. We follow the experiment setup in
ZELDA benchmark (Milich and Akbik, 2023),
using their training data, entity vocabulary and
the more generic candidate list. We initialize the
weights of our model using FLAN-T5-base (Chung
et al., 2022) 220M to match the number of param-

eters of SoTA models (274M for LUKE (Yamada
et al., 2022) and FEVRY (Févry et al., 2020), 178M
for GENRE (De Cao et al., 2021)). We train the
model for 60k steps with a learning rate 0.0001 us-
ing Adam optimizer (Kingma and Ba, 2015), with a
batch size of 12 on 12 NVIDIA Tesla V100 32GB.

Given a context with a mention, we consider
approximately 250 tokens 1 surrounding the an-
notated mention. For each entity candidate, we
concatenate the entity name, a special token, and
the entity description, truncating to a maximum
of 140 tokens. Then, for each context, we utilize
the candidate list from the benchmark (Milich and
Akbik, 2023). We only consider the top 200 entity
candidates from this list. We evaluate checkpoints
every 2000 steps for the last 8000 steps in AIDA-B,
selecting the best checkpoint.

Datasets. At inference, we evaluate the model
using greedy decoding on 9 datasets: AIDA-
B (Hoffart et al., 2011), TWEEKI (Botzer
et al., 2021), REDDIT-POSTS and REDDIT-
COMMENTS (Botzer et al., 2021), WNED-
WIKI and WNED-CWEB (Guo and Barbosa,
2018), SLINKS-TOP and SLINKS-SHADOW
and SLINKS-TAIL (Provatorova et al., 2021).
These datasets are collected from diverse sources:
news (AIDA-B), annotated tweets (TWEEKI), top-
scoring Reddit posts and comments (REDDIT-
POSTS and REDDIT-COMMENTS), Wikipedia
articles (WNED-WIKI and WNED-CWEB). In par-
ticular, (Provatorova et al., 2021) categorizes en-
tities into three cases based on their appearance
frequency in Wikipedia: SLINKS-TOP, where the
ground truth entity is the most frequent; SLINKS-
SHADOW, where a more popular entity overshad-
ows the correct disambiguation; and SLINKS-
TAIL, for rare long-tail entities.

Baselines. We examine two methods presented
in (Févry et al., 2020) using a candidate list
(FEVRYCL) and without any restriction on the
search space (FEVRYALL). Additionally, for one
of the ED SoTA approaches LUKE (Yamada et al.,
2022), we present results of two models LUKEPPRE

and LUKEPFT on ZELDA (Milich and Akbik,
2023) benchmark.

GENRE (De Cao et al., 2021) employs a prefix

1ZELDA (Milich and Akbik, 2023) benchmark considers
500 chars to the left and 500 chars to the right of each men-
tion. We assume that each token’s length is on average and
approximately equal to 4 English characters, then it results in
using 250 tokens around the mention.
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Method AIDA-
B

TWEEKI REDDIT-
POSTS

REDDIT-
COMM

WNED-
CWEB

WNED-
WIKI

SLINKS-
TAIL

SLINKS-
SHADOW

SLINKS-
TOP

AVG

Baselines
CL-RECALL 91.1 94.0 98.4 98.3 92.4 98.8 98.8 56.7 73.1 89.1
Classification
FEVRYALL 79.2 71.8 88.5 84.1 68.0 84.3 63.8 43.4 53.1 70.7
FEVRYCL 79.5 76.9 89.0 86.5 70.3 84.5 87.6 31.9 47.7 72.7
LUKEPPRE 79.3 73.8 76.1 69.9 66.8 68.4 97.7 20.4 50.8 67.0
LUKEPFT 81.2 77.9 81.5 78.5 70.3 76.5 98.0 22.5 51.8 71.0
Generative
GENREALL 72.4 75.9 88.8 83.9 66.5 85.2 95.3 38.7 43.5 72.2
GENRECL 78.6 80.1 92.8 91.5 73.6 88.4 99.6 37.3 52.8 77.2
FUSIONED 80.1 81.4 93.9 92.3 73.6 89.0 98.3 41.5 57.9 78.7

Table 1: Comparison between FusionED with both classification or generative based SoTA in ZELDA Benchmark
(Milich and Akbik, 2023). Baselines number are taken from (Milich and Akbik, 2023). We emphasize the leading
model by formatting it in bold and the second-best model by using an underline for each dataset. CL-RECALL
represents the recall of the candidate list in ZELDA, indicating the highest possible accuracy using its candidate list.

tree derived from all entity titles in the KB to re-
strict the generation process. While GENRE does
not utilize candidate lists during training, in in-
ference the prefix tree can be generated using the
candidate lists GENRECL or without candidate lists
GENREALL.

We also list CL-RECALL, which is the recall
of the candidate list in ZELDA. It reflects the best
possible accuracy if we always select the correct
entity from the candidate list.

Experimental Results. Table 1 reports the accu-
racy of FUSIONED compared with SoTA models.
Clearly, FUSIONED achieves the highest perfor-
mance across six datasets and secures the second
position in three datasets. According to Table 1
and as it was previously pointed out by (Milich
and Akbik, 2023), GENRE shows significantly bet-
ter performance over classification-based baselines.
However, it struggles to disambiguate entities in
SLINKS-TOP and SLINKS-SHADOW. One pos-
sible interpretation is that it never uses any entity
description to disambiguate entities with a similar
title. Thus, it favors decoding into the most promi-
nent case where the generated entity title will be
most similar to the mention text.

It is worth mentioning that FUSIONED demon-
strates an over +4 point accuracy improvement
compared to GENRE on SLINKS-TOP and
SLINKS-SHADOW datasets. These datasets in-
volve ambiguous entities with similar titles. In-
corporating information from entity descriptions
is a prominent reason for FUSIONED’s enhanced
performance.

Table 2 shows the accuracy of different ap-
proaches across various difficulty brackets in the
WNED-WIKI dataset, introduced in (Guo and Bar-

bosa, 2018). They propose a baseline method
PRIOR by selecting the entity with the highest
prior probability, denoted as prior(m, e), for a
given mention m. This prior probability is pre-
computed using all annotated mention-entity pairs
from Web-scale and Wikipedia corpora. PRIOR
serves as a proxy to assess the difficulty of a men-
tion. They further normalize the probability of the
ground truth entity given mention. Based on this
normalized value, they categorize difficulty into
eight brackets. Specifically, if the probability for
the corresponding ground truth entity of a mention
is low, indicating increased ambiguity across the
entire Web and Wikipedia corpora, the mention is
considered more difficult. [0.4 - 0.3] represents
the most difficult test cases while 1 represents the
easiest ones. Our model has the highest accuracy
across most different brackets (+5% in [0.4 - 0.3]),
suggesting that using entity descriptions can help
disambiguate closed entities in most challenging
test cases.

4.2 Entity Linking

Setup. For EL, we adhere to the established con-
vention (De Cao et al., 2021; Zhang et al., 2022)
by presenting the InKB Micro F1 score for both
the in-domain and out-of-domain datasets. Specif-
ically, for the in-domain scenario, we train FU-
SIONED using the AIDA-CoNLL dataset (Hoffart
et al., 2011). For the out-of-domain tests, follow-
ing the same practice, we evaluate it on seven test
sets: MSNBC (Cucerzan, 2007), Derczynski (Der)
(Derczynski et al., 2015), KORE 50 (K50) (Hoffart
et al., 2012), N3-Reuters-128 (R128), N3-RSS-500
(R500) (Röder et al., 2014), and OKE challenge
2015 and 2016 (OKE15 and OKE16) (Nuzzolese
et al., 2015). For KB, we utilize the 2019 Wikipedia
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Method 1 [1 - 0.9] [0.9 - 0.8] [0.8 - 0.7] [0.7 - 0.6] [0.6 - 0.5] [0.5 - 0.4] [0.4 - 0.3]
CL-RECALL 99.7 97.2 99.2 98.3 98.3 99.1 98.8 99.6
FEVRYCL 94.8 92.2 88.8 87.2 84.1 80.0 76.0 72.2
LUKEPFT 91.5 90.4 86.3 80.3 77.8 73.8 62.2 56.2
GENRECL 97.1 94.2 91.2 85.6 87.8 86.9 86.9 79.7
FUSIONED 96.4 92.4 90.8 87.5 86.1 88.1 87.1 85.0

Table 2: Accuracy across various difficulty brackets was assessed for different approaches in the WNED-WIKI
dataset. [0.4 - 0.3] is the most difficult bracket while 1 is the easiest. We emphasize the leading model by highlighting
it in bold and denote the runner-up with an underline for each bracket. Our model shows the best performance
across most different brackets, suggesting that using entity descriptions can help disambiguate closed entities in
most challenging tests.

In-domain Out-of-domain
Method AIDA-B MSNBC Der K50 R128 R500 OKE15 OKE16 AVG
Hoffart et al. (2011) 72.8 65.1 32.6 55.4 46.4 42.4 63.1 0 47.2
Steinmetz and Sack (2013) 42.3 30.9 26.5 46.8 18.1 20.5 46.2 46.4 34.7
Moro et al. (2014) 48.5 39.7 29.8 55.9 23.0 29.1 41.9 37.7 38.2
Kolitsas et al. (2018) 82.4 72.4 34.1 35.2 50.3 38.2 61.9 52.7 53.4
Broscheit (2019) 79.3 - - - - - - -
Martins et al. (2019) 81.9 - - - - - - -
Van Hulst et al. (2020) 80.5 72.4 41.1 50.7 49.9 35.0 63.1 58.3 56.4
De Cao et al. (2021) 83.7 73.7 54.1 60.7 46.7 40.3 56.1 50.0 58.2
De Cao et al. (2021) 85.5 - - - - - - -
Zhang et al. (2022) 85.8 72.1 52.9 64.5 54.1 41.9 61.1 51.3 60.5
Shavarani and Sarkar (2023) 85.8 63.1 59.1 53.7 47.1 44.4 59.5 56.6 58.7
GPT-4 (zero-shot) Shavarani and Sarkar (2023) 54.1 - - - - - - -
GPT-4 + retrieval (zero-shot) 58.4 42.4 40.1 69.0 35.1 29.4 58.3 53.1 48.3
GPT-4 + retrieval (zero-shot)* 59.1 42.5 41.0 67.6 36.4 30.1 58.4 53.0 48.5
FUSIONED 86.5 73.6 56.8 65.1 53.1 41.6 62.3 56.6 62.0

Table 3: InKB Micro F1 on the GERBIL benchmark with respect to in-domain and out-of-domain test sets. We
highlight the top-performing model in bold and the runner-up in underline for each dataset. For (Shavarani and
Sarkar, 2023), to make a fair comparison, we use their AIDA-testb result without external additional candidate set
(Pershina et al., 2015). For GPT-4 + retrieval (zero-shot)*, we additionally filter entities generated by the model
using candidate entities obtained from entity retrieval and this slightly improve its overall performance.

dump, as supplied within the KILT benchmark
(Petroni et al., 2021), encompassing a total of 5.9
million entities for our knowledge base (KB).

Retriever Training. Following (Zhang et al.,
2022), we initialize weights of both the passage en-
coder (encP ) and the entity encoder (encE) using
BLINK (Wu et al., 2019) retrievers that have been
pretrained on Wikipedia hyperlinks. We also fine-
tune retrievers using NCE objective with hard neg-
ative mining and follow the same sampling strategy
as (Zhang et al., 2022) (90% from random sample
and 10% from hard negatives) . We reproduce their
retriever by matching their top 100 recall numbers
reported in their paper. We use FAISS (Johnson
et al., 2019) to speed up vector similarity search.

Reader Training. We create the reader dataset by
selecting the top 100 candidates from the retrieval
process. For each ground truth entity, we create an
entity title and mention pair. And we concatenate

truncated document and those entity pairs together
as discussed in section 3.2.2 2.

The model is initialized with the FLAN-T5-large
model (Chung et al., 2022). We finetune the model
for 20k steps with a learning rate of 0.0001 using
the Adam optimizer (Kingma and Ba, 2015), with
a batch size of 8, employing 8 NVIDIA Tesla A100
40GB GPUs. Following the approach in (Zhang
et al., 2022), we evaluate the models every 1000
steps in AIDA and select the best checkpoint. We
use a linear decay learning rate scheduler that starts
at 0, warms up to the peak learning rate, and then
decays back to 0. The warm-up rate is set to 1%.

Inference. During inference, we employ a slid-
ing window approach to split the document into

2EntQA (Zhang et al., 2022) shows injecting document
level information can improve model performance largely
(+1.4 F1). So we use a truncated document of up to 20 tokens,
which roughly corresponds to the first sentence approach in
EntQA (Zhang et al., 2022)
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passages with a window size of 20 tokens and a
stride of 10 tokens to avoid cutting off any men-
tions. For each split passage, we first retrieve the
top 100 entity candidates using the bi-encoder, fol-
lowed by a FUSIONED reader to decode correct
entities along with their mentions. Using a slid-
ing window approach might cause the reader to
identify overlapping mentions or to disambiguate
a single mention into two different entities. For
overlapping mentions, we retain the longest one.
And if the same mention is disambiguated into two
different entities, we retain both entities.

Experimental Results. Table 3 shows InKB Mi-
cro F1 of FUSIONED compared with different en-
tity linking systems. Clearly, FUSIONED achieves
the best in-domain test (+0.7% F1 for AIDA-B
(Hoffart et al., 2011)) without using any hand-
crafted candidate list (Pershina et al., 2015)

Overall, FUSIONED achieves the best averaged
F1 score across the all evaluation datasets; +1.5%
over EntQA (Zhang et al., 2022) and +2.8% over
the latest work (Shavarani and Sarkar, 2023) in EL.
The reason for the lower performance on OKE15
and OKE16 (Nuzzolese et al., 2015) is consis-
tent with the observation made by (De Cao et al.,
2021): these datasets include coreference annota-
tions (such as pronouns and common nouns linked
to entities), for which our model lacks training. In
contrast, many other systems incorporate a compo-
nent in their pipelines specifically designed to use
these annotations.

Compared to the previous retrieval-plus-reader
approach, EntQA (Zhang et al., 2022), FUSIONED
improves by +1.5% on MSNBC, +3.9% on Der,
+0.6% on K50, and +4.7% on OKE16.

4.3 Case Study: Retrieval-augmented LLMs
for Entity Linking

Shavarani and Sarkar (2023) has benchmarked
LLMs for EL using the approach introduced in
(De Cao et al., 2021) where it produces a markup
around the mentions followed by the linked entity
name. However, the results are much worse than
our approach, 54.1 vs 86.5. Although LLMs pos-
sess comprehensive knowledge about entities, they
face a limitation in directly reasoning about specific
Wikipedia URLs and Wikipedia names.

We conduct a preliminary study to assess the
performance of retrieval-augmented prompting for
linking entities using LLMs. This approach in-
volves utilizing the same retrieval models that

Datasets GPT-4 + retrieval FUSIONED
P R F1 P R F1

AIDA-B 52.0 66.6 58.4 84.4 88.7 86.5
MSNBC 32.6 60.7 42.4 75.6 71.7 73.6
Der 29.2 63.9 40.1 55.2 58.5 56.8
K50 70.3 67.8 69.0 72.0 59.4 65.1
R128 25.6 55.6 35.1 56.3 50.2 53.1
R500 19.2 62.8 29.4 31.6 60.7 41.6
OKE15 64.1 53.5 58.3 80.1 51.0 62.3
OKE16 60.7 47.2 53.1 76.8 44.8 56.6

Table 4: In contrast to FUSIONED, GPT-4 + retrieval
demonstrates improved recall (R) across all datasets
except AIDA-B and MSNBC, while exhibiting inferior
precision (P) across all datasets.

we described before, which are initialized using
BLINK (Wu et al., 2019) weights and fine-tuned
based on AIDA (Hoffart et al., 2011). For the
reader, we replace the FUSIONED with GPT-4.
More precisely, we provide GPT-4 with truncated
documents (up to 50 tokens), input passages, and
entity candidates, including entity title and entity
description (up to 50 tokens). We prompt it to link
entities from the candidate entity sets and identify
their corresponding mentions. To the best of our
knowledge, we are the first to propose retrieval-
augmented LLMs for EL.

Table 4 presents a detailed comparison between
FUSIONED and GPT-4 + retrieval. GPT-4 + re-
trieval shows better recall (R) in all datasets except
AIDA-B, MSNBC, but it has lower precision (P) in
all datasets. The inferior precision of GPT-4 might
stem from 1) ambiguity in defining entities, where
it considers instances like ‘Spoon’, ‘Pasta’, ‘Sci-
entist’ as entities diverge from actual ground truth
labels in MSNBC (Cucerzan, 2007); 2) linking am-
biguous partial names to famous entities (e.g., in a
dataset based on tweets (Derczynski et al., 2015),
a given query is ‘I’m going home to Wisconsin’,
it links the ambiguous entity ‘Wisconsin’ to the
Wisconsin state, but it may refer to ‘University of
Wisconsin–Madison’). Our preliminary results sug-
gest that future research should focus on enhancing
the precision of LLMs by using varied prompts to
match SoTA fine-tuned models.

5 Conclusion

We propose an encoder-decoder model architecture
to enhance the disambiguation of entities by pro-
viding more detailed descriptions. The encoder,
when given text and candidate entities learns the
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interactions between the text and each entity candi-
date, generating representations for each candidate.
The decoder then combines these representations
to produce the correct entity. Our experiments,
conducted on various entity disambiguation bench-
marks, demonstrate the model’s strong and robust
performance. Furthermore, we integrate this ap-
proach into the retrieval/reader EL framework and
observe improvements on the GERBIL benchmark
compared with previous SoTA. We also propose
entity retrieval-augmented large language models
(LLMs) for EL. Results show that compared to
FUSIONED, LLMs generally underperform while
they demonstrate strong improvements compared
to SoTA over some datasets.

6 Limitations and Ethical Considerations

The scope of our ED and EL models are limited
to traditional Wikipedia and News datasets. We
have not investigated its effectiveness in diverse
domains such as biomedical research, e-commerce,
and product catalogs. Furthermore, this paper fo-
cuses exclusively on the English corpus, and ex-
ploring the potential of our model in a multilingual
setting would be an interesting expansion for fu-
ture research. This includes investigating the ad-
vantages of projecting entity linking concepts from
one language to another and employing multilin-
gual representation learning to enhance our base
model. While our retrieval-augmented LLMs ex-
hibit notable performance improvements for certain
datasets in EL, they underperform compared to the
other approaches. Investigating how to enhance
the performance of LLMs using different prompts
further is an interesting direction for exploration.

Our models are trained using datasets com-
prised of existing textual collections sourced from
Wikipedia and News. Recent studies have brought
attention to potential societal biases ingrained in
established corpora. We acknowledge the potential
risk that our EL models may inherit such biases.
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In-domain Out-of-domain
Method AIDA-B MSNBC AQUAINT ACE2004 CWEB WIKI AVG
De Cao et al. (2021) 88.6 88.1 77.1 82.3 71.9 71.7 80.0
FUSIONED 91.7 92.4 82.0 87.1 75.8 78.6 84.6

Table 5: InKB Micro F1 comparison of GENER and FUSIONED when only training in AIDA dataset and evaluate the
performance on both in-domain and out-of-domain. The goal of this experiments is to provide a direct comparison.

A Additional Experiments on Named
Entity Disambiguation Benchmark

We also run a small ablation experiment on tradi-
tional named entity disambiguation datasets using
FLAN-T5-large as base model to compare the cor-
responding large model. Unlike a standard bench-
mark, models which test on those datasets typically
trained using different corpus and linked to differ-
ent KB which maybe subset of YAGO (Suchanek
et al., 2007) and KILT (Petroni et al., 2021). Re-
producing those results might be a challenge due
to the incomplete release of their entity vocabu-
lary 3 4. And comparison is indirect since training
datasets are different and may overlap with some
test datasets used in out-of-domain evaluation 5.

We avoid training our model on Wikipedia
datasets to prevent test data leakage. Instead, we
conduct ablation experiments, training on AIDA
and evaluating it in both in-domain AIDA-B and
out-domain datasets such as MSNBC, AQUAINT,
ACE2004, WNED-CWEB (CWEB), and WNED-
WIKI (WIKI) (Gabrilovich et al., 2013; Guo and
Barbosa, 2018) to provide a direct comparison.

At the inference, we rely on the same candidate
lists provided in (De Cao et al., 2021) 6. Instead of
decoding entity names, we decode the correspond-
ing entity number in the given ordered candidate
list.

Table 5 presents a comparison of InKB Micro
F1 results between GENER and FUSIONED when
only trained on the AIDA dataset and evaluated
in both in-domain and out-of-domain scenarios.
FUSIONED shows much better performance com-
pared to GENER, supporting our claim that our
model does not require significant pre-training. It
is worth noting that our numbers are not directly

3https://github.com/facebookresearch/
GENRE/issues/26

4https://github.com/facebookresearch/
GENRE/issues/72

5https://github.com/facebookresearch/
GENRE/issues/13

6https://github.com/facebookresearch/
GENRE/tree/main/examples_genre

comparable with SoTA models, as those models
are trained on different corpus.

B Entity Linking Experiments in GPT-4

Our prompt template is as follows:
Given a input passage and a

candidate entity list (each
element in this list is a pair
with entity title and entity
description), your task is to
select entities from this list
and link them to mentions which
appear in given passage. For
each linkage, please output
the entity title and mention,
separated by @#@ on each line.
You can use the truncated
document as context information.
passage: ... , entities: ...
, document: ...

For each passage, we first retrieve the top-100
entity candidates, then feed this passage, entity can-
didates, and the corresponding truncated document
into this template to produce a prompt. Subse-
quently, we call the GPT-4-16k API to get results.
Then we parse results and evaluate those in GER-
BIL benchmark.

GPT-4 + retrieval GPT-4 + retrieval*
Dataset P R F1 P R F1
AIDA-B 52.0 66.6 58.4 53.2 66.5 59.1
MSNBC 32.6 60.7 42.4 32.8 60.5 42.5
Der 29.2 63.9 40.1 30.2 63.9 41.0
K50 70.3 67.8 69.0 72.0 59.4 65.1
R128 25.6 55.6 35.1 27.2 55.2 36.4
R500 19.2 62.8 29.4 20.1 61.0 30.1
OKE15 64.1 53.5 58.3 64.6 53.3 58.4
OKE16 60.7 47.2 53.1 61.5 46.5 53.0

Table 6: Breakdown of the score, Precision (P), Recall
(R) and F1 for the GPT-4 + retrieval method.

Table 6 presents the results of GPT-4 in the GER-
BIL benchmark (Usbeck et al., 2015). For GPT-4 +
retrieval (zero-shot)*, we additionally filter entities
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generated by the model using candidate entities
obtained from entity retrieval and this improves its
precision and slightly improve its performance over
all datasets except K50 and OKE16.
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