
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 6325–6339

June 16-21, 2024 ©2024 Association for Computational Linguistics

ContraSim – Analyzing Neural Representations Based on Contrastive
Learning

Adir Rahamim Yonatan Belinkov
adir.rahamim@cs.technion.ac.il belinkov@technion.ac.il

Technion – Israel Institute of Technology

Abstract

Recent work has compared neural network rep-
resentations via similarity-based analyses to
improve model interpretation. The quality of
a similarity measure is typically evaluated by
its success in assigning a high score to rep-
resentations that are expected to be matched.
However, existing similarity measures perform
mediocrely on standard benchmarks. In this
work, we develop a new similarity measure,
dubbed ContraSim, based on contrastive learn-
ing. In contrast to common closed-form sim-
ilarity measures, ContraSim learns a parame-
terized measure by using both similar and dis-
similar examples. We perform an extensive
experimental evaluation of our method, with
both language and vision models, on the stan-
dard layer prediction benchmark and two new
benchmarks that we introduce: the multilin-
gual benchmark and the image–caption bench-
mark. In all cases, ContraSim achieves much
higher accuracy than previous similarity mea-
sures, even when presented with challenging ex-
amples. Finally, ContraSim is more suitable for
the analysis of neural networks, revealing new
insights not captured by previous measures.1

1 Introduction

Representation learning has been key in the suc-
cess of deep neural networks (NNs) on many tasks.
However, the resulting representations are opaque
and not easily understood. A recent line of work
analyzes internal representations by comparing two
sets of representations, for instance from two dif-
ferent models. The choice of similarity measure is
crucial and much work has been devoted to devel-
oping various such measures (Raghu et al., 2017;
Morcos et al., 2018; Kornblith et al., 2019; Wu
et al., 2020). Similarity-based analyses may shed
light on how different datasets, architectures, etc.,
change the model’s learned representations, and

1Code is available at: https://github.com/
technion-cs-nlp/ContraSim.

improve their interpretability. For example, a simi-
larity analysis showed that lower layers in different
language models are more similar to each other,
while fine-tuning affects mostly the top layers (Wu
et al., 2020).

Various similarity measures have been proposed
for comparing representations, among them the
most popular ones are based on centered kernel
alignment (CKA) (Kornblith et al., 2019) and
canonical correlation analysis (CCA) (Hotelling,
1936; Morcos et al., 2018). They all share a similar
methodology: given a pair of feature representa-
tions of the same input, they estimate the similarity
between them, without considering other examples.
However, they all perform mediocrely on standard
benchmarks. Thus, we might question the reliabil-
ity of their similarity scores, as well as the validity
of interpretability insights derived from them.

Motivated by this, we introduce ContraSim, a
new similarity measure for interpreting NNs, based
on contrastive learning (CL) (Chen et al., 2020; He
et al., 2020). Contrary to prior work (e.g., Raghu
et al., 2017; Kornblith et al., 2019), which defines
closed-form general-purpose similarity measures,
ContraSim is a learnable similarity measure that
uses examples with a high similarity (the positive
set) and examples that have a low similarity (the
negative set), to train an encoder that maps rep-
resentations to the space where similarity is mea-
sured. In the projected space, representation sim-
ilarity is maximized with positive examples and
minimized with negative examples. Our approach
allows specializing the similarity measure to a par-
ticular domain, to obtain a more reliable and spe-
cific analysis. The similarity between projected rep-
resentations is determined using a simpler closed-
form measure.

We experimentally evaluate ContraSim on stan-
dard benchmark for similarity measures – the layer
prediction benchmark (Kornblith et al., 2019), and
two new benchmarks we introduce in this paper:

6325

https://github.com/technion-cs-nlp/ContraSim
https://github.com/technion-cs-nlp/ContraSim

the multilingual benchmark and the image–caption
benchmark. In experiments with both language
and vision models and multiple datasets, Con-
traSim outperforms common similarity measures.
In addition, we investigate a more challenging sce-
nario, where during evaluation instead of choosing
a random sentence, we retrieve a highly similar
sentences as confusing examples, using the Face-
book AI Similarity Search (FAISS) library (John-
son et al., 2019). While other similarity measures
are highly affected by this change, our method
maintains a high accuracy with a very small degra-
dation. We attribute this to the highly separable
representations that our method learns. Even when
ContraSim is trained on data from one domain/task
and evaluated on data from another domain/task, it
achieves superior performance.

Through ablations, we demonstrate that the CL
procedure is crucial to the success of the method
and only maximizing the similarity of positive ex-
amples is not sufficient. Furthermore, we demon-
strate that ContraSim reveals new insights not cap-
tured by previous similarity measures. For instance,
CKA suggests that the BERT language model (De-
vlin et al., 2019) is more similar to vision models
than GPT-2 (Radford et al., 2019). Our analysis
indicates that both BERT and GPT-2 create rep-
resentations that are equally similar to the vision
ones.

2 Related Work

Many studies have used similarity measures for the
interpretability of NNs. For instance, Kornblith
et al. (2019) showed that adding too many layers to
a convolutional neural network, trained for image
classification, hurts its performance. Using CKA,
they found that more than half of the network’s
layers are very similar to the last. They further
found that two models trained on different image
datasets (CIFAR-10 and CIFAR-100, Krizhevsky
et al. 2009) learn representations that are similar
in the shallow layers. Similar findings were noted
for language models by Wu et al. (2020). The
latter also evaluated the effect of fine-tuning on
language models and found that the top layers are
most affected by fine-tuning. Kornblith et al. (2019)
and Morcos et al. (2018) found that increasing the
model’s layer width results in more similar repre-
sentations between models. Raghu et al. (2017)
provided an interpretation of the learning process
by examining how similar representations were dur-

ing the training process compared to final represen-
tations. They found that networks converge from
bottom to top. In all this line of work, the similarity
is computed using only similar examples, using
functional closed-form measures. In contrast, we
use both positive and negative samples in a learn-
able similarity measure, which allows adaptation
to specific tasks.

Separate work employs contrastive learning for
representation learning (He et al., 2020; Chen et al.,
2020) and data retrieval (Karpathy et al., 2014;
Huang et al., 2008). In contrast to that line of work,
we borrow the contrastive learning formulation for
similarity-based interpretations of deep networks.

3 Problem Setup

Let X = {(x(i)1 , x
(i)
2)}Ni=1 denote a set of N ex-

amples, and A = {(a(i)
1 ,a

(i)
2)}Ni=1 the set of rep-

resentations generated for the examples in X. A
representation is a high-dimensional vector of neu-
ron activations. Representations may be created
by different models, different layers of the same
model, etc. For instance, x(i)1 and x

(i)
2 may be the

same input, with a
(i)
1 and a

(i)
2 representations of

that input in different layers.
Our goal is to obtain a scalar similarity score,

which represents the similarity between the two
sets of representations, a(i)

1 and a
(i)
2 , and ranges

from 0 (no similarity) to 1 (identical representa-
tions). That is, we define X1 ∈ RN×p1 as a ma-
trix of p1-dim activations of N data points, and
X2 ∈ RN×p2 as another matrix of p2-dim acti-
vations of N data points. We seek a similarity
measure, s(X1,X2).

4 ContraSim

In this section we introduce ContraSim, a simi-
larity index for measuring the similarity of neural
network representations. Our method uses a train-
able encoder, which first maps representations to
a new space and then measures the similarity of
the projected representations. Formally, let eθ de-
note an encoder with trainable parameters θ, and
assume two representations a1 and a2. In order
to obtain a similarity score between 0 and 1, we
first apply L2 normalization to the encoder out-
puts: z1 = eθ(a1)/∥eθ(a1)∥ (and similarly for
a2). Then their similarity is calculated as:

s(z1, z2) (1)

6326

where s is a simple closed-form similarity measure
for two vectors. Throughout this work we use dot
product for s.

For efficiency reasons, we calculate the simi-
larity between batches of the normalized encoder
representations, dividing by the batch size n:

1

n

n∑

i=1

(
zi
1 · zi

2

)
(2)

If the representations a1 and a2 have the same
dimensionality, ContraSim can be trained with a
single encoder shared for both representations. In
the case that a1 and a2 have different dimensions,
two different encoders are trained, eθ1 and eθ2, one
for each representation set. By that, ContraSim
can calculate the similarity of representations with
different dimensionality, as each encoder has a dif-
ferent input dimension, but both encoders share
the same output dimension. Experiments with rep-
resentations with different dimensionality are in
Section 6.3.3.

Training. None of the similarity measures com-
monly used in NNs analysis uses negative examples
to estimate the similarity of a given pair (Section 2).
Given two examples, these measures output a scalar
that represents the similarity between them, with-
out leveraging data from other examples. However,
based on knowledge from other examples, we can
construct a better similarity measure. In particu-
lar, for a given example x(i) ∈ X with its encoded
representation zi, we construct a set of positive
example indices, P (i) = {p1, ..., pq}, and a set
of negative example indices, N(i) = {n1, ..., nt}.
The choice of these sets is task-specific and allows
one to add inductive bias to the training process.

We train the encoder to maximize the similar-
ity of zi with all the positive examples, while at
the same time making it dis-similar from the nega-
tive examples. We leverage ideas from contrastive
learning (Chen et al., 2020; He et al., 2020), and
minimize the following objective:

L =
∑

i∈I

−1

|P (i)| log
∑

p∈P (i) exp(zi · zp/τ)∑
n∈N(i) exp(zi · zn/τ)

(3)
with scalar temperature parameter τ > 0. Here zp
and zn are normalized encoder outputs of repre-
sentations from the positive and negative groups,
respectively. It is important to notice that we do
not alter the original model representations, and

Figure 1: Layer prediction benchmark. Given two mod-
els differing only in weight initialization, A and B, for
each layer in the first model, among all layers of the
second model, the highest similarity should be assigned
to the architecturally-corresponding layer.

the only trainable parameters are the encoder e pa-
rameters, θ. Our work uses negative examples and
a trainable encoder for constructing a similarity
measure. We evaluate these two aspects in the ex-
perimental section and show that using negative
examples is an important aspect of our method.
Combining the two leads to a similarity measure
that outperforms current measures.

5 Similarity Measure Evaluation

For evaluation, we use the known layer prediction
benchmark and two new benchmarks we design:
the multilingual benchmark and the image–caption
benchmark. We further propose a strengthened
version of the last two using the FAISS software.

5.1 Layer prediction benchmark

Proposed by Kornblith et al. (2019), a basic and
intuitive benchmark is to assess the invariance
of a similarity measure against changes to a ran-
dom seed. Given two models differing only in
their weight initializations, for each layer in the
first model, among all layers of the second model,
one can expect that a good similarity measure as-
signs the highest similarity for the architecturally-
corresponding layer. Formally, let f and g be two
models with k layers, and define fi and gi as the
ith layer of f and g models, respectively. After
calculating the similarity of fi to each layer of g
(g1, . . . , gk), the pair with the highest similarity is
expected to be (fi, gi). This benchmark counts the
number of layers for which this pair was indeed
the most similar, and divides by the total number
of pairs. An illustration is found in Figure 1.

The intuition behind this benchmark is that each
layer captures different information about the input
data. For example, Jawahar et al. (2019) showed
that different layers of the BERT model capture
different semantic information.

6327

Figure 2: The multilingual benchmark. rE1 and rG1 de-
note the representations of the same sentence in different
languages, and S1 is their similarity. rE2 represents the
random sentence representation, and S2 is the similarity
between it and rG1 . We expect S1 to be higher than S2.

5.2 Multilingual benchmark

Multilingual models, such as Multilingual-BERT
(Devlin et al., 2019), learn to represent texts in dif-
ferent languages in the same representation space.
Interestingly, these models show cross-lingual zero-
shot transferability, where a model is fine-tuned in
one language and evaluated in a different language
(Pires et al., 2019). Muller et al. (2021) analyzed
this transferability and found that lower layers of
the Multilingual-BERT align the representations
between sentences in different languages.

Since multilingual models share similarities be-
tween representations of different languages, we
expect that a good similarity measure should assign
a high similarity to two representations of a sen-
tence in two different languages. In other words,
we expect similarity measures to be invariant to
the sentence source language. Consider a multi-
lingual model f and dataset X, where each entry
consists of the same sentence in different languages.
Let (x(i)1 , x

(i)
2) ∈ X be a sentence written in two

languages – language A and language B. The simi-
larity between f(x

(i)
1) and f(x

(i)
2) should be higher

than the similarity between f(x
(i)
1) and the repre-

sentation of a sentence in language B randomly cho-
sen from X, i.e., f(x(j)2), where (x

(j)
1 , x

(j)
2) ∈ X is

a randomly chosen example from X. The bench-
mark calculates the fraction of cases for which the
correct translation was assigned the highest simi-
larity. An illustration is found in Figure 2.

Additionally, we suggest a strengthened version
of the multilingual benchmark, using FAISS. In-
stead of sampling random sentences in language
B, we use FAISS to find the pair (x(j)1 , x

(j)
2) ∈ X,

where x
(j)
2 ̸= x

(i)
2 , with the representation f(x

(j)
2)

that is most similar to f(x
(i)
2), out of a large set of

vectors pre-indexed by FAISS. This leads to a more
challenging scenario, as the similarity between x

(i)
1

Figure 3: The image–caption benchmark. rC1 and ri

denote the representations of the caption and the image
pair, respectively, and S1 is their similarity. rC2 denotes
the random caption representation, and S2 is the simi-
larity between it and ri. S1 should be greater than S2.

and FAISS-sampled x
(j)
2 is expected to be higher

than the similarity between x
(i)
1 and randomly cho-

sen x
(j)
2 , increasing the difficulty of identifying the

pair (x(i)1 , x
(i)
2) as the highest-similarity pair. Note

that FAISS only affects the evaluation step, and is
not used during ContraSim’s training.

5.3 Image-caption benchmark
Let X be a dataset of images and their textual de-
scriptions (captions), f be a computer vision model
and g a language model. Given a pair of an image
and its caption, (m(i), c(i)) ∈ X, a good similarity
measure is expected to assign a high similarity to
their representations – f(m(i)), g(c(i)). In partic-
ular, this similarity should be higher than that of
the pair of the same image representation f(m(i))
and some random caption’s representation g(c(j)),
where c(j) is a randomly chosen caption from X.

The intuition behind this benchmark is that an
image and its caption represent the same scene in
a different way. Thus, their representations should
have a higher similarity than that of the same im-
age and some random caption. An illustration is
found in Figure 3. As in the multilingual bench-
mark, we also propose a strengthened variant for
the image–caption benchmark using FAISS. Rather
than sampling a random caption c(j), we use FAISS
to find the pair (m(j), c(j)) ∈ X, where c(j) ̸= c(i),
with the representation g(c(j)) that is most similar
to g(c(i)).

6 Experiments

Baselines. We compare ContraSim with the fol-
lowing standard baselines.

• Centered Kernel Alignment (CKA): Pro-
posed by Kornblith et al. (2019), CKA com-
putes a kernel matrix for each matrix represen-

6328

tation input, and defines the scalar similarity
index as the two kernel matrices’ alignment.
We use a linear kernel for CKA evaluation,
as the original paper reveals similar results
for both linear and RBF kernels. CKA is our
main point of comparison due to its success
in prior work and wide applicability.

• PWCCA: Proposed by Morcos et al. (2018),
PWCCA is an extension of Canonical Corre-
lation Analysis (CCA). Given two matrices,
CCA finds bases for those matrices, such that
after projecting them to those bases the corre-
lation between the projected matrices is max-
imized. While in CCA the scalar similarity
index is computed as the mean correlation co-
efficient, in PWCCA that mean is weighted
by the importance each canonical correlation
has on the representation.2

See Appendix A.4 for more details on the current
methods. In the main body we report results of
the more successful methods: CKA and PWCCA.
Additional baseline are reported in Appendix A.5.

Ablations. In addition, we report the results of
two new similarity measures, which use an encoder
to map representations to the space where similarity
is measured. However, in both methods we train eθ
to only maximize the similarity between positive
pairs:

Lmax = −s(z1, z2) (4)

where z1 and z2 are representations whose similar-
ity we wish to maximize. We experiment with two
functions for s—dot-product and CKA—and ac-
cordingly name these similarity measures DeepDot
and DeepCKA. These methods provide a point of
comparison where the similarity measure is trained,
but without negative examples, in order to assess
the importance of contrastive learning.

Encoders details. In all experiments, the encoder
eθ is a two-layer multi-layered perceptron with hid-
den layer dimensions of 512 and 256, and output
dimension of 128. We trained the encoder for 50
epochs for the layer prediction and 30 epochs for
the multilingual and image–caption benchmarks.
We used the Adam optimizer (Kingma and Ba,
2015) with a learning rate of 0.001 and a batch

2PWCCA and SVCCA require the number of examples
to be larger than the feature vector dimension, which is not
possible to achieve in all benchmarks. Therefore, we compare
with them in a subset of our experiments.

size of 1024 representations. We used τ = 0.07
for ContraSim training.

6.1 Layer prediction benchmark

6.1.1 Setup

Recall that this benchmark evaluates whether a cer-
tain layer from one model is deemed most similar
to its architecturally-corresponding layer from an-
other model, where the two models differ only in
their weight initialization. We repeat this process
for all layers and 5 different model pairs, and re-
port average accuracy. We experiment with both
language and vision setups.

Models. For language experiments, we use the
MultiBERTs (Sellam et al., 2021), a set of 25 BERT
models, differing only in their weights initializa-
tion. For vision experiments, we pre-train 10 vi-
sual transformer (ViT) models (Dosovitskiy et al.,
2020) on the ImageNet-1k dataset (Russakovsky
et al., 2015). Then we fine-tune them on CIFAR-10
and CIFAR-100 datasets (Krizhevsky et al., 2009).
Further details are available in Appendix A.3.

Datasets. In language experiments, we use word-
level contextual representations generated on two
English text datasets: the Penn Treebank (Marcus
et al., 1993) and WikiText (Merity et al., 2016).
For Penn TreeBank we generate 5005/10019
test/training representations, respectively; for Wiki-
Text we generate 5024/10023 test/training repre-
sentations. Vision experiments are conducted us-
ing representations generated on CIFAR-10 and
CIFAR-100. For both we generate 5000 and 10000
test and training representations, respectively.

Positive and Negative sets. Given a batch of rep-
resentations of some model i at layer j, we define
its positive set as the representations at the same
layer j of all models that differ from i. The nega-
tive set is all representations from layers that differ
from j (including from model i).

6.1.2 Results

The results are shown in Table 1. In both language
and vision evaluations, CKA achieves better results
than PWCCA, consistent with the findings by Ding
et al. (2021). DeepDot and DeepCKA perform
poorly, with much lower results than PWCCA and
CKA, revealing that maximizing the similarity is
not satisfactory for similarity measure purposes.
Our method, ContraSim, achieves excellent results.

6329

Language Vision

Penn TreeBank WikiText CIFAR-10 CIFAR-100

PWCCA 38.33 55.00 PWCCA 47.27 45.45
CKA 71.66 76.66 CKA 78.18 74.54
DeepDot 15.55 ± 1.69 14.00 ± 2.26 DeepDot 14.90 ± 1.78 14.18 ± 2.67

DeepCKA 16.66 ± 3.16 19.66 ± 1.63 DeepCKA 17.09 ± 2.95 13.09 ± 4.20

ContraSim ContraSim
Penn 100 ± 0 85.45 ± 1.62 CIFAR-10 100 ± 0 90.54 ± 2.90

Wiki 94.00 ± 4.66 100 ± 0 CIFAR-100 85.81 ± 5.68 100 ± 0

Table 1: Layer prediction benchmark accuracy results for language and vision cases. For encoder-based methods
we report mean and std over 5 random initializations. For ContraSim, we experiment with training with different
datasets (rows) and evaluating on same or different datasets (columns).

When trained on one dataset’s training set and eval-
uated on the same dataset’s test set, ContraSim
achieves perfect accuracy under this benchmark,
with a large margin over CKA results. This holds
for both language and vision cases. Even when
trained on one dataset and evaluated over another
dataset, ContraSim surpasses other similarity mea-
sures, showing the transferability of the learned en-
coder projection between datasets. This is true both
when transferring across domains (in text, between
news texts from the Penn Treebank and Wikipedia
texts), and when transferring across classification
tasks (in images, between the 10-label CIFAR-10
and the 100-label CIFAR-100).

6.2 Multilingual benchmark

6.2.1 Setup
This benchmark assesses whether a similarity mea-
sure assigns a high similarity to multilingual rep-
resentations of the same sentence in different lan-
guages. Given a batch of (representations of) sen-
tences b(i) in language Li and their translations
b(j) in language Lj , we compute the similarity be-
tween b(i) and b(j), and the similarities between
b(i) and 10 randomly chosen batches of representa-
tions in language Lj . If b(i) is more similar to b(j)

than to all other batches, we mark success. (Alter-
natively, in a more challenging scenario, we use
FAISS to find for each representation in each layer
the 10 most similar representations in that layer.)
We repeat this process separately for representa-
tions from different layers of a multilingual model,
over many sentences and multiple language pairs,
and report average accuracy per layer.3 Appendix

3For deep similarity measures (DeepCKA, DeepDot, and
ContraSim), upon training the encoder on examples from a

A.1 gives more details.

Model and Data. We use two multilingual mod-
els: multilingual BERT (Devlin et al., 2019)4 and
XLM-R (Conneau et al., 2020a). We use the XNLI
dataset (Conneau et al., 2018), which has natural
language inference examples, parallel in multiple
languages. Each example in our dataset is a sen-
tence taken from either the premise or hypothesis
sets. We experiment with 5 typologically-different
languages: English, Arabic, Chinese, Russian, and
Turkish. We created sentence-level representations,
with 5000 test 10000 training representations. As a
sentence representation, we experiment with [CLS]
token representations and with mean pooling of
token representations, since Del and Fishel (2021)
noted a difference in similarity in these two cases.
We report results with [CLS] representations in the
main body and with mean pooling in Appendix
A.1; the trends are similar.

Positive and Negative sets. Given a pair of lan-
guages and a batch of representations at some layer,
for each representation we define its positive pair
as the representation of the sentence in the different
language, and its negative set as all other represen-
tations in the batch.

6.2.2 Results
Results with multilingual BERT representations in
Table 2 show our method’s effectiveness. (Trends
with XLM-R are consistent; Appendix A.1.2). Un-
der random sampling evaluation (left block), Con-
traSim shows superior results over other similar-
ity measures, despite being evaluated on language

pair of languages, (Lr, Lq), r ̸= q, we evaluate it over all
other distinct pairs of languages.

4https://huggingface.co/bert-base-multilingual-cased

6330

Random FAISS

Layer CKA DeepCKA DeepDot ContraSim CKA DeepCKA DeepDot ContraSim

1 71.7 ± 5.3 82.0 ± 6.4 63.3 ± 10.4 95.5 ± 5.4 20.1 ± 4.0 10.7 ± 2.6 29.9 ± 8.7 36.0 ± 10.7

2 78.7 ± 4.4 86.4 ± 4.1 68.5 ± 9.9 95.0 ± 7.2 27.2 ± 5.5 12.3 ± 2.9 46.9 ± 9.8 33.0 ± 14.8

3 86.8 ± 3.0 87.1 ± 3.2 70.4 ± 9.7 96.4 ± 6.7 41.9 ± 8.7 17.6 ± 4.2 51.5 ± 10.3 45.4 ± 20.5

4 92.6 ± 1.4 91.5 ± 2.4 95.4 ± 3.4 99.9 ± 0.2 33.4 ± 7.0 15.2 ± 3.7 52.2 ± 8.6 72.4 ± 9.8

5 88.3 ± 3.2 83.5 ± 5.2 94.7 ± 4.8 99.9 ± 0 49.3 ± 4.3 36.9 ± 6.3 42.4 ± 12.9 99.1. ± 0.8

6 88.6 ± 3.4 86.4 ± 5.2 92.5 ± 5.4 100 ± 0 51.4 ± 5.5 39.9 ± 7.2 42.1 ± 12.3 99.5. ± 0.4

7 88.8 ± 3.7 86.9 ± 5.0 92.6 ± 5.0 100 ± 0 53.0 ± 5.8 41.1 ± 7.7 45.7 ± 11.7 99.6. ± 0.3

8 89.3 ± 3.6 85.2 ± 5.7 91.4 ± 7.0 100 ± 0 56.1 ± 5.8 45.0 ± 8.7 43.8 ± 13.4 99.7. ± 0.3

9 88.1 ± 3.8 82.4 ± 5.6 89.1 ± 9.5 100 ± 0 53.3 ± 4.9 42.7 ± 8.5 39.2 ± 12.9 99.6. ± 0.3

10 87.0 ± 3.5 80.3 ± 5.9 85.3± 10.3 100 ± 0 51.5 ± 5.3 42.4 ± 7.8 34.3 ± 12.2 99.5. ± 0.4

11 86.7 ± 4.2 76.6 ± 6.4 79.7± 13.9 99.9 ± 0 52.4 ± 5.3 43.3 ± 8.5 31.4 ± 12.8 99.3. ± 0.5

12 86.4 ± 3.4 63.8 ± 7.9 64.3± 19.7 99.9 ± 0 52.8 ± 4.5 32.3 ± 8.7 26.1 ± 21.9 98.9. ± 0.8

Table 2: Multilingual benchmark accuracy results. With random sampling (left block), ContraSim outperforms
other similarity measures. Using FAISS (right block) further extends the gaps.

pairs it hasn’t seen at training. Using FAISS
sampling (right block) further extends the gaps.
While CKA results dropped by ≈ 45%, Deep-
CKA dropped by ≈ 51%, and DeepDot dropped
by ≈ 40%, ContraSim was much less affected by
FAISS sampling (≈ 17% drop on average and prac-
tically no drop in most layers). This demonstrates
the high separability between examples of Con-
traSim, enabling it to distinguish even very similar
examples. For all other methods, mid-layers have
the highest accuracy, whereas for our method al-
most all layers are near 100% accuracy, except for
the first 3 or 4 layers.

To further analyze this, we compare the origi-
nal multilingual representations from the last layer
with their projections by ContraSim’s trained en-
coder. Figure 4 shows UMAP (McInnes et al.,
2018) projections for 10 English sentences and 10
Arabic sentences, before and after ContraSim en-
coding. The ContraSim encoder was trained on
Arabic and English languages. The original rep-
resentations are organized according to the source
language (by shape), whereas ContraSim projects
translations of the same sentence close to each
other (clustered by color).

6.3 Image–caption benchmark

6.3.1 Setup

Given a test set X, consisting of pairs of an image
representation generated by a CV model and its
caption representation from a LM, we split X to
batches of size 64. For each batch, we compute the
similarity between the image representations and

Figure 4: Original representations (left) are clustered
by the source language (by shape). ContraSim (right)
projects representations of the same sentence in different
languages close by (by color).

their corresponding caption representations. We
then sample 10 different caption batches, either
randomly or using FAISS (as before), and compute
the similarity between the image representation and
each random/FAISS-retrieved caption representa-
tion. If the highest similarity is between the image
representation and the original caption representa-
tion, we mark a success. For trainable similarity
measures, we train with 5 different random seeds
and average the results.

Models and Data. We use two vision models
for image representations: ViT and ConvNext (Liu
et al., 2022); and two language models for text
representations: BERT and GPT2 (Radford et al.,
2019). We use the Conceptual Captions dataset
(Sharma et al., 2018). We use 5000 and 10000
pairs as test and training sets, respectively.

Positive and Negative sets. Given a batch of im-
age representations with their corresponding cap-
tion representations, for each image representation

6331

Figure 5: Image–caption benchmark results for 4 different model pairs. ContraSim works best, and is the only
measure robust to FAISS sampling.

we define as a positive set its corresponding cap-
tion representation, and as a negative set all other
representations in the batch.

6.3.2 Results
Figure 5 demonstrates the strength of ContraSim.
Under random sampling (green boxes), DeepCKA
achieves comparable results to ContraSim, while
DeepDot and CKA achieve lower results. However,
using FAISS (red boxes) causes a big decrease in
DeepCKA accuracy, while ContraSim maintains
high accuracy. Furthermore, in 3 of 4 pairs we
tested, FAISS sampling yielded better CKA accu-
racy than random sampling. This contradicts the in-
tuition that similar examples at the sampling stage
should make it harder for similarity measures to
distinguish between examples. This might indicate
that CKA suffers from stability issues. Finally, we
report results with the multi-modal CLIP model
(Radford et al., 2021) in Table 6 (Appendix A.2).
Because the model was pre-trained with contrastive
learning, simple dot-product similarity works very
well, so there is no need to learn a similarity mea-
sure in this case.

6.3.3 ContraSim on different dimensions
We further evaluated ContraSim with different rep-
resentation dimensions. We performed the same
image–caption benchmark with the exception that
we used different vision model sizes: ViT-large
and ConvNext-base, both with 1024-dimensional
representation vectors. As language models we
used the same GPT2 and BERT models, with a
768-dimensional representation vector.

CKA ContraSim

ViT-large/GPT2 45.57 98.73
ViT-large/BERT 83.54 98.73

ConvNext-base/GPT2 39.24 100
ConvNext-base/BERT 74.68 98.73

Table 3: Image–caption benchmark accuracy results
for model pairs with different dimensions. We report
results using FAISS sampling. Despite different model
dimensions, ContraSim consistently works best.

We trained a different encoder for each model, as
opposed to the single encoder we trained in all other
experiments. This enables ContraSim to be used
with representations with different dimensions. Re-
sults are summarized in Table 3. We report results
with FAISS sampling. Across all pairs, ContraSim
achieves superior results.

7 Interpretability insights

Having shown the superiority of our method, we
now discuss a few interpretability insights that arise
from our evaluations, and are not revealed by pre-
vious similarity measures.

In the multilingual benchmark (Table 2, FAISS
results), we found a much greater difference in
accuracy between shallow and deep layers in Con-
traSim compared to previous similarity measures.
Using previous similarity measures we might infer
that there is no difference in the ability to detect
the correct pairs across different layers. However,
ContraSim shows that the difference in the ability

6332

to detect the correct pair dramatically changes from
shallow to deep layers. This raises an interesting
insight regarding the evolution of representations
across layers. For instance, Conneau et al. (2020b)
used CKA to measure the similarity of representa-
tions of bilingual models of different languages and
the same language (using back-translation). From
their results it can be observed that there is no much
difference in similarity of sentences from different
languages and from the same language at the shal-
low and deep layers. Our results show that this
difference is higher than found before.

In the image–caption benchmark (Figure 5),
from the CKA results we might infer that BERT
representations are more similar to computer vision
representations than GPT2 representations. That is
because with CKA, it is easier to detect the match-
ing image–caption pair with BERT than it is with
GPT2. However, ContraSim achieves a high accu-
racy in both BERT pairs and GPT2 pairs, which
means that both language models about as similar
to vision models, in contrast to what we may infer
from previous similarity measures. This reveals a
new understanding regarding the relationship be-
tween language and vision models. To the best
of our knowledge, no prior work has done such a
similarity analysis.

8 Conclusion

We proposed a new similarity measure for inter-
preting neural networks, ContraSim. By defining
positive and negative sets we learn an encoder that
maps representation to a space where similarity is
measured. Our method outperformed other simi-
larity measures under the common layer prediction
benchmark and two new benchmarks we proposed:
the multilingual benchmark and the image–caption
benchmark. It particularly shines in strengthened
versions of said benchmarks, where random sam-
pling is replaced with finding the most similar ex-
amples using FAISS. Moreover, we show that even
when ContraSim is trained on data from one do-
main/task and evaluated on data from another do-
main/task, it achieves superior performance. Con-
sidering ContraSim’s superiority in all evaluations,
we believe it is a better tool for the interpretability
of neural networks, and have discussed a few in-
sights revealed by ContraSim and not captured by
previous methods.

Our new similarity measure benchmarks can fa-
cilitate work on similarity-based analyses of deep

networks. The multilingual benchmark is useful
for work on multilingual language models, while
the image–caption benchmark may help in multi-
modal settings. In addition, since our method learns
a parameterized measure, it may help train models
with similarity objectives.

9 Limitations

Compared to existing methods, ContraSim needs
access to a training set for the encoder training
procedure. The training procedure itself is efficient,
typically a matter of minutes.

10 Ethics Statement

Our work adds to the body of literature on the in-
terpretability of neural networks and may mitigate
their opacity. We do not foresee major risks asso-
ciated with this work. However, a malicious actor
could train ContraSim adversarially, assign poor
similarity estimates, and lead to false analyses.

Acknowledgements

This work was supported by an AI alignment grant
from Open Philanthropy, the Israel Science Founda-
tion (grant No. 448/20), and an Azrieli Foundation
Early Career Faculty Fellowship.

References
Ting Chen, Simon Kornblith, Mohammad Norouzi, and

Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In In-
ternational conference on machine learning, pages
1597–1607. PMLR.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020a. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Ad-
ina Williams, Samuel R. Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. Xnli: Evaluating cross-
lingual sentence representations. In Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics.

Alexis Conneau, Shijie Wu, Haoran Li, Luke Zettle-
moyer, and Veselin Stoyanov. 2020b. Emerging
cross-lingual structure in pretrained language mod-
els. In Proceedings of the 58th Annual Meeting of

6333

https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747

the Association for Computational Linguistics, pages
6022–6034.

Maksym Del and Mark Fishel. 2021. Establishing in-
terlingua in multilingual language models. arXiv
preprint arXiv:2109.01207.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. 2009. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pages
248–255. Ieee.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

F Ding, J-S Denain, and J Steinhardt. 2021. Ground-
ing representation similarity with statistical testing.
Advances in neural information processing systems.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020.
An image is worth 16x16 words: Transformers
for image recognition at scale. In International
Conference on Learning Representations.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. 2020. Momentum contrast for unsu-
pervised visual representation learning. In Proceed-
ings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 9729–9738.

Harold Hotelling. 1936. Relations between two sets of
variates. Biometrika, 28:321–377.

Thomas S Huang, Charlie K Dagli, Shyamsundar Ra-
jaram, Edward Y Chang, Michael I Mandel, Gra-
ham E Poliner, and Daniel PW Ellis. 2008. Active
learning for interactive multimedia retrieval. Pro-
ceedings of the IEEE, 96(4):648–667.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2019. What does bert learn about the structure of
language? In ACL 2019-57th Annual Meeting of the
Association for Computational Linguistics.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547.

Andrej Karpathy, Armand Joulin, and Li F Fei-Fei. 2014.
Deep fragment embeddings for bidirectional image
sentence mapping. Advances in neural information
processing systems, 27.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Simon Kornblith, Mohammad Norouzi, Honglak Lee,
and Geoffrey Hinton. 2019. Similarity of neural
network representations revisited. In International
Conference on Machine Learning, pages 3519–3529.
PMLR.

Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learn-
ing multiple layers of features from tiny images.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Fe-
ichtenhofer, Trevor Darrell, and Saining Xie. 2022.
A convnet for the 2020s. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 11976–11986.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

Leland McInnes, John Healy, Nathaniel Saul, and Lukas
Großberger. 2018. Umap: Uniform manifold ap-
proximation and projection. Journal of Open Source
Software, 3(29):861.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. In International Conference on Learning Repre-
sentations.

Ari Morcos, Maithra Raghu, and Samy Bengio. 2018.
Insights on representational similarity in neural net-
works with canonical correlation. Advances in Neu-
ral Information Processing Systems, 31.

Benjamin Muller, Yanai Elazar, Benoît Sagot, and
Djamé Seddah. 2021. First align, then predict: Un-
derstanding the cross-lingual ability of multilingual
BERT. In Proceedings of the 16th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Main Volume, pages 2214–2231,
Online. Association for Computational Linguistics.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual BERT? In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4996–5001, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models
from natural language supervision. In International
Conference on Machine Learning, pages 8748–8763.
PMLR.

6334

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://doi.org/10.18653/v1/2021.eacl-main.189
https://doi.org/10.18653/v1/2021.eacl-main.189
https://doi.org/10.18653/v1/2021.eacl-main.189
https://doi.org/10.18653/v1/P19-1493

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Maithra Raghu, Justin Gilmer, Jason Yosinski, and
Jascha Sohl-Dickstein. 2017. Svcca: Singular vec-
tor canonical correlation analysis for deep learning
dynamics and interpretability. Advances in neural
information processing systems, 30.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. 2015. ImageNet Large
Scale Visual Recognition Challenge. International
Journal of Computer Vision (IJCV), 115(3):211–252.

Thibault Sellam, Steve Yadlowsky, Jason Wei, Naomi
Saphra, Alexander D’Amour, Tal Linzen, Jasmijn
Bastings, Iulia Turc, Jacob Eisenstein, Dipanjan Das,
et al. 2021. The multiberts: Bert reproductions for ro-
bustness analysis. arXiv preprint arXiv:2106.16163.

Piyush Sharma, Nan Ding, Sebastian Goodman, and
Radu Soricut. 2018. Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic im-
age captioning. In Proceedings of ACL.

John Wu, Yonatan Belinkov, Hassan Sajjad, Nadir Dur-
rani, Fahim Dalvi, and James Glass. 2020. Similarity
analysis of contextual word representation models.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 4638–
4655.

6335

https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y

A Appendix

A.1 Multilingual benchmark

A.1.1 Evaluation parameters
We split the test set, X, into equally sized batches
of size 8, {b(1), b(2), ..., b(n)}, where each batch
consists of multilingual BERT representations of
the same sentence in 5 different languages: L =
{L1, ..., L5}. Given a pair of different languages,
(Li, Lj), i ̸= j, and a batch of representations, b,
we consider the representation of those languages
in the batch, (b[i], b[j]), and compute the similarity
between b[i] and b[j] as s0 ≡ s(b[i], b[j]). We
also compute the similarity between b[i] and 10
randomly chosen batches (or, 10 batches chosen
using FAISS) of representations in language Lj as
{st ≡ s(b[i], bt[j])}10t=1. If argmaxt{st}10t=0 = 0,
we count it as a correct prediction. Each layer’s
accuracy is defined as the number of successful
predictions over the number of batches, n. We
average results over all possible pairs of different
languages.

A.1.2 Further evaluations
In addition to using the [CLS] token representa-
tion as a sentence representation, we also evaluated
the multilingual benchmark using mean pooling
sentence representation. We used the same eval-
uation process as described in Section 6.2. The
results, summarized in Table 4, are consistent with
the results in the main paper (Table 2). Under ran-
dom sampling, ContraSim outperforms all other
similarity measures. Using FAISS causes a big
degradation in all other methods’ accuracy, while
ContraSim maintains a high accuracy across all
layers.

In addition, we evaluated the multilingual bench-
mark with another multilingual model – the XLM-
R (Conneau et al., 2020a) model. Results, summa-
rized in Table 5, show a similar pattern to Tables 2
and 4, with ContraSim achieving the highest accu-
racies across all layers, in both random sampling
and FAISS sampling scenarios.

A.2 Image–caption

In addition to the four model pairs we evaluated in
Figure 5, we assessed the multi-modal vision and
language CLIP model (Radford et al., 2021), which
was trained using contrastive learning on pairs of
images and their captions. Results in Table 6 show
interesting findings. Under random sampling, dot
product, DeepCKA and ContraSim achieve perfect

accuracy. However, using FAISS causes signifi-
cant degradation in DeepCKA accuracy, and only
a small degradation in dot product and ContraSim
results, with equal accuracy for both. We attribute
this high accuracy for simple dot product to the
fact that CLIP training was done using contrastive
learning, thus observing high separability between
examples.

A.3 ViT training details

We used the ViT-base (Dosovitskiy et al., 2020)
architecture. We pretrained 10 models on the
ImgaeNet-1K dataset (Deng et al., 2009), differ-
ing only in their weight initializations by using
random seeds from 0 to 9. We used the AdamW
optimizer (Kingma and Ba, 2015) with lr = 0.001,
weight decay = 1e − 3, batch size = 128, and a
cosine learning scheduler. We trained each model
for 150 epochs and used the final checkpoint.

Then, we fine-tuned the pretrained models on
CIFAR-10 and CIFAR-100 datasets (Krizhevsky
et al., 2009). We used AdamW optimizer with
lr = 2e−5, weight decay = 0.01, batch size = 10,
and a linear scheduler. For models fine-tuned on
CIFAR-10, the average accuracy on the CIFAR-
10 test set is 96.33%. For models fine-tuned on
CIFAR-100, the average accuracy on the CIFAR-
100 test set is 78.87%.

A.4 Details of Prior Similarity Measures

Canonical Correlation Analysis (CCA). Given
two matrices, CCA finds bases for those matrices,
such that after projecting them to those bases the
projected matrices’ correlation is maximized. For
1 ≤ i ≤ p1, the ith canonical correlation coefficient
ρi is given by:

ρi = max
wi

X ,wi
Y

corr(Xwi
X , Y wi

Y)

s.t. ∀j<i Xwi
X ⊥ Xwj

X

∀j<i Y wi
Y ⊥ Y wj

Y .

(5)

where corr(X,Y) = ⟨X,Y ⟩
∥X∥·∥Y ∥ . Given the vector

of correlation coefficients corrs = (ρ1, ..., ρp1),
the final scalar similarity index is computed as the
mean correlation coefficient:

SCCA(X,Y) = ρCCA =

∑p1
i=1 ρi
p1

(6)

as previously used in (Raghu et al., 2017; Kornblith
et al., 2019).

6336

Random FAISS

Layer CKA DeepCKA DeepDot ContraSim CKA DeepCKA DeepDot ContraSim

1 87.7 ± 6.9 86.3 ± 9.7 43.4 ± 17.7 98.7 ± 2.2 67.6 ± 14.3 54.1 ± 10.9 41.7 ± 19.1 94.2 ± 10.7

2 89.0 ± 6.3 88.7 ± 7.0 51.5 ± 20.0 99.5 ± 0.8 68.2 ± 13.2 49.0 ± 8.3 38.9 ± 17.2 96.6 ± 14.8

3 91.8 ± 4.4 90.7 ± 6.0 63.3 ± 20.8 99.9 ± 0.1 72.2 ± 11.5 55.4 ± 8.1 44.8 ± 16.6 98.8 ± 20.5

4 93.7 ± 3.3 91.3 ± 5.0 73.1 ± 19.4 99.9 ± 0.0 74.3 ± 10.0 55.1 ± 8.0 45.7 ± 16.5 99.5 ± 7.1

5 95.3 ± 3.0 92.1 ± 4.0 83.9 ± 15.6 99.9 ± 0.0 78.2 ± 8.2 56.7 ± 8.1 53.2 ± 17.5 99.8 ± 4.4

6 95.9 ± 2.4 91.8 ± 3.9 91.2 ± 10.6 100 ± 0 77.6 ± 7.9 54.2 ± 8.1 60.1 ± 18.2 99.8 ± 1.7

7 95.4 ± 2.5 90.6 ± 4.1 93.1 ± 9.2 100 ± 0 77.9 ± 7.8 53.3 ± 7.2 63.5 ± 18.5 99.9 ± 0.7

8 94.8 ± 3.2 89.7 ± 4.3 90.3 ± 12.0 100 ± 0 76.7 ± 8.1 52.4 ± 7.4 61.0 ± 19.8 99.9 ± 0.3

9 94.0 ± 3.4 88.5 ± 5.0 86.4 ± 15.1 100 ± 0 73.9 ± 8.8 51.4 ± 7.8 55.5 ± 20.0 99.9 ± 0.1

10 92.6 ± 4.2 85.6 ± 5.9 80.7 ± 18.8 100 ± 0 72.2 ± 8.4 49.3 ± 8.4 49.2 ± 20.6 99.9 ± 0.1

11 91.1 ± 5.1 81.0 ± 6.5 72.2 ± 23.7 99.9 ± 0 70.6 ± 10.1 48.8 ± 9.1 43.2 ± 20.7 99.8 ± 0.1

12 90.8 ± 5.8 71.3 ± 7.6 71.0 ± 21.0 99.9 ± 0 72.7 ± 11.3 40.3 ± 8.7 42.7 ± 17.0 99.4 ± 0.1

Table 4: Multilingual benchmark results with mean pooling.

Random FAISS

Layer CKA DeepCKA DeepDot ContraSim CKA DeepCKA DeepDot ContraSim

1 89.7 ±. 4.6 88.2 ± 3.1 45.0 ± 22.1 99.89 ± 0.31 60.6 ± 11.4 24.6 ± 4.7 24.8 ± 12.4 98.1 ± 2.5

2 90.6 ± 4.1 92.3 ± 2.0 63.1 ± 23.4 99.99 ± 0.02 57.1 ± 11.4 30.7 ± 5.7 31.1 ± 13.5 99.5 ± 0.7

3 92.8 ± 3.1 93.8 ± 1.7 79.5 ±18.9 99.99 ± 0 55.5 ±10.1 33.8 ± 6.4 39.3 ±15.5 99.9 ± 0.1

4 94.7 ± 2.6 94.3 ± 1.7 91.4 ±11.7 100 ± 0 62.3 ± 9.5 36.3 ± 6.8 55.1 ±16.2 99.9 ± 0

5 95.9 ± 2.1 94.6 ± 1.6 94.0 ±10.0 100 ± 0 66.2 ± 8.4 37.2 ± 7.6 64.2 ±16.2 99.9 ± 0

6 95.9 ± 2.1 94.9 ± 1.6 94.6 ± 8.9 100 ± 0 66.7 ± 8.3 41.2 ± 7.6 66.0 ±17.5 99.9 ± 0

7 96.6 ± 2.0 94.9 ± 1.6 94.9 ± 8.5 100 ± 0 71.7 ± 8.5 44.1 ± 8.2 68.8 ±17.5 99.9 ± 0

8 96.1 ± 2.1 94.8 ± 1.7 94.0 ± 9.3 100 ± 0 68.1 ± 8.3 43.6 ± 7.9 65.3 ±18.0 99.9 ± 0

9 94.8 ± 2.2 94.9 ± 1.6 93.3 ± 9.1 100 ± 0 58.5 ± 8.7 42.8 ± 8.0 61.7 ±18.6 99.9 ± 0

10 93.9 ± 2.3 94.3 ± 1.7 92.7 ±10.7 100 ± 0 46.3 ± 8.2 39.1 ± 7.5 56.6 ± 18.9 99.9 ± 0

11 92.0 ± 2.8 93.3 ± 2.2 92.7 ± 10.9 100 ± 0 35.5 ± 7.0 39.1 ± 7.3 57.2 ± 18.3 99.9 ± 0

12 80.7 ± 4.7 89.5 ± 3.0 81.6 ± 13.8 100 ± 0 26.5 ± 5.8 32.3 ± 7.0 34.7 ± 15.1 99.9 ± 0

Table 5: Multilingual benchmark results on XLM-R model.

Random FAISS

CKA 93.67 25.31
Dot Product 100 98.73
DeepCKA 100 13.92
DeepDot 29.11 25.31
ContraSim 100 98.73

Table 6: Image–caption benchmark accuracy results
using CLIP model

Projection-Weighted CCA (PWCCA). Morcos
et al. (2018) proposed a different approach to trans-
form the vector of correlation coefficients, corrs,
into a scalar similarity index. Instead of defining
the similarity as the mean correlation coefficient,
PWCCA uses a weighted mean and the similarity

is defined as:

SPW =

∑p1
i=1 αiρi∑

i αi
αi =

∑

j

|⟨hi, xj⟩| (7)

where xj is the jth column of X , and hi = Xwi
X

is the vector observed upon projecting X to the ith

canonical direction.

Singular Vector CCA (SVCCA). Another exten-
sion to CCA, proposed by Raghu et al. (2017), per-
forms CCA on the truncated singular value decom-
position (SVD) of the activation matrices. SVCCA
keeps enough principal components to explain a
fixed percentage of the variance.

Code available at: https://github.com/
google/svcca.

Centered Kernel Alignment (CKA). CKA, Pro-
posed by Kornblith et al. (2019), suggests comput-

6337

https://github.com/google/svcca
https://github.com/google/svcca

Penn TreeBank WikiText

SVCCA 46.66 56.66
Dot product 8.33 6.66

Norm 10.00 11.66

ContraSim_norm
Penn 100.00 90.00
Wiki 100.00 100.00

Table 7: Layer prediction benchmark with additional
similarity measures.

ing a kernel matrix for each matrix representation
input, and defining the scalar similarity index as the
two kernel matrices’ alignment. For linear kernel,
CKA is defined as:

SCKA =
∥Y TX∥2F

∥XTX∥F ∥Y TY ∥F
(8)

Code available at: https://github.com/
google-research/google-research/tree/
master/representation_similarity.

Norm. For two representations, x and y, we de-
fined the dis-similarity measure as the norm of the
difference between the normalized representations:

DisNorm(x, y) = ∥(x/∥x∥ − y/∥y∥)∥ (9)

Since this is a dis-similarity measure, we defined
the norm similarity measure as:

SNorm = 1−DisNorm(x, y) (10)

For a batch of representations, we define batch
similarity as the mean of pairwise norm similarity.

Dot-product. Measuring the similarity score be-
tween two feature vectors as their dot-product.

A.5 Additional Evaluations
In this section, we report evaluation results with
additional baselines. Furthermore, we evaluated
ContraSim with a different similarity measure than
the dot-product and replaced it with the norm simi-
larity measure.

Similar to PWCCA, SVCCA requires that the
number of examples is larger than the vector di-
mension, thus we could only evaluate it in the layer
prediction benchmark. All other similarity mea-
sures were evaluated with all evaluations - the layer

prediction benchmark, the multilingual benchmark
and the image-caption benchmark.

Table 7 shows layer prediction benchmark re-
sults. We can observe that SVCCA achieves
slightly better results than PWCCA, and lower than
CKA and ContraSim. Both dot product and norm
achieve low accuracies. ContraSim_norm achieves
the same or better results than ContraSim.

Multilingual benchmark results, summarized
in Table 8 show that both dot product and norm
achieve better results than CKA, although achieve
low results under layer prediction and image-
caption benchmarks. This emphasizes the impor-
tance of multiple evaluations for similarity mea-
sures. Compared to ContraSim, both methods
achieve lower results. ContraSim_norm achieves
lower results compared to ContraSim, under both
random and FAISS sampling.

Image-caption benchmark results, summarized
in Table 9, show that under both random sam-
pling and FAISS sampling dot product and norm
achieve low accuracy. Under random sampling,
ContraSim_norm achieves perfect accuracy, while
using FAISS sampling shows slight degradation
compared to ContraSim.

6338

https://github.com/google-research/google-research/tree/master/representation_similarity
https://github.com/google-research/google-research/tree/master/representation_similarity
https://github.com/google-research/google-research/tree/master/representation_similarity

Random FAISS

Layer
Dot
product

Norm ContraSim_norm
Dot

Product
Norm ContraSim_norm

1 48.93 ± 7.07 68.67 ± 10.86 89.39 ± 14.46 15.00 ± 6.41 20.42 ± 9.32 15.76 ± 6.56

2 31.71 ± 3.31 74.19 ± 9.73 85.40 ± 18.00 20.14 ± 2.75 21.16 ± 11.43 18.83 ± 11.19

3 49.32 ± 6.53 83.92 ± 13.12 85.68 ± 18.88 13.00 ± 4.50 29.42 ± 22.99 26.36 ± 16.01

4 29.60 ± 2.44 99.61 ± 0.41 96.81 ± 5.04 16.20 ± 4.01 57.98 ± 15.68 28.79 ± 9.80

5 99.75 ± 0.29 99.86 ± 0.33 99.86 ± 0.23 82.17 ± 7.36 82.39 ± 7.73 74.04 ± 7.11

6 99.75 ± 0.35 99.84 ± 0.27 99.92 ± 0.13 83.38 ± 7.70 88.24 ± 6.15 77.00 ± 6.68

7 99.52 ± 0.77 99.85 ± 0.29 99.92 ± 0.13 89.72 ± 5.57 89.23 ± 6.98 78.21 ± 6.77

8 99.93 ± 0.13 99.89 ± 0.15 99.94 ± 0.11 93.49 ± 4.07 89.70 ± 6.42 81.97 ± 6.63

9 99.61 ± 0.38 99.76 ± 0.40 99.91 ± 0.17 82.48 ± 9.32 84.85 ± 8.57 81.37 ± 6.53

10 96.64 ± 2.46 99.38 ± 0.58 99.89 ± 0.15 55.02 ± 15.42 81.43 ± 9.77 80.59 ± 6.83

11 87.04 ± 8.13 98.40 ± 1.25 99.83 ± 0.31 29.62 ± 13.82 82.20 ± 9.46 80.74 ± 7.08

12 76.86 ± 15.23 87.25 ± 12.39 99.73 ± 0.36 25.75 ± 26.55 50.11 ± 32.55 80.24 ± 6.63

Table 8: Multilingual benchmark with additional similarity measures. The left block is with random sampling, and
the right block is FAISS sampling.

Vision Model ViT ConvNext
Language

Model
BERT GPT2 BERT GPT2

Random

Dot
Product

6.32 6.32 11.39 8.86

Norm 6.32 7.59 15.19 7.59
ContraSim_norm 100 100 100 100

FAISS

Dot
Product

5.06 2.53 7.59 6.32

Norm 5.06 5.06 6.32 10.12
ContraSim_norm 93.67 98.73 81.03 93.67

Table 9: Image–caption benchmark results for additional similarity measures, on 4 different model pairs.

6339

