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Abstract

Label projection, which involves obtaining
translated labels and texts jointly, is essential
for leveraging machine translation to facilitate
cross-lingual transfer in structured prediction
tasks. Prior research exploring label projec-
tion often compromise translation accuracy by
favoring simplified label translation or rely-
ing solely on word-level alignments. In this
paper, we introduce a novel label projection
approach, CLaP, which translates text to the
target language and performs contextual trans-
lation on the labels using the translated text
as the context, ensuring better accuracy for the
translated labels. We leverage instruction-tuned
language models with multilingual capabilities
as our contextual translator, imposing the con-
straint of the presence of translated labels in the
translated text via instructions. We benchmark
CLaP with other label projection techniques on
zero-shot cross-lingual transfer across 39 lan-
guages on two representative structured predic-
tion tasks — event argument extraction (EAE)
and named entity recognition (NER), showing
over 2.4 F1 improvement for EAE and 1.4 F1
improvement for NER. We further explore the
applicability of CLaP on ten extremely low-
resource languages to showcase its potential
for cross-lingual structured prediction.

1 Introduction

Cross-lingual transfer for structured prediction
tasks such as named entity recognition, relation
extraction, and event extraction, has gained consid-
erable attention recently (Huang et al., 2022; Cao
et al., 2023; Tedeschi and Navigli, 2022; Cabot
et al., 2023; Fincke et al., 2022; Jenkins et al., 2023;
Ahmad et al., 2021b). It generalizes models trained
in source languages to applications on other target
languages (Chen and Ritter, 2021; Subburathinam
et al., 2019; Pouran Ben Veyseh et al., 2022).

{khhuang}@illinois.edu

Source Language: English (en)

Sentence : In South Florida, the average number of
Labels - Roles ( , trigger), (neurosurgeon, Defendant)

against a neurosurgeon is ﬁve}

|
LABEL PROJECTION 7 ]
Jointly Translate Sentence “FEEE" is the Chinese

+ Obtain translated Labels in of “a set of men's
translated sentence

garments”. This is not a
suitable translation of

“suits” in this sentence.

Target Language: Chinese (zh)
Sentence : ZEEIHE BIAM SIS E L TP A R
Labels - Roles : ( , trigger), [} E &, Defendant)
Sentence  : FEFITEE EIAM AT E L MIFAFE N AL
Labels - Roles : (VAZE, trigger), (#1421 7 [ £, Defendant)

Despite “VAZE” is an
accurate translation {

of “suits” in this Sentence

sentence, “VAZE” is
not p in
the translated
sentence.

Labels - Roles : (

: FEE D BIAM, AR E S FIATI A HR
, trigger), (#1225 [= 4, Defendant)

* Labels in the figure have been selectively omitted for conciseness.

Figure 1: Illustration of the task of label projection from
English to Chinese. Label projection converts sentences
from a source to a target language while translating the
associated labels jointly. Failures in this process occur
when (a) labels are either inaccurately translated or (b)
missing in the translated sentence in the target language.

One effective and simple way to improve cross-
lingual transfer performance is translate-train,
which leverages machine translation techniques
to generate pseudo-training data in the target lan-
guages by translating source language training
data (Xue et al., 2021; Ruder et al., 2021; Yu et al.,
2023). However, adopting translate-train to struc-
tured prediction necessitates a label projection step,
which involves jointly translating input sentences
and labels (Chen et al., 2023). Label projection
requires not only accurate translation of the labels
but also maintaining the association between the
translated texts and labels. As illustrated in Fig-
ure 1, while “suits” can have multiple valid trans-
lations, only “ifVA” is present in the translated
sentence and a proper translation at the same time.

Prior works have dealt with label projection
through two primary frameworks. The first one,
illustrated in Figure 2(a), performs machine trans-
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lation on modified source sentences that incorpo-
rate label annotations using special markers (Chen
et al., 2023; Hennig et al., 2023). Translated labels
can be extracted if special markers are retained
in the translations. In this approach, the quality
of the translation is inherently compromised due
to the inclusion of special markers (Chen et al.,
2023). The other framework uses word similarity
to procure word alignments between the source and
translated sentences. Label translations are further
constructed by combining mapped tokens in the
translated sentence (Stengel-Eskin et al., 2019; Ak-
bik et al., 2015; Aminian et al., 2019), as shown
in Figure 2(b). However, it is hard for this frame-
work to ensure accurate label translation by merely
using word alignments, as we will show in § 4.4.

In this work, we introduce CLaP (Contextual
Label Projection), which obtains projected la-
bel annotations by conducting contextual machine
translation for the labels. We first acquire the trans-
lation of the input sentence by any plug-and-play
machine translator. Then, inspired by the idea of
contextual machine translation (Wong et al., 2020;
Voita et al., 2018), we use the translated input text
as context to perform label translation, as shown in
Figure 2(c). Exploiting contextual machine trans-
lation strongly enhances the accuracy of the trans-
lated labels while preserving their association to
the translated sentence. Furthermore, translating
the input sentence in an unmodified manner better
leverages machine translators and assures the qual-
ity of translated sentence. To implement contextual
machine translation, we utilize a small instruction-
tuned language model with multilingual capabil-
ities, Llama-2-13B (Touvron et al., 2023). ! We
encode the translated input sentence and the con-
straint for the presence of labels in the form of
instruction prompts and ask the language model to
perform the label translation task.

Extensive experiments conducted on two repre-
sentative tasks, event argument extraction (EAE)
and named entity recognition (NER), reveal the
following insights:

* Compared to existing label projection methods,
CLaP performs the best on intrinsic evaluation
by achieving the best label translation accuracy
(§ 4.4). Through extrinsic evaluation on down-
stream tasks, CLaP yields an average improve-
ment of 2.4 and 1.4 F1 scores over the best base-
line across 39 languages for EAE on ACE and

'We also explore using GPT-3.5-Turbo in § 5.2.

NER on WikiANN datasets respectively (§ 4.5).

* In comparison to directly prompting LLMs for
the downstream task, we show that CLaP’s LLM
usage for contextual machine translation pro-
vides significantly larger gains (§ 4.5).

* Focusing on low-resource languages, CLaP
demonstrates strong applicability by generaliz-
ing to ten extremely low-resourced African and
American languages (§ 6). Using larger LLMs
for CLaP yields further improvements for low-
resource languages, underlining CLaP’s future
potential to improve continually (§ 5.2).

Our code can be found at https://github.com/
PlusLabNLP/CLaP.

2 Background

2.1 Structure Prediction Tasks

Given an input sentence X, structure prediction
models aim to predict structured output y = [X[i1 :
Jil, x[é2 g2y ..o, X[in ¢ Jn]] (Where X[i7 @ ji] is
an input sentence span from token i; to j;) cor-
responding to a set of roles r = [ry,r9,...,7y]
(where r; € R, a pre-defined set of roles). This
vastly differs from standard classification-based
tasks wherein the output prediction y is a singular
value from a fixed set of classes independent of the
input sentence X.

2.2 Zero-shot Cross-Lingual Transfer

Zero-shot cross-lingual transfer (Hu et al., 2020;
Ahmad et al., 2019; Huang et al., 2021) aims to
train a downstream model for the target language
lt4¢ using supervised data Ds;.. from a source lan-
guage [, without using any data in the target lan-
guage (i.e. Diyy = ¢). The paradigm has effec-
tively advanced language technologies for under-
resourced languages.

2.3 Translate-Train

Translate-train (Hu et al., 2020; Ruder et al., 2021)
is a popular and powerful zero-shot cross-lingual
transfer technique that leverages machine transla-
tors 7 to boost downstream model performance.
Specifically, in translate-train, Ds,.. is translated
into the target language as pseudo training data
D?ﬂi and the downstream model is trained using a
combination of {Dy,., DL}

Utilizing translate-train for structured prediction
tasks requires Label Projection, which includes
two sets of translations: (1) Sentence translation
(x°7¢ — x'9%), where we use — to denote that x*9¢
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(a) Marker-based

(b) Word Alignment

South Florida y = suits

x*T¢  In South Florida, the average number of against a neurosurgeon is five. x5T¢  In South Florida, the average number of against a neurosurgeon is five.
y [ , neurosurgeon, South Florida ] Translate lT(xs")
x5TC ST =
[y Addmarkers | | ioc RS BN RSN E R FAF N T
F7e In [0]South Florida[/0], the average number of [1] [/1] against a . s
[2]neurosurgeon(/2] is five. Align sentences lw(xs ,x90)
l T (%57¢) T —— In South Florida, the average number of against a neurosurgeon is five.
X9t ZE[0) fE B M /0] TR (21 A SR E A /2R AY I Hile v / 4
EM. S HEZS S S g 1y 2
P (9, 1) cetriove labels E B BTRLH. , 4 HEAREE & ;13 3 R
Retrieve label l?.“n(y ,w, x°T€, xt9t)
xot B RAN SHES M E LR AT H TR s o
yior R RS B 4, T B BIA ) yio RIS R B, S B
sre In South Florida, the average number Chinese Sentence: §5iﬁﬂﬁﬁ|%iyﬁﬁ%§ﬁﬁ%'%%gfE?ﬁ,ﬁﬁx‘%ﬁk‘?\] M (C) CLAP
x of against a neurosurgeon is five. FHIRBEEN, p————
For the previous sentence, the words corresponding to 'candidate' is: E¥EA'  |n-context M7 1x9)
T(x) Translate Contextual
Chinese's BRI T W RS LTS ? Translation
- . inese Sentence: (A BTy i1 &
xtot E%Tﬁ?ii\\ﬂhﬁ%\}ﬁ%%ﬂ@ For the previous sentence, the words corresponding to 'attack' is: 'Z¢"
EMFILFHARR
e Chinese Sentence: EME M HAMEANELOFATHNEL oo
inese Sentence: 7£ KN, 5T X2 SR SIRIATEH N ) :
+ For the previous sentence, the words corresponding to ‘y’ is: TramIat_lon MEZIBEE }’[gt
Instruction HHREEEMN

ysTe neurosurgeon _

y = neurosurgeon

y = South Florida

Figure 2: Illustration of the various techniques to conduct label projection: (a) Marker-based methods use markers
to transform the sentence and translate the transformed sentence with label markers jointly, (b) Word Alignment
methods use external word alignment tools to locate the translated labels in the translated sentence, and (c) CLaP
(ours) performs contextual translation on labels using M (Here, we demonstrate the use of an instruction-tuned
language model as M to identify translated labels within a translated sentence.).

is the transformation of x*"¢; and (2) Label trans-
lation (y*"¢ — y'9!), such that the translated la-
bel y'9t is appropriately associated with x*9t. This
demand makes translate-train for structure predic-
tion tasks more complex than that for classification
tasks, as the latter only requires sentence transla-
tion (since ¥ is independent of x). 2

Translate-Test Besides translate-train, translate-
test is another commonly used technique in zero-
shot cross-lingual transfer. During inference, mod-
els trained on Dy, are used to predict on translated
test sentences (x'9 — x*7¢), and the predictions
on x°"¢ are later mapped back to x’9*. We mainly
focus on translate-train in this work but discuss
CLaP’s effectiveness for translate-test in § 5.5.

2.4 Label Projection

We hereby technically define the problem of label
projection (Akbik et al., 2015; Chen et al., 2023):

x57C tht
& ym® =y Vym© €y
st yldt ¢ x'9t Vylat ¢ ytot,

This problem requires optimizing two properties of
accuracy and faithfulness in the translations:

?For certain structure prediction tasks like relation classifi-
cation (Ahmad et al., 2021b; Hsu et al., 2021) (determining
the relationship between two entities in x), even if the output
y is scalar, translate-train necessitates label projection step
due to the required projection of the two given entities into the
translated sentence.

tgt tgt
* Accuracy ensures that [x'9¢, 37" ... y,0"] are
accurate translations of [x*7¢, y{"¢, ... ysrc].

* Faithfulness ensures that each y,tf{t is associated
with x%9¢ (the constraint of y’J* € x'9%).
How to do this joint translation is non-trivial as stan-
dard translation models 7 cannot simply impose
the additional faithfulness constraint, as shown in
the failure cases in Figure 1(b). This demonstrates
the challenge of label projection.

3 Methodology

In this section, we first formally define the previ-
ous attempts at label projection and later introduce
CLaP, which provides a new perspective of using
contextual machine translation for label projection.

3.1 Baseline Methods

The primary frameworks used in prior works in-
clude Marker-based and Word-alignment methods.

Marker-based methods (Lewis et al., 2020; Hu
et al., 2020; Chen et al., 2023) solve the label pro-
jection by first marking labels to the input sentence
x*7¢, forming X°"¢, and then use the translation
model to obtain the potential translation of input
sentence and labels jointly. For example, in Fig-
ure 2(a), “South Florida” is delineated by markers
[0] and [\O]. Assuming the preservation of mark-
ers after translation of X*"“, a post-processing step,
Ponark, 1S performed to retain the translated labels

y'9% and translated sentence x'9%. Putting every step
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together, we have

isrc — f( STC,yS’FC) itgt — T(}ESTC)

tgt tgt ,src
7yg :Pmark( g Y )a

where f denotes the marker addition step and X'

is the translation of X*" using translator 7.

Despite their simplicity, these methods suffer
from poor translation quality and reduced robust-
ness to different translation models owing to their
input sentence transformations and strong assump-
tions about the retention of markers in X*9*.

Word Alignment approaches (Akbik et al., 2015;
Yarmohammadi et al., 2021) first translate the in-
put sentence and acquire word alignments (Dyer
et al., 2013; Dou and Neubig, 2021) between the
translation pairs. Each translated label yf,gf is then
procured by merging the aligned words of y."¢
the translated sentence using the word mappings w.
For example, in Figure 2(b), the translated label for
“South Florida” is obtained by merging two aligned
words, which is done by a heuristic post-processing
algorithm P4y, Formally, we have

tht :7-()(37”0)7 w = VV(XSTC7 tht)

Uit =Patign (U, w, X7, X9 Wy € e

Although these approaches deliver high-quality
sentence translations, the accuracy of their trans-
lated labels is compromised. This is because the
translated labels are reconstructed from word-level
translations, lacking joint consideration of the en-

tire span (Akbik et al., 2015; Chen et al., 2023).

3.2 CLaP

We tackle the task of label projection through a
new perspective — performing actual translation
on labels instead of recovering them from trans-
lated text x*9¢. This better ensures the accuracy of
the translated labels y*9!. To accomplish this, we
leverage the idea of contextual machine translation
on the label translation with x*9! as context.

Contextual machine translation, which aims to
perform phrase-level translations conditional on the
context of the translated sentence, is tangentially
explored for applications like anaphora resolution
(Voita et al., 2018) and pronoun translations (Wong
et al., 2020). The main goal of this task is to main-
tain the consistency of phrasal translations in the
given context. In our work, we develop a novel
model CLaP to extend the idea of contextual trans-
lation to the application of label projection.

As illustrated in Figure 2(c), CLaP first utilizes
machine translation model 7 to translate input sen-
tence x*7¢ to x'9', Treating x'9¢ as the context, the
contextual translation model M translates the la-
bels y*"¢ to y*9!. Contextual translation implicitly
imposes the faithfulness constraint which requires
Yt e xtot yldt e y19t hence, slackly satisfy-
ing the requirement of label projection. These two
steps can be formally described as:

tht — T(Xsrc)
yfgt M( src‘xtgt) Vysrc y src
where 3" is generated from M (y57¢|x!9"), draw-
ing the difference from the previous works.

Compared to word alignment approaches using
simple word-similarity aligners WV, we use mod-
els with translation capabilities M, to improve the
accuracy of translated labels. Furthermore, the in-
dependence of 7 and M for translating x*"“ and
y°"¢ respectively assures that CLaP has better trans-
lation quality for x9¢ and is more robust than the
marker-based baselines. We empirically back these
intuitions in § 4.4.

3.3 Implementing CLaP

To implement our concept, we first configure T to
be a modular component that can be replaced by
any third-party translation model. For M, we use
an instruction-tuned language model (LM) with
multilingual capabilities (Wei et al., 2021; Scao
et al., 2022). Instruction-tuned LMs can accept
conditional information in their natural language
prompt. Specifically, we encode the translated tar-
get sentence tht as well as the faithfulness con-
straint yfﬂt € x%* implicitly in the form of natural
language instructions (highlighted as “Contextual
Translation Instruction” in Figure 2(c)). Following
Brown et al. (2020), we also provide n randomly
chosen in-context examples (highlighted as “In-
context examples” in Figure 2(c)) to improve the
instruction-understanding capability of the model. 3
Instruction-tuned LMs sacrifice some translation
ability compared to supervised machine translation
models (Zhu et al., 2023), however, they provide
better control of contextual constraints.

After obtaining label translations, we employ
simple string-matching algorithms to get the exact

span index of y/J" in x9%. Though this may not be

3The in-context examples are generated using Google
translation and initial prediction from instruction-tuned LMs.
The label predictions are further verified by back-translation.
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ACE WikiANN
# Train Instances 4,202 20,000
# Dev Instances 450 10,000
# Avg. Test Instances 194 6,469
# Test Languages 2 39

Table 1: High-level data statistics for ACE and
WikiANN datasets for EAE and NER tasks respectively.
# = ‘number of” and Avg. = average.

the optimal solution when duplicated strings exist
in x%9', it works well in practice as stated in prior
word-alignment methods (Dou and Neubig, 2021).

4 Experiments and Results

This section outlines our experimental settings,
which includes the datasets, baselines, and imple-
mentation details. Subsequently, we provide an
in-depth analysis of CLaP through both intrinsic
and extrinsic evaluations.

4.1 Task and Dataset

We choose two structure prediction tasks, event
argument extraction (EAE) (Sundheim, 1992; Hsu
et al., 2023a) and named entity recognition (NER)
(Tjong Kim Sang, 2002; Tjong Kim Sang and
De Meulder, 2003) for evaluating our label pro-
jection method. EAE requires the extraction of
text segments serving as arguments correspond-
ing to an event and mapping them to their corre-
sponding argument roles. NER aims to identify and
categorize named entities from the input sentence.
For EAE, we use multilingual ACE dataset (Dod-
dington et al., 2004) and follow the pre-processing
by Huang et al. (2022) to retain 33 event types
and 22 argument roles. For NER, we consider the
WikiANN (Pan et al., 2017; Rahimi et al., 2019)
with pre-processing by Hu et al. (2020). We list
the basic statistics for these datasets in Table 1 and
more details in § A. For experiment, we consider
the zero-shot cross-lingual transfer using English
(en) as the source language.

4.2 Baselines

We select two label projection models as baselines,
each representing the two baseline frameworks we
covered in Section 3.1, respectively: (1) EasyPro-
ject (Chen et al., 2023), a recent marker-based
label-projection method, utilizes numbered square
braces (e.g. [0] and [/0]) to mark the labels in
the input sentence. (2) Awesome-Align (Dou and
Neubig, 2021), a neural bilingual word alignment

100

v I CLAP O EAE
_. 90 v B Awesome-align V NER
X B EasyProject
£ 80 v n
a |
o 70
£
2
c 60
=
©
* 50
|
40 y y y y
40 50 60 70 80 90

Accuracy (in %)

Figure 3: Reporting faithfulness and accuracy (in %) for
the different label projection models on EAE and NER.
The closer the model is to the top-right, the better it is.

| ar zh | Avg
LLM-Infer | 169 24.0 | 20.5
Zero-shot* | 403 519 | 46.1
Awesome-align | 48.6 54.5 | 51.6
EasyProject 385 563 | 474
CLaP (ours) 49.3 58.6 | 54.0

Table 2: Extrinsic evaluation of the different label pro-
jection techniques regarding downstream model perfor-
mance using translate-train and the LLM-Infer baseline
for EAE. Avg = Average. * indicates the reproduced
results of X-Gear (Huang et al., 2022).

model, uses multilingual language models to find
word similarities to derive word alignments, which
are later used for label projection.

4.3 Implementation Details

For the translation model 7, we experiment with
the Google Machine Translation (GMT) (Wu et al.,
2016).* For CLaP, we use the text-completion
version of Llama-2 (Touvron et al., 2023) with
13B parameters as M. We use n = 2 in-context
examples for CLaP prompts. For Awesome-align,
we use the unsupervised version of their model
utilizing multilingual BERT (Devlin et al., 2019)
as it provides better results (Chen et al., 2023). >
Additional details are provided in Appendix C.

4.4 Intrinsic Evaluation

We first evaluate CLaP by directly evaluating the
label projection quality, mainly focusing on evaluat-
ing the accuracy and faithfulness of the translated

*https://cloud.google.com/translate. We use the
free scraping tool to reduce the translation costs.

SWe utilize the non fine-tuned version of EasyProject since
we experiment using GMT. The original work also explores
finetuning the machine translation model but it requires open-
source access for finetuning.
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Lang \af ar bg bn de el e et e fa fi fr he hi hu id it ja jv ka

LLM-Infer ‘50.9 24.8 66.9 12.0 44.2 42.2 59.5 41.6 36.7 19.5 46.7 53.5 15.6 18.9 20.6 30.3 56.0 35.7 28.7 21.7

Zero-shot ‘77.4 48.1 82.8 77.0 78.8 80.6 74.5 78.7 61.4 69.2 79.3 79.4 57.3 70.6 80.8 53.1 79.4 19.1 58.5 72.3
Awesome-align |77.9 46.0 81.0 81.2 78.8 71.7 65.3 78.0 66.8 46.4 77.4 78.2 55.3 73.9 77.4 52.8 79.3 20.3 56.3 70.4
EasyProject 76.1 34.4 81.0 78.6 78.8 69.3 70.5 73.9 54.8 49.1 77.8 78.8 61.1 73.0 75.6 51.0 79.0 41.3 62.4 66.4
CLaP 74.4 48.7 81.0 78.1 78.4 75.9 74.7 77.4 68.8 59.0 75.9 79.4 58.4 73.1 72.4 56.1 80.1 45.3 64.8 70.5

| kk ko ml mr ms my nl pt sw ta te th tl tr ur vi yo zh |Avg
LLM-Infer ‘20.9 18.5 11.1 16.5 46.5 10.1 64.3 46.4 22.7 33.4 12.8 9.2 19.8 46.1 31.0 11.6 37.3 28.6 41.0‘32.1
Zero-shot ‘51.9 57.5 66.4 65.3 53.4 65.8 83.0 80.0 74.2 68.4 60.3 62.1 0.4 74.5 65.6 62.2 75.0 34.1 24.6‘64.2

Awesome-align
EasyProject
CLaP

47.7 57.7 63.4 62.4 70.7 54.1 83.0 75.8 64.8 70.1 62.4 55.4 2.4 80.9 62.8 53.7 66.4 61.5 45.4|63.5
31.7 48.2 56.5 59.8 71.7 60.3 81.9 79.6 66.3 71.5 53.2 54.2 11.4 78.2 66.8 63.8 65.6 68.8 42.0{63.2
42.8 60.1 60.3 61.4 73.5 61.5 82.2 78.2 68.3 70.6 59.6 53.1 13.2 74.6 62.9 32.9 75.8 59.6 49.7|64.9

Table 3: Extrinsic evaluation of the different label projection techniques in terms of downstream model performance
using translate-train and the LLM-Infer baseline for NER. Avg = Average.

labels, with the definition stated in § 2.4.

We employ native speakers to assess the accu-
racy of label translations. The evaluation is carried
out using a ranking framework, in which the label
translations from each model are ranked, including
the option for ties. The final accuracy score repre-
sents the average percentage at which the model
outperformed all other competitors. We conduct
this evaluation on 50 data samples for Chinese,
Arabic, Hindi, and Spanish, respectively.

Faithfulness measures the fulfillment of the label
projection constraint. It is measured as a percent-
age of projected data points when all the translated
labels are present in the translated input sentence
(yl! € x9t  wydt € y'9'). The statistics use
the complete test set on ACE and WikiANN.

Results: The accuracy and faithfulness of the mod-
els are plotted together in Figure 3. An ideal model
should optimize both these metrics and thus, the
closer the models are to the top-right, the better they
are deemed. Overall, this figure shows how CLaP
performs the best intrinsically as it is the closest to
the top-right for both the tasks. For EAE, CLaP is
better than all models in both the metrics, while for
NER, CLaP compromises faithfulness slightly for
stronger accuracy. Awesome-align and EasyProject
are both great at attaining higher projection rates
but produce less accurate label translations. Over-
all, intrinsic evaluation demonstrates that CLaP
offers the optimal balance between accuracy and
faithfulness on a qualitative basis.

4.5 Extrinsic Evaluation

Extrinsic evaluation implicitly assesses the effec-
tiveness of various label projection methods in gen-

erating pseudo-training data for downstream tasks.
The projected data is filtered based on the faith-
fulness constraint as Dé% and used along with the

original English data Dy, for downstream training.

For EAE, we use X-Gear (Huang et al., 2022),
the current state-of-the-art model for zero-shot
cross-lingual EAE, as the downstream model.
For NER, we use XLM-RoBERTaj,ge (Conneau
et al., 2020) as our downstream model and follow
XTREME (Hu et al., 2020) setup for implementa-
tions. All results are the average over five runs.

Results: We present the EAE results in terms of
argument classification F1 scores in Table 2. For
reference, we also include the zero-shot baseline
(training only on Dg,.). Evidently, CLaP performs
the best providing an average gain of 2.4 F1 points
over the next best baseline of Awesome-align and a
net gain of 7.9 F1 points over the zero-shot baseline.
This result is in sync with our intrinsic evaluation
wherein CLaP performed the best for EAE.

The primary findings for the F1 scores of entity
classification are shown in Table 3. Overall, CLaP
outperforms all benchmarks, achieving an absolute
enhancement of 0.7 F1 points compared to the zero-
shot baseline, and surpassing previous studies by
1.4-1.7 F1 points. The superior performance of the
downstream model powered by CLaP, highlights
CLaP’s efficacy in improving downstream tasks.

LLM usage comparison - Direct Inference v/s
Contextual Translation: We compare the fine-
tuned models with LLM-Infer, a large language
model (LLM) baseline directly inferring on the
downstream task in the target language. We utilize
the chat version of Llama2-13B model (Touvron

5743



Source
Label

Source
Sentence

Target
Lang

Technique

Translated

Label Explanation

Born in Castelvetrano , Trapani

Awesome-align

FECAIETAT AT

(Castelvetrano Trapani) Extra word

and raised in Catania , he

moved to Madrid to keep up his Castelvetrano hi EasyProject Castelvetrano No translation
busy career . CLaP AR Perfect
(Castelvetrano)
Unilaterally leading a coalition Awesome-align ?Iii—‘?) Incomplete
featuring tyrannies, effect such RETR &
change remains a bad idea, Iraq zh EasyProject SR Extra word
Iraq’s elections (altllough Iraq)
notwithstanding. CLaP [ Perfect
(Iraq)

Table 4: Qualitative examples highlighting the error-cases of the baseline models along with explanations for Hindi
(hi) and Chinese (zh). We also show how CLaP performs better and fixes the errors. Blue text is English translation.

et al., 2023) for the baseline. ® We explore vari-
ous cross-lingual prompting strategies, following
Ahuja et al. (2023) (complete experiments in Ap-
pendix E), and report the performance for the best
prompt here. From results in Table 2 & 3, we
can assert how LLM-infer performs significantly
poorer than any fine-tuned model, indicating how
LLMs can’t infer well on cross-lingual structured
prediction. On the other hand, we demonstrate that
LLMs can be better utilized to do contextual trans-
lation, as used in CLaP, which leads to the best
performance for both the downstream tasks. Ad-
ditional experiments with ChatGPT (Brown et al.,
2020) are also provided in Appendix E.

5 Analysis
5.1 Qualitative Analysis

Diving deeper, we qualitatively study typical error
cases for the translated labels in four languages
by different label projection techniques. In 200
examples of our study, we found that 18% of the
time, EasyProject predicts nothing due to mark-
ers dropped in the translated sentence, and for
19%, EasyProject simply copies the English la-
bel failing to translate it to the target language.
For Awesome-align, the majority of errors are due
to additional words or incomplete label transla-
tions, similar to the observation presented in (Chen
et al., 2023). This could be because it is hard for
the word-alignment module to decide alignments
between sub-words, leading to over-alignment or
under-alignment. We show two selected examples
of our study from Hindi (hi) and Chinese (zh) in
Table 4, where we show how Awesome-align pre-

8Compared to the text version, the chat version of Llama2
provided better results.

Model
Size

EAE NER
ar zh | yo ur kk

CLaP (w/ Llama-2-13B) 13B ‘49.3 58.6‘59.6 329 428

CLaP (w/ GPT-3.5-Turbo) 175B |49.1 58.4]62.3 60.1 46.6

Table 5: Extrinsic evaluation of CLaP using Llama-2-
13B and GPT-3.5-Turbo for five languages.

dicts extra words or incomplete words owing to
misalignments, and EasyProject fails to translate
the word for Hindi while producing extra tokens
for Chinese. In both cases, we show how CLaP
makes accurate predictions and is more robust in
maintaining accurate label translations.

5.2 CLAP with Larger LLMs

We utilize a relatively small LLM Llama-2 (Tou-
vron et al., 2023) with 13B parameters as M for
our experiments with CLaP. Here, we analyze the
impact of utilizing a larger LLM for CLaP. More
specifically, we compare Llama-2-13B based CLaP
with a larger GPT-3.5-Turbo (Brown et al., 2020)
based CLaP for five languages for EAE and NER in
Table 5. 7 We notice that using GPT-3.5-Turbo in
CLaP is at par with the Llama-2 variant for medium
to high-resource languages like Arabic (ar) and Chi-
nese (zh). On the other side, for lower-resourced
languages like Yoruba (yo), Urdu (ur), and Kazakh
(kk), GPT-3.5-Turbo introduces significantly larger
improvements of 3 to 30 F1 points. Thus, we hy-
pothesize that larger multilingual LLMs can fur-
ther improve CLaP, especially for low-resource lan-
guages, also evidenced in Bandarkar et al. (2023).

"GPT-3.5-Turbo costs $20-$30 per language. Thus, owing
to budget constraints, we restrict ourselves to 5 languages.

5744



| ar zh | Avg

Zero-shot | 403 519 | 439
Awesome-align | 47.1 53.8 | 484
EasyProject 36.5 55.6 | 454
CLaP (ours) 48.2 569 | 504

Table 6: Extrinsic evaluation of the different label pro-
jection techniques using translate-train for EAE using
the mBART-50 many-to-many translation model.

| ar zh | Avg
Zero-shot | 403 519 | 439
Independent | 44.8 54.3 | 47.6
Constrained | 45.6 55.6 | 48.8
CLaP (ours) | 48.2 569 | 504
Supervised | 632 69.7 | 65.0

Table 7: Ablation study comparing different contextual
translation techniques for label projection. Performance
is measured by downstream EAE performance.

5.3 Generalization to other translation models

To verify the generalizability of our approach to
other translation models, we perform an extrinsic
evaluation of the label projection techniques on
the EAE task using the mBART-50 many-to-many
(MMT) (Kong et al., 2021) translation model. We
show the results for this evaluation in Table 6. We
see that CLaP performs the best with an average
improvement of 2 F1 points over the next best base-
line of Awesome-align and 6.5 F1 points over the
zero-shot baseline. This result shows our CLaP
is a generalizable label projection technique and
agnostic to the underlying translation model.

5.4 Ablation Study for CLaP

To study the impact of using instruction-tuned mod-
els for contextual translation, we conduct an ab-
lation study comparing CLaP with the following
baselines which put extra focus on accuracy or
faithfulness for contextual machine translation: (1)
Independent translation uses the translation model
T to independently (without any context of the
input sentence) translate the source text labels to
the target language (i.e. y'9' = T (y*"¢)), (2) Con-
strained translation which uses a decoding con-
straint to carry out the faithfulness requirements.
More specifically, during translation, it limits the
generation vocabulary to the tokens in the trans-
lated sentence z'9%. We follow De Cao et al. (2022);
Lu et al. (2022) for implementing these constraints.

We extrinsically evaluate the model perfor-

EAE NER Avg

ar zh | it es id
Zero-shot |36.3 47.3]|79.4 74.5 53.1|58.1
Awesome-align |32.8 30.1|77.5 69.6 51.4|52.3
EasyProject 17.0 11.5[65.9 62.6 51.8|41.8
CLaP (ours) 34.3 39.5|73.4 75.0 57.4|55.9

Table 8: Extrinsic evaluation of the different label pro-
jection techniques using translate-test using GMT for
EAE and NER. Avg = Average

mances of the techniques on the task of EAE using
the MMT translation model ® and show the results
in Table 7. The independent model compromises
faithfulness while the constrained model sacrifices
accuracy - but both models outperform the zero-
shot baseline. CLaP provides high accuracy and
faithfulness and achieves the best performance im-
proving by 1.6 to 2.8 F1 over the ablation baselines.

5.5 CLaP for Translate-Test

Another popular technique for cross-lingual trans-
fer is translate-test (Hu et al., 2020; Ruder et al.,
2021) which was discussed in § 2.3. As part of
this analysis, we study the applicability of CLaP
for translate-test using extrinsic evaluation on Ara-
bic (ar) and Chinese (zh) for EAE and Italian (it),
Spanish (es), and Indonesian (id) for NER. We
show the results in Table 8. Overall, we see how
CLaP outperforms both the other methods signif-
icantly achieving the best scores for 4 out of the
5 languages. EasyProject performs the worst as
it uses the translation model twice causing higher
error propagation. We also note how translate-test
doesn’t yield improvements over the zero-shot base-
line, especially for EAE as it requires using label
projection twice (once for trigger and once for ar-
guments), thus leading to error propagation.

6 CLaP for Low-Resource Languages

To cater our model to a wide range of languages, we
study the applicability of CLaP for low-resource
languages. Specifically, we consider the task of
NER for 10 low-resource languages from Africa
and South America. For the test datasets, we utilize
MasakhaNER (Adelani et al., 2022) for 9 African
languages: Hausa (ha), Igbo (ig), Chichewa (ny),
Kinyarwanda (rw), chShona (sn), Kiswahili (sw),
isiXhosa (xh), Yorub4 (yo), isiZulu (zu), and refer
to Zevallos et al. (2022) for the South American

8Since decoding-time constraints for the Constrained
model can’t be applied to GMT
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Lang ha ig ny rw sn
729 464 49.0 450 50.2

Awesome-align  72.2 641 649 559 554
EasyProject 720 54.6 505 545 425
CLaP (ours) 699 605 587 536 59.7

Zero-shot

4 xh yo zu qu
88.6 61.0 336 67.1 379

Awesome-align 829 524 30.8 579 46.1
EasyProject 81.3 50.6 252 443 44.1
CLaP (ours) 80.7 61.3 30.6 544 487

Zero-shot

Table 9: Extrinsic evaluation of the different label pro-
jection techniques using translate-train using GMT for
NER for 10 low-resource languages.

language Quechua (qu). We conduct extrinsic eval-
uation of translate-train models transferring from
the English CONLL training data® using the GMT
model and present the results in Table 9. We ob-
serve that this is a particularly challenging setting
as all the label projection techniques fail to im-
prove over the zero-shot model for 4 languages.
Our model CLaP improves for 6 languages and
performs the best for 3 languages. This result is
particularly encouraging as our model uses a small
and English-centric 13B Llama-2 model and uti-
lizing larger multilingual LLMs will amplify these
improvements further (as shown in § 5.2). 10

7 Related Works

Zero-shot Cross-lingual Structure Extraction
Since the emergence of strong multilingual mod-
els (Devlin et al., 2019; Conneau et al., 2020),
various works have focused on zero-shot cross-
lingual learning (Hu et al., 2020; Ruder et al., 2021)
and code-switching (Garg et al., 2018; Hsu et al.,
2023b) for various structure extraction tasks like
named entity recognition (Li et al., 2021; Yang
et al., 2022), relation extraction (Ni and Florian,
2019; Subburathinam et al., 2019), slot filling (Kr-
ishnan et al., 2021), and semantic parsing (Nicosia
et al., 2021; Sherborne and Lapata, 2022). Recent
works have focussed on building datasets (Pouran
Ben Veyseh et al., 2022; Parekh et al., 2023), bench-
marking (Huang et al., 2023) as well as develop-
ing novel modeling designs exploring the usage
of parse trees (Subburathinam et al., 2019; Ah-
mad et al., 2021a; Hsu et al., 2023c), data projec-

%For qu, we only use 3,000 CoNLL training data points
due to budget constraints.

%Owing to budget constraints, we left the exploration as
future work.

tion (Yarmohammadi et al., 2021), pooling strate-
gies (Agarwal et al., 2023) and generative models
(Hsu et al., 2022; Huang et al., 2022) to improve
cross-lingual transfer. We utilize the state-of-the-
art model X-Gear (Huang et al., 2022) and XLM-R
(Conneau et al., 2020) as the downstream models
for EAE and NER respectively, and improve them
further using CLaP-guided translate-train.

Label Projection Techniques Several works
have attempted to solve label projection for vari-
ous structure extraction tasks such as semantic role
labeling (Aminian et al., 2017; Fei et al., 2020),
slot filling (Xu et al., 2020), semantic parsing
(Moradshahi et al., 2020; Awasthi et al., 2023),
NER (Ni et al., 2017; Stengel-Eskin et al., 2019),
and question-answering (Lee et al., 2018; Lewis
et al., 2020; Bornea et al., 2021). The earliest
works (Yarowsky et al., 2001; Akbik et al., 2015)
utilized statistical word-alignment techniques like
GIZA++ (Och and Ney, 2003) or fast-align (Dyer
et al., 2013) for locating the labels in the translated
sentence. Recent works (Chen et al., 2023) have
also explored the usage of neural word aligners like
QA-align (Nagata et al., 2020) and Awesome-align
(Dou and Neubig, 2021). Another set of works has
explored the paradigm of mark-then-translate using
special markers like quote characters ("") (Lewis
et al., 2020), XML tags (<a>) (Hu et al., 2020), and
square braces ([0]) (Chen et al., 2023) to locate the
translated labels. Overall, both these techniques
can be error-prone and have poorer translation qual-
ity (Akbik et al., 2015), as shown in § 4.4 and 5.1.
A recent concurrent work CODEC (Le et al., 2024)
improves the translation quality of text with mark-
ers by constrained decoding and data augmentation.

8 Conclusion and Future Work

In our work, we propose a novel approach CLaP for
label projection, which utilizes contextual machine
translation using instruction-tuned language mod-
els. Experiments on two structure prediction tasks
of EAE and NER across 39 languages demonstrate
the effectiveness of CLaP compared to other label
projection techniques. Intrinsic evaluation provides
deeper insights that justify our model improve-
ments. Additional experiments using larger LL.Ms,
various translation models, translate-test paradigm,
and 10 extremely low-resource languages demon-
strate the generalizability and future potential of
CLaP for cross-lingual structured prediction.
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Limitations

In our work, we show the effectiveness of our
model CLaP on two representative structure predic-
tion tasks of EAE and NER. Its effectiveness for
other structure prediction tasks remains unknown
and can be extended in future works. For CLaP,
we utilized the 13B version of the Llama-2 model
as the base instruction-tuned language model as a
proof-of-concept for the effectiveness of CLaP. Fu-
ture works can explore the usage of other stronger
LLMs to enhance the model performance. Lastly,
we would like to point out that our model doesn’t
improve over the zero-shot model for several lan-
guages, mainly owing to the limited language un-
derstanding and poor translation quality. However,
the focus of our work has been to show the effec-
tiveness of our model with other used label pro-
jection techniques. With growing model sizes and
enhanced coverage of languages, we posit that our
model will eventually be able to provide significant
improvements for all languages.

Ethical Concerns

We use an instruction-tuned language model
(specifically LLama-2) as the base model for
CLaP. Since these instruction-tuned models are
not trained equitably in all languages, the model
generation quality may vary drastically for each
language. Furthermore, since these models are not
trained on filtered safe content data, the model may
potentially generate harmful content.
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A Data Statistics

We present the extensive data statistics for the ACE
and WikiANN datasets used for downstream model
evaluation on EAE and NER respectively. For ACE,
we follow the pre-processing by Huang et al. (2022)
to retain 33 event types and 22 argument roles.
For WikiAnn, we follow the pre-processing steps
described in Rahimi et al. (2019); Hu et al. (2020).
For ACE, Table 10 provides statistics about the
number of events and arguments for each language.
For WikiANN, we present the statistics in Table 11.

Train Dev Test
Language English English | Arabic Chinese
# Events 4,202 450 198 190
# Arguments 4,859 605 287 336

Table 10: Data Statistics in terms of events and argu-
ments of the ACE dataset for the downstream task of
EAE. # indicates ‘number of”.

B Complete Results for Intrinsic
Evaluation

B.1 Accuracy Evaluation

Accuracy evaluation is done by 5 native bilingual
speakers for Chinese, Arabic, Hindi, and Spanish
by ranking the translation quality of the translated
labels. The native speakers were undergraduate and
graduate students who were well-versed in their re-
spective native languages. We present the interface
of the google sheets along with the instructions
shown to the annotators for Chinese in Figure 4.
Similarly, annotation was performed for the other
languages as well. We present the complete re-
sults as an A/B comparison of the different tech-
niques in terms of their win rates (i.e. percentage
when A is better than B) in Table 12. We note how
CLaP is more accurate than previous baselines of
Awesome-align and EasyProject while at par with
the Independent baseline.

B.2 Faithfulness Evaluation

We present the complete results for the faithfulness
evaluation per language in Tables 13 and 14 for
EAE and NER tasks respectively. For EAE, CLaP
has the best faithfulness followed by Awesome-
align. For NER, Awesome-align and EasyProject
have the highest faithfulness.

Split Language # Sentences  # Entities
Train  English (en) 20,000 27,931
Dev English (en) 10,000 14,146
Afrikaans (af) 1,000 1,487
Arabic (ar) 10,000 11,259
Bulgarian (bg) 10,000 14,060
Bengali (bn) 1,000 1,089
German (de) 10,000 13,868
Greek (el) 10,000 12,163
Spanish (es) 10,000 12,260
Estonian (et) 10,000 13,892
Basque (eu) 10,000 13,459
Farsi (fa) 10,000 10,742
Finnish (fi) 10,000 14,554
French (fr) 10,000 13,369
Hebrew (he) 10,000 13,698
Hindi (hi) 1,000 1,228
Hungarian (hu) 10,000 14,163
Indonesian (id) 10,000 11,447
Italian (it) 10,000 13,749
Japanese (ja) 10,000 13,446
Javanese (jv) 100 117
Test Georgian (ka) 10,000 13,057
Kazakh (kk) 1,000 1,115
Korean (ko) 10,000 14,423
Malayalam (ml) 1,000 1,204
Marathi (mr) 1,000 1,264
Malay (ms) 1,000 1,115
Burmese (my) 100 119
Dutch (nl) 10,000 13,725
Portuguese (pt) 10,000 12,823
Russian (ru) 10,000 12,177
Swabhili (sw) 1,000 1,194
Tamil (ta) 1,000 1,241
Telugu (te) 1,000 1,171
Thai (th) 10,000 16,970
Tagalog (tl) 1,000 1,034
Turkish (tr) 10,000 13,587
Urdu (ur) 1,000 1,020
Vietnamese (vi) 10,000 11,305
Yoruba (yo) 100 111
Chinese (zh) 10,000 12,049

Table 11: Data Statistics in terms of sentences and enti-
ties of the WikiANN dataset for the downstream task of
NER. # indicates ‘number of .

C Additional Implementation Details

C.1 X-Gear

X-Gear is used as the downstream model for EAE
for extrinsic evaluation of the label projection
techniques. The original X-Gear work (Huang
et al., 2022) explored two base multilingual mod-
els: mBART-50-large (mBART) (Kong et al., 2021)
and the mT5-base (mT5) (Xue et al., 2021). They
also explored the usage of copy mechanism (See
et al., 2017) to prompt the models to predict strings
from the input sentence. In our work, we uti-
lized mBART without copy (mBART), mT5 with-
out copy (mT5), and mT5 with copy mechanism
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System 1 vis System 2 Arabic Chinese Hindi Spanish
S1 Tie S2 S1 Tie S2 S1 Tie S2 S1 Tie S2

CLaP Awesome-align | 36% 58% 6% |45% 5S50% 5% |20% 74% 6% |12% 84% 4%
CLaP EasyProject 52% 32% 16% |56% 39% 5% |42% 48% 10% |30% 66% 4%
CLaP Independent 18% 60% 22% | 12% 71% 17% | 18% 64% 18% |24% 68% 8%
Independent Awesome-align | 4% 42% 14% |39% 57% 4% |28% 60% 12% |20% 64% 16%
Independent EasyProject 50% 44% 6% |50% 46% 4% |52% 36% 12% |32% 52% 16%
Awesome-align EasyProject 2% 26% 32% |34% 50% 16% |42% 42% 16% |26% 64% 10%

Table 12: A/B comparison of the various label projection techniques for accuracy evaluation for the Google
Translation model. Accuracy is measured as the label translation quality by native human speakers. Here, S1 =
System 1 is better, S2 = System 2 is better, and Tie = similar quality. The better systems are highlighted in bold.

Guidelines:

Looking at the English word in context of the English sentence, evaluate the word translations by System 1, 2 and 3 by giving them rankings - i.e. 1/2/3/4 (1= best and 4 = worst)

SPECIAL NOTES
1. If two systems deserve the same rank, mark them with the same rank (e.g.1/1/3/40R1/2/212)

2. If a system transation has "-", that means the system was not able to translate the phrase at all. This is the worst kind of translation and should be ranked the worst.
3. If the word is ot translated and in English itself, it would be considered a poorer translation than phonetic translation of the word in the target language. But the English translation should be considered better than random gibberish in the target language

Translations Rankings
English Sentence English word System 1 System 2 System 3 System 4 System 1 System 2 System 3 System 4
happily watching tom and jerry on his mini television , his transformation from the pain
- racked boy who left baghdad . baghdad IS =55 =225 =255
reporter : the kramers must wait and travel to another town for abby . on the next flight
 passengers wear masks and their temperatures are taken for signs of sars kramers kramers TRBRI TRBRIF TRBRIF
Allegations have come to light that several OSU players received illegal benefits
including cash , access to cars , etc . players BR T BR BR
The first one was on Saturday and triggered intense gun battles , which according to
some U.S. accounts , left at least 2,000 Iraqi fighters dead gun E it it Eiit>a
Now that armored columns of U.S .- led troops have reached the outskirts of Baghdad
, eyewitnesses report fighting and shelling around Saddam Hussein International Saddam Hussein M- GREEFHS
Airport International Airport  [E5% A L A L AN L
we have eyewitnesses to his orders of execution of hundreds of people in 1991 during
the shite muslim uprising people - Afi A #EA
I'm reminded of when | lived in another state and the local cop charged the town
drunk in his driveway after following him home from the pub drunk - 3 3 o

Figure 4: Annotation Interface for conducting the intrinsic evaluation for Accuracy. The shown examples are for
Chinese, while the study was done for Hindi, Spanish, and Arabic as well.

Techniques | ar zh | Avg.
Independent 33 38| 35
Awesome-align | 66 83 | 74
EasyProject 31 66| 48
CLaP 74 8| 79

Table 13: Faithfulness evaluation of the various label
projection techniques for EAE as a percentage of the
times the translated labels were present in the translated
input sentence. Numbers are in percentage (%). Higher
faithfulness is better and the best techniques are high-
lighted in bold.

(mT5+Copy) as the downstream models. We
present details about the hyperparameter settings
for these models in Table 16. We run experiments
for CLaP on a NVIDIA GeForce RTX 2080 Ti
machine with support for 8 GPUs.

C.2 XLM-R

XLM-R (Conneau et al., 2020) is used as the down-
stream model for NER for extrinsic evaluation of
the label projection techniques. We mainly follow
the XTREME (Hu et al., 2020) framework for set-
ting up the task and model. We present details
about the hyperparameter settings for this model
in Table 15. We run experiments for CLaP on a
NVIDIA GeForce RTX 2080 Ti machine with sup-

{Target Language} Sentence: {Translated Input Sentence}

Prompt For the previous sentence, the words corresponding to
' Input . .. :
; {Source Label}" is:
i Prompt . ,
Output {Target Label} 3
: Text Completion Prompt Design i
; Chinese Sentence: BEEMNIEMNSIURA T EMiitsH 212 |
3 SREM MRS AEHIIREEEA, i
For the previous sentence, the words correspondingto !
! In-context candidate' is: MERIEA’ \ R
| Examples Chinese Sentence: RAMAEBN R T MR OMA
: ARERZRE ? ;
For the previous sentence, the words corresponding to :
‘attack' is: 'ZRd'
i Chinese Sentence: 7ERSf#% Bk SHMBHIRELE |
' Prompt  HIRIAES R TR
! Input For the previous sentence, the words corresponding to :
: ‘suits’ is:

Illustration of the Text Completion Prompt

Figure 5: Illustration of the text-completion prompt
used for contextual machine translation for our CLaP
model.

port for 8 GPUs.

C.3 CLaP

We provide a couple of prompt designs we used
for our model in Figure 5 along with an illustration
for Chinese. We additionally provide a similar tem-
plate for chat version of the model (which is used
for experiments with GPT3.5-turbo as reported in

5754



Techniques af ar bg bn de el es

Independent 78 66 67 74 79 57 70
Awesome-align 99 95 98 92 99 98 99
EasyProject 100 98 83 98 97 &9 99
CLaP 94 75 63 93 79 46 84

Independent 70 64 61 71 71 71 65
Awesome-align 98 97 96 99 98 95 93
EasyProject 97 94 99 98 99 94 36
CLaP 92 91 72 92 74 80 90

Independent 68 77 74 68 66 64 56
Awesome-align 98 99 99 58 98 95 94
EasyProject 97 99 98 95 94 99 77
CLaP 93 84 78 67 53 70 85

Independent 63 57 73 80 53 76 76
Awesome-align 96 88 92 99 90 99 97
EasyProject 93 87 73 98 62 100 99
CLaP 64 88 95 82 55 85 &9

ru sw ta te th tl  tr

Independent 59 79 72 76 66 81 76
Awesome-align 97 96 91 91 51 99 98
EasyProject 99 97 91 &7 99 99 98
CLaP 66 94 96 90 57 58 94

vi ur yo zh Avg.

Independent 74 74 45 66 69
Awesome-align 83 97 92 92 93
EasyProject 98 94 77 92 92
CLaP 8 91 88 60 79

Table 14: Faithfulness evaluation of the various label
projection techniques for NER as a percentage of the
times the translated labels were present in the translated
input sentence. Numbers are in percentage (%). Higher
faithfulness is better and the best techniques are high-
lighted in bold.

§ 5.2) in Figure 6. We report the hyperparameter
settings for our model in Table 17. We run experi-
ments for CLaP on a NVIDIA GeForce RTX 2080
Ti machine with support for 8 GPUs.

C.4 EasyProject

Compared to the original EasyProject work, we
made certain changes in the re-implementation for
our work to provide a fair comparison. First, we
use square-indexed markers (e.g. [0] and [/0]) com-
pared to XML markers (e.g. <LOC> and </LOC>)
used by EasyProject. This is mainly because we
obtained much higher retention rates using square-
indexed markers (88.2%) compared to XML mark-
ers (6.2%) in our initial studies. Secondly, the
original EasyProject model uses a finetuned NLLB-
200-3.3B model as the translation model. Since we

Base Model XLM - Roberta - Large
# Training Epochs 5
Training Batch Size 32
Evaluation Batch Size 32
Learning Rate 2x107°
Weight Decay 0
Max Sequence Length 128
# Accumulation Steps 1
# Saving Steps 1000

Table 15: Hyperparameter details for the NER down-
stream XLM-R model.

| have an English sentence and its corresponding
translation in {Target Language}. There’s an English word

System been tagged using <<TAG>> <</TAG>> in the given

: English sentence. | want to know its corresponding
Prompt {Target Language} translation in the given {Target
: Language} sentence.
For example: {In-context Examples}
Now do your work:
Original English Sentence: {English Input Sentence with
Prompt label within <<TAG>> <</TAG>>} ;
Translated {Target Language} Sentence: {Translated Input |
Input Sentence} :
The corresponding word of ‘{Source Label}‘ in {Target
Language} is:
Prompt {Target Label}
Output

Chat Version Prompt Design 3

Figure 6: Illustration of the chat version prompt used
for contextual machine translation for our CLaP model.

don’t finetune CLaP or Awesome-align, we use the
non-finetuned Google Machine Translation (GMT)
model as the translation model.

D Complete results for Extrinsic
Evaluation

D.1 Event Argument Extraction

Here, we explore three versions of the X-Gear
(Huang et al., 2022) model: mBART without copy
(mBART), mT5 without copy (mT5), and mT5
with copy mechanism (mT5+Copy). We present
the extrinsic evaluation for EAE by training these
three models with the label projection techniques
for translate-train in Table 18. Results indicate
how CLaP performs the best across all the three
variations of the model.

E Large Language Model Direct
Inference Analysis

Large language models (LLMs) have shown great
zero-shot and few-shot capabilities for several tasks
like sentiment analysis, machine translation, and
question-answering (Guo et al., 2023; Jiao et al.,
2023). However, employing a directly prompted

5755



mBART

Base Model

Usage of copy
Training Batch Size
Eval Batch Size
Learning Rate
Weight Decay

# Warmup Epochs
Gradient Clipping
Max Training Epochs
# Accumulation Steps
Beam Size

Max Sequence Length
Max Output Length

multilingual BART-Large
No

16

32
2x107°
1x107°
5

5

60

1

4

350

100

mT5 mT5+Copy
multilingual T5-Large  multilingual T5-Large
No Yes

16 16

32 32
1x10°* 2x107°
1x107° 1x107°
5 5

5 5

60 60

1 1

4 4

350 350

100 100

Table 16: Hyperparameter details for the EAE downstream X-Gear model.

You are trying to check if arguments specific to certain

Base Model llama-2-13b
Temperature 0.6
Top-p 0.9
Maximum Generation Length 64-128
# In-context examples 2

Table 17: Hyperparameter details for the CLaP model.

mBART mT5 mT5+Copy | Avg

ar zh | ar zh ar zh
LLM-Infer | - - | - - |169% 240|205
Zero-shot™ |36.3 47.3]|36.7 51.0| 40.3 519 [43.9
Awesome-align | 45.2 49.4146.8 53.7| 48.6 54.5 |49.7
EasyProject 37.9 523|345 54.6| 385 56.3 |45.7
CLaP (ours) 46.0 53.4|44.3 56.5| 49.3 58.6 |514

Table 18: Extrinsic evaluation of the different label
projection techniques regarding downstream model per-
formance using translate-train for EAE. Avg = Average.
* indicates the reproduced results of X-Gear (Huang
et al., 2022). Results for LLM-Infer (marked with 1)
are independent of the XGear base model.

LLM for information extraction and structured pre-
diction tasks in cross-lingual settings is an under-
studied area. Current evidence, including recent
studies by Han et al. (2023) and Li et al. (2023), in-
dicates that LLM performance for these tasks, even
for English, lags behind best fine-tuned models.
To this end in our work, we evaluate LLMs for di-
rect inference on non-English structured prediction
through our baseline LLM-Infer.

We utilize two LLMs of varying sizes for LLM-
Infer: Llama-2-chat (13B version) (Touvron et al.,
2023) and GPT-3.5-Turbo (Brown et al., 2020).
We illustrate the prompts used for this baseline in
Figure 7. Our LLM prompts involve 2-shot and
4-shot in-context examples, and we meticulously
explore three distinct prompting strategies, specifi-

event roles are present in the sentence.

The event of interest is {Event-name}
1System

' The event is related to {Event-definition}.
Prompt Note that your answer should only contain the output
: string and nothing else.

Examples: {In-context examples}

Sentence: {Input sentence}

The event trigger word is ‘{Input trigger word}’

Does the input sentence mention the ‘{Argument Role}'
Prompt , \ K

role for the ‘{Event-name}' event? If yes, what is the
Input corresponding argument?

Output:
Prompt Yes/No. The argument is ‘{Argument-name}’.
Output

LLM-Infer Prompt 3

Figure 7: Illustration of the prompt used for the LLM-
infer baseline to directly utilize LLMs for downstream
structured prediction tasks.

! Sentence: waksal could be fined $ 3.5 million , facing a maximum of 75
years in prison , expected , though, to receive about six to seven years . |
i The event trigger word is ‘receive’. :
i Does the input sentence mention the 'Defendant' role for the

! 'Justice:Sentence' event? If yes, what is the corresponding argument?
Output: Yes. The argument is 'waksal'.

(a) Zero-shot Cross-Lingual Prompt (ZSCLP)E

! Sentence: SEE A RAIIE LS TN ERAYEA 5T TR,

! The event trigger word is 'HESR'.

! Does the input sentence mention the 'Target' role for the
'Conflict:Attack' event? If yes, what is the corresponding argument?
Output: Yes. The argument is ' TIBA".

(b) Translate-shot Prompt (TSP);

! Sentence: ftt B RITE—RH METFEIE T, UHBEEBXR,

! The event trigger word is 'FZE", :
‘ Does the input sentence mention the 'Place’ role for the 'Justice:Arrest- |
i Jail' event? If yes, what is the corresponding argument? :
i Output: Yes. The argument is ="

(c) Monolingual Prompt (MP)?
Figure 8: Illustration of the in-context examples used
for the three different prompting strategies for LLM-
Infer baseline.
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Base Prompting k-shot EAE NER Avg
Model Strategy ar zh| hi ms yo

Llama2-13b-chat ZSCLP 2 134 20.0]21.7 30.1 264|223
Llama2-13b-chat ZSCLP 4 142 179|39.5 383 319|284
Llama2-13b-chat TSP 2 169 24.0|18.9 46.5 28.6|27.0
Llama2-13b-chat TSP 4 8.7 22.8|17.5 435 36.2|25.7
Llama2-13b-chat MP 2 18.9 28.1|13.7 49.2 17.6 255
Llama2-13b-chat MP 4 11.9 26.0|13.7 61.5 174 |26.1
GPT-3.5-turbo ZSCLP 2 158 223|644 50.7 39.7|38.6
GPT-3.5-turbo ZSCLP 4 159 23.6|65.0 53.0 39.0|39.3
GPT-3.5-turbo TSP 2 17.1 22.3(59.3 54.6 533|413
GPT-3.5-turbo TSP 4 17.2 245|523 572 48.8|40.0
GPT-3.5-turbo MP 2 153 252|595 64.1 51.0|44.7
GPT-3.5-turbo MP 4 19.5 28.8|58.5 654 485|44.1
Zero-shot Model 40.3 51.9|70.6 534 34.1|50.1
CLaP Translate-train (Ours) 49.3 58.6 | 73.1 73.5 59.6 | 62.8

Table 19: Evaluation of LLM-based inference and their comparison with our label projected translate-train model
CLaP. This study is done on Event Argument Extraction (EAE) for two languages - Arabic (ar) and Chinese (zh) -
and on Named Entity Recognition (NER) for three languages: Hindi (hi), Malay (ms), and Yoruba (yo).

cally for the cross-lingual setting, following Ahuja
et al. (2023) (also illustrated in Figure 8). These
strategies are listed as follows:

1. Zero-shot Cross-Lingual Prompt (ZSCLP):
This strategy involves using k-shot examples
from a pivot language (English in our study),
which differs from the language of the test
example, as shown in Figure 8(a).

2. Translate-shot Prompt (TSP): In this strat-
egy, we first obtain k-shot examples from
the pivot language and subsequently perform
label projection (using CLaP) to the target
language on these examples. These label-
projected examples are used as in-context ex-
amples in the final prompt (Figure 8(b)).

3. Monolingual Prompt (MP): This method
uses k-shot human-labeled examples directly
from the target language (Figure 8(c)).

While the first two strategies align with the zero-
shot cross-lingual transfer setting, where the avail-
ability of data is limited to English, the third strat-
egy offers a slight variation. It presupposes the
availability of a few examples in the target lan-
guages. For a fair comparison, only the first two
strategies are used to compare with CLaP, while the
third strategy serves as a comparison datapoint for
elucidating the difference between label-projected
and human-labeled data as in-context examples.

We conduct this analysis on EAE across two lan-
guages and NER across three languages (as it’s ex-
pensive to conduct this study for all the languages).

The selection of languages for NER is to consider
both resource diversity (hi: medium-high resource;
ms: medium resource; yo: low resource) and script
diversity. We compare these models with the zero-
shot baseline and our proposed CLaP translate-train
model. We show the model performance results in
terms of F1 scores for this study in Table 19.

This study reveals several insights: (1) We ob-
serve that GPT-3.5-turbo significantly performs bet-
ter than the Llama-2-13B model - signifying the
importance of a larger model size. (2) Compar-
ing different prompting strategies, we observe little
variation in model performance for the Llama-2-
13B model, while a larger variation for GPT-3.5-
turbo. Majorly, we observe that the label-projected
in-context examples are better than the English
examples, while human-labeled examples provide
further gains of 3-4 F1 points. (3) We observe that
on average, the LLM-Infer models perform poorer
than the zero-shot fine-tuned model. These differ-
ences are massive for EAE, while for NER, LLM-
Infer performs better for low-resource languages
(ms and yo) using our label projected examples. (4)
Finally, we observe that CLaP performs the best
across all tasks and all languages, even in cases
where few-shot examples in target languages are
used (MP prompting strategy). All these insights
validate CLaP’s manner of leveraging LLMs to
solve zero-shot cross-lingual structured prediction
tasks i.e. CLaP is better than direct LLM prompt-
ing.

5757



