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Abstract

Recently, deep end-to-end learning has been
studied for intent classification in Spoken Lan-
guage Understanding (SLU). However, end-to-
end models require a large amount of speech
data with intent labels, and highly optimized
models are generally sensitive to the incon-
sistency between the training and evaluation
conditions. Therefore, a natural language
understanding approach based on Automatic
Speech Recognition (ASR) remains attractive
because it can utilize a pre-trained general lan-
guage model and adapt to the mismatch of the
speech input environment. Using this module-
based approach, we improve a noisy-channel
model to handle transcription inconsistencies
caused by ASR errors. We propose a two-stage
method, Contrastive and Consistency Learning
(CCL), that correlates error patterns between
clean and noisy ASR transcripts and empha-
sizes the consistency of the latent features of
the two transcripts. Experiments on four bench-
mark datasets show that CCL outperforms exist-
ing methods and improves the ASR robustness
in various noisy environments. Code is avail-
able at https://github.com/syoung7388/CCL

1 Introduction

Understanding a conversation is critical for
reaching a user’s goal in a spoken dialogue sys-
tem. Spoken Language Understanding (SLU) has
been investigated by applying an end-to-end ap-
proach with a singular speech input model for train-
ing. The end-to-end approach requires an exten-
sive volume of labeled speech data, which can be
challenging to collect. As dialogue systems are
commonly used in many real-world scenarios, the
end-to-end SLU models are susceptible to unseen
instances that mismatch the training data due to
limited language expression and acoustic condi-
tions. Utilizing a module-based approach, which
leverages the capabilities of pre-trained language
models, is an appealing option for developing gen-

eral spoken dialogue systems. However, this option
depends on the premise that the model pre-trained
on clean text can effectively handle errors caused
by the Automatic Speech Recognition (ASR) mod-
ule. Consequently, it is necessary to solve the prob-
lem of inconsistencies in noisy ASR transcripts that
contain speech recognition errors.

Recent studies have addressed the challenge of
discrepancies between clean and noisy ASR tran-
scripts. Ruan et al. (2020) minimized the Kullback-
Leibler (KL) divergence so that the prediction dis-
tributions of both transcripts become similar in a
noisy environment. In contrast, Chang and Chen
(2022) demonstrated a technique that utilizes a con-
trastive learning to align the implicit features of
paired clean and noisy ASR transcripts. However,
most previous studies still need to consider the
alignment for fine-grained errors such as insertion,
deletion, and substitution caused by ASR modules.

We expect that using an improved noisy-channel
model will mitigate the sensitivity of the pre-
trained language model to discrepancies between
clean and noisy ASR transcripts. The noisy-
channel approach aims to identify the target word,
even if the input becomes scrambled or distorted.
We present the neural noisy-channel model to pre-
dict error-free intent by (i) finding the error portions
of given noisy input relative to clean transcript and
(ii) matching the latent representations from two
transcripts. In this paper, we introduce Contrastive
and Consistency Learning (CCL) to perform this
two-stage.

As shown in Figure 1 (a), reference and inference
networks receive clean and noisy ASR transcripts
as inputs, respectively. During the CCL, two net-
works simultaneously perform a token-based con-
trastive learning followed by a consistency learning.
The purpose of token-based contrastive learning is
to correlate errors in the noisy ASR transcript with
the corresponding clean transcript at both word and
utterance token-levels. We select the word tokens
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Figure 1: An overview of CCL. (a) Given a noisy ASR transcript, the inference network correlates error portions
through token-based contrastive learning and then maintains coherence with the latent feature of the clean transcript
through consistency learning. (b) In evaluation, inference network takes only noisy ASR transcript as input.

as a positive pair by aligning them with an edit
distance algorithm when two transcriptions do not
match sequentially. In addition, consistency learn-
ing makes the inference network emphasize the co-
herence between clean and noisy latent features to
avoid misclassifying the noisy ASR transcriptions.
In Figure 1 (b), we only use the inference network
during the evaluation process, and the reference
network plays a supplementary role in inference
network training. This allows us to solve the ASR
error problem without any increase in inference
time.

To demonstrate the effectiveness of the pro-
posed CCL, we experiment with the SLU bench-
mark datasets: SLURP (Bastianelli et al., 2020),
Timers (Lugosch et al., 2021), FSC (Lugosch et al.,
2019), and SNIPS (Coucke et al., 2018). On the
SLURP benchmark dataset, the proposed CCL
method improves the intent classification perfor-
mance by 2.59% under severe ASR errors. We
also observe that our method outperforms previous
module-based or end-to-end approaches on SNIPS.
To summarize, our contributions are as follows:

• We investigate the error rates and the error
portion that occurs during speech recognition.

• We propose two-stage CCL method to en-
hance the noisy-channel model. This method
correlates the error parts between two tran-
scripts and emphasizes the consistency of la-
tent features.

• We demonstrate that the CCL method im-
proves the performance for noisy ASR tran-
scripts through extensive experiments on vari-
ous benchmark datasets. In addition, we study
the robustness of ASR errors by conducting
ablation studies and visualizing the represen-
tations to investigate the effectiveness of our
proposed method.

2 Related Work

In this section, we introduce the related work
from two aspects.

2.1 Spoken Language Understanding
SLU can be implemented by two main ap-

proaches: (i) a module-based approach, wherein
speech is converted to text through ASR followed
by natural language understanding, and (ii) an end-
to-end approach, wherein the system is a single
network from input to task performance. In the
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Dataset SLURP Timers FSC SNIPS

Google API 0.24 0.15 0.08 -

HuBERT 0.44 0.86 0.17 -

Wav2vec2.0 0.56 0.57 0.27 0.41

Table 1: Word Error Rate (WER) of noisy ASR tran-
scripts on the benchmark datasets.

module-based approach, attention-based SLU stud-
ies (Liu and Lane, 2016; Goo et al., 2018) achieved
good performances with the introduction of the
RNN-based attention technique (Bahdanau et al.,
2015). Liu and Lane (2016) used an attention-
based bidirectional LSTM structure for simulta-
neous intent classification and slot filling. In a
follow-up study, Goo et al. (2018) added slot gates
to BLSTM to correlate intents and slots. In con-
trast, the end-to-end approach has the advantage
of being managed as a single network. In end-
to-end approaches, a combined CNN and LSTM
structure (Chen et al., 2018; Cao et al., 2021) and
a GRU-only structure (Serdyuk et al., 2018) were
proposed. Although the studies (Seo et al., 2022;
Saxon et al., 2021; Qian et al., 2021) employing
the Transformer architecture have demonstrated
promising performance, there are limitations in
training with large-scale data to develop a general
dialogue system.

2.2 ASR Errors in a Module-based Approach

By utilizing the pre-trained language models,
such as BERT (Devlin et al., 2018) and RoBERTa
(Liu et al., 2019), numerous studies in the field
of SLU have successfully enhanced their general-
ization capabilities. Chen et al. (2019) combined
intent classification and slot filling with the output
of BERT for clean transcripts and achieved better
performance than existing attention-based models.
Qin et al. (2021) proposed the BERT structure with
the addition of a co-interactive module that consid-
ered slot and intent relationships. However, their
exclusive training on large-scale clean datasets
made the pre-trained language model susceptible
to ASR errors. Ruan et al. (2020) endeavored to
mitigate these recognition errors by utilizing the
KL divergence between the predicted probabilities
for clean and noisy ASR transcripts. In contrast,
Kim et al. (2022) used the combined cross-entropy
loss of two transcripts to predict intent. Chang and
Chen (2022) used contrastive learning to learn the

Clean transcript Noisy ASR transcript WER ASR errors

“turn up” “turn off” 0.5 up → off

“brighten the lights
a little bit”

“brighten the night
for little bit”

0.33 lights → night

“please let me know
the alarm kept

for tuesday’s meeting”

“please let me know
the alarm cap

for tuesday’s meet”

0.2
kept → cap,

meeting → meet

Table 2: Some examples of clean and noisy ASR tran-
scripts from the SLURP dataset. For ASR errors, the
transcripts are tokenized, and the errors between the
tokens are shown.

error relationship between two transcripts during
additional pre-training, and the noisy problem was
mitigated by supervised contrastive learning and
self-distillation during the fine-tuning.

3 Method

In this section, we analyze the ASR error prob-
lems. We also introduce the noisy-channel model
and the CCL method to address these issues. Our
method performs the token-based contrastive learn-
ing followed by the consistency learning.

3.1 Analyze ASR Errors
We analyze the ASR errors on the four bench-

mark datasets: SLURP, Timers, FSC, and SNIPS.
We introduce the details of datasets in Appendix A.
The SLURP and FSC datasets have many classes,
which can lead to ambiguities (such as alarm_set
and alarm_remove) between them. We expect
these datasets to be more sensitive to ASR errors
than simpler ones.

Table 1 shows the error rates according to var-
ious ASR modules. We use the noisy ASR tran-
scripts provided by Chang and Chen (2022) and
Kim et al. (2022) for SLURP and SNIPS, respec-
tively. In addition, we extract the noisy ASR tran-
scripts directly using Google API, HuBERT (Hsu
et al., 2021), and Wav2vec 2.0 (Baevski et al., 2020)
speech recognizers on the remaining datasets. FSC
has the lowest Word Error Rate (WER), whereas
the SLURP and Timers datasets recorded by speak-
ers of various accents have higher WER. Table 2
lists some examples of the ASR errors such as (up,
off), (light, night), etc. Unless these ASR errors are
trained to the language model, a complete under-
standing of utterances is still limited.

3.2 Noisy-channel Model
We improve intent classification performance

for the analyzed ASR errors based on the noisy-
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Figure 2: Selective-token contrastive learning finds a positive pair based on the edit distance for the given clean
transcript “Set volume to zero” and noisy ASR transcript “Sat volume to the cero”, and conducts contrastive
learning as shown on the right side.

channel model. In the enhanced noisy-channel
model, an intent probability given the noisy ASR
transcript can be computed as a conditional prob-
ability for clean and noisy ASR transcripts as fol-
lows:

P (I|X̂) =
∑

i

P (I,Xi|X̂)

≈ P (I,Xc|X̂)

= P (I|Xc, X̂)P (Xc|X̂)

(1)

where among entire clean transcripts X , Xc is the
clean transcript corresponding to the noisy ASR
transcript X̂ , and I is the intent label. We com-
pute an approximation by identifying the corre-
lation between the noisy ASR transcript and the
corresponding clean transcript rather than all clean
transcripts. This shows that the intent probability
for noisy ASR transcript can be maximized by the
token alignment of two scripts and the similarity
between two scripts. The reparameterized approxi-
mation identifies the corresponding clean transcript
for the noisy ASR transcript and utilizes the associ-
ated clean transcript as a reference to comprehend
the intent.

3.3 Token-based Contrastive Learning
We introduce the token-based contrastive learn-

ing that aligns clean and noisy ASR transcripts
at the word and utterance token-levels. Token-
based contrastive loss maximizes the probability
P (Xc|X̂) by aligning the corresponding word and
entire utterance tokens. Given mini-batch B of
paired (Xc, X̂), features are extracted by the re-
spective encoders E and E′. Here, we use the
pre-trained language model RoBERTa as the en-
coder. Inspired by (Oord et al., 2018; Chen et al.,
2020; Gao et al., 2021), we define the contrastive
loss as follows:

ℓ(h, h′) = − 1
|P|

∑
i∈P

log e(h
⊤
i h′i)/τ

∑
j∈N

e
(h⊤

i
h′
j
)/τ (2)

where h and h′ are outputs of the encoders, e is an
exponential function, and τ is a hyperparameter. P
is the set of the indices of the positive pairs, and N
is the set of indices of all non-matching pairs.

Selective-token contrastive learning. Unlike
previous token-based contrastive learning (Su et al.,
2022), since ASR errors are caused by insertion,
deletion, and substitution, the noisy ASR transcript
is not aligned with the clean transcript on the word
token-level. We propose the selective-token con-
trastive learning to create pairs between word to-
kens via an edit distance algorithm. As shown in
Figure 2, we select the positive pairs as the tokens
with the minimum number of edits and the negative
pairs as non-matching tokens in the batch. Given
clean tokens xc (tokenized Xc) and noisy tokens x̂
(tokenized X̂), the proposed method is performed
with respective outputs zc and ẑ passing through
the encoder. Selective-token contrastive loss that
correlates the ASR errors for a token representation
pair (zc, ẑ) is defined as:

Lsel = ℓ(zc, ẑ) + ℓ(zc, zc) (3)

The representation zc for clean input contains se-
mantic information for understanding the intent and
thus should preserve the clean embeddings when
pulling the positive pair close together. Therefore,
by adding ℓ(zc, zc), we train the reference network
to maintain its expressiveness when receiving the
clean transcript as input. Note that ℓ(zc, zc) is not
equal to zero; this is attributable to the influence
of the negative samples in the contrastive loss. Ac-
cording to Wang and Isola (2020), the contrastive
loss minimizes the similarity between the features
of the negative pair when positive pair features are
perfectly aligned.

Utterance contrastive learning. To align the er-
ror part of a given (Xc, X̂) as the entire utterances,
two transcripts are configured as positive pair and
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trained to increase similarity compared to negative
pairs in the batch. Utterance contrastive loss is
computed as follows using the [CLS] token repre-
sentations (Zc, Ẑ) that carry the implied meaning
of the entire utterance:

Lutt = ℓ(Zc, Ẑ) (4)

Finally, the token-based contrastive objective Lctr

is the weighted sum of the selective-token con-
trastive loss Lsel and the utterance contrastive loss
Lutt:

Lctr = λctrLsel + (1− λctr)Lutt (5)

where λctr is the hyperparameter to adjust the ratio
of each loss.

3.4 Consistency Learning

We propose the consistency learning that main-
tains consistency for clean transcripts’ latent fea-
tures to understand better the intent of noisy ASR
transcripts with severe recognition errors. In Fig-
ure 1, the consistency learning is used by adding a
linear projection f(.) and f ′(.) to E(.) and E′(.),
respectively. Given the paired sentences (Xc, X̂),
the final outputs for the two samples are defined as:

vc = f(E(Xc))

v̂ = f ′(E′(X̂))
(6)

where all tokens for the output of the encoder are
flattened. The purpose of consistency learning is to
prevent misclassification by additionally utilizing
referenced Xc when X̂ is given as input. Increas-
ing the consistency between referenced Xc and X̂
leads to the probability P (I|Xc, X̂) being maxi-
mized. We reduce the distance between the noisy
latent feature v̂ and the referenced latent feature
vc to mitigate the discrepancy. We are also con-
sistent about the target probabilities of pc and p̂
for vc and v̂, respectively, to understand the target
intent more precisely. By taking X̂ as input and
emphasizing the consistency of the latent features
and target probabilities for Xc, we expect to avoid
making incorrect predictions due to speech recog-
nition errors. Formally, we derive the overall loss
of consistency learning as:

Lcon = λcon(vc − v̂)2+(1−λcon)(log pc − log p̂)2

(7)
where λcon is hyperparameter.

Reference network. The reference latent feature
used in the consistency learning should have a rel-
atively better representation than the noisy latent
feature. Therefore, the reference network is trained
maximizing the probability P (y|Xc) of label y
over input Xc at every step to be consistent with
better latent features. After optimizing the refer-
ence network with cross-entropy loss at each step,
the inference network bootstraps the optimized la-
tent features.

4 Experiment

4.1 Experiment Settings
The proposed CCL is compared with the follow-

ing three baseline methods:

• SpokenCSE: To solve the ASR error problem
of pre-trained RoBERTa, Chang and Chen
(2022) proposed contrastive learning between
clean and noisy ASR transcripts. In the fine-
tuning, self-distillation and supervised con-
trastive learning were applied to regulate the
misprediction of noisy ASR transcripts. We
conducted further experiments when results
were unavailable for SpokenCSE.

• Clean-CE: The language model trained only
on clean transcripts is vulnerable to noisy in-
put. To investigate these vulnerabilities, we
employ a technique that utilizes clean tran-
scripts as inputs and fine-tunes them using
cross-entropy (CE).

• Noisy-CE: Fine-tuning the noisy ASR tran-
script is the common method to solve the ASR
error problem. While this method seems sim-
ple, it can be biased toward noisy ASR tran-
scripts and lead to performance degradation
of the clean transcript.

We conduct comparison experiments between base-
line and CCL methods on SLURP, Timers, and
FSC datasets. All models are based on RoBERTa
to compare performance under the same conditions
as Chang and Chen (2022). In addition, the CCL
method is compared with various previous works in
the field of SLU using SNIPS. We refer to the noisy
ASR transcripts converted by different recognizers
as Noisywer, and the clean transcripts as Clean. In
the token-based contrastive learning, we use the
same hyperparameters: learning rate 1e-6 and λctr

0.7. The learning rate is selected for consistency
learning from {1e-5, 3e-5, 5e-5, 7e-5, 1e-4}. We
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method
Noisy0.24 Noisy0.44 Noisy0.56 Clean

Acc. F1 Acc. F1 Acc. F1 Acc. F1

Clean-CE 82.6 82.8 64.7 60.51 50.98 52.85 96.35 96.25

Noisy-CE 85.19 85.23 77.72 73.76 70.53 70.65 96.3 96.29

SpokenCSE 85.26 85.66 79.08 78.91 70.31 71.03 95.82 96.21

CCL (Ours) 86.22 86.27 81.51 76.83 73.12 73.13 96.99 96.98

Table 3: Results for macro F1-score and accuracy performances on SLURP dataset for our model trained with CCL
method. We compare the CCL method and other baselines for clean and noisy transcripts.

method
Timers FSC

Noisy0.15 Noisy0.86 Noisy0.57 Clean Noisy0.08 Noisy0.17 Noisy0.27 Clean

Clean-CE 99.69 94.87 89.15 100 95.83 92.99 87.13 100

Noisy-CE 99.97 99.66 99.29 100 97.19 99.24 97.23 93.35

SpokenCSE 99.97 99.71 99.17 100 99.18 99.24 98.5 98.02

CCL (Ours) 99.98 99.73 99.45 100 99.31 99.26 98.87 99.16

Table 4: Intent classification accuracy results of Timers and FSC datasets.

tune λcon of best value that is 0.0 to 1.0. The batch
size in our experiments is 64, the same for all. All
experiments are performed with NVIDIA TITAN
RTX 24GB GPU.

4.2 Main Results

Table 3 lists the results of CCL and baseline
methods on the SLURP test set. Clean-CE accu-
rately predicts approximately half of the answers
to Noisy0.56, indicating that the language models
pre-trained with only clean transcripts are suscep-
tible to ASR errors. We also achieve the best re-
sults when measured by macro F1-score, which
can consider the class imbalance of the SLURP
dataset. Our method significantly outperforms
Noisy-CE by 2.59% (accuracy) and 2.48% (F1-
score) in Noisy0.56. The performance gain is more
significant for higher error rates than lower ones be-
cause our method aligns more ASR errors in noisy
transcripts with clean ones containing contextual
information to predict intent. Similar results are
seen when running with four seeds to calculate the
mean and standard deviation in Appendix Table
12. Moreover, we attain the highest performance
on clean transcripts, highlighting the robustness of
the CCL method in handling speech recognition
errors without compromising its performance on
clean transcripts.

The CCL and compared methods are evalu-

ated in various settings. We employ two distinct
datasets: simple Timers and complex FSC. Ta-
ble 4 lists the accuracy of clean and noisy ASR
transcripts. Challenging tasks involving complex
classes may exhibit heightened sensitivity to speech
recognition errors, leading to performance degra-
dation. However, we observe that the performance
gain for complex FSC is more significant than
that for simple Timers compared to the highest-
performing method among the baselines. This indi-
cates the proposed CCL method is robust to ASR
errors under challenging tasks.

Table 5 presents the intent classification accu-
racy results for the SNIPS dataset. We compare
the performance of various approaches in the SLU
field. In end-to-end, Lai et al. (2020) and Kim et al.
(2021) employed training methods that simultane-
ously utilized audio and text data. Module-based
approaches have attempted to address the ASR
error problem using a method that increases the
cosine similarity between two transcripts (Huang
and Chen, 2020) or approaches that use phoneme
sentences (Chen et al., 2021). Among the exist-
ing module-based approaches, the method with
dual-BERT (Kim et al., 2022) achieved the best
performance, although it was 0.03% lower than
the end-to-end approach. Whether end-to-end or
module-based, our method achieves a higher per-
formance of 98.72%.
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(a) Utterance: Noisy-CE (b) Utterance: CCL (c) Word: Noisy-CE (d) Word: CCL

Figure 3: t-SNE visualization of clean and noisy ASR transcripts in word and utterance token-levels for SLURP test
set. (a-b) each color represents a sample of clean transcript and associated noisy ASR transcripts. (c-d) each color
indicates the tokens of sample, such as clean token and noisy ASR tokens.

approach Model Acc.

End-to-end
Lai et al. (2020) 98.65
Kim et al. (2021) 96.7

Module

Huang and Chen (2020) 89.55
Kim et al. (2022) 98.62
Chen et al. (2021) 85.4

CCL (Ours) 98.72

Table 5: Comparison of intent classification accuracy for
SNIPS dataset between the end-to-end and the module-
based approaches.

4.3 Further Analysis

In this section, we analyze the factors that led the
model trained using CCL to outperform the com-
pared models. In addition, we conduct a range of
experiments to verify the efficacy of the proposed
CCL.

Token-based contrastive learning. To better un-
derstand why CCL is robust to ASR errors, we
visualize the outputs of encoders trained with CCL
and Noisy-CE methods, respectively. We randomly
select a sample (clean transcript, noisy ASR tran-
scripts) in the SLURP test set with multiple speak-
ers. Figure 3 (a-b) visualizes the utterance token
representations of multiple samples, indicating that
the CCL method yields a much better separation
than Noisy-CE; since our method can align several
noisy ASR transcripts and clean transcript with
high performance through the utterance contrastive
learning. Figure 3 (c-d) shows the results of sam-
ple containing pairs (clean word token, noisy word
tokens). In CCL, the distance between clean and
noisy tokens is reduced, demonstrating the effec-
tiveness of selective-token contrastive learning. We
analyze that the alignment of two transcripts in ut-
terance and word token-levels leads to robust to
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Figure 4: Token-based similarity map visualization re-
sults for FSC validation and test sets. X-axis and Y-axis
represent clean and noisy ASR transcripts, respectively.

ASR errors.

Figure 4 presents token-based similarity maps
on the FSC valid and test sets. We observe that
substituted tokens and aligned clean tokens have
high similarity even when they have different mean-
ings in Figure 4 (a). We can also see that clean
and noisy ASR transcripts are semantically aligned
when there are different token lengths caused by
deletion (Figure 4 (b)). In contrast, Figure 4 (c-
d) shows various speech recognition errors such
as substitution, insertion, and deletion. The vi-
sualizations prove that selective-token contrastive
learning works well in correlating the ASR errors,
even when the tokens are not aligned or various
ASR errors co-occur. Furthermore, we describe the
analysis of the utterance-based similarity maps in
Appendix B.2.
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[Intent] iot_cleaning
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general_quirky
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iot_wemo_on
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Reference network

Figure 5: Top-5 intent prediction distributions on
SLURP dataset from reference network, inference net-
work (trained with CCL), and baseline model (trained
Noisy-CE).

Consistency learning. We explore the advan-
tages of the proposed consistency learning over the
cross-entropy loss commonly used in fine-tuning.
Figure 5 shows the probability distribution of the
SLURP test set for the reference network, inference
network (trained with CCL), and baseline model
(trained Noisy-CE). The probability distribution of
the reference network is the result for the clean tran-
script as input, and the rest are the results for the
noisy ASR transcript. The top-5 probability values
out of a set of 60 classes are depicted in all the visu-
alizations. While the reference network accurately
predicts the answer iot_cleaning, Noisy-CE en-
counters confusion between iot_cleaning and
iot_wemo_on for the noisy ASR transcript where
important keywords were deleted and replaced. On
the other hand, the CCL method exhibits a similar
level of confusion as Noisy-CE, but this method
allows the model to predict the correct answer. We
analyze that the CCL method mitigates misclassifi-
cations by maintaining consistency with the latent
feature of the reference network rather than relying
on a fixed target.

Ablation studies. We conduct an ablation study
to investigate the impact of the losses used in the
CCL method. Table 6 demonstrates that the CCL
method achieves the best accuracy. We observe
that the higher the speech recognition error rate, the
more significant the performance degradation while
removing the token-based contrastive loss. This
result shows that the proposed token-based con-
trastive learning is increasingly effective in noisy
environments. In token-based contrastive learning,
better performance is observed when mismatched
tokens are selectively correlated using Lsel, rather
than Lutt. In the fine-tuning, we attain improved re-

method
SLURP Timers

Noisy0.24 Noisy0.56 Noisy0.15 Noisy0.57

Lce 85.19 70.53 99.97 99.29

Lcon 85.95 72.81 99.88 99.26

Lcon

+ Lsel

86.17 72.3 99.89 99.26

Lcon

+ Lutt

86.13 72.16 99.89 99.24

Lcon

+ Lsel

+ Lutt

86.22 73.12 99.98 99.45

Table 6: Ablation study of different losses.

Noisy ASR transcript GPT4 CCL GT

dilliitalan iot_hue_lightdim alarm_remove alarm_remove

the lid alam alarm_set alarm_remove alarm_remove

donald sultan book up play_audiobook qa_factoid qa_factoid

Table 7: Comparative analysis of GPT4 and CCL

sults employing the consistency loss rather than the
commonly used cross-entropy loss. This highlights
the significance of preserving consistency between
clean and noisy latent representations. We con-
duct additional ablation experiments using cross-
entropy loss instead of consistency objective in
Appendix B.3.

4.4 Comparision with Large Language
Models

Recent advances in Large Language Models
(LLMs) have attracted significant research inter-
est due to their representation power, which has
led to notable successes in natural language pro-
cessing (Ouyang et al., 2022; Achiam et al., 2023;
Touvron et al., 2023), multi-modal (Li et al., 2023;
Lin et al., 2023), and computer vision (Zhao et al.,
2023; Wang et al., 2024) fields. However, it re-
mains unclear whether LLMs trained only on the
clean text can identify and contextually understand
the ASR errors. We conduct a comparison experi-
ment on GPT4 (Achiam et al., 2023) and our CCL
method to verify the ability to understand the errors.
Through this experiment, we aim to observe how
each method classifies intent labels on the same
noisy ASR transcripts from the SLURP dataset.
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Rule2. Each sentence is a transcription of  speech data into 
textual data through an ASR system. Each sentence might have 
wrong spelling or spacing errors. In this case, you should guess 
the correct version of  the sentence and then classify the intent. 
Refer to the following example: can you play fire -> intent: 
"audiobook" (Note that the original sentence is 'can you play file')

What is the intent of  S1, S2, and S3? You should follow the 
following rules:

Rule1. You should choose one intent from the following lists: 
[recommendation_locations, iot_hue_lighton, ...]. # 60 classes

Here are the sentences: S1. dilliitalan, S2. the lid alam, S3. donald 
sultan book up.

Figure 6: Prompt structure for LLMs.

For GPT4, we provided the prompt as shown in
Figure 6. As shown in the Table 7, GPT-4 can
understand the intent alarm in the transcript con-
taining the minor ASR errors. However, it still has
trouble detecting severe ASR errors, which could
lead to misclassification. In contrast, CCL detects
a wide range of ASR errors, even if they are hard to
understand, allowing our method to predict precise
intention.

As mentioned above, LLMs demonstrate con-
straints in understanding the ASR errors without
additional training. We fine-tuned the decoder-
based and encoder-based LLMs using either the
cross-entropy loss or the CCL method. Due to the
resource limitation, we use the GPT-Neo (Black
et al., 2021) and GPT-2 (Radford et al., 2019)
models. Table 8 shows the results of decoder-
based and encoder-based models on the SLURP
test set. The encoder-based language model consis-
tently outperforms decoder-based language models,
even with fewer parameters (110M). We believe
the encoder structure is apt for classification tasks
because the model can capture contextual infor-
mation in bi-directions. Furthermore, our CCL
method enhances the performance of the encoder-
and decoder-based language models in extremely
noisy environments.

5 Conclusion

We have introduced CCL, a novel method to
solve the ASR error problem of pre-trained lan-
guage models. We designed the two-stage method:
(i) token-based contrastive learning to correlate the
ASR errors at both the word and utterance token-
levels and (ii) consistency learning to maintain co-
herence with the latent feature of relatively better

model Noisy0.24 Noisy0.56

GPT-Neo (125M) 76.55 57.44
GPT-Neo+CCL 75.99 64.48
GPT-2 (355M) 83.17 65.94
GPT-2+CCL 80.33 70.23
RoBERTa (110M) 85.19 70.53
RoBERTa+CCL 86.22 73.12

Table 8: Performance of various models on the SLURP
benchmark dataset.

clean transcripts. Experiments and analysis on four
benchmark datasets have demonstrated that our
model significantly outperforms previous models
in various speech recognition error rates.

6 Limitations

Although our work makes further progress in the
ASR problem of SLU, it is subject to two potential
limitations. First, when ASR errors seriously occur
that the original meaning is unrecognizable, the
model trained with CCL predicts wrong answers
as in Appendix B.4. In the future work, we plan to
develop a method to address the mismatch between
noisy ASR transcripts and labels. Then, there has
been a growing interest in the field of multilingual,
but most ASR error studies have centered on En-
glish. We need to expand the ASR error problem
to multilingual in the future work.
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Figure 7: Visualization results of further similarity maps
between tokens.

A Dataset Description

We experiment with the SLU benchmark
datasets:

• SLURP: The SLURP dataset, a challenging
SLU benchmark dataset, consists of house
robot voice commands from 177 speakers.
Since SLURP contains inaccurate labels, we
use a dataset from Chang and Chen (2022)
where the labels have been denoised. We use
60 intent labels and divide each dataset into
50,627, 13,078, and 10,992 for train, valid,
and test, respectively.

• Timers: The Timers dataset is simple data
recorded from 95 speakers, smaller than
SLURP. This dataset consists of four labels:
SetAlarm, SetTimer, SimpleMath, and Unit-
Conversion. We split the data into training,
validation, and testing of 7,000, 1,000, and
12,000, respectively.

• FSC: The FSC dataset consists of commands
for smart-home or voice assistants of 97 speak-
ers. As in Lugosch et al. (2019), we use 31
intents, 23,132 training, 3,118 validation, and
3,793 testing.

• SNIPS: A well-known text-based intent clas-
sification SNIPS dataset consists of 13,084
training, 700 validation, and 700 evaluation.
We classify seven intents using an ASR tran-
script from Kim et al. (2022), which tran-
scribed synthetic speech files into text.

B Additional Analysis

B.1 Selective-token Contrastive Learning
Figure 7 shows the further examples of simi-

larity maps that visually represents the similarity
between the outputs of the inference and reference

method
SLURP Timers

Noisy0.24 Noisy0.56 Noisy0.15 Noisy0.57

Lce 85.19 70.53 99.97 99.29

Lce

+ Lsel

84.61 70.52 99.98 99.73

Lce

+ Lutt

84.66 70.61 99.97 99.66

Lce

+ Lsel

+ Lutt

84.92 71.02 99.98 99.67

Lcons 85.95 72.81 99.88 99.26

Lcons

+ Lsel

86.17 72.3 99.89 99.26

Lcons

+ Lutt

86.13 72.16 99.89 99.24

Lcons

+ Lsel

+ Lutt

86.22 73.12 99.98 99.45

Table 9: Total ablation studies of different losses.

networks trained using the token-based contrastive
loss. The visualization experiment uses the SLURP
test set. In Figure 7 (left), a recognition error occurs
for clean transcript “I want the status on my
screen brightness” and noisy ASR transcript “I
want the stages on my screen brightness”,
where status is replaced by stages. Despite
status and stages being distinct tokens, their
similarity scores toward each other are high. In
Figure 7 (right), we can observe that the insertion
error token any is not aligned with the other to-
kens. These visualizations demonstrate that we can
identify the recognition errors even while handling
unfamiliar data by employing the selective-token
contrastive learning.

B.2 Utterance Contrastive Learning

We compare the contextual representations of
clean and noisy ASR transcripts to demonstrate
that the utterance contrastive objective works well.
To quantify contextual similarity, we calculate the
similarity score between [CLS] tokens in each of
the reference and inference networks. Figure 8
shows the similarity map for samples, where the
x-axis and y-axis represent noisy ASR and clean
transcripts, respectively. Overall, the diagonal sim-

5709



Clean transcript Noisy ASR transcript

1 “do i have anything booked for tomorrow” “do I have anything booked for to morrow”

2 “add valentine’s day with her tomorrow” “at valentine’s day with her to morrow”

3 “can you able to say the word 
demonetisation”

“able to say the word demonization”

4 “if you could talk about three things what 
would they be”

“could talk about three things what would 
davy”

5 “book me a train ticket to chicago for 
tomorrow morning before ten”

“to chikovofor to morrow morning before 
death”

6 “what is the name of the lead singer in 
this band”

“the name of lee singer in this ban”

7 “can you recommend any pub in mg road”
“do you recommend any hobby in m butchy 

mo”

8 “show me delivery near me” “show me tdelivery near”

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Figure 8: Left side shows the similarity map visualization between randomly sampled examples from the SLURP
test set. Details of the sampled example are on the right side.

Clean transcript Noisy ASR transcript PR GT

health naws news_query general_quirky
please turn lights off you send the baxle transport_taxi iot_hue_lightoff

create a new list read in yolist lists_query lists_createoradd

delete alarm dilliitalan alarm_remove alarm_remove
delete alarm the lid alam alarm_remove alarm_remove

what time is it what’s im he say datetime_query datetime_query

Table 10: Intent classification results of the CCL method
for noisy ASR transcripts on the SLURP dataset.

ilarity scores are higher than the other parts. In
particular, the clean transcript “Book me a train
ticket to chicago for tomorrow morning
before ten” and the noisy ASR transcript “To
chikovofor to tomorrow morning before
death” have high similarity scores, even though
the speech recognition error has lost essential key-
words. This indicates that contrastive learning at
the utterance level is effective in implicitly detect-
ing contextual disparities between two transcripts.

B.3 Ablation studies

Table 9 shows the results of additional abla-
tion experiments with cross-entropy loss while re-
taining token-based contrastive learning. In most
cases, token-based contrastive learning typically
demonstrates enhanced performance by employ-
ing the consistency loss instead of cross-entropy
loss. This highlights the significance of preserv-
ing the consistency between clean and noisy la-
tent representations, particularly in environments
where speech recognition errors are prevalent. On
the other hand, the best performance is achieved
on Noisy0.57 when the cross-entropy loss and the
selective-contrastive loss are used together. We
analyze that cross-entropy loss works well in the
simple task with four intents. However, we need

method Noisy0.24 Noisy0.56

CN-CE 84.86 71.12
SimCSE 83.51 70.71
CCL (Ours) 86.22 73.12

Table 11: Performance of further baselines on SLURP
benchmark.

the consistency learning that works well on com-
plex tasks to capture the diverse intents of users in
the real world.

B.4 Qualitative results
Table 10 lists the intent prediction results on the

SLURP test set. From rows 1-3, the proposed CCL
predicts intent that is different from the ground
truth; however, this is matched when considered
in the context of a noisy ASR transcript. In other
words, our method tends to predict incorrect an-
swers when the original meaning is lost in the
speech recognition process. Although such re-
sults with 1.0 WER are rare in the SLU bench-
mark dataset, we need to improve these issues for
real-world use in noisy environments. For future
work, we will develop a method that addresses the
mismatch between noisy ASR transcripts and their
corresponding labels. As shown in rows 4-6, our
method accurately predicts intent class when the
original meaning is partially preserved.

C Comparison with further baselines

We compare the CCL method with the following
baselines:

• CN-CE: A simple baseline is to train a model
on the combination of clean and noisy ASR
transcripts. This might make it more reason-
able than another baseline since it utilizes both
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SLURP Timers FSC
method

Noisy0.24 Noisy0.44 Noisy0.56 Noisy0.15 Noisy0.86 Noisy0.57 Noisy0.08 Noisy0.17 Noisy0.27

Clean-CE 83.43±0.55 64.67±0.03 52.13±0.79 99.70±0.07 93.37±4.05 90.09±3.05 93.84±1.33 91.36±1.82 86.87±1.18

Noisy-CE 84.97±0.20 79.04±0.88 70.44±0.08 99.98±0.01 99.69±0.02 99.09±0.15 96.01±0.92 99.09±0.14 98.28±0.70

SpokenCSE 85.21±0.24 78.72±0.43 69.72±0.40 99.97±0.01 99.73±0.02 99.24±0.08 96.16±3.44 99.19±0.07 98.53±0.05

CCL (Ours) 86.28±0.10 81.45±0.13 72.69±0.30 99.97±0.01 99.64±0.12 99.33±0.32 99.23±0.06 99.32±0.05 98.77±0.11

Table 12: Performance comparison results with the average and standard deviation on the noisy ASR transcripts
from SLURP test set. Each result is calculated across 4 random seeds. We denote optimal performance in bold.

alarm_set
calendar_set

play_radio

transport_ticket

play_music

alarm_remove
alarm_set

transport_taxi

iot_hue_lightoff

audio_volume_mute

Reference network

Noisy-CE

alarm_set
calendar_set

alarm_remove

email_sendemail

email_addcontact

CCL

[Clean] Set wake up thursday seven am
[Noisy] Earthquake off 7 p.m.

[Intent] alarm_set

takeaway_query
takeaway_order

transport_query

email_query

cooking_recipe

Reference network

takeaway_order
takeaway_query

cooking_recipe

social_post

lists_createoradd

Noisy-CE

takeaway_query
takeaway_order

cooking_recipe

email_query

weather_query

CCL

[Clean] Does louie's do take out
[Noisy] Louise to take out
[Intent] takeaway_query

email_sendemail
email_query

email_addcontact

email_querycontact

weather_query

CCL

email_sendemail

alarm_set

email_query

weather_query

Reference network

email_query
email_sendemail

email_addcontact

email_querycontact

transport_taxi

Noisy-CE

[Clean] Send mom an email now
[Noisy] Sammo and email now

[Intent] email_sendemail

email_querycontact

Figure 9: Comparison of prediction distributions on the SLURP test set from reference networks, inference networks,
and Noisy-Net.

clean and noisy data, which is consistent with
the CCL method.

• SimCSE (Gao et al., 2021): By applying con-
trastive learning, the method significantly ad-
vances the state-of-the-art in sentence embed-
ding. The method maximizes the similarity
between the original and randomly dropped
features. We employ the identical noisy ASR
transcripts to serve as a positive pair.

Table 11 shows that the CCL and CN-CE methods
using both clean and noisy ASR transcripts achieve
better results than SimCSE only trained with noisy
ASR transcripts. Furthermore, our method, which
focuses on correlating errors and emphasizing con-
sistency between two transcripts, is better suited to
noisy environments than the simple CN-CE method
that employs the cross-entropy loss to train on a
fixed target.
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