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Abstract

Grapheme-to-phoneme conversion (G2P) is a
critical component of the text-to-speech sys-
tem (TTS), where polyphone disambiguation
is the most crucial task. However, polyphone
disambiguation datasets often suffer from the
long-tail problem, and context learning for
polyphonic characters commonly stems from
a single dimension. In this paper, we propose
a novel model DLM: a Decoupled Learning
Model for long-tailed polyphone disambigua-
tion in Mandarin. Firstly, DLM decouples rep-
resentation and classification learnings. It can
apply different data samplers for each stage
to obtain an optimal training data distribution.
This can mitigate the long-tail problem. Sec-
ondly, two improved attention mechanisms and
a gradual conversion strategy are integrated into
the DLM, which achieve transition learning of
context from local to global. Finally, to eval-
uate the effectiveness of DLM, we construct
a balanced polyphone disambiguation corpus
via in-context learning. Experiments on the
benchmark CPP dataset demonstrate that DLM
achieves a boosted accuracy of 99.07%. More-
over, DLM improves the disambiguation per-
formance of long-tailed polyphonic characters.
For many long-tailed characters, DLM even
achieves an accuracy of 100%.

1 Introduction

Grapheme-to-phoneme conversion (G2P) plays an
important role in the Chinese text-to-speech system
(TTS), aiming to convert Chinese text to Pinyin.
One of the biggest challenges in G2P is polyphone
disambiguation, whose goal is to select a correct
pronunciation for the polyphonic character from a
set of candidate pronunciations.

There are a large number of polyphonic charac-
ters in Chinese. So various approaches have been
proposed to address polyphone disambiguation, pri-
marily focusing on three problems: (i) How to solve
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the long-tailed distribution issue in datasets. (ii)
How to effectively leverage the context of poly-
phonic characters. (iii) How to simply solve the
polyphone disambiguation data sparsity problem.
Solutions for (i) are commonly realized by expand-
ing the tail class corpus (Zhang et al., 2020; Qiang
et al., 2022). Although such methods improve the
model’s classification ability, the failure to learn
from the original distribution of the dataset causes a
decrease in representation ability. Solutions for (ii)
often involve extracting sequence features through
neural networks (Shan et al., 2016; Zhang et al.,
2020) or pre-trained models (Dai et al., 2019), sup-
plemented by part-of-speech (POS) tags. However,
most of these methods only concentrate on one
dimension of context: global features from the en-
tire sequence or local features from the neighbor-
ing characters. For (iii), the reliance on self-built
datasets persists, but existing methods using self-
built datasets encounter challenges due to insuffi-
cient details or implementation difficulties.

Recently, decoupled learning in Computer Vi-
sion (CV) tasks divides the learning procedure into
representation learning and classification learning
(Kang et al., 2019), and demonstrates that the im-
balanced distribution of long-tailed datasets is more
conducive for learning high-quality representations
and re-balanced data is helpful in classification.
However, its experimental tests were only con-
ducted on the balanced dataset. The method in
(Zhou et al., 2020) proposed a unified Bilateral-
Branch Network (BBN), which does not decouple
the learning process but applies a cumulative learn-
ing strategy to shift the learning from representa-
tion to classification. Specifically, in classification
learning, the reversed data is used to retrain the clas-
sifier, which improves the model’s performance on
tail classes.

Inspired by decoupled learning and BBN, this
paper proposes a model called DLM (A Decoupled
Learning Model for long-tailed polyphone disam-
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biguation in Mandarin), which can address the
above three problems. DLM adopts decoupled
learning on the long-tailed dataset to enhance both
representation and classification ability. Addition-
ally, DLM integrates two improved attention mech-
anisms: convolution attention for local features
extraction, and linear attention for global features
extraction. Between them, employing a gradual
conversion strategy akin to human reading, DLM
realizes the transition learning of context from local
to global. Finally, to evaluate the efficacy of decou-
pled learning in DLM, we leverage in-context learn-
ing (ICL) related to large language models (LLM)
to generate a balanced polyphone disambiguation
corpus easily and provide a detailed implemen-
tation. The contributions can be summarized as
follows:

1. We propose a novel model DLM based on de-
coupled learning to simultaneously enhance
representation ability and classification abil-
ity (evaluated in section 4.4), effectively al-
leviating the impact of the long-tail problem
(evaluated in section 4.6).

2. We realize the transition learning of context
from local to global based on the two im-
proved attention mechanisms and a gradual
conversion strategy, outperforming models
that only learn context from a single dimen-
sion (evaluated in section 4.5).

3. We build a new balanced dataset using ICL
to verify the validity of decoupled learning
in DLM. Moreover, the incorporation of ICL
presents a straightforward and practical ap-
proach to corpus generation.

2 Related Work

2.1 Polyphone disambiguation
The earliest approaches to polyphone disambigua-
tion primarily rely on rules, which require linguis-
tic experts to design robust dictionaries (Gou and
Luo; Zhang et al., 2002; Dong et al., 2004). How-
ever, rule-based methods have been proven labor-
intensive and challenging to cover all situations.
As the amount of data increases, data-driven ap-
proaches have been widely applied to achieve rea-
sonable performance, such as Decision trees (DT)
(Liu and Zhou, 2011) and Maximum Entropy (ME)
(Liu et al., 2007). Nonetheless, these methods of-
ten require extensive feature engineering, demand-
ing a substantial background knowledge. Recently,

methods based on deep learning have made great
progress. Some studies (Zhang et al., 2020; Cai
et al., 2019) adopted BiLSTM layers to obtain
contextual features of polyphonic characters. The
method in (Shan et al., 2016) encoded informa-
tion from neighboring characters and the POS of
neighboring words. The seq2seq model was also
employed in a distantly supervised way (Zhang et
al., 2020). With the advent of pre-trained language
model (PLM), the method in (Dai et al., 2019) first
used BERT1 for polyphone disambiguation, achiev-
ing significant performance improvements. Subse-
quently, PLMs such as Electra (Clark et al., 2020)
and RoBERTa (Liu et al., 2019) have also gained
widespread adoption in polyphone disambiguation.

These deep learning approaches, especially
PLMs, have demonstrated notable progress, show-
ing their efficacy in handling polyphone disam-
biguation challenges.

2.2 Long-tail Problem

The long-tail problem refers to the fact that the sam-
ples from a few classes occupy a large portion of
the dataset (head class) while the samples from the
majority class only occupy a small portion of the
dataset (tail class), which directly affects the per-
formance of the model. Therefore, it has received
increasing attention in recent years. The solution
can be categorized into four types.

Re-sampling The method includes over-
sampling and under-sampling. The former aims
to balance the dataset by increasing the number of
samples in the tail classes while the latter achieves
balance by reducing samples in the head class.
However, this approach may inadvertently lead to
over-fitting on the tail classes, as the model fails to
learn from the original data distribution.

Re-weighting The method can be achieved
by modifying the loss function to allocate larger
weights for the tail classes. However, it may not be
capable of real-world long-tailed data and causes
optimization difficulty (Mikolov et al., 2013).

Data augmentation The method involves ma-
nipulating existing data in a specific way to gen-
erate new data. Back-translation-style data aug-
mentation (Qiang et al., 2022) extends the CPP
dataset into a balanced one. Semi-supervised learn-
ing method (Shi et al., 2021) introduces three types
of data augmentation that can be applied to texts
with a target character.

1https://huggingface.co/bert-base-chinese
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Figure 1: (a) The architecture of our proposed DLM; (b) Convolution attention mechanism; (c) Linear attention
mechanism; (d) Different gradual conversion strategies: i. equal weight, ii. linear decay, iii. cosine decay, iv.
parabolic decay; (e) Different dropout strategies.

Decoupled learning Decoupling representation
and classification learning has shown a significant
ability to handle long-tail problems (Kang et al.,
2019). It divides the training process into two sin-
gle stages. In the first stage, the model undergoes
training on the original imbalanced data, followed
by a second stage in which the classifier is retrained
using re-balanced data.

2.3 In-context learning

Large language models (LLM), particularly GPT-3,
have demonstrated remarkable in-context learning
(ICL) capabilities (Brown et al., 2020). ICL op-
erates with just a few input-output pairs dubbed
demonstrations, enabling the model to predict out-
puts (few-shot). Additionally, ICL can even handle
previously unseen tasks’ predication without any
demonstration context (zero-shot). In our study, we
primarily utilize in-context few-shot learning.

The prompt for ICL mainly contains two com-
ponents: one is a demonstration context, which
comprises input-output pairs articulated in natural
language templates, and the other is a new query.
The prompt will be fed into the LLM to gener-
ate a prediction. Based on the demonstration con-
text, LLMs can recognize and perform a new task
without any parameter updates (Zhao et al., 2023),
which proves particularly advantageous in the gen-

eration of polyphone disambiguation corpus.

3 Method

Our proposed DLM is illustrated in Figure 1(a).
The input sequence is initially processed by
RoBERTa to obtain the output vector h. Subse-
quently, h passes through two branches. The first
branch employs convolution attention, emphasiz-
ing the sequence local features. The second branch
is a combination of linear attention and BiLSTM,
concentrating on sequence global features. And the
Dropconnect is integrated into the second branch
to prevent over-fitting. The outputs from these two
branches are combined to derive the final output,
where the weights for the two branches are ob-
tained from α in the gradual conversion strategy.
Moreover, DLM adopts decoupled learning. The
model is trained to learn representation in the first
stage and the classifier is retrained in the second
stage.

3.1 Decoupled Learning

3.1.1 Data Sampler
In traditional deep learning, input data is typically
sourced from a uniform sampler. In this case, each
example in the training set is sampled only once,
resulting in under-fitting on the tail classes when
the dataset follows a long-tailed distribution. To ad-
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dress this issue, our method incorporates three data
samplers (Zhou et al., 2020) in decoupled learning.

Notation. We define the notations used in the pa-
per. Let K = {k1, k2, · · · , kn} denotes the classes
in the training set, with ki representing the ith class.
The variable mi signifies the number of examples
in class ki, and mmax represents the maximum of
all mi. Additionally, let wi denote the weight as-
signed to class ki. The total number of training
examples is

∑n
i=1mi.

The data samplers employed are as follows: Uni-
form sampler. Sample data according to the origi-
nal distribution. Each example in the training set is
sampled with equal probability and each example is
sampled once. Balanced sampler. Select a class ki
randomly from the set of classes K, and then pick
one example randomly from it. Reverse sampler.
The class is re-weighted by the number of exam-
ples within it. The smaller the number of examples
in a class, the greater the probability assigned to
that class. The sampled probability of an example
belonging to class kj is inversely proportional to
mj , as shown in Eq 1, where wi =

mmax
mi

pj =
wj∑n
i=1wi

(1)

3.1.2 Decoupled process
Typically, the model’s representation ability and
classification ability are trained through a unified
process. However, since the original data distri-
bution aids better representation and re-balanced
data is more conducive for the classifier, DLM de-
couples representation learning and classification
learning. In the first stage, the original distribution
of the dataset is obtained using a uniform sampler.
This allows the model to learn better representa-
tion. In the second stage, the reverse sampler is
employed, enabling the model to relearn the tail
classes. Specifically, the backbone parameters need
to be frozen in the second stage and only the classi-
fier’s parameters need updating.

3.2 Improved attention

With the proposal of Transformer (Vaswani et al.,
2017), self-attention has gained widespread adop-
tion. However, its computational complexity is
squarely related to the sequence’s length, leading
to a relatively high computational cost. Moreover,
previous methods for polyphone disambiguation
only learn context from one dimension, neglect-
ing the local or global features of the sequence.

This oversight precludes the attainment of transi-
tion learning of context from local to global. To
solve these issues, we incorporate two improved
attention mechanisms: convolution attention and
linear attention, which reduce the computational
cost and focus on local and global features sepa-
rately.

3.2.1 Convolution attention
The sliding window in Convolutional Neural Net-
works excels in capturing local features. In contrast
to recurrent networks, the convolutional approach
stands out in discovering compositional structures
in sequences (Zhang et al., 2020). As shown in Fig-
ure 1(b), the convolution layers enable the model to
capture the local features of context. For the input
sequence X ∈ RN×d, the corresponding represen-
tations matrices Q,K, V are computed as:

Q = XWQ
conv,K = XWK

conv, V = XWV
conv (2)

where WQ
conv,WK

conv,W
V
conv ∈ Rd×d. The con-

volution attention can be calculated through

Catt(Q,K, V )i =
N∑

j=1

softmax(
QiK

T
j√
d

)Vj (3)

Furthermore, replacing the linear layers in the
attention mechanism with the convolution layers
can reduce the computational cost.

3.2.2 Linear attention
The traditional attention function maps a query and
a set of key-value pairs to an output. It calculates
relations between each token in the sequence. For
an input sequence X ∈ RN×d, the corresponding
representations matrices Q,K, V are computed as:

Q = XWQ,K = XWK , V = XWV (4)

Then the self-attention is computed as:

Att(Q,K, V )i =

∑N
j=1 sim(Qi,Kj)

∑N
j=1 sim(Qi,Kj)

Vj (5)

When the similarity function is defined as
sim(q, k) = exp( qk

T
√
d
), the attention mechanism is

commonly known as softmax attention. Its compu-
tational complexity is O(N2d) due to the order of
calculation being (QK)V , leading to a high com-
putational cost.

In contrast, as depicted in Figure 2, linear atten-
tion is calculated in the order of Q(KV ). Utilized
the similarity function sim(q, k) = ϕ(q)ϕ(kT ),
the self-attention can be rewritten as:

5255



Figure 2: The different computational complexity of
softmax attention and linear attention.

Att(Q,K, V )i =

∑N
j=1 ϕ(Qi)ϕ(K

T
j )

∑N
j=1 ϕ(Qi)ϕ(KT

j )
Vj (6)

=
ϕ(Qi)

∑N
j=1 ϕ(K

T
j )

ϕ(Qi)
∑N

j=1 ϕ(K
T
j )

Vj (7)

Let ϕ(x) = ReLU(x), the formulation of linear
attention is

Latt(Q,K, V )i =
ReLU(Qi)

∑N
j=1 ReLU(KT

j )

ReLU(Qi)
∑N

j=1 ReLU(KT
j )

Vj (8)

Linear attention reduces the computational com-
plexity to O(Nd2), making it more feasible for
processing large-scale data. The architecture of
linear attention is shown in Figure 1(c). In DLM,
linear attention is combined with BiLSTM as a
separate branch to learn context globally.

As shown in Figure 1(d), the α in different grad-
ual conversion strategies will be evaluated in sec-
tion 4.5. The combination function of the two
branches is calculated by Eq 9, which can real-
ize the transition learning of context from local to
global.

CLSInput = αvbranch1 + (1− α)vbranch2 (9)

3.3 In-context Learning to generate corpus
The CPP dataset (Park and Lee, 2020) is an imbal-
anced dataset. So we use ICL to build a balanced
dataset named BCP (Balanced Chinese Polyphone
dataset). As shown in Figure 3, ICL takes the

demonstration containing some input-output pairs
and a new query into LLM to get the generated
corpus corresponding to the polyphonic character
in that query. Specifically, the input consists of a
word containing the polyphonic character, a num-
ber n of generated sentences, and the polyphonic
character. The output is n sentences containing the
polyphonic character, and the polyphonic character
is connected to the end of each sentence.

Figure 3: In-context learning to generate corpus.

First, pynlpir2 is used to perform word segmenta-
tion on sentences within the CPP training set. The
word segmentation unit (WSU) containing the poly-
phonic character may be single characters chari
or words wordi. Every polyphonic character has
multiple pronunciations, and every pronunciation
pi may map with multiple WSUs. We count the
WSU candidate set Cpi of each pronunciation. For
instance, the polyphonic character "朝" has pro-
nunciations "chao2" and "zhao1", where the dif-
ferent numbers represent different tones of pinyin.
WSUs for "chao2" include "朝向"(toward) and "王
朝"(dynasty), notably Cchao2 ={"朝向", "王朝"}.
Secondly, the element e in Cpi , the number of sen-
tences n and the polyphonic character in e are filled
in the new query. Finally, the prompt with the new
query is fed into LLM to generate n sentences of
the current polyphonic character. The labels of
them are the corresponding pronunciation pi.

For most words that have a fixed pronunciation
for polyphonic characters, labels for their gener-
ated sentences are directly assigned as pi. For ex-
ample, the pronunciation of "朝" in the word "朝
向" (toward) is different from another word "朝气"
(vigor), they are marked as "chao2" and "zhao1"

2https://github.com/tsroten/pynlpir
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respectively. However, some polyphonic charac-
ters’ WSUs are single characters or special words
with more than one pronunciation. Labels for these
sentences cannot be assigned directly, such as a
single character "乐", pronounced "le4" or "yue4",
and the word "朝阳", pronounced as "zhao1 yang"
or "chao2 yang". Therefore, the labels of these
generated sentences will be assigned manually.

4 Experiments

4.1 Dataset
To assess the effectiveness of the proposed method,
we utilize an open benchmark named CPP Dataset
(Chinese Polyphone with Pinyin) 3 for training and
testing. As a supplement, we use our ICL-generate
BCP dataset to verify the validity of decoupled
learning.

CPP dataset The dataset comprises 99,264 sen-
tences and each sentence contains one or more
polyphonic characters but only one is annotated. It
contains 623 different polyphonic characters. More
details can be found in (Park and Lee, 2020).

BCP dataset The dataset consists of 9,820 sen-
tences, each of which includes a polyphonic char-
acter with its correct pinyin. Specifically, BCP is a
balanced dataset.

4.2 Thresholds of long-tailed characters
The long-tailed characters in the CPP dataset are
selected along two dimensions. The following
are some notes used to define the thresholds. In
the CPP training set, Nc denotes the number of
examples of the character c, and Nmax repre-
sents the maximum among all Nc. The variable
p(c) = [p1, p2, · · · , pk] signifies the pronuncia-
tion candidates of the character c. Let Np(c) =
[n1, n2, · · · , nk], where ni denotes the number
of examples of the pronunciation pi. Obviously,
Nc = sum(Np(c))

Define long-tailed characters according to the
following two rules: (i) At the character level,
a character c is flagged as long-tail when Nc ≤
threshold1. (ii) At the pronunciation level, a char-
acter c is flagged as long-tail when

min(Np(c))

max(Np(c))
≤

threshold2. Note that min(Np(c)) > 0.
In this paper, we set threshold1 = Nmax

4 and
threshold2 = 0.2. In total, there are 299 long-
tailed characters in the CPP dataset and we define
this set as LTCPP (long-tailed CPP dataset).

3https://github.com/kakaobrain/g2pm/tree/
master/data

4.3 Experimental setup and Factor Analysis

We adopt the pre-trained model RoBERTa, which
consists of 12 Transformer layers, with 768 hid-
den dimensions, to extract semantic features from
raw Chinese character sequences. The optimizer
is Adam (Kingma and Ba, 2014). We set the learn-
ing rate to 5e-5. The batch size is 512. To pre-
vent over-fitting, we utilize DropConnect (Wan et
al., 2013) instead of Dropout (Hinton et al., 2012).
Each stage of training involves 1000 iterations, and
validation is conducted after every 10 iterations.
The model achieving the best validation accuracy
is selected for testing. The accuracy of polyphone
disambiguation is used as the evaluation metric in
all experiments.

Evaluation on dropout strategy. To prevent
our model from over-fitting, we explore two differ-
ent strategies to improve the model’s generalization
ability: Standard Dropout and DropConnect. As
shown in Figure 1(e), while Standard Dropout sets
a randomly selected subset of activations to zero
within each layer, DropConnect sets a randomly
selected subset of weights in the network to zero.
The results in Table 1 demonstrate that DropCon-
nect yields better results because it is effective in
regularizing large neural network models.

Dropout CPP Acc(%) BCP Acc(%)
Standard 99.03 91.04

DropConnect 99.07 91.14

Table 1: Evaluation on different dropout strategies

Evaluation on the kernel size of convolution
attention. To explore how different kernel sizes in
convolution attention influence the scale of local
features, we evaluate different kernel sizes. As
demonstrated in Table 2, the optimal performance
is achieved at N = 5. This suggests that larger
or smaller scale sizes may not contribute to the
effective extraction of local features.

Kernel Size CPP Acc(%) BCP Acc(%)
3 98.58 87.88
5 99.07 91.14
7 99.02 89.21

Table 2: Evaluation on different kernel sizes in convo-
lution attention

5257

https://github.com/kakaobrain/g2pm/tree/master/data
https://github.com/kakaobrain/g2pm/tree/master/data


4.4 Evaluation on Decoupled Learning

We decoupled the training process of DLM: learn-
ing representation in the first stage and classifica-
tion in the second stage. So we explore the best
sampler for each stage and demonstrate the effec-
tiveness of decoupled learning for long-tailed data.

Best sampler for representation learning. To
further evaluate the model’s representation ability
learned on the CPP dataset, we continue the sec-
ond stage of training on the BCP dataset (Note that
the BCP dataset is only used for the evaluation of
best sampler but not for the training of DLM). The
model obtained from the first stage under three dif-
ferent samplers serves as the initial model. Specif-
ically, the uniform sampler in stage 2 could also
reach a balanced distribution since the BCP dataset
is balanced. As shown in Table 3, fixing the sam-
pler for the second stage, the best representation
ability is obtained when using the uniform sampler
in the first stage. This indicates that the original
distribution of the long-tailed dataset is more con-
ducive to the model’s representation learning.

stage 1 stage 2 Accuracy(%)
uniform uniform 87.88
balanced uniform 87.27
reverse uniform 87.17

Table 3: Different samplers for representation learning

Best sampler for classification learning. Af-
ter identifying the best sampler for representation
learning, we fix the sampler of first stage to uni-
form sampler and explore the classification ability
learned with different samplers in the second stage.
The CPP dataset is used here because imbalanced
data is the way to show the difference in sampling
data under three different samplers. As shown in
Table 4, the results indicate that the reverse sam-
pler contributes to the model achieving the best
classification ability. This is attributed to the re-
verse sampler, which allows the model’s classifier
to be retrained with the tail classes, enhancing the
model’s performance on them.

stage 1 stage 2 Accuracy(%)
uniform uniform 99.02
uniform balanced 99.04
uniform reverse 99.07

Table 4: Different samplers for classification learning

4.5 Evaluation on the two improved attention
mechanisms

To demonstrate the effectiveness of the two im-
proved attention mechanisms, we conduct ablation
experiments. The details are as follows.

• w/o branch1: Remove convolution attention
from DLM, which leads the model to only
focus on the global features of sequences.

• w/o branch2: Removed the branch that
combines BiLSTM and linear attention from
DLM, which leads the model to only focus on
local features of sequences after RoBERTa.

• DLM: Our proposed model.

Model CPP Acc(%) LTCPP Acc(%)
w/o branch1 85.51 79.92
w/o branch2 98.82 98.56

DLM 99.07 98.88

Table 5: Ablation study

As shown in Table 5, w/o branch1 performs the
worst among the three. Because the entire model
has no module to learn the local features of the
sequence. In contrast, w/o branch2 performs better,
even though the branch for learning global features
is removed, RoBERTa itself can focus on global
features through vanilla attention to some extent. In
summary, focusing only on local features or global
features is not as comprehensive as DLM, which
achieves transition learning of context from local
to global.

Gradual
Conversion α CPP Acc(%) BCP Acc(%)

equal 0.5 98.86 91.45

linear decay 1− T
Tmax

99.04 90.63

cosine decay cos( T
Tmax

· π
2 ) 99.07 91.14

parabolic decay 1− ( T
Tmax

)2 99.05 90.63

Table 6: Evaluation on different gradual conversion
strategies, T is the current epoch and Tmax is the total
epoch

To further explore the gradual conversion strate-
gies between the two branches, as shown in Figure
1(d), we evaluate four strategies: equal weight, lin-
ear decay, cosine decay, and parabolic decay (Zhou
et al., 2020). As shown in Table 6, gradual con-
version strategies (linear, cosine, and parabolic)
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outperform on the imbalanced dataset while the
constant strategy (equal weight) outperforms on
the balanced dataset, which supports our proposal
that DLM should gradually shift context learning
from local to global when solving long-tail prob-
lems. Among these gradual conversion strategies,
cosine decay exhibits the best performance.

4.6 Result and Analysis

4.6.1 Evaluation of different systems
DLM is trained on the CPP dataset, using the uni-
form sampler in the first stage and the reverse sam-
pler in the second stage. We compare DLM and
other systems which are also trained on the CPP
dataset.

No. Model Accuracy(%)
1 g2pM(BiLSTM) 97.31
2 g2pM(BERT) 97.85
3 BERT with LSTM 98.04
4 Distant supervision 97.51
5 BERT-MFA 99.06
6 ELECTRA with MARC 98.81
7 g2pW 99.08
8 DLM 99.07

Table 7: The accuracy of different systems

As depicted in Table 7, DLM demonstrates su-
perior performance when compared to models that
overlook the local features of sequences, such
as g2pM(BiLSTM), g2pM(BERT) (Park and Lee,
2020), and BERT with LSTM (Zhang, 2021). Ad-
ditionally, several models excel at capturing local
features. Distant supervision (Zhang et al., 2020)
utilized a CNN-based approach, while BERT-MFA
(Li et al., 2021) integrates window-based atten-
tion to improve neighboring information extraction.
However, these models lack a robust approach (e.g.
decoupled learning) to effectively address long-tail
problems and they lack the transition learning of
context from local to global. Although ELECTRA
with MARC (Gao et al., 2022) employs decoupled
learning, it also exhibits deficiencies in the learn-
ing of context. In summary, our proposed DLM
achieves an accuracy of 99.07%, which is better
than almost all other models.

4.6.2 Evaluation of long-tailed characters
We conduct testing on all 299 characters in the
LTCPP dataset. As illustrated in Figure 4, 266 char-
acters exhibit an accuracy exceeding 95%, while

292 characters demonstrate an accuracy surpassing
80%. Notably, 262 characters achieve a perfect ac-
curacy of 100%, underscoring DLM’s exceptional
performance with long-tailed characters. Further-
more, the comparison of DLM and g2pW (Chen
et al., 2022) on long-tailed characters also reveals
DLM’s superior performance when tackling the
long-tail problem.

Figure 4: The accuracy distribution of characters in the
LTCPP dataset.

We classify these characters into three categories
according to accuracy: well-performing poly-
phones (acc ∈ (95%, 100%]), average-performing
polyphones (acc ∈ (60%, 95%]), and poorly-
performing polyphones (acc ∈ [0, 60%]). The
following is the analysis of the different perfor-
mances.

Char polyphone g2pW DLM

捋 lv3:7 luo1:5 50.00 100.00

偻 lou2:2 lv:6 100.00 100.00

臭 chou4:150 xiu4:11 85.71 95.24

咽 yan1:124 yan4:31 ye4:5 65.00 100.00

漂 piao4:37 piao1:110 piao3:13 90.48 95.24

着 zhe5:151 zhao2:2 zhuo2:3 90.00 100.00

Table 8: Well-performing long-tailed characters

Well-performing polyphones. Table 8 exhibits
some examples of well-performing polyphones. At
the character level, DLM achieves an accuracy of
100% on some very sparse data in the training set,
such as "捋" and "偻". At the pronunciation level,
DLM also exhibits an accuracy exceeding 95% on
characters suffering from long-tailed pronunciation
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distribution, such as "臭" and "漂". These may
be attributed to decoupled learning. In the second
stage of training, DLM is retrained by the reversed
CPP dataset, which increases the chances of DLM
learning about sparse data. Besides, the transi-
tion learning of context from local to global makes
DLM learn sparse data sufficiently.

Char polyphone g2pW DLM

酢 cu4:38 zuo4:2 100.00 83.33

镐 hao4:153 gao3:4 75.00 90.00

泡 pao4:131 pao1:12 83.33 94.40

蠡 li3:135 li2:8 66.67 94.40

薄 bo2:81 bao2:42 bo4:5 58.82 94.12

Table 9: Average-performing long-tailed characters

Average-performing polyphones. As shown in
Table 9, here are some characters that haven’t been
adequately learned by DLM. Upon analysis, it’s
evident that DLM has grasped all pronunciations of
the characters. Despite some cases of wrong choice
causing a decrease in accuracy, DLM has taken into
account even the rarer category of pronunciations
and the accuracy of every character still achieves
at least 75%.

Char polyphone g2pW DLM

铤 ting3:15 50.00 50.00

拧 ning3:28 ning2:5 60.00 60.00

唉 ai4:8 ai1:1 50.00 50.00

莳 shi2:3 shi4:6 0.00 0.00

Table 10: Poorly-performing long-tailed characters

Poorly-performing polyphones. Despite DLM
achieving superior performance on most long-
tailed characters, there are instances where the ac-
curacy is less than 60%. Examples of such cases
are illustrated in Table 10. Through analysis, three
main reasons are identified. (i) In the CPP dataset,
certain characters’ pronunciations appear in the
test set but not in the training set, rendering DLM
incapable of selecting the correct pronunciation
based on the parametric knowledge acquired dur-
ing training. For example, the character "铤" is
only pronounced as "ting3" in the training set but
additionally as "ding4" in the test set. (ii) The
performance of DLM is constrained for characters

that suffer from long-tail problems at both the char-
acter and pronunciation levels. During the first
stage, DLM learns based on the dataset’s origi-
nal distribution, resulting in insufficient learning
of sparse characters. Although these characters
are re-learned during the second stage via the re-
verse sampler, there remains a possibility that a few
characters are not learned adequately by relying pri-
marily on the second stage, such as "拧" and "唉".
(iii) The reversed data sampler utilized in this paper
is based on the class of pronunciations. Despite the
limited samples of pronunciations such as "shi2"
and "shi4" for the character "莳", other characters
might share the same pronunciations, resulting in
a lot of samples of "shi2" and "shi4" across the
dataset. Therefore, the reverse sampler might fail
to correctly pick up samples of the character "莳",
which leads to insufficient learning in the second
stage as well as the first stage.

5 Conclusions

In this paper, we propose a novel model DLM.
In experiments, we validate the effectiveness of
decoupled learning to solve the long-tail problem
and prove that the original distribution of the long-
tailed dataset enhances the model’s representation
ability, while the re-balanced dataset contributes to
classification ability. Besides, we further confirm
the efficacy of two improved attention mechanisms,
particularly the convolution attention proposed in
this paper. We find the significance of employing
a gradual conversion strategy between the two im-
proved attention to realize the transition learning
of context from local to global when tackling the
imbalanced dataset. Finally, a simple approach for
generating the polyphone disambiguation corpus
via in-context learning is proposed and we build a
balanced corpus to verify the validity of decoupled
learning. Overall, DLM demonstrates outstanding
performance on the CPP dataset, especially achiev-
ing superior performance in handling long-tailed
polyphonic characters.

Limitations

Our work encounters some limitations. Firstly, a
few cases need human involvement during corpus
generation. These cases include scenarios where
polyphonic characters are segmented as a single
character or words that possess multiple pronun-
ciations during word segmentation. Secondly, to
address the specific issue of long-tailed polyphone
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disambiguation, RoBERTa is utilized as a compo-
nent of DLM. However, as a part of the front end
of the TTS system, the inference speed of DLM
still needs to be improved since the parameter of
RoBERTa is relatively large. Thirdly, the label
for the polyphone disambiguation task should not
just be pronunciations, but character-pronunciation
pairs. In future work, we will optimize the corpus-
creation approach to accommodate all cases, aim-
ing to minimize the requirement for human inter-
vention. Moreover, we will explore reducing the
number of the model’s parameters and improv-
ing the inference speed. Finally, we will build
character-pronunciation pairs as labels for poly-
phone disambiguation tasks.
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