
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 517–539

June 16-21, 2024 ©2024 Association for Computational Linguistics

FLAP: Flow-Adhering Planning with Constrained Decoding in LLMs

Shamik Roy Sailik Sengupta Daniele Bonadiman Saab Mansour Arshit Gupta
{royshami, sailiks, dbonadim, saabm, arshig}@amazon.com

WS AI Labs

Abstract

Planning is a crucial task for agents in task ori-
ented dialogs (TODs). Human agents typically
resolve user issues by following predefined
workflows, decomposing workflow steps into
actionable items, and performing actions by ex-
ecuting APIs in order; all of which require rea-
soning and planning. With the recent advances
in LLMs, there have been increasing attempts
to use them for task planning and API usage.
However, the faithfulness of the plans to prede-
fined workflows and API dependencies, is not
guaranteed with LLMs. Moreover, workflows
in real life are often custom-defined and prone
to changes; hence, adaptation is desirable. To
study this, we propose the problem of faithful
planning in TODs that needs to resolve user in-
tents by following predefined flows and preserv-
ing API dependencies. To solve this problem,
we propose FLAP, a Flow-Adhering Planning
algorithm based on constrained decoding with
lookahead heuristic for LLMs. Our algorithm
alleviates the need for finetuning LLMs us-
ing domain specific (plan/dependency) data,
enables quick adaptation to predefined flows,
and outperforms other decoding and prompting-
based baselines. Further, our algorithm empow-
ers smaller LLMs (≈ 7B) to perform at par
larger LLMs (≈ 30B-40B).

1 Introduction

A successful task oriented dialog (TOD) often in-
volves interaction with internal or external world
through tools or APIs. For example, as shown in
Fig. 1, booking a flight through a conversation may
involve searching for flights, getting payment in-
formation, and so on. API usage is a difficult task
for chatbot agents as it involves various reasoning
and planning. Beyond predicting the correct API to
use in a particular scenario, it requires task decom-
position and resolution of inter-API dependencies
(e.g., searching for flights requires extracting air-
port codes) (Zhang et al., 2021; Prasad et al., 2023;
Wang et al., 2023; Lu et al., 2023b). Moreover,

... ...

Hi, can you help me book a flight?

Plan
First, I need airport codes of travelling cities. [API] GetAirport()
Next, I can find and suggest the flights. [API] FindFlight()
After that, I elicit confirmation from the user. [API] Confirm()
Once the user confirms, I will create a trip. [API] CreateTrip()
Next, I will elicit payment information. [API] GetPayInfo()
Finally, I can order the trip. [API] OrderTrip()

Sure, I can help. Where do you want to travel from?

GetAirport(in:city; out:airport)
FindFlight(in:airport; out:flights)
GetPayInfo(in:None, out:pay_info)
... ...

Flow for booking flight
1) Suggest flights.
2) Confirm & create trip.
3) Place the order.

Flow for booking car
1) Suggest cars.
2) Confirm & create trip.
3) Suggest add-ons.
... ...

Interactive Conversation
API Descriptions

Natural Language Workflows

System Instructions for Agent

👧

🤖

Figure 1: An agent-user interaction scenario. Agent
plans how to resolve the user query by following given
natural language workflows and API dependencies.

there may exist customized workflows to follow
for API usage, such as “confirm before placing or-
der” or “recommend add-ons before checking out”,
which can conveniently be defined using natural
language (NL) instructions.

Recent advances in LLMs have enabled re-
searchers to consider LLMs for task-planning
(Huang et al., 2022; Valmeekam et al., 2023) and
API usage (Qin et al., 2023b; Patil et al., 2023). In
planning, studies have primarily focused on open-
ended scenarios and emphasized mostly on goal
attainment (Shridhar et al., 2020; Jansen, 2020)
without considering any instructions on the process
(Valmeekam et al., 2024), while works on API us-
age have mostly considered the appropriateness of
API calls (Wang et al., 2023). However, considera-
tions about API dependencies, and the faithfulness
of generated API calls to predefined workflows or
instructions are understudied.

In this paper, we propose a novel problem of
zero-shot faithful planning with LLMs in TODs.
As input, we provide (1) the domain definition in
terms of APIs and their descriptions, (2) NL flows
to fulfill various intents in the domain, and (3) a
user query. The task is to generate a plan that ful-
fills the user’s query by using the domain-specific
APIs while adhering to the specified flows and API
dependencies (§2).

Prior works attempted to teach LLMs to use

517

APIs by pretraining them with large amount of
API related data (Schick et al., 2023; Yang et al.,
2023; Qin et al., 2023b). However, in practice,
API signatures and the NL flows to use them are
customized to use cases and are prone to change
(e.g., due to change in business policy). Hence,
quickly adapting the LLMs to new flows and API
dependencies is required. Unfortunately, pretrain-
ing LLMs cannot guarantee faithful planning with
custom-defined APIs and flows which may signif-
icantly differ from the pretraining data (Blodgett
et al., 2020; Bommasani et al., 2021); we experi-
mentally verify this in §4.1. To alleviate the issue,
we propose FLAP, a Flow Adhering Planning algo-
rithm that uses constrained decoding of LLMs with
lookahead heuristic (Och et al., 2001; Haghighi
et al., 2007; Lu et al., 2022a; Huang et al., 2024)
(§4.2). FLAP generates faithful plans to predefined
flows and API dependencies, requires no pretrain-
ing, and is applicable on top of any autoregressive
LLM regardless of its pretraining mechanism.

Given previous studies have shown that thoughts
enhance the reasoning capabilities of LLMs (Wei
et al., 2022) (even in the context of API usage (Yao
et al., 2022)), FLAP prompts the LLMs to gener-
ate plans consisting of thoughts and corresponding
APIs. FLAP aligns the generated thoughts to pre-
defined NL flows, enabling thoughts to act as an in-
termediary (and address the vocabulary mismatch)
between NL flows and APIs. In addition, FLAP
captures the relations among NL flow steps and
APIs using dynamic dependency graphs; these are
used to score different dimensions related to API
and flow dependency adherence in the lookahead
heuristic function. Finally, FLAP also enforces
structural constraints using lookahead heuristics.

To quantify the efficacy of current LLMs with
promising prompt strategies, and our proposed ap-
proach for faithful planning, we construct a novel
dataset comprising 4 domains, 13 intents and flows,
64 APIs, and 260 user queries, resembling real life
use-cases (§3). We find that existing open-source
LLMs and prompting techniques lack faithful plan-
ning capabilities and our proposed constrained de-
coding based algorithm, FLAP, improves the faith-
fulness of plans by reducing various errors, such
as API and flow step dependency violations, redun-
dant/lacking API in generated plan, etc. We also
demonstrate that smaller LLMs (7B) with FLAP
can achieve comparable performance against much
larger LLMs (40B) (§5).

2 Task Formulation

In this section, we define the novel task of faith-
ful planning in task oriented dialogues (TODs) to
resolve queries by adhering to predefined natural
language (NL) flows and API dependencies.

2.1 TOD Agent Scenario

In a typical TOD system, an agent is equipped with
the following elements.
Domain: An agent usually has access to a specific
domain, D (e.g., trip planning, banking, and so on).
Intents: In a domain D, an agent has capabilities
to handle a set of intents, I. For example, an agent
form the domain “trip planner” may only be able
to book a hotel, search flights, and so on, however,
unlikely to be able to create a bank account.
Flows: Agents are often provided with a sequence
of natural language instructions, defined as “flows”,
F (e.g., “recommend add-ons before checking
out”). Agents are expected to follow these flows
step-by-step to resolve intents. Flows are typically
defined by businesses and are prone to change.
APIs: Agents have access to a set of internal APIs,
A, to interact with the system (typically through
GUI) and trigger actions based on the inputs from
the user. For example, if a user is looking to book
a car in Chicago, the agent may trigger the API,
FindRentalCar(location=“Chicago”).

2.2 Faithful Planning for Resolving Intent

In real life, when a user expresses an intent, an
agent has to execute a sequence of APIs to fulfil
it. Successful fulfillment of the user intent depends
largely on the reasoning and planning capability of
the agents because of the following challenges.
Identifying and following NL flows: Given an
intent in I, the execution steps need to be strictly
consistent with a predefined flow in F . Hence, the
agents need to first identify the correct flow in F
and then adhere to it.
Task decomposition and dependency resolu-
tion: APIs in A may have dependencies on other
APIs in A, and a flow step may require calling
multiple APIs. For example, GetAirports(cit-
y=“Chicago”) is needed to be called before Find-
Flight(airport=“ORD”), to execute the flow step
“suggest flights”. Hence, the agents have to decom-
pose flow steps and preserve API dependencies.

Grounded in such challenges, we define the
novel task of faithful planning for TOD agents (Fig.

518

1). Given, a domain D, a set of flows F (for resolv-
ing intents I), a set of APIs A (with parameters
and descriptions), and a user query Q; the task is
to generate a plan P consisting of a sequence of
APIs to fulfil the user query while obeying the flow
steps in F and preserving API dependencies in A.

In real world scenarios, agents may need to dy-
namically update the plan based on the situation
(say, the user starts with query Q and then wants to
do Q′ as well). As a first step towards faithful plan-
ning in TODs, we study static planning (user does
not change mind) in this paper, and leave dynamic
(run-time) planning as a future work.

2.3 Zero-shot Planning with LLMs
We study the capabilities of LLMs in zero-shot
planning by following predefined flows and pre-
serving API dependencies in TODs. For that, we
instruct a base LLM to act as a customer care agent
and in context, we provide the domain definition
consisting of APIs, their input-output parameters
and descriptions, and NL flows for resolving intents
in the domain. Given a user query in context, the
LLM is instructed to plan how to resolve the query
by using the given APIs and following the appro-
priate flow. The LLMs are expected to resolve API
dependencies from their input-output parameters.
The prompt structures are shown in §B. We study
the problem in the following settings by varying
the nature and complexity of the task.
All vs. relevant flow in-context: We experiment
by providing either all flows or only the flow related
to the user query in context. The former setting is
more complex as the LLM has to first identify the
relevant flow and then follow it to plan.
Reasoning and acting: Recent studies have shown
that step-by-step thinking and acting improves the
end goal achievement (Wei et al., 2022; Yao et al.,
2022). Inspired by these works, we study the prob-
lem of plan generation in a setting where the LLMs
are prompted to generate a thought and then an API
in the plan to help it rationalize its selection of the
API.

2.4 Evaluation Metrics
Number of edits to fix the plan: A generated
plan is required to contain only the steps and APIs
from the gold plan. We define number of edits as
the sum of additions and deletions of steps/APIs
in the generated plan to make it contain the same
steps/APIs as the gold plan. The lower the number
of edits, the better the generated plan.

Domains: Trip
Booking Insurance Banking Restaurant

& Ride Book

of intents/flows 3 3 3 4
of steps per intent/flow 5-6 4-5 3-5 4
of APIs needed per step 1-2 1-2 1-3 1-4
of APIs in domain 13 15 14 22
of relationships among APIs 13 13 15 19
of user queries 60 60 60 80

Intents in all domains
Trip Booking Insurance Banking Restaurant & Ride Book
book car, book ho-
tel, book flight

buy insurance, cancel in-
surance, add member

open account, report prob-
lem, cancel transaction

book restaurant, book ride,
cancel restaurant, cancel ride

(a) Created domains statistics.
Flow steps Required API sequence (gold plan)

Suggest cars to the customer FindRentalCar()
Confirm and create the trip Confirm(), CreateTrip()
Extract and add promotional offers GetCarInsuranceDiscount(), UpdateTrip()
Order the trip GetPaymentInformation(), OrderTrip()

(b) Flow and required APIs for the intent “book car” in the
domain “Trip Booking”. The full list can be found in §A.1.

Table 1: Test data statistics (a) and example flow (b).

Inconsistent steps/APIs: A generated plan is re-
quired to obey flow steps and API dependencies.
Hence, we measure the percentage of steps or APIs
in the generated plan that do not follow the depen-
dency structure (e.g., a step/API is generated before
its parent steps/APIs).
Fine-grained metrics: We quantify other fine-
grained metrics such as API hallucination, API
repetition and parsability of the generated plans.

3 Data Collection

In this section, we describe the data collection pro-
cedure for studying faithful plan generation.
Domain Creation. Previous datasets have devel-
oped domains, flows, and APIs for tackling intents
in TODs. We find, none of the existing datasets
is usable as it is in our problem. For example,
the STAR (Mosig et al., 2020) and STARv2 (Zhao
et al., 2023) datasets contain APIs (without flows)
to resolve user queries, however, dependencies
among the APIs are sparse, e.g., STAR contains
only 10 dependencies among 25 APIs. In real life,
API dependencies are more dense, hence, these
datasets are not very useful for our study where the
goal is to study the ability of LLMs to preserve de-
pendencies. The ABCD dataset (Chen et al., 2021)
contains flows for a few tasks, however, the related
APIs needed to perform the steps in the flows are
not given, hence, it is also not suitable for our study.
Hence, inspired from these two datasets, we create
in total, 4 domains, 13 flows (similar to ABCD)
for resolving 13 distinct intents in these domains,
and 64 APIs (similar to STAR) to execute differ-
ent flow steps. We also annotate the gold plans to

519

All flows in-context Only relevant flow in-context

With Avg % of Avg # of edit for Avg % of inconsistent Avg % of Avg # of edit for Avg % of inconsistent
LLMs Thought API Hallu. Steps (↓) APIs (↓) Steps (↓) APIs (↓) API Hallu. Steps (↓) APIs (↓) Steps (↓) APIs (↓)

santacoder-1.1b
No 1.2% 30.3 25.9 15.4% 33.1% 1.8% 29.6 25.8 15.3% 34.1%
Yes 13.0% 11.8 13.0 18.2% 34.1% 20.0% 9.5 11.5 19.5% 31.2%

toolAlpaca-7b
No 10.8% 4.6 5.1 20.4% 49.6% 7.0% 4.4 4.7 17.8% 49.2%
Yes 19.0% 4.7 5.3 17.6% 44.8% 8.0% 3.0 3.5 10.6% 47.6%

falcon-7b-inst.
No 6.1% 47.5 40.3 16.6% 27.7% 6.6% 40.8 38.1 17.4% 23.9%
Yes 19.0% 9.7 11.4 24.0% 38.8% 9.0% 9.7 9.2 21.5% 37.9%

mpt-7b-inst.
No 0.2% 16.2 13.4 14.7% 33.3% 0.2% 13.6 11.5 13.5% 35.6%
Yes 4.0% 13.9 12.4 11.9% 29.6% 3.0% 9.9 8.9 9.1% 33.4%

mistral-7b-inst.
No 2.4% 2.9 3.0 10.6% 37.2% 1.4% 3.1 3.1 8.0% 30.6%
Yes 0% 2.8 2.8 3.1% 40.3% 1.0% 2.7 2.6 2.8% 34.4%

koala-13b
No 6.3% 37.6 31.4 10.5% 24.0% 4.2% 29.4 23.8 11.3% 26.2%
Yes 10.0% 8.8 9.1 9.0% 24.0% 9.0% 7.4 7.9 9.3% 22.6%

vicuna-13b
No 2.4% 4.1 4.3 15.1% 35.2% 2.4% 3.9 4.1 14.2% 31.7%
Yes 4.0% 4.0 4.3 6.7% 35.5% 2.0% 3.1 3.4 5.4% 35.0%

llama-13b
No 2.4% 26.8 20.9 13.2% 31.7% 2.0% 24.7 19.1 11.3% 29.4%
Yes 4.0% 9.2 8.7 4.7% 31.0% 3.0% 6.6 5.6 4.0% 38.4%

mpt-30b-chat
No 0.5% 3.3 3.4 9.1% 33.4% 0.2% 3.5 3.3 6.3% 33.3%
Yes 1.0% 2.7 2.7 5.7% 32.5% 1.0% 2.1 2.1 4.6% 34.3%

falcon-40b-inst.
No 0.9% 8.1 7.2 18.0% 38.3% 0.9% 9.0 7.9 17.9% 35.5%
Yes 5.0% 5.4 5.4 9.0% 36.4% 7.0% 4.0 4.1 8.7% 25.7%

Table 2: Zero-shot plan generation results using prompting-based approaches with Greedy decoding (average over
all plans). Results with other metrics and standard deviation can be found in §D.

resolve the 13 intents. The statistics of the dataset
and examples are presented in Tab. 1.
Test Query Generation. We aim to study plan
generation in response to a user query in our created
domains. To collect diverse user utterances related
to the intents in Tab. 1a, we utilize the generative
power of pretrained LLMs. We prompt an open-
source LLM, Falcon-40B-instruct (Almazrouei
et al., 2023)1, to generate user queries related to the
intents. We prompt the LLM to write paraphrases
of a query with a specific intent. Prompt structure
and generated examples are shown in §A.2. We
manually go through the generated queries and
discard any queries that are not related to the intent
in the prompt. We find that 94% of the generated
queries are correct. In this manner, we generate
20 user queries per intent resulting in 260 queries
in total. We use this dataset for studying flow-
constrained plan generation given a user query.

4 Constrained Decoding for Planning

In this section, first, we run an ablation on plan
generation in various settings as explained in §2.3,
to understand the complexity of the task. Then we
explain our proposed constrained decoding based
algorithm for faithful plan generation.

1We experimented with other open source LLMs and found
Falcon to be the best in generating diverse utterances.

4.1 Ablation

To understand the complexity of zero-shot faithful
planning in different settings, we run a zero-shot
prompting-based ablation with a number of open-
source LLMs pretrained with/without tools and of
different parameter size. We use Santacoder (Al-
lal et al., 2023), Falcon (Penedo et al., 2023), Mpt
(Team, 2023), Mistral-v0.1 (Jiang et al., 2023),
Koala (Geng et al., 2023), Vicuna (Chiang et al.,
2023), Llama (Touvron et al., 2023), ToolAlpaca
(Tang et al., 2023), and ToolLlaMA (Qin et al.,
2023b). The prompt structures for generating plans
with and without thoughts are shown in §B. The
results for plan generation in the two settings are
summarized in Tab. 2. Our main observation is
that all LLMs fail heavily in zero-shot planning
regardless of the setting, especially LLMs fail to
preserve the API and flow step dependencies in
plans. For example, the average percentage of in-
consistent APIs in the two settings, ranges from
22.6% to 49.6%. This finding is in line with previ-
ous studies on LLMs’ capability in task planning
and tool usage (Ruan et al., 2023; Valmeekam et al.,
2022). We categorize our main observations below.
Effect of thoughts. Performance improves in flow
faithfulness for almost all LLMs when prompted
to generate thoughts and APIs compared to when
prompted to generate only APIs in plan. This is
consistent with the findings of Yao et al. (2022).
However, with thoughts, API repetition and halluci-

520

Book me a flight from NYC to Chicago.👧
Plan:
[Thought] First, I need to find airports. [API] GetAirports()
[Thought] Now, I can

Generation till token, T

Thought :
user intent

(𝑯𝒕𝒉:𝒊𝒏)

Thought :
permitted
flow steps

(𝑯𝒕𝒉:𝒔𝒕)

Though :
API

(𝑯𝒕𝒉:𝒂𝒑𝒊)

API
permitted?
(𝑯𝒂𝒑𝒊:𝒂𝒑𝒊)

Structurally
correct?
(𝑭𝒔𝒕())

Final
Selection

k=1: find rental car for the customer. [API] FindRentalCar() ↓ ↑ ↑ ✓ ✓ ❌

k=2: suggest flights from the airports. [API] FindFlight() ↑ ↑ ↑ ✓ ✓ ✓
k=3: order the trip. [API] OrderTrip() ↔ ↓ ↑ ❌ ✓ ❌

k=4: find flight from the airports. [API] FindRentalCar() ↑ ↑ ↓ ✓ ✓ ❌

k=5: create the trip using the API Create(). ↔ ↑ ↑ ❌ ❌ ❌

N
o

of
 B

ea
m

s,
 k

Max. Lookahead Length, L

Alignment Scores

Lookahead till tokens, T+L

Till token, T

Executing

Permitted

Not permitted

Constraints in Form of Dependency Graphs

🤖

Suggest flights

Suggest cars

Confirm and create trip

...

Flow Step Dependencies

Order Trip

...

FindRentalCar() FindFlight()

GetAirports()

Confirm()

CreateTrip()

API Dependencies

OrderTrip()GetPayInfo()
...

Constrained Decoding
using Lookahead Heuristic

Figure 2: An example state of FLAP, our proposed lookahead heuristic-based constrained decoding algorithm for
faithful planning, in the domain “Trip Planning” for a query related to “book flight”. Here, ↑, ↓, and ↔ indicate high,
low, and mediocre alignment scores, respectively. The selected path based on the heuristic scores is highlighted.

nation increase and plan parsability (§D) decreases
a bit. On some test examples, we notice that the
LLMs enter into a repetitive loop with thoughts
(examples in §E.1), in line with well-known phe-
nomenon in greedy and beam-search decoding (Vi-
jayakumar et al., 2016; Shao et al., 2017).
Effect of parameter size. Performance in most of
the metrics improve in larger LLMs and smaller
LLMs are prone to hallucination. We observe that
different models of the same parameter size per-
form differently. For example, the 7B version of
MPT is better than the 7B version of Falcon in most
of the metrics and Mistral-7B is better than other
7B models and it performs as per 30B-40B models.
Effect of pretraining. We observe that LLMs pre-
trained on tools, e.g., ToolAlpaca fails heavily in
API consistency and results in high API hallucina-
tion. With ToolLlama, we find that it fails to follow
instructions and generates non-parsable responses
(hence, not reported). These findings suggest that
pretraining LLMs with tool data makes them heav-
ily biased towards the pretraining data.
All flows vs. relevant flow in prompt. When
only the relevant flow to the user query is given
in-context, the performance improves with almost
all LLMs indicating that LLMs are more confused
when multiple flows are given in-context.

4.2 Proposed Algorithm
We now introduce FLAP, a Flow Adhering
Planning algorithm based on constrained decod-
ing with lookahead heuristic (Fig. 2). In FLAP, we
first convert the flow steps and APIs to dependency

graphs. At decoding time, we keep track of these
dependency graphs to enforce the dependencies as
constraints during next token generation.

4.2.1 Constructing Dependency Graphs
For each domain, we construct dependency graphs
for flow steps and APIs. The API dependency
graph is constructed based on the input-output pa-
rameter dependencies among APIs. For example
the API FindFlight(inputs:airport; output-
s:flights) is dependent on the API GetAirport
(inputs:city; outputs:airport) for the in-
put parameter ‘airport’. Hence, in the API de-
pendency graph ‘GetAirport’ will be a parent
of ‘FindFlight’. Similarly for flow steps, we
construct a separate flow-step dependency graph.
While generating a plan, we maintain a list of the
steps and APIs that are executed in these depen-
dency graphs. At each planning step, only non-
executed/under-execution APIs/steps in the depen-
dency graphs with parents in the executed list are
considered permitted.

4.2.2 Constrained Decoding of Plans with
Lookahead Heuristic

The traditional text generation problem can be for-
mulated as, given an input sequence of tokens x
= {y1, y2, · · · , yt−1}, the next token generator pre-
dicts the next token yt by solving the equation:

yt = argmax
y′t∈Y

P (y′t|x)

Here, Y is the set of all possible generations and
P (y′t|x) is the likelihood of the token y′t given the

521

input sequence x. In constrained decoding, the like-
lihood function takes the form P ′(y′t|x) = P (y′t|x)
+ H(y′t|x), where H(y′t|x) is the score based on
constraint satisfaction by generating y′t. However,
often it is difficult to determine the constraint satis-
faction score by only looking at the next token. The
lookahead mechanism comes handy here where the
constraint satisfaction score for a candidate next
token, y′t is estimated by looking at the estimated
future generations if y′t is selected. Hence, instead
of H(y′t|x), the heuristic function takes the form
H(y′t, · · · , y′t+L|x), where L is lookahead length.

For constrained plan generation, we prompt
LLMs to generate thoughts and corresponding
APIs. During generation, for each candidate
next token, we lookahead till the end of one
thought+API and score the candidate based on
their constraint satisfaction. Hence, our heuristic
function takes the form Hc = H([thought][api]|x).
[thought][api] may contain some already gener-
ated tokens; we also consider those when scoring.
We score each [thought][api] in the aspects below.

Generated thought to permitted flow step align-
ment (Hth:step). In our approach, thoughts are
natural language sentences describing the next step
to be taken. Ideally, they should correspond to the
flow steps. Hence, we score the generated thoughts
based on their semantic similarity to the permitted
flow steps in the flow dependency graph. A flow
step is permitted, if all of its parent flow steps are
already executed or the flow step is under execution
(e.g., flow step consisting of multiple API calls).
First, we estimate the intended flow step, ŝ by a
thought, th by obtaining its semantically closest
flow step using the formula below.

ŝ = argmax
s∈S

sim(th, s)

Here, S is the set of all flow steps in the domain
and sim() is semantic similarity scorer. Then we
calculate Hth:step using the following equations.

Hth:step =

{
α× sim(th, ŝ), if ŝ in Sp

0, if ŝ in Sn

α =





αa, if ŝ is in a flow

αb, if ŝ is deviating from flow

αc, if ŝ is same as the last step

Here, Sp and Sn are permitted and not permitted
flows steps at the current thought, respectively. We
assign different weights to Hth:step based on the

intended flow step ŝ. If the intended flow step ŝ be-
longs to the flow that the model has been following
so far, we assign the weight αa. If the model devi-
ates from the flow it has been following, we assign
the weight αb. In single intent use-cases, the model
is required to follow only one flow, hence, setting
αa > αb prevents the model from deviating from the
flow it has been following. If the model generates a
flow step that is the same as the step it intended in
its previous thought, we assign a weight αc. One
step may involve executing multiple APIs. Hence,
setting αc > αa encourages the model to complete
the current step before moving to the next.

Generated API to permitted APIs alignment
(Hapi:api). We score the generated API based on
their alignment to the permitted APIs. Permitted
APIs at a step are the non-executed APIs whose
parents are already executed. We calculate Hapi:api

using the following equations.

â = argmax
a∈A

sim(a, a)

Hapi:api = β × sim(a, â)

β =





[0,1), if â /∈ Ap ∪Ac or a /∈ A

1, if â ∈ Ap

0, if â ∈ Ac

Here, a is the generated API, A is the set of all APIs
in a domain, Ap and Ac are permitted APIs and
already called APIs, respectively, and Ap ∩Ac =
∅. When APIs from none of the sets Ap and Ac

are generated, the API is either hallucinated or
generated from the non-permitted list (An). In both
of the cases, we assign a lower weight than 1 in
the alignment score to make it a soft constraint
while making it zero will enforce a hard constraint
against such cases. We keep this weight open to
tuning for different LLMs because of their varying
degree of hallucinations and errors.

Generated thought to user intent alignment
(Hth:in). The plan should correspond to the user
intent in the query. Hence, we score the generated
thought, th based on its semantic similarity with
the user query, in, using, Hth:in = sim(th, in).

Generated thought to generated API alignment
(Hth:api). We generate thought to resonate the
API usage. Hence, the generated API, a should be
relevant to the generated thought, th. We align the
generated thought to the generated API using the
score, Hth:api = sim(th, ad), where ad is the given

522

With Avg count per plan % Plan Avg % of APIs in plan Avg # of edit for Avg % of inconsistent
LLMs Decoding Strategy Thought Thoughts APIs Parsable (↑) Repeat (↓) Hallu. (↓) Steps (↓) APIs (↓) Steps (↓) APIs (↓)

mp
t-
7b
-i
ns
tr
uc
t

B
as

el
in

es Greedy Search No - 17.3 100% 11.6% 0.2% 16.2 13.4 14.7% 33.3%
Greedy Search Yes 16.2 16.1 97.7% 35.1% 4.0% 13.9 12.4 11.9% 29.6%
Beam Search Yes 9.9 9.9 70.8% 5.5% 3.0% 7.6 7.7 13.9% 41.0%
Nucleus Sampling Yes 12.3 12.4 76.9% 25.3% 4.0% 9.8 9.5 13.8% 31.7%

O
ur

m
od

el FLAP.1 [soft api + align thought to (api, intent)] Yes 10.3 10.4 100% 1.3% 0.0% 5.5 5.5 6.3% 1.3%
FLAP.2 [soft api + align thought to (step, api)] Yes 9.3 9.4 100% 3.0% 0.0% 5.7 5.6 4.3% 1.6%
FLAP.3 [soft api + align thought to (step, intent)] Yes 9.2 9.4 100% 1.0% 0.0% 5.0 5.0 6.1% 1.3%
FLAP.4 [soft api + align thought to (step, api, intent)] Yes 9.3 9.4 100% 3.6% 0.0% 5.5 5.4 4.8% 2.1%

mi
st
ra
l-
7b
-i
ns
tr
uc
t

B
as

el
in

es Greedy Search No - 4.8 100% 0.3% 2.4% 2.9 3.0 10.6% 37.2%
Greedy Search Yes 4.7 4.8 99.6% 2.9% 0.0% 2.8 2.8 3.1% 40.3%
Beam Search Yes 3.6 3.8 98.1% 0.2% 0.0% 2.9 3.0 2.4% 38.9%
Nucleus Sampling Yes 5.7 5.9 93.9% 5.8% 2.0% 3.0 3.0 7.5% 34.3%

O
ur

m
od

el FLAP.1 [soft api + align thought to (api, intent)] Yes 6.6 6.7 100% 0.0% 0.0% 2.5 2.5 6.3% 4.6%
FLAP.2 [soft api + align thought to (step, api)] Yes 6.1 6.1 100% 0.1% 0.0% 2.3 2.3 5.1% 5.5%
FLAP.3 [soft api + align thought to (step, intent)] Yes 6.3 6.4 100% 0.4% 0.0% 2.0 2.0 6.5% 3.6%
FLAP.4 [soft api + align thought to (step, api, intent)] Yes 6.4 6.4 100% 0.5% 0.0% 2.5 2.5 5.6% 7.7%

(a) Setting: All flows in a domain are present in-context.

mp
t-
7b
-i
ns
tr
uc
t

B
as

el
in

es Greedy Search No - 14.9 100% 8.5% 0.2% 13.6 11.5 13.5% 35.6%
Greedy Search Yes 12.4 12.3 98.9% 23.0% 3.0% 9.9 8.9 9.1% 33.4%
Beam Search Yes 8.0 8.0 81.5% 4.2% 2.0% 5.2 5.3 10.8% 41.4%
Nucleus Sampling Yes 10.0 10.3 75.0% 19.8% 5.0% 7.2 7.1 13.6% 33.0%

O
ur

m
od

el FLAP.1 [soft api + align thought to (api, intent)] Yes 9.6 9.6 100% 1.1% 0.0% 4.7 4.7 6.6% 1.2%
FLAP.2 [soft api + align thought to (step, api)] Yes 8.2 8.2 100% 0.9% 0.0% 3.5 3.4 5.1% 1.2%
FLAP.3 [soft api + align thought to (step, intent)] Yes 8.8 9.0 100% 1.2% 0.0% 4.2 4.2 6.3% 2.4%
FLAP.4 [soft api + align thought to (step, api, intent)] Yes 8.6 8.7 100% 3.0% 0.0% 3.7 3.4 5.6% 3.7%

mi
st
ra
l-
7b
-i
ns
tr
uc
t

B
as

el
in

es Greedy Search No - 5.9 100% 0.6% 1.4% 3.1 3.1 8.0% 30.6%
Greedy Search Yes 5.6 5.7 100% 3.8% 1.0% 2.7 2.6 2.8% 34.4%
Beam Search Yes 4.2 4.3 100.0% 0.0% 0.0% 2.4 2.5 1.5% 36.7%
Nucleus Sampling Yes 5.6 5.9 98.1% 3.7% 1.0% 2.9 3.0 6.78% 30.2%

O
ur

m
od

el FLAP.1 [soft api + align thought to (api, intent)] Yes 7.0 7.0 100% 0.1% 1.0% 2.7 2.8 6.0% 4.1%
FLAP.2 [soft api + align thought to (step, api)] Yes 6.6 6.6 100% 0.4% 1.0% 2.3 2.3 5.9% 7.0%
FLAP.3 [soft api + align thought to (step, intent)] Yes 6.7 6.8 100% 0.4% 0.0% 2.3 2.3 6.6% 4.3%
FLAP.4 [soft api + align thought to (step, api, intent)] Yes 6.4 6.4 100% 0.4% 1.0% 2.2 2.2 6.1% 8.7%

(b) Setting: Only relevant flow to test query is present in-context.

Table 3: Comparison of our proposed approach, FLAP, with baselines in zero-shot faithful plan generation. Here,
the numbers (FLAP.#) indicate different ablation versions of FLAP. Structural constraint is applied in all versions of
FLAP. Results with standard deviations can be found in Tables 13 and 14 in §D. As reference for the “Avg count per
plan” column, we note, there are 6.84 APIs per gold plan.

description of the generated API, a. When a is a
hallucination, we set ad = a.

Structural constraint (Fst). For practical use-
cases, it is convenient if the LLMs generate plans in
a pre-defined format. It helps automatic parsability
of the generated plans. Hence, we introduce a func-
tion, Fst that accounts for the structural consistency
of the generated plan. It operates on the combined
heurictic score, H ′

c = a ×Hth:step + b ×Hapi:api

+ c × Hth:in + d × Hth:api (a, b, c, d are scaling
factors) as follows.

Fst(H
′
c) =

{
H ′

c, if thought+API follows format

0, otherwise

We use Hc = Fst(H
′
c) as the final heuristic score for

a candidate token, y′t and the final scoring function
for next token selection is defined as follows.

S(y′t|x) = (1− λ)× P (y′t|x) + λ×H
y′t
c

The parameter λ controls how much weight is given
in the LLM logits, P (y′t|x), and the heuristic score
H

y′t
c . We use top-k beams based on P (y′t) for the

next token generation using constrained decoding.
An example of our approach is shown in Fig. 2.

5 Experimental Evaluation

5.1 Experimental Setting

We evaluate FLAPs performance in faithful plan-
ning on the dataset described in §3, by compar-
ing it with prompting-based baselines and dif-
ferent decoding methods. Note that, the ap-
proach with thoughts is similar to ReAct (Yao
et al., 2022). Other approaches either depend
on multiple modules, require finetuning, or tuned
for a different task setting, hence, not directly
applicable in our task. Based on our ablation
(in Tab. 2), we apply FLAP on two LLMs
in 7B parameter range, Mistral-7b-instruct
and Mpt-7b-instruct. We leave application of
FLAP on larger LLMs as future work because of
their high resource requirement. We demonstrate
the structure of plan, ([thought]...[API]...),
through dummy start steps in the prompts (Fig. 6,
§B) and enforce it through Fst during decoding.
We use a pretrained sentence transformer (Reimers
and Gurevych, 2019) to calculate semantic similar-
ities (sim()). We report hyper-parameter tuning
and other experimental details in §C.

523

5.2 Experimental Results

The experimental results are summarized in Table
3. First, we observe that the Beam Search and Nu-
cleus Sampling (Holtzman et al., 2019) methods
do not improve the overall performance compared
to the Greedy Search method. Rather both Beam
Search and Nucleus Sampling result in fewer num-
ber of parsable plans compared to Greedy Search.
Note that Beam Search and Nucleus Sampling ex-
plore a wider search space compared to Greedy
Search, and Nucleus Sampling increases diversity;
we observe that without constraints, it results in
more deviation from the instructions and often de-
creases performance in different metrics. Hence,
in the rest of this section, we compare our models
performance with “Greedy Search with thoughts”.
We also observe that different baselines and our
approach show similar comparative trends in the
two settings (all flows in context vs. relevant flow
in context). Hence, we focus our rest of the discus-
sion on the more difficult setting where all flows
are given in the prompt (Tab. 3a).

In case of Mpt, different versions of our algo-
rithm, FLAP, outperform the baselines by a great
margin. In case of Mistral, the average percentage
of inconsistent steps increases a bit (by 2-4%) with
FLAP, however, performance improves in all other
metrics, especially the inconsistent APIs decreases
from 40.3% to 3.6%. A similar trend is observed
in the relevant flow in-context setting (Tab. 3b).

We observe that Mistral is good at following
flows even without FLAP in the difficult all flows
in-context setting, however, it fails to decompose
when one flow step requires multiple API calls.
Hence, without FLAP, the average API count per
plan is lower (4.8) than the average number of
APIs in gold plans (6.84). As a result, the avg.
% of inconsistent steps is low (3.1%), however, %
of inconsistent API is very high (40.3%). With
FLAP, the decomposition capability improves and
the model generates plans with number of APIs
(6.1-6.7) closer to the gold reference value (6.84)
with fewer number of edits and much less incon-
sistent APIs (3.6-7.7%), however, with a trade off
of slightly increased (by 2-4%) inconsistent steps.
We present qualitative examples in Tab. 4.

We perform ablation by dropping different com-
ponents of the heuristic scoring function in FLAP.
We observe, different components of the heuristic
score affect the corresponding aspects they are de-
signed for, especially in the difficult setting where

Query: Can you book a flight from Boston to San Francisco?
Generated Plan by Mistral-7b-instruct Without FLAP
[thought] To suggest flights, I need to find flights from Boston to San Francisco. [API] FindFlight()
[thought] Once I have the flight details, I can confirm and create the trip. [API] Confirm()
[thought] After confirming the trip, I can order the trip. [API] OrderTrip()

Generated Plan by Mistral-7b-instruct With FLAP
[thought] First, I need to find the airport codes for Boston and San Francisco. [API] GetAirports()
[thought] Once I have the airport codes, I can suggest flights to the customer. [API] FindFlight()
[thought] After suggesting flights, I need to confirm the trip details with the user. [API] Confirm()
[thought] Once the trip details are confirmed, I can create the trip. [API] CreateTrip()
[thought] To order the trip, I need to get the payment information from the user. [API] GetPayInfo()
[thought] After getting the payment information, I can order the trip. [API] OrderTrip()

Table 4: Generated plans by Mistral. It often fails in
step decomposition without FLAP.

all flows are present in-context. For example, in
case of Mpt, dropping Hth:step (thought to flow step
alignment) results in higher step dependency viola-
tion (FLAP.1). Another component Hth:in (thought
to intent alignment) is designed to keep the model
focused on the flow related to the user intent and we
observe an overall lower number of edits required
when this component is added (FLAP.1, FLAP.3,
FLAP.4), implying this component helps the model
generate a plan related to the user intent. How-
ever, the effect of these components is not clear
in case of Mistral. We conjecture, as Mistral is
already good at following flows, the effect is lower.
The effect of Hth:api that makes generated thoughts
and APIs coherent, is more qualitative and we find
that dropping these component (FLAP.3) results in
inconsistent thought and API pairs even if the gen-
erated API is correct in the plan. Examples of such
errors are presented in Tab. 5. Finally, enforcing
structural consistency (Fst) during decoding makes
the plans parsable 100% of the time.

In Fig. 3, we present the comparative perfor-
mance of LLMs of different size and smaller 7B
LLMs with FLAP. We observe that FLAP on top
of Mistral-7b outperforms and Mpt-7b performs
at par larger LLMs.

6 Related Work

While API usage and planning have been studied
as separate concepts in literature, we argue that
these two are interdependent. Recently, different
approaches have been proposed to teach LLMs
to use the correct API, however, the faithfulness
of API usage to their dependencies is understud-
ied (Ruan et al., 2023). For correct API usage,
one line of research considers pretraining of LLMs
with large API data that are mostly augmented us-
ing self-instruction (Schick et al., 2023; Patil et al.,
2023; Qin et al., 2023b; Yang et al., 2023; Gao et al.,
2023; Tang et al., 2023; Li et al., 2023). In some
cases, authors considered modular approaches and

524

Query: I need to book a flight from NYC to Chicago.

Generated plan with FLAP with thought to API alignment Generated plan with FLAP without thought to API alignment

[thought] I can get nearby airport codes to suggest flights to the customer. [API] GetAirports() [thought] The customer wants to book a flight from NYC to Chicago. [API] GetAirports()
[thought] I can suggest flights to the customer. [API] FindFlight() [thought] I can suggest flights to the customer. [API] FindFlight()
[thought] I can confirm flights to the customer and create a trip. [API] Confirm() [thought] I have suggested flights to the customer. [API] GetPayInfo()
[thought] I confirm flights to the customer and create a trip. [API] CreateTrip() [thought] I can confirm and create the trip. [API] Confirm()
[thought] Before ordering the trip, I can get payment information from the customer. [API] GetPayInfo() [thought] Confirms and create the trip. [API] CreateTrip()
[thought] I confirm flights to the customer and order a trip. [API] OrderTrip() [thought] The trip is created. [API] OrderTrip()

(a) Generated plan with Mpt-7b-instruct.
[thought] In order to suggest flights to the customer, I need to get the airport codes. [API] GetAirports() [thought] In order to suggest flights to the customer, I need to get the airport codes. [API] GetAirports()
[thought] Once I have the airport codes, I can suggest flights to the customer. [API] FindFlight() [thought] Once I have the airport codes, I can suggest flights to the customer. [API] FindFlight()
[thought] After suggesting the flights, I need to confirm and create the trip. [API] Confirm() [thought] After suggesting the flights, I need to confirm and create the trip. [API] Confirm()
[thought] To order the trip, I need to create a trip with the suggested flight. [API] CreateTrip() [thought], [API] CreateTrip()
[thought] Before ordering the trip, I need to get the payment information from the customer. [API] GetPayInfo() [thought] Once the trip is created, I can order the trip. [API] GetPayInfo()
[thought] Once I have the payment information, I can order the trip. [API] OrderTrip() [thought], order the trip. [API] OrderTrip()

(b) Generated plan with Mistral-7b-instruct.

Table 5: Qualitative error analysis when the generated thought to generated API alignment component (Hth:api) in
the heuristic scoring function of FLAP is dropped. The models results in incoherent thoughts and APIs at steps if
Hth:api is dropped; such steps are highlighted in red.

relied on feedback from humans, other LLMs, or
API execution outputs to tune LLMs (Song et al.,
2023; Qin et al., 2023a; Qiao et al., 2023; Lu et al.,
2023b; Prasad et al., 2023; Chen et al., 2023). An-
other line of work focused on improving the reason-
ing mechanism (Qian et al., 2023) for API usage via
prompting to generate thoughts (Yao et al., 2022),
consider API documentation (Hsieh et al., 2023),
etc. Unfortunately, pretraining-based methods are
difficult and prohibitively costly when adaptation
to new APIs is required and prompting-based ap-
proaches cannot reliably improve reasoning and
planning which are key to faithful API usage (§4.1).

In literature, planning is defined as decomposi-
tion of the end task and identifying intermediate
executable actions or reasoning steps to achieve
the goal where the decomposition is open-ended
and does not require obeying instructions (Jansen,
2020; Huang et al., 2022; Ahn et al., 2022; Wu
et al., 2022; Lu et al., 2022b; Yu et al.; Lu et al.,
2023a; Brahman et al., 2023). However, in many
applications, such as customer care service or phys-
ical robots, planning needs to strictly adhere to
predefined instructions (Reijers, 2003; Sengupta
et al., 2019). To achieve this, we draw inspira-
tion from decoding approaches (Holtzman et al.,
2019; Meister et al., 2020) that enable enforcement
of lexical and parametric constraints during gen-
eration (Hokamp and Liu, 2017; Lu et al., 2021,
2022a; Krause et al., 2021; Yang and Klein, 2021;
Huang et al., 2024). We extend the idea to enforce
constraints related to predefined instructions.

7 Conclusion

In this paper, we study the novel problem of faith-
ful planning for performing tasks in TODs, that

santacoder-1.1b

falcon-7b-inst.

mpt-7b-inst.

mistral-7b-inst.

koala-13b

vicuna-13b
llama-13b

mpt-30b-chat

falcon-40b-inst.

mpt-7b-inst. (FLAP)
mistral-7b-inst. (FLAP)

toolAlpaca-7b

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16

Pe
r p

la
n

av
g.

 %
 o

f i
nc

on
sis

te
nt

 st
ep

s

Per plan avg. # of edits for Steps

(a) Errors in generated flow steps.

santacoder-1.1b

falcon-7b-inst.

mpt-7b-inst.

mistral-7b-inst.

koala-13b

vicuna-13b
llama-13bmpt-30b-chat

falcon-40b-inst.

mpt-7b-inst. (FLAP)

mistral-7b-inst. (FLAP)

toolAlpaca-7b

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12 14

Pe
r p

la
n

av
g.

 %
 o

f i
nc

on
sis

te
nt

 A
PI

s

Per plan avg. # of edits for APIs

(b) Errors in generated APIs.

Figure 3: Comparison among different LLMs in flow
step (top) and API (bottom) errors during plan genera-
tion in the setting where all flows are given in context.

adheres to predefined flows and preserves API de-
pendencies. To solve the task, we propose FLAP,
a constrained decoding algorithm based on looka-
head heuristic. FLAP outperforms prompting-
based baselines with different decoding methods
and applying FLAP on two smaller LLMs we
achieve comparable performance to larger ones.
Our approach can be leveraged in accurate planning
for various downstream applications such as next
step prediction in conversations, user simulation,
flow-following conversation data augmentation for
training TOD models, and so on.

525

Limitations

We identify the following limitations of our study.

Simplifying Assumptions: In our study, we
make the simplifying assumption that the user
query can be resolved using the given APIs and
workflows in context. However, that may not be
the case in real life and users may have out-of-
domain (OOD) queries. To tackle OOD intents,
we can easily adapt our model by adding one addi-
tional workflow such as “cannot help”, and instruct
it to be selected if no other workflow is similar to
the user query. Our constructed dataset also do not
contain cases where multiple plans are valid based
on the given workflows and APIs, however, our
algorithm can be applicable in such cases without
any modification.

Static Planning: In this paper, we study static
planning. However, in real life, the agents may
need to modify their plans in between a conversa-
tion because conversations are by nature dynamic.
Some possible reasons for plan adaptation may be,
based on API execution feedback, user changes
their mind in between, and so on. Adapting such
static plans based on the situation in dynamic con-
versations can be an interesting future work. We
also focus only on API selection by following pre-
defined flows and API dependencies. The correct-
ness of parameter filling for the APIs is left as a
future work as it is applicable mostly in the dy-
namic planning setting.

Runtime: We observe a higher runtime for plan
generation using constrained decoding (§C.3). This
is partly because of the inefficient deployment of
the LLMs in the existing implementations (we use
Huggingface implementations) and partly because
of our resource constraint (discussed in details in
§C.3). We intend to work on more efficient im-
plementation of our algorithm by potentially paral-
lelizing computations and implementing algorith-
mic optimizations (e.g., lookahead after every n
tokens generation).

Usage of Open Source LLMs: We did not use
any closed source LLMs for our research because
of various reasons. Firstly, our algorithm requires
the logits from the LLMs which may be difficult to
obtain using closed source LLMs. Secondly, they
might be changing inside the box and it will be
difficult to replicate the results, hence, harming the
benchmarking procedure. Thirdly, closed source

LLMs are costly as they are accessible through paid
APIs only. Due to resource constraint, we experi-
mented with LLMs of at most 40B parameter size.
However, as described in the paper, our approach
can be applied on top of any autoregressive LLM.

Ethics Statement

In this paper, we present all implementation and
dataset details to replicate the study (partially in the
Appendix). All the relevant datasets, publicly avail-
able LLMs, and other models used in this paper
are publicly available for scientific research and are
cited adequately. All the results are reported with
standard deviations and necessary error analyses
are done (some parts in the Appendix), to provide
the readers an idea about the potential error patterns
and risks related to using our proposed models.

Acknowledgements

We gratefully acknowledge James Gung, Yi-An
Lai, Nikolaos Pappas, and the members of the AWS
AI Labs for providing valuable feedback at differ-
ent stages of this work. We extend our special
thanks to Justin Sun for his help in setting up differ-
ent LLMs and Don Bennett for providing valuable
feedback on writing. We would also like to thank
the anonymous reviewers for their insightful com-
ments.

References

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen
Chebotar, Omar Cortes, Byron David, Chelsea Finn,
Chuyuan Fu, Keerthana Gopalakrishnan, Karol Haus-
man, et al. 2022. Do as i can, not as i say: Ground-
ing language in robotic affordances. arXiv preprint
arXiv:2204.01691.

Loubna Ben Allal, Raymond Li, Denis Kocetkov,
Chenghao Mou, Christopher Akiki, Carlos Munoz
Ferrandis, Niklas Muennighoff, Mayank Mishra,
Alex Gu, Manan Dey, et al. 2023. Santacoder: don’t
reach for the stars! arXiv preprint arXiv:2301.03988.

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-
shamsi, Alessandro Cappelli, Ruxandra Cojocaru,
Merouane Debbah, Etienne Goffinet, Daniel Hes-
low, Julien Launay, Quentin Malartic, Badreddine
Noune, Baptiste Pannier, and Guilherme Penedo.
2023. Falcon-40B: an open large language model
with state-of-the-art performance.

Su Lin Blodgett, Solon Barocas, Hal Daumé III, and
Hanna Wallach. 2020. Language (technology) is

526

https://doi.org/10.18653/v1/2020.acl-main.485

power: A critical survey of “bias” in NLP. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5454–
5476, Online. Association for Computational Lin-
guistics.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli,
Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosse-
lut, Emma Brunskill, et al. 2021. On the opportuni-
ties and risks of foundation models. arXiv preprint
arXiv:2108.07258.

Faeze Brahman, Chandra Bhagavatula, Valentina Py-
atkin, Jena D Hwang, Xiang Lorraine Li, Hirona J
Arai, Soumya Sanyal, Keisuke Sakaguchi, Xiang
Ren, and Yejin Choi. 2023. Plasma: Making small
language models better procedural knowledge mod-
els for (counterfactual) planning. arXiv preprint
arXiv:2305.19472.

Derek Chen, Howard Chen, Yi Yang, Alexander Lin,
and Zhou Yu. 2021. Action-based conversations
dataset: A corpus for building more in-depth task-
oriented dialogue systems. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 3002–3017.

Zhipeng Chen, Kun Zhou, Beichen Zhang, Zheng
Gong, Wayne Xin Zhao, and Ji-Rong Wen. 2023.
Chatcot: Tool-augmented chain-of-thought reason-
ing on\\chat-based large language models. arXiv
preprint arXiv:2305.14323.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Shen Gao, Zhengliang Shi, Minghang Zhu, Bowen Fang,
Xin Xin, Pengjie Ren, Zhumin Chen, and Jun Ma.
2023. Confucius: Iterative tool learning from in-
trospection feedback by easy-to-difficult curriculum.
arXiv preprint arXiv:2308.14034.

Xinyang Geng, Arnav Gudibande, Hao Liu, Eric Wal-
lace, Pieter Abbeel, Sergey Levine, and Dawn Song.
2023. Koala: A dialogue model for academic re-
search. Blog post.

Aria Haghighi, John DeNero, and Dan Klein. 2007.
Approximate factoring for a* search. In Human
Language Technologies 2007: The Conference of
the North American Chapter of the Association for
Computational Linguistics; Proceedings of the Main
Conference, pages 412–419.

Chris Hokamp and Qun Liu. 2017. Lexically con-
strained decoding for sequence generation using grid
beam search. arXiv preprint arXiv:1704.07138.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2019. The curious case of neural text de-
generation. In International Conference on Learning
Representations.

Cheng-Yu Hsieh, Si-An Chen, Chun-Liang Li, Yasuhisa
Fujii, Alexander Ratner, Chen-Yu Lee, Ranjay Kr-
ishna, and Tomas Pfister. 2023. Tool documenta-
tion enables zero-shot tool-usage with large language
models. arXiv preprint arXiv:2308.00675.

James Y Huang, Sailik Sengupta, Daniele Bonadiman,
Yi-an Lai, Arshit Gupta, Nikolaos Pappas, Saab Man-
sour, Katrin Kirchoff, and Dan Roth. 2024. Deal:
Decoding-time alignment for large language models.
arXiv preprint arXiv:2402.06147.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and
Igor Mordatch. 2022. Language models as zero-shot
planners: Extracting actionable knowledge for em-
bodied agents. In International Conference on Ma-
chine Learning, pages 9118–9147. PMLR.

Peter Jansen. 2020. Visually-grounded planning with-
out vision: Language models infer detailed plans
from high-level instructions. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020,
pages 4412–4417.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann,
Nitish Shirish Keskar, Shafiq Joty, Richard Socher,
and Nazneen Fatema Rajani. 2021. Gedi: Genera-
tive discriminator guided sequence generation. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 4929–4952.

Minghao Li, Feifan Song, Bowen Yu, Haiyang Yu,
Zhoujun Li, Fei Huang, and Yongbin Li. 2023. Api-
bank: A benchmark for tool-augmented llms. arXiv
preprint arXiv:2304.08244.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and
Jianfeng Gao. 2023a. Chameleon: Plug-and-play
compositional reasoning with large language models.
arXiv preprint arXiv:2304.09842.

Ximing Lu, Sean Welleck, Peter West, Liwei Jiang,
Jungo Kasai, Daniel Khashabi, Ronan Le Bras, Lian-
hui Qin, Youngjae Yu, Rowan Zellers, et al. 2022a.
Neurologic a* esque decoding: Constrained text gen-
eration with lookahead heuristics. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 780–799.

Ximing Lu, Peter West, Rowan Zellers, Ronan Le Bras,
Chandra Bhagavatula, and Yejin Choi. 2021. Neuro-
logic decoding:(un) supervised neural text generation
with predicate logic constraints. In Proceedings of

527

https://doi.org/10.18653/v1/2020.acl-main.485
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://bair.berkeley.edu/blog/2023/04/03/koala/
https://bair.berkeley.edu/blog/2023/04/03/koala/

the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 4288–4299.

Yining Lu, Haoping Yu, and Daniel Khashabi. 2023b.
Gear: Augmenting language models with general-
izable and efficient tool resolution. arXiv preprint
arXiv:2307.08775.

Yujie Lu, Weixi Feng, Wanrong Zhu, Wenda Xu,
Xin Eric Wang, Miguel Eckstein, and William Yang
Wang. 2022b. Neuro-symbolic procedural planning
with commonsense prompting. In The Eleventh Inter-
national Conference on Learning Representations.

Clara Meister, Tim Vieira, and Ryan Cotterell. 2020.
Best-first beam search. Transactions of the Associa-
tion for Computational Linguistics, 8:795–809.

Johannes E. M. Mosig, Shikib Mehri, and Thomas
Kober. 2020. STAR: A Schema-Guided Dialog
Dataset for Transfer Learning. arXiv e-prints.

Franz Josef Och, Nicola Ueffing, and Hermann Ney.
2001. An efficient a* search algorithm for statisti-
cal machine translation. In Proceedings of the ACL
2001 Workshop on Data-Driven Methods in Machine
Translation.

Shishir G Patil, Tianjun Zhang, Xin Wang, and
Joseph E Gonzalez. 2023. Gorilla: Large language
model connected with massive apis. arXiv preprint
arXiv:2305.15334.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow,
Ruxandra Cojocaru, Alessandro Cappelli, Hamza
Alobeidli, Baptiste Pannier, Ebtesam Almazrouei,
and Julien Launay. 2023. The RefinedWeb dataset
for Falcon LLM: outperforming curated corpora
with web data, and web data only. arXiv preprint
arXiv:2306.01116.

Archiki Prasad, Alexander Koller, Mareike Hartmann,
Peter Clark, Ashish Sabharwal, Mohit Bansal, and
Tushar Khot. 2023. Adapt: As-needed decompo-
sition and planning with language models. arXiv
preprint arXiv:2311.05772.

Cheng Qian, Chi Han, Yi R Fung, Yujia Qin, Zhiyuan
Liu, and Heng Ji. 2023. Creator: Disentan-
gling abstract and concrete reasonings of large lan-
guage models through tool creation. arXiv preprint
arXiv:2305.14318.

Shuofei Qiao, Honghao Gui, Huajun Chen, and Ningyu
Zhang. 2023. Making language models better tool
learners with execution feedback. arXiv preprint
arXiv:2305.13068.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,
Chaojun Xiao, Chi Han, et al. 2023a. Tool
learning with foundation models. arXiv preprint
arXiv:2304.08354.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2023b. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
arXiv preprint arXiv:2307.16789.

Hajo A Reijers. 2003. Design and control of workflow
processes: business process management for the ser-
vice industry, volume 2617. Springer.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 3982–3992.

Jingqing Ruan, Yihong Chen, Bin Zhang, Zhiwei Xu,
Tianpeng Bao, Guoqing Du, Shiwei Shi, Hangyu
Mao, Xingyu Zeng, and Rui Zhao. 2023. Tptu: Task
planning and tool usage of large language model-
based ai agents. arXiv preprint arXiv:2308.03427.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
arXiv preprint arXiv:2302.04761.

Sailik Sengupta, Zahra Zahedi, and Subbarao Kamb-
hampati. 2019. To monitor or to trust: observing
robot’s behavior based on a game-theoretic model
of trust. In Proceedings of the Trust Workshop at
AAMAS.

Yuanlong Shao, Stephan Gouws, Denny Britz, Anna
Goldie, Brian Strope, and Ray Kurzweil. 2017. Gen-
erating high-quality and informative conversation re-
sponses with sequence-to-sequence models. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2210–
2219.

Mohit Shridhar, Jesse Thomason, Daniel Gordon,
Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke
Zettlemoyer, and Dieter Fox. 2020. Alfred: A bench-
mark for interpreting grounded instructions for ev-
eryday tasks. In 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 10737–10746. IEEE Computer Society.

Yifan Song, Weimin Xiong, Dawei Zhu, Cheng Li,
Ke Wang, Ye Tian, and Sujian Li. 2023. Rest-
gpt: Connecting large language models with real-
world applications via restful apis. arXiv preprint
arXiv:2306.06624.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han,
Qiao Liang, and Le Sun. 2023. Toolalpaca: Gener-
alized tool learning for language models with 3000
simulated cases. arXiv preprint arXiv:2306.05301.

MosaicML NLP Team. 2023. Introducing mpt-7b: A
new standard for open-source, commercially usable
llms. Accessed: 2023-03-28.

528

https://doi.org/10.1162/tacl_a_00346
http://arxiv.org/abs/2010.11853
http://arxiv.org/abs/2010.11853
http://arxiv.org/abs/2306.01116
http://arxiv.org/abs/2306.01116
http://arxiv.org/abs/2306.01116

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo,
Sarath Sreedharan, and Subbarao Kambhampati.
2024. Planbench: An extensible benchmark for eval-
uating large language models on planning and reason-
ing about change. Advances in Neural Information
Processing Systems, 36.

Karthik Valmeekam, Matthew Marquez, Sarath Sreed-
haran, and Subbarao Kambhampati. 2023. On the
planning abilities of large language models - a crit-
ical investigation. In Thirty-seventh Conference on
Neural Information Processing Systems.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan,
and Subbarao Kambhampati. 2022. Large language
models still can’t plan (a benchmark for llms on plan-
ning and reasoning about change). In NeurIPS 2022
Foundation Models for Decision Making Workshop.

Ashwin K Vijayakumar, Michael Cogswell, Ram-
prasaath R Selvaraju, Qing Sun, Stefan Lee, David
Crandall, and Dhruv Batra. 2016. Diverse beam
search: Decoding diverse solutions from neural se-
quence models.

Shufan Wang, Sébastien Jean, Sailik Sengupta, James
Gung, Nikolaos Pappas, and Yi Zhang. 2023. Mea-
suring and mitigating constraint violations of in-
context learning for utterance-to-API semantic pars-
ing. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2023, pages 7196–7207,
Singapore. Association for Computational Linguis-
tics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Te-Lin Wu, Alex Spangher, Pegah Alipoormolabashi,
Marjorie Freedman, Ralph Weischedel, and Nanyun
Peng. 2022. Understanding multimodal procedural
knowledge by sequencing multimodal instructional
manuals. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 4525–4542.

Kevin Yang and Dan Klein. 2021. Fudge: Controlled
text generation with future discriminators. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
3511–3535.

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge,
Xiu Li, and Ying Shan. 2023. Gpt4tools: Teaching
large language model to use tools via self-instruction.
arXiv preprint arXiv:2305.18752.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations.

Xiao Yu, Maximillian Chen, and Zhou Yu. Prompt-
based monte-carlo tree search for goal-oriented dia-
logue policy planning.

Yi Zhang, Sujay Kumar Jauhar, Julia Kiseleva, Ryen
White, and Dan Roth. 2021. Learning to decompose
and organize complex tasks. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 2726–2735.

Jeffrey Zhao, Yuan Cao, Raghav Gupta, Harrison Lee,
Abhinav Rastogi, Mingqiu Wang, Hagen Soltau,
Izhak Shafran, and Yonghui Wu. 2023. Anytod: A
programmable task-oriented dialog system.

A Dataset Creation

A.1 Domain Creation
The flows and corresponding APIs for each do-
main are shown in Tab. 6. The API definitions
in all domains, their input/output parameters, and
descriptions are shown in Tab. 7.

A.2 Test Utterance Generation
The prompt for generating test queries related to the
intent “book flight” in the domain “Trip Booking”
is shown in Fig. 4. Similar prompts were used for
the generation of queries for all other intents. Some
generated user queries related to various intents are
shown in Tab. 8.

B Prompt Structures for Generating
Plans

The prompt structure for generating plans consist-
ing of only APIs (no thoughts) is shown in Fig. 5.
The prompt structure for planning with thoughts
and APIs is shown in Fig. 6.

C Experimental Details

C.1 Hyper-parameter Tuning
In this section, we discuss the hyper-parameter se-
lection process in FLAP, our proposed constrained
decoding based algorithm in §4.2.

In our dataset, all user queries are single intent,
hence, we set αc > αa > αb (αa = 0.5, αb = 0.1,
and αc = 1). We empirically determine β = 0.1
when the APIs are hallucinated or violates the de-
pendency, i.e., a soft alignment of generated APIs
to permitted APIs.

529

https://openreview.net/forum?id=X6dEqXIsEW
https://openreview.net/forum?id=X6dEqXIsEW
https://openreview.net/forum?id=X6dEqXIsEW
https://aclanthology.org/2023.findings-emnlp.478
https://aclanthology.org/2023.findings-emnlp.478
https://aclanthology.org/2023.findings-emnlp.478
https://aclanthology.org/2023.findings-emnlp.478
http://arxiv.org/abs/2212.09939
http://arxiv.org/abs/2212.09939

Our goal is to generate customer utterances in the customer care domain: Trip Planner

Here is an example of customer utterance and the intent(s) in the utterance:
Customer utterance: Please book a flight from {source} to {destination}.
Intents: [book_flight]

Now, write 20 paraphrases of this customer utterance where the intent(s) are [book_flight].
Make sure the paraphrases are very diverse and crisp.
Make sure you replace the parameter(s) [destination, source] with various US city names
such as 'Miami', 'New Orleans', 'Chicago', and so on.

Answer:
Paraphrase-1: Can you book a flight from NYC to Chicago for me?
Paraphrase-2:

Figure 4: Prompt for generating test utterances for the intent “book flight” in the domain “Trip Booking”.

You are playing the role of a customer care agent who has access to the following APIs.
{
FindFlight(inputs: airport_code; Outputs: flight_id): retrieves flights to/from the airport.
FindRentalCar(inputs: ; Outputs: car_id): retrieves cars to/from the travelling city
...
...
...
}

To book a hotel follow the below steps sequentially.
start processing the requests from the customer
suggest hotels to the customer
...
...

To book a car follow the below steps sequentially.
start processing the requests from the customer
suggest cars to the customer
...
...

To book a flight follow the below steps sequentially.
start processing the requests from the customer
suggest flights to the customer
...
...

Customer request: "Can you please help me book a flight from Dallas to Austin?"
Plan step by step to fulfill the customer request using the given APIs and instructions.
Complete the plan below in one line.
Plan: InitSystem(), Start(),

Figure 5: Prompt format for generating a plan consisting of APIs only (without thoughts) in the domain “Trip
Booking”. The first two dummy APIs InitSystem(), Start() are provided in context to guide the model to
follow the plan format.

To tune the values of the weight on the heuristic
score (λ) and beam size (k), we run an ablation with
a subset of the data (5 user utterances per intent) in
Tab. 1a, in the setting where only relevant subflow
is given in-context, using Mistral-7b-instruct.
We experiment with k = [5, 10, 15] and λ =
[0.3, 0.5, 0.7]. The results are summarized in Tab.
10. We find that k = 10 and λ = 0.7 result in over-
all best performance, especially in terms of API
dependency violation (refer to “per plan avg % of
inconsistent APIs”). Hence, we report the results
with these values.

We set the values of all the scaling factors (a, b, c,
d) to 1 implying equal weight to all heurictic score
components. We set the lookahead length, L = 32

in our experiments. During plan generation, if
the API Finish() is generated, we consider that
as end-of-plan (as per the flows in Tab. 6) and
terminate the generation.

For the Beam Search baseline, we set number of
beams to 3 and use no_repeat_ngram_size=10
to prevent the model from generating the same
thought and API pair repeatedly. For the Nucleus
Sampling baseline we use top_p=0.9.

C.2 Infrastructure and Libraries

We use eight NVIDIA A10G Tensor Core GPUs
for all of our experiments. We use Pytorch2 for

2https://pytorch.org

530

https://pytorch.org

You are playing the role of a customer care agent who has access to the following APIs.
{
FindRentalCar(inputs: ; Outputs: car_id): retrieves cars to/from the travelling city
FindFlight(inputs: airport_codes; Outputs: flight_id): retrieves flights to/from the airports.
...
...
...
}

To book a hotel follow the below steps sequentially.
start processing the requests from the customer
suggest hotels to the customer
...
...

To book a car follow the below steps sequentially.
start processing the requests from the customer
suggest cars to the customer
...
...

To book a flight follow the below steps sequentially.
start processing the requests from the customer
suggest flights to the customer
...
...

Customer request: "Can you book a flight from NYC to Chicago for me?"

Identify the customer intent and plan step by step to fulfill the customer request using the given APIs
and instructions. State the thought and API call at each step.

[thought] To start processing requests from the customer, I need to initialize system. [API] InitSystem()
[thought] Now, I can start processing request from the customer. [API] Start()
[thought]

Figure 6: Prompt format for generating a plan (with thoughts) in the domain “Trip Booking”. The first two dummy
steps, e.g., thoughts related to InitSystem() and Start() are provided in context to guide the model to follow the
plan format.

all implementations. For all the LLMs used in
this paper, we use their Huggingface3 implementa-
tions. We build our proposed constrained decoding
algorithm on top of Huggingface generation mod-
ule4. We used the Huggingface implementation of
the all-MiniLM-L6-v25 sentence transformer for
measuring semantic similarities (sim()).

C.3 Runtime Analysis

The runtimes of different models in plan genera-
tion are shown in Tab. 9. Note that our proposed
constrained decoding algorithm is run on only one
GPU of 24GB memory with a batch size of 1. This
is one of the reasons of the high runtime. We ex-
plored parallelization techniques by deploying the
LLMs in multiple GPUs to make the process faster.
However, it was observed that deploying the LLMs
(Huggingface implementation) in multiple GPUs
made the inference time of the base LLMs even
slower. Our intended future work includes more
efficient deployment of the LLMs in potentially
multi-GPU machines which is out-of-scope of this
paper.

3https://huggingface.co
4https://huggingface.co/docs/transformers/

main_classes/text_generation
5https://huggingface.co/sentence-transformers/

all-MiniLM-L6-v2

D Additional Results

The ablation results with standard deviations over
all test data points with the prompting-based plan
generation using numerous open-source models in
the settings where all flows are given in-context
and only relevant flows are given in-context, can
be found in Tab. 11 and Tab. 12, respectively.

The results with standard deviations for plan gen-
eration using our proposed constrained decoding
algorithm, FLAP, in the setting where all flows are
given in-context and only relevant flows are given
in-context, can be found in Tab. 13 and Tab. 14,
respectively.

E Qualitative Error Analysis

E.1 Model entering into repetitive loop with
thoughts

Example of error when model enters into a repet-
itive loop when prompted to generate plans with
thoughts, can be observed in Tab. 15.

E.2 API hallucinations by pre-trained LLMs
with tool data

API hallucination examples by Alpaca-7B are
shown in Tab. 16.

531

https://huggingface.co
https://huggingface.co/docs/transformers/main_classes/text_generation
https://huggingface.co/docs/transformers/main_classes/text_generation
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

Flow steps Required API sequence
Domain: Trip Booking, Intent: Book Car

Start processing the requests from the customer InitSystem(), Start()
Suggest cars to the customer FindRentalCar()
Confirm and create the trip Confirm(), CreateTrip()
Extract and add promotional offers GetCarInsuranceDiscount(), UpdateTrip()
Order the trip GetPaymentInformation(), OrderTrip()
Finish processing request Finish()

Domain: Trip Booking, Intent: Book Flight

Start processing the requests from the customer InitSystem(), Start()
Suggest flights to the customer GetAirports(), FindFlight()
Confirm and create the trip Confirm(), CreateTrip()
Order the trip GetPaymentInformation(), OrderTrip()
Finish processing request Finish()

Domain: Trip Booking, Intent: Book Hotel

Start processing the requests from the customer InitSystem(), Start()
Suggest hotels to the customer FindHotel()
Confirm and create the trip Confirm(), CreateTrip()
Order the trip GetPaymentInformation(), OrderTrip()
Finish processing request Finish()

Domain: Insurance, Intent: Buy Insurance

Start processing the requests from the customer InitSystem(), Start()
Provide quote for the item to be insured GetItem(), GetQuote()
Get customer details GetDemographicDetails()
Order the insurance OrderInsurance()
Finish processing request Finish()

Domain: Insurance, Intent: Cancel Insurance

Start processing the requests from the customer InitSystem(), Start()
Validate insurance GetInsuranceID(), ValidateInsurance()
Record the refund method GetRefundMethod()
Confirm and cancel the Insurance Confirm(), CancelInsurance()
Finish processing request Finish()

Domain: Insurance, Intent: Add Member

Start processing the requests from the customer InitSystem(), Start()
Validate insurance GetInsuranceID(), ValidateInsurance()
Update the insurance with new member information GetAdditionalMemberInformation(), UpdateInsurance()
Finish processing request Finish()

Domain: Banking, Intent: Open Account

Start processing the requests from the customer InitSystem(), Start()
Check eligibility for opening an account GetCustomerIncome(), GetDateOfBirth(), CheckEligibility()
Finalize the account type GetAccountTypes()
Open the account Confirm(), OpenAccount()
Finish processing request Finish()

Domain: Banking, Intent: Report Problem

Start processing the requests from the customer InitSystem(), Start()
Record the problem and notify the internal team RecordIssue(), NotifyComplaintDepartment()
Finish processing request Finish()

Domain: Banking, Intent: Cancel Transaction

Start processing the requests from the customer InitSystem(), Start()
Validate transaction details GetTransactionInformation(), ValidateTransaction()
Cancel the transaction Confirm(), CancelTransaction()
Finish processing request Finish()

Domain: Restaurant & Ride Book, Intent: Book Restaurant

Start processing the requests from the customer InitSystem(), Start()
Suggest restaurants to the customer GetTime(), GetCity(), GetBudget(), FindRestaurants()
Finalize the restaurant booking GetCustomerName(), GetSelectedRestaurant(), BookRestaurant()
Finish processing request Finish()

Domain: Restaurant & Ride Book, Intent: Book Ride

Start processing the requests from the customer InitSystem(), Start()
Suggest ride options to the customer GetTime(), GetSource(), GetDestination(), FindRideShareOptions()
Finalize the ride service booking GetPaymentMethod(), GetSelectedRideShareOption(), BookRide()
Finish processing request Finish()

Domain: Restaurant & Ride Book, Intent: Cancel Restaurant Booking

Start processing the requests from the customer InitSystem(), Start()
Validate the restaurant booking GetRestaurantBookingID(), Authenticate()
Cancel the restaurant booking CancelRestaurantBooking()
Finish processing request Finish()

Domain: Restaurant & Ride Book, Intent: Cancel Ride Booking

Start processing the requests from the customer InitSystem(), Start()
Validate the ride booking GetRideBookingID(), Authenticate()
Cancel the ride booking GetRefundMethod(), CancelRide()
Finish processing request Finish()

Table 6: Flows and required APIs in all domains. We study faithful plan generation in a zero-shot setting. Hence,
we additionally add the dummy first (InitSystem(), Start()) and last (Finish()) steps in each flow to guide
the model by indicating the start and end of processing a request in the zero-shot prompt.

532

APIs Input Parameters Output Parameters Description
Domain: Trip Booking

Confirm() None confirmation_status confirm trip details with the customer before creating a trip
FindRentalCar() None car_id retrieves cars to/from the travelling city
FindHotel() None hotel_id finds and retrieves hotels in a city
GetPayInfo() None pay_info gets payment information from the customer
Start() init_status True/False starts processing customer requests
InitSystem() None init_status initializes the system to start processing customer requests

OrderTrip()
trip_id,pay_info,
confirmation_status

order_status places the bookings

UpdateTrip() offer_id, trip_id True/False updates a trip with special offers
FindFlight() airport_code flight_id retrieves flights to/from the airport
GetCarInsuranceDiscount() car_id offer_id retrieves insurances related discounts related to the car options

CreateTrip()
flight_id/hotel_id/car_id,
confirmation_status

trip_id creates a new trip before ordering

Finish() order_status True/False finishes processing customer requests
GetAirports() None airport_code returns nearby airport codes based on the travelling city

Domain: Insurance

CancelInsurance()
insurance_id,
confirmation_status,
refund_method

cancellation_status cancels the insurance

GetAdditionalMemberInfo() None additional_member_info asks additional member info from the customer and returns it
GetInsuranceID() None insurance_id asks the insurance id from the customer and returns it
OrderInsurance() pay_info order_status places order for purchasing the insurance
GetPaymentInformation() None pay_info gets payment information from the customer

Finish()
order_status/
cancellation_status/
update_status

True/False finishes processing customer requests

GetRefundMethod() None refund_method asks the preferred refund method from the customer and returns it
Confirm() insurance_id confirmation_status confirms insurance details with the customer
GetItem() None item_id gets the item to be insured from the customer
InitSystem() None init_status initializes the system to start processing customer requests
GetDemographicDetails() None demographics asks demographic information of the customer and returns it
Start() init_status True/False starts processing customer requests
GetQuote() item_id quote_id provides quote to the customer for a given item
ValidateInsurance() insurance_id insurance_validated validates if the insurance exists

UpdateInsurance()
additional_member_info,
insurance_id

update_status updates an existing insurance by adding a new member

Domain: Banking

Start() init_status True/False starts processing customer requests
GetTransactionInfo() None transaction_id asks transaction info to the customer and returns the transaction id

CheckEligibility()
date_of_birth,
annual_income

eligibility_status checks if customer is eligible to open account given age, income

GetAccountTypes()
date_of_birth,annual_income,
eligibility_status

account_type get the account type based on customer eligibility, age and income

CancelTransaction()
transaction_id,
confirmation_status

cancellation_status cancels a transaction

ValidateTransaction() transaction_id None validates if the transaction was actually executed

Finish()
open_status/
cancellation_status/
notification_status

True/False finishes processing customer requests

GetCustomerIncome() None annual_income ask customer annual income and returns it
RecordIssue() None issue_id records the issue in internal database for review by team

OpenAccount()
confirmation_status,
account_type

open_status opens a new account

InitSystem() None init_status initializes the system to start processing customer requests

Confirm() None confirmation_status
confirms with the customer before opening an account or can-
celling a transaction

GetDateOfBirth() None date_of_birth asks the date of birth to the customer and returns it

NotifyComplaintDepartment() issue_id notification_status
notifies the complaint department about an problem reported by
the customer

Domain: Restaurant & Ride Booking

GetBudget() None budget asks customer the budget and return it
FindRideShareOptions() source, destination, time ride_options retrieves ride-share options
GetPaymentMethod() None pay_method asks customer the payment method and return it
GetDestination() None destination asks destination to the customer and return it
GetCustomerName() None name asks customer their name and return it
BookRide() pay_method, rideshare_id ride_booking_status books the selected rideshare service
InitSystem() None init_status initializes the system to start processing customer requests

GetSelectedRestaurant() restaurant_list restaurant_id
presents customer with the list of restaurants, ask their choice and
return the selected restaurant id

Authenticate() ride_id/restaurant_book_id True/False authenticates the customer and their booking ids

Finish() None

ride_booking_status/
restaurant_booking_status/
restaurant_cancellation_status/
ride_cancellation_status

finishes processing customer requests

GetRestaurantBookingID() None restaurant_book_id asks the customer the restaurant booking id and return it
GetCity() None city asks customer the city and return it
GetTime() None time asks time to the customer and return it

GetSelectedRideShareOption() ride_options rideshare_id
presents customer with the list of rides, asks their choice and return
the selected rideshare id

GetSource() None source asks source to the customer and return it
BookRestaurant() restaurant_id, time, name restaurant_booking_status books the selected restaurant
CancelRide() refund_method, ride_id ride_cancellation_status cancels the ride
FindRestaurants() time, city, budget restaurant_list retrieves list of restaurants
CancelRestaurantBooking() restaurant_book_id restaurant_cancellation_status cancels the restaurant booking
Start() init_status True/False starts processing customer requests
GetRideBookingID() None ride_id asks the customer the ride booking id and return it
GetRefundMethod() None refund_method asks customer the refund method and return it

Table 7: API definition, their input/output parameters, and descriptions in four constructed domains.
Some API names are clipped for better visibility (e.g., GetAdditionalMemberInformation() is clipped to
GetAdditionalMemberInfo()).

533

Intents and Generated Queries in Domain Trip Booking

Book Car: Could you arrange for car rental for my Minneapolis trip from June 25th to July 3rd?
Book Hotel: I’m looking to book a hotel room in Los Angeles from August 18th to August 25th.
Book Flight: I need to fly from Miami to Toronto, can you please help me with that?

Intents and Generated Queries in Domain Insurance

Buy Insurance: I want to safeguard my family’s health with an insurance policy.
Cancel Insurance: My current policy doesn’t cover all the expenses, would you please cancel it?
Add Member: Would you please add my aunt to my mobile insurance policy?

Intents and Generated Queries in Domain Banking

Open Account: My wife and I are looking to open a joint bank account together. What steps do we need to take?
Report Problem: My card is declined at the ATM. Can you help?
Cancel Transaction: The balance of my savings account has been altered by an unauthorized transfer of $500. I would appreciate if
you could get that money refunded.

Intents and Generated Queries in Domain Restaurant & Ride Book

Book Restaurant: Could you assist me in making a reservation at a restaurant in Manhattan?
Book Ride: I am in Washington D.C. looking for a ride to Fort Lauderdale.
Cancel Restaurant: I made a restaurant booking in Los Angeles this morning but I cannot make it due to an emergency. Can you
cancel my booking?
Cancel Ride: May I cancel my ride from Brooklyn to Queens?

Table 8: Examples of generated user queries for each intent.

534

LLM Models With Avgerage Runtime Per Plan (seconds)
Thought All flows in context Relevant flow in context

mp
t-
7b
-i
ns
.

Greedy Search No 7.94 5.4
Greedy Search Yes 14.07 11.3
Beam Search Yes 27.94 26.69
Nucleus Sampling Yes 17.74 17.55
FLAP.1 [soft api + align thought to (api, intent)] Yes 264.0 371.41
FLAP.2 [soft api + align thought to (step, api)] Yes 199.28 295.12
FLAP.3 [soft api + align thought to (step, intent)] Yes 378.43 336.4
FLAP.4 [soft api + align thought to (step, api, intent)] Yes 216.16 327.79

mi
st
ra
l-
7b
-i
ns
.

Greedy Search No 19.72 18.81
Greedy Search Yes 8.78 9.91
Beam Search Yes 10.24 9.76
Nucleus Sampling Yes 13.09 11.57
FLAP.1 [soft api + align thought to (api, intent)] Yes 250.67 252.45
FLAP.2 [soft api + align thought to (step, api)] Yes 221.63 234.47
FLAP.3 [soft api + align thought to (step, intent)] Yes 228.61 117.58
FLAP.4 [soft api + align thought to (step, api, intent)] Yes 238.82 113.22

Table 9: Average runtime of various models over all
generated plans.

535

LLM Varying Parameter With Avg count per plan % Plan Avg. % of APIs in plan that are Avg # of edit for Per plan avg % of inconsistent
Parameter Values Thoughts Thought APIs Parsable (↑) Repeated (↓) Hallucinated (↓) Steps (↓) APIs (↓) Steps (↓) APIs (↓)

mi
st

ra
l-

7B
-I

ns
. λ top k=10, λ=0.7 Yes 6.85± 2.96 6.98± 3.04 100.0 0.81± 4.65 0.0± 2.15 2.2± 2.94 2.19± 2.8 6.92± 9.12 2.99± 8.39

λ top k=10, λ=0.5 Yes 6.02± 2.73 6.03± 2.72 100.0 0.0± 0.0 0.0± 2.46 2.51± 2.58 2.55± 2.63 7.06± 11.59 16.39± 15.81
λ top k=10, λ=0.3 Yes 5.11± 1.58 5.11± 1.58 100.0 0.22± 1.76 0.0± 0.0 2.09± 2.01 2.17± 1.98 4.22± 8.77 20.62± 18.75
λ λ=0 (Greedy) Yes 5.66± 3.48 5.77± 3.6 100.0 3.07± 10.67 1.0± 4.3 2.78± 3.53 2.86± 3.45 3.15± 7.39 31.25± 22.82

top k top k=5, λ=0.7 Yes 6.52± 2.25 6.52± 2.25 100.0 0.0± 0.0 0.0± 2.07 2.36± 2.58 2.42± 2.63 7.42± 9.53 4.36± 9.33
top k top k=10, λ=0.7 Yes 6.85± 2.96 6.98± 3.04 100.0 0.81± 4.65 0.0± 2.15 2.2± 2.94 2.19± 2.8 6.92± 9.12 2.99± 8.39
top k top k=15, λ=0.7 Yes 6.02± 2.11 6.19± 2.19 100.0 0.31± 2.25 0.0± 2.25 2.43± 2.46 2.46± 2.48 10.42± 11.14 4.14± 11.22

Table 10: Ablation for tuning constrained decoding parameters of FLAP: beam size for lookahead (top k) and
lookahead heuristic score weight (λ). The ablation was done using a subset of the data (5 user utterances per intent).
There are 6.84 average APIs per gold plan (reference for the “Avg. count per plan” column).

LLMs With Avg count per plan % Plan Avg % of APIs in plan that are Avg # of edit for Per plan avg % of inconsistent
Thought Thoughts APIs Parsable (↑) Repeated (↓) Hallucinated (↓) Steps (↓) APIs (↓) Steps (↓) APIs (↓)

santacoder-1.1b
No - 33.73± 49.05 100.0 19.84± 37.01 1.21± 9.43 30.34± 47.63 25.91± 39.8 15.42± 14.02 33.06± 24.21
Yes 15.09± 8.66 14.98± 8.59 99.62 27.61± 30.64 13.0± 21.75 11.78± 7.66 13.02± 8.27 18.17± 16.39 34.13± 27.51

toolAlpaca-7b
No - 4.13± 2.16 100.0 0.0± 0.0 10.76± 23.62 4.64± 2.05 5.12± 2.42 20.41± 19.98 49.6± 26.21
Yes 4.88± 4.26 4.88± 4.26 90.38 3.32± 12.31 19.0± 21.98 4.67± 4.07 5.3± 3.23 17.6± 17.27 44.78± 25.18

falcon-7b-instruct
No - 55.97± 56.1 100.0 42.65± 44.96 6.06± 19.0 47.48± 51.98 40.34± 45.91 16.61± 20.56 27.67± 26.48
Yes 11.62± 6.44 11.69± 6.31 100.0 39.02± 30.8 19.0± 27.34 9.73± 6.45 11.41± 7.34 24.03± 25.24 38.83± 26.52

mpt-7b-instruct
No - 17.32± 32.42 100.0 11.58± 28.7 0.17± 1.39 16.17± 31.7 13.42± 24.88 14.65± 14.12 33.33± 21.74
Yes 16.2± 7.59 16.08± 7.49 97.69 35.11± 30.54 4.0± 10.64 13.92± 8.03 12.38± 7.69 11.86± 15.74 29.61± 23.69

mistral-7b-instruct
No - 4.78± 1.7 100.0 0.32± 3.04 2.36± 7.04 2.87± 1.75 3.02± 1.79 10.6± 15.84 37.23± 25.28
Yes 4.72± 2.38 4.76± 2.41 99.62 2.92± 11.73 0.0± 3.59 2.78± 2.56 2.8± 2.53 3.09± 8.21 40.31± 23.89

koala-13b
No - 45.79± 44.81 100.0 39.64± 41.95 6.29± 17.54 37.6± 40.87 31.4± 32.87 10.51± 13.37 23.98± 18.54
Yes 12.06± 4.15 12.2± 4.21 97.31 24.37± 30.11 10.0± 20.04 8.76± 5.23 9.08± 5.52 9.02± 11.68 24.04± 19.39

vicuna-13b
No - 5.94± 2.68 100.0 0.57± 2.75 2.38± 6.99 4.12± 2.51 4.29± 2.54 15.08± 16.23 35.22± 20.51
Yes 6.94± 3.53 6.99± 3.6 92.31 4.46± 9.76 4.0± 9.55 4.02± 3.03 4.28± 3.11 6.73± 11.49 35.49± 22.61

llama-13b
No - 29.41± 37.77 100.0 25.84± 38.81 2.36± 9.19 26.77± 37.17 20.87± 29.83 13.16± 16.08 31.72± 25.31
Yes 10.21± 6.9 10.13± 6.79 98.85 21.87± 33.24 4.0± 12.7 9.18± 7.12 8.66± 7.05 4.68± 10.61 31.04± 27.63

mpt-30b-chat
No - 5.7± 1.93 100.0 1.73± 5.81 0.53± 3.94 3.26± 2.13 3.35± 2.08 9.08± 14.36 33.41± 19.78
Yes 5.57± 2.07 5.87± 2.25 96.92 2.91± 7.67 1.0± 5.15 2.7± 2.58 2.7± 2.6 5.72± 10.18 32.45± 22.35

falcon-40b-instruct
No - 10.21± 21.88 100.0 3.1± 15.86 0.89± 4.24 8.07± 19.65 7.15± 14.25 18.0± 17.61 38.27± 20.27
Yes 7.6± 4.83 7.75± 4.96 100.0 10.25± 21.52 5.0± 12.61 5.35± 4.55 5.4± 4.29 8.95± 12.34 36.42± 24.54

Table 11: Zero-shot plan generation results using greedy decoding when all flows are given in the prompt. There are
6.84 average APIs per gold plan (reference for the “Avg count per plan” column).

LLMs With Avg count per plan % Plan Avg % of APIs in plan that are Avg # of edit for Per plan avg % of inconsistent
Thought Thoughts APIs Parsable (↑) Repeated (↓) Hallucinated (↓) Steps (↓) APIs (↓) Steps (↓) APIs (↓)

santacoder-1.1b
No - 34.08± 49.7 100.0 19.81± 37.22 1.79± 11.73 29.58± 46.88 25.75± 39.29 15.34± 15.5 34.14± 23.77
Yes 13.14± 9.84 13.07± 9.76 100.0 22.27± 29.81 20.0± 28.74 9.48± 8.03 11.53± 8.73 19.48± 19.06 31.21± 25.47

toolAlpaca-7b
No - 4.13± 1.88 100.0 0.0± 0.0 6.99± 18.96 4.38± 2.25 4.73± 2.52 17.77± 19.97 49.17± 26.49
Yes 3.69± 1.01 3.7± 1.02 96.15 2.19± 7.56 8.0± 16.92 3.01± 1.82 3.52± 2.27 10.56± 15.83 47.59± 22.9

falcon-7b-instruct
No - 50.45± 52.86 100.0 39.54± 45.13 6.63± 20.89 40.76± 48.73 38.09± 44.17 17.43± 20.33 23.85± 21.46
Yes 11.52± 8.03 11.47± 7.95 97.69 37.26± 33.21 9.0± 19.72 9.74± 8.56 9.15± 7.74 21.49± 24.2 37.91± 28.25

mpt-7b-instruct
No - 14.89± 29.87 100.0 8.5± 25.06 0.19± 1.83 13.55± 29.35 11.52± 24.08 13.52± 14.29 35.64± 20.75
Yes 12.42± 8.3 12.34± 8.19 98.85 23.02± 30.15 3.0± 9.44 9.87± 8.32 8.93± 7.8 9.09± 15.46 33.44± 23.48

mistral-7b-instruct
No - 5.85± 2.61 100.0 0.57± 6.06 1.38± 5.06 3.1± 2.93 3.13± 2.14 8.02± 12.87 30.61± 20.76
Yes 5.57± 3.1 5.7± 3.5 100.0 3.76± 12.18 1.0± 3.97 2.65± 3.48 2.6± 2.85 2.75± 6.78 34.36± 22.77

koala-13b
No - 36.08± 41.04 100.0 28.75± 39.8 4.18± 13.41 29.37± 37.85 23.78± 29.36 11.25± 13.33 26.15± 17.19
Yes 10.71± 4.44 10.99± 4.78 100.0 20.25± 28.69 9.0± 20.52 7.42± 5.61 7.93± 6.06 9.28± 10.64 22.64± 17.01

vicuna-13b
No - 5.98± 2.53 100.0 0.32± 1.95 2.4± 7.3 3.91± 2.51 4.12± 2.5 14.21± 15.44 31.66± 17.25
Yes 6.12± 3.08 6.19± 3.14 92.31 3.68± 8.51 2.0± 7.09 3.08± 2.68 3.37± 2.79 5.4± 9.27 35.02± 22.05

llama-13b
No - 27.92± 38.12 100.0 23.04± 38.37 2.0± 9.53 24.68± 37.43 19.1± 30.62 11.34± 14.81 29.43± 22.09
Yes 8.73± 6.97 8.67± 6.86 100.0 18.87± 33.3 3.0± 10.05 6.58± 7.58 5.6± 6.28 4.03± 12.27 38.39± 30.38

mpt-30b-chat
No - 6.68± 5.29 100.0 3.88± 11.23 0.19± 1.78 3.53± 5.38 3.33± 3.05 6.32± 10.9 33.33± 20.31
Yes 5.43± 2.22 5.73± 2.32 97.31 3.12± 8.4 1.0± 3.97 2.13± 2.05 2.09± 1.86 4.56± 9.25 34.33± 23.63

falcon-40b-instruct
No - 11.22± 23.02 100.0 4.01± 18.09 0.89± 4.63 8.97± 21.72 7.87± 16.12 17.88± 18.08 35.5± 20.26
Yes 7.14± 4.31 7.26± 4.37 97.69 10.55± 21.04 7.00± 14.17 3.95± 4.3 4.11± 4.1 8.66± 15.45 25.68± 20.45

Table 12: Zero-shot plan generation results using greedy decoding when only the flow related to the user query is
given in the prompt. There are 6.84 average APIs per gold plan (reference for the “Avg count per plan” column).

536

LLMs Decoding Strategy With Avg count per plan % Plan Avg % of APIs in plan that are Avg # of edit for Per plan avg % of inconsistent
Thought Thoughts APIs Parsable (↑) Repeated (↓) Hallucinated (↓) Steps (↓) APIs (↓) Steps (↓) APIs (↓)

mp
t-
7b
-i
ns
.

Greedy Search No - 17.32± 32.42 100.0 11.58± 28.7 0.17± 1.39 16.17± 31.7 13.42± 24.88 14.65± 14.12 33.33± 21.74
Greedy Search Yes 16.2± 7.59 16.08± 7.49 97.69 35.11± 30.54 4.0± 10.64 13.92± 8.03 12.38± 7.69 11.86± 15.74 29.61± 23.69
Beam Search Yes 9.94± 5.82 9.9± 5.8 70.77 5.48± 11.7 3.0± 7.31 7.56± 4.6 7.73± 4.75 13.93± 14.06 40.99± 19.49
Nucleus Sampling Yes 12.3± 6.4 12.41± 6.4 76.92 25.28± 22.63 4.0± 12.28 9.84± 5.73 9.46± 6.06 13.82± 15.15 31.72± 18.74

FLAP.1 [soft api + align thought to (api, intent)] Yes 10.25± 3.63 10.37± 3.68 100.0 1.26± 6.03 0.0± 0.36 5.51± 4.14 5.47± 4.02 6.3± 7.7 1.26± 4.28
FLAP.2 [soft api + align thought to (step, api)] Yes 9.28± 4.54 9.37± 4.57 100.0 2.99± 11.26 0.0± 0.62 5.68± 5.01 5.58± 4.85 4.34± 7.22 1.62± 5.15
FLAP.3 [soft api + align thought to (step, intent)] Yes 9.16± 4.02 9.39± 4.07 100.0 1.04± 6.04 0.0± 0.0 5.02± 3.92 4.98± 3.87 6.1± 8.06 1.32± 4.34
FLAP.4 [soft api + align thought to (step, api, intent)] Yes 9.29± 4.5 9.38± 4.55 100.0 3.63± 11.94 0.0± 1.55 5.53± 4.93 5.41± 4.74 4.81± 7.71 2.05± 6.53

mi
st
ra
l-
7b
-i
ns
.

Greedy Search No - 4.78± 1.7 100.0 0.32± 3.04 2.36± 7.04 2.87± 1.75 3.02± 1.79 10.6± 15.84 37.23± 25.28
Greedy Search Yes 4.72± 2.38 4.76± 2.41 99.62 2.92± 11.73 0.0± 3.59 2.78± 2.56 2.8± 2.53 3.09± 8.21 40.31± 23.89
Beam Search Yes 3.61± 1.44 3.75± 1.62 98.08 0.2± 2.05 0.0± 1.55 2.88± 2.19 2.95± 2.15 2.37± 8.37 38.94± 26.87
Nucleus Sampling Yes 5.67± 2.83 5.91± 2.87 93.85 5.79± 12.25 2.0± 5.77 2.97± 2.51 3.02± 2.56 7.47± 13.13 34.28± 22.38

FLAP.1 [soft api + align thought to (api, intent)] Yes 6.62± 2.72 6.65± 2.73 100.0 0.0± 0.0 0.0± 2.85 2.45± 3.18 2.51± 3.23 6.26± 9.47 4.59± 10.35
FLAP.2 [soft api + align thought to (step, api)] Yes 6.09± 2.02 6.12± 2.09 100.0 0.12± 1.14 0.0± 3.03 2.25± 3.08 2.32± 3.16 5.06± 8.57 5.47± 11.81
FLAP.3 [soft api + align thought to (step, intent)] Yes 6.27± 2.21 6.36± 2.21 100.0 0.39± 3.59 0.0± 0.0 1.97± 2.89 2.01± 2.84 6.46± 9.45 3.63± 9.06
FLAP.4 [soft api + align thought to (step, api, intent)] Yes 6.37± 2.45 6.39± 2.44 100.0 0.54± 5.12 0.0± 2.93 2.45± 3.05 2.49± 3.04 5.63± 9.88 7.68± 13.15

Table 13: Zero-shot plan generation results with FLAP and other baselines, when all flows are given in the prompt.
Here, the numbers (FLAP.#) indicate different ablation versions of FLAP. Structural constraint is applied in all
versions of FLAP. There are 6.84 average APIs per gold plan (reference for the “Avg count per plan” column).

LLMs Decoding Strategy With Avg count per plan % Plan Avg % of APIs in plan that are Avg # of edit for Per plan avg % of inconsistent
Thoughts Thoughts APIs Parsable (↑) Repeated (↓) Hallucinated (↓) Steps (↓) APIs (↓) Steps (↓) APIs (↓)

mp
t-
7b
-i
ns
.

Greedy Search No - 14.89± 29.87 100.0 8.5± 25.06 0.19± 1.83 13.55± 29.35 11.52± 24.08 13.52± 14.29 35.64± 20.75
Greedy Search Yes 12.42± 8.3 12.34± 8.19 98.85 23.02± 30.15 3.0± 9.44 9.87± 8.32 8.93± 7.8 9.09± 15.46 33.44± 23.48
Beam Search Yes 7.96± 5.7 7.96± 5.66 81.54 4.22± 10.69 2.0± 6.43 5.18± 4.41 5.3± 4.43 10.81± 13.0 41.44± 19.33
Nucleus Sampling Yes 9.98± 5.29 10.27± 5.58 75.0 19.82± 20.03 5.0± 10.53 7.19± 5.2 7.07± 4.94 13.55± 15.4 33.01± 21.27

FLAP.1 [soft api + align thought to (api, intent)] Yes 9.55± 3.83 9.63± 3.89 100.0 1.1± 6.69 0.0± 1.59 4.67± 4.05 4.65± 3.89 6.58± 8.19 1.2± 4.13
FLAP.2 [soft api + align thought to (step, api)] Yes 8.15± 3.68 8.2± 3.69 100.0 0.86± 5.29 0.0± 0.0 3.46± 3.99 3.42± 3.91 5.1± 8.36 1.24± 5.05
FLAP.3 [soft api + align thought to (step, intent)] Yes 8.83± 4.02 9.0± 4.06 100.0 1.22± 7.4 0.0± 0.0 4.22± 4.07 4.15± 3.92 6.27± 7.77 2.41± 7.78
FLAP.4 [soft api + align thought to (step, api, intent)] Yes 8.6± 4.48 8.65± 4.49 100.0 2.99± 11.21 0.0± 0.0 3.69± 4.44 3.37± 3.9 5.61± 9.66 3.66± 9.98

mi
st
ra
l-
7b
-i
ns
.

Greedy Search No - 5.85± 2.61 100.0 0.57± 6.06 1.38± 5.06 3.1± 2.93 3.13± 2.14 8.02± 12.87 30.61± 20.76
Greedy Search Yes 5.57± 3.1 5.7± 3.5 100.0 3.76± 12.18 1.0± 3.97 2.65± 3.48 2.6± 2.85 2.75± 6.78 34.36± 22.77
Beam Search Yes 4.2± 1.2 4.28± 1.26 100.0 0.0± 0.0 0.0± 0.0 2.43± 1.96 2.51± 1.9 1.54± 5.59 36.72± 23.34
Nucleus Sampling Yes 5.63± 2.19 5.94± 2.42 98.08 3.73± 9.88 1.0± 4.71 2.94± 2.44 2.95± 2.48 6.77± 12.65 30.2± 20.14

FLAP.1 [soft api + align thought to (api, intent)] Yes 6.99± 2.94 7.01± 2.95 100.0 0.09± 1.02 1.0± 3.47 2.68± 3.35 2.75± 3.39 6.01± 9.7 4.06± 9.32
FLAP.2 [soft api + align thought to (step, api)] Yes 6.61± 2.33 6.63± 2.35 100.0 0.44± 4.76 1.0± 3.35 2.29± 2.86 2.32± 2.86 5.94± 10.51 7.01± 13.06
FLAP.3 [soft api + align thought to (step, intent)] Yes 6.73± 2.56 6.82± 2.61 100.0 0.36± 2.74 0.0± 1.05 2.27± 2.63 2.3± 2.65 6.58± 8.78 4.29± 9.98
FLAP.4 [soft api + align thought to (step, api, intent)] Yes 6.36± 2.32 6.37± 2.31 100.0 0.37± 3.06 1.0± 4.4 2.2± 2.76 2.23± 2.73 6.11± 10.14 8.66± 14.1

Table 14: Zero-shot plan generation results with FLAP and other baselines, when only the flow related to the user
query is given in the prompt. Here, the numbers (FLAP.#) indicate different ablation versions of FLAP. Structural
constraint is applied in all versions of FLAP. There are 6.84 average APIs per gold plan (reference for the “Avg
count per plan” column).

537

Query: I want to go from San Diego to Dallas, can you please help me with that?
Generated plan by Mpt-7b-instruct using prompting with greedy decoding
[thought] I can suggest flights to the customer. [API] FindFlight()
[thought] I can suggest hotels to the customer. [API] FindHotel()
[thought] I can suggest cars to the customer. [API] FindRentalCar()
[thought] I can suggest insurances to the customer. [API] GetCarInsuranceDiscount()
[thought] I can suggest flights to the customer. [API] FindFlight()
[thought] I can suggest hotels to the customer. [API] FindHotel()
[thought] I can suggest cars to the customer. [API] FindRentalCar()
[thought] I can suggest insurances to the customer. [API] GetCarInsuranceDiscount()
[thought] I can suggest flights to the customer. [API] FindFlight()
[thought] I can suggest hotels to the customer. [API] FindHotel()
[thought] I can suggest cars to the customer. [API] FindRentalCar()
[thought] I can suggest insurances to the customer. [API] GetCarInsuranceDiscount()
[thought] I can suggest flights to the customer. [API] FindFlight()
[thought] I can suggest hotels to the customer. [API] FindHotel()
[thought] I can suggest cars to the customer. [API] FindRentalCar()

Table 15: Example of error when the LLMs enter into
a repetitive loop of thought+API in Greedy decoding
when prompted to generate thoughts and APIs.

538

Generated Plan by ToolAlpaca-7B Correct APIs
Query: I would like to book a rental car for my visit to Las Vegas on June 28th.
[thought] I need to suggest cars to the customer. [API] SuggestCars() FindRentalCar()
[thought] I need to confirm and create the trip. [API] ConfirmTrip() Confirm(), CreateTrip()
[thought] I need to extract and add promotional offers. [API] ExtractPromotionalOffers() GetCarInsuranceDiscount(), UpdateTrip()
[thought] I need to order the trip. [API] OrderTrip() GetPaymentInformation(), OrderTrip()

Query: Can you help me open an investment account?
[thought] I need to check the eligibility of the customer to open an account. [API] CheckEligibility() GetCustomerIncome(), GetDateOfBirth(), CheckEligibility()
[thought] Based on the eligibility, I can finalize the account type. [API] FinalizeAccountType() GetAccountTypes()
[thought] Now, I can open the account. [API] OpenAccount() Confirm(), OpenAccount()

Table 16: API hallucination examples by ToolAlpaca. Hallucinated APIs are highlighted.

539

