In-context Learning Generalizes, But Not Always Robustly:
The Case of Syntax

Aaron Mueller!>* Albert Webson?

'Northeastern University

Abstract

In-context learning (ICL) is now a common
method for teaching large language models
(LLMs) new tasks: given labeled examples in
the input context, the LLM learns to perform
the task without weight updates. Do models
guided via ICL infer the underlying structure of
the task defined by the context, or do they rely
on superficial heuristics that only generalize to
identically distributed examples? We address
this question using transformations tasks and
an NLI task that assess sensitivity to syntax—a
requirement for robust language understand-
ing. We further investigate whether out-of-
distribution generalization can be improved via
chain-of-thought prompting, where the model
is provided with a sequence of intermediate
computation steps that illustrate how the task
ought to be performed. In experiments with
models from the GPT, PaLLM, and Llama 2 fam-
ilies, we find large variance across LMs. The
variance is explained more by the composition
of the pre-training corpus and supervision meth-
ods than by model size; in particular, models
pre-trained on code generalize better, and bene-
fit more from chain-of-thought prompting.

1 Introduction

Language models (LMs) have become increasingly
important subjects of study due to their expressive
power and performance at scale. When training
large language models (LLMs) on massive amounts
of text, surprisingly sophisticated linguistic behav-
iors, such as in-context learning (ICL), emerge
(Brown et al., 2020; Min et al., 2022a): given only
a small number of labeled training examples in
the input context, LLMs can generalize to new in-
stances of the task without weight updates. Thus,
even without access to the model’s weights, we

* Parts of this work completed when A.M. was a long-
term visitor at New York University.
" Work completed while J.P. was a student researcher at

Google Research.

Jackson Petty*” Tal Linzen®

2Technion — Israel Institute of Technology
3Google DeepMind *New York University

’Google Research

Hierarchical Linear
ey :’ Prompt ‘: x°e .
¢ <«———1 EEEEE —

° [EEEA] []
‘ [] © A .1.I s .. LN J
B (X,Y)train -

Hierarchical Generalization —»
Linear Generalization —»

A Xtest

® Viest-id ® Ytest-ood

Figure 1: The syntactic transformations paradigm.
We prompt language models with labeled examples
(2, Y)uwain that can be explained using either robust syn-
tactic/hierarchical features or spurious positional/linear
features. We also include the input from a test example
Test- We ensure the models have learned the task by
evaluating on in-distribution examples (2, ¥)estia- Then,
we observe whether models generalize syntactically or
linearly on out-of-distribution examples (, ¥)est-ood-

can teach an LLM to perform new tasks with sig-
nificantly higher-than-chance performance. This
raises questions as to whether context is sufficient
for LLMs to learn the underlying structure of a
task, as opposed to superficial heuristics that do
not generalize well. Indeed, LLMs have demon-
strated counterintuitive biases in ICL settings (Pan
et al., 2023; Min et al., 2022b; Webson and Pavlick,
2022), giving reason for skepticism. In this study,
we ask: How robust is ICL to distribution shifts
between in-context exemplars and test examples?

We investigate these questions using the test case
of syntactic generalization. Accurate syntactic rep-
resentations are necessary for robust language un-
derstanding. In LMs, syntax acquisition is causally
associated with significant and abrupt drops in loss
and improved performance on NLP tasks (Chen
et al., 2024). Language is structured hierarchically,
but the structure of sentences is not provided to
models as part of their input. Therefore, a model
could incorrectly assume that sentences have lin-

4761

Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 4761-4779
June 16-21, 2024 ©2024 Association for Computational Linguistics

ear rather than hierarchical structure—e.g., that
syntactic dependencies consist of adjacent words—
and thus give an incorrect or unrelated answer to
questions such as the following:

(D) Is it true that children who don’t like
sweets are rare?

The main subject is “children”, but a model that
assumes sentences are structured linearly could in-
stead analyze “sweets” as the subject, as it is the
positionally closest noun to the main verb. In
downstream tasks, such assumptions about sen-
tence structure would lead to incorrect responses
to inputs that humans find simple (McCoy et al.,
2019). Studies using syntactic transformations
tasks (Frank and Mathis, 2007) have found that
pre-training on large corpora imparts syntactic
inductive biases to LMs (Mueller et al., 2022),
and the strength of syntactic preferences increases
with model depth (Mueller and Linzen, 2023).
These studies relied on fine-tuning, where the LM’s
weights are updated based on examples of the task;
we extend these analyses to the ICL setup.

We investigate LLMs’ generalization in syntac-
tic transformations and natural language inference
tasks. In each task, we evaluate in two settings: one
where models are provided only with a handful of
instances of the task, and another in which they are
additionally provided with chain-of-thought (CoT)
traces (Wei et al., 2022b). CoT refers to the finding
that LMs’ task performance can be improved if they
are instructed to predict the intermediate computa-
tions required for the task. We examine whether
giving LMs access to syntactic reasoning traces and
meta-linguistic information increases their reliance
on robust features. We evaluate not only the accu-
racy of the final answer, but also the correctness of
the model’s reasoning and the faithfulness of the
model’s final answer to its own reasoning.

We find that, while all models perform well on
in-distribution examples, even very large LMs are
prone to relying on surface heuristics. Further,
chain-of-thought results can be misleading: CoT
improves in-distribution performance, but often
decreases out-of-distribution performance. This
underscores the importance of out-of-distribution
evaluation. Finally, we present evidence that expo-
sure to code during pre-training assists models in
overcoming these limitations. !

'Our code and data are available at https://github.
com/aaronmueller/syntax-icl.

2 Experimental Setup

We first examine syntactic transformation tasks,
where the training and test instances are drawn
from distributions that are distinct in controlled
ways (§2.1). We test the syntactic generalization
of multiple families of LMs (§2.2) when prompted
using in-context learning (§2.3).

2.1 Syntactic Transformations

Question formation. Here, a model is given a
declarative sentence and must transform it into a
yes/no question by moving the main auxiliary verb
to the start of the sentence. For instance, given this
training example:

(2) The yaks near my salamanders have amused
your unicorn.

The model should move the main auxiliary verb
“have” to the start of the sentence to form the ques-
tion, “Have the yaks near my salamanders amused
your unicorn?”. The model should rely on hierar-
chical syntactic information s: it should detect the
main auxiliary in the sentence and move it to the
front (the MOVE-MAIN hypothesis). However, the
model could instead learn the positional heuristic p
and move the linearly first auxiliary in the sentence
(the MOVE-FIRST hypothesis). Both s and p pro-
duce correct outputs for the training examples, but
only s generalizes correctly to out-of-distribution
inputs where, crucially, the main auxiliary is not
linearly first in the sentence:

(3) My zebras that have admired the newt
haven’t observed the peacocks.

a. “MOVE-MAIN: Haven’t my zebras that
have admired the newt observed the pea-
cocks?

b. “MOVE-FIRST: *Have my zebras that
admired the newt haven’t observed the
peacocks?

Tense reinflection. Here, the task is to convert
past-tense verbs into present-tense verbs. We want
the model to detect the subject of each verb and
reinflect it based on its subject’s number s (the
AGREE-SUBJECT hypothesis). Here, the training
distribution consists of examples where all nouns
have the same grammatical number:

(4) Her newt around your unicorn confused
some quail.

4762

https://github.com/aaronmueller/syntax-icl
https://github.com/aaronmueller/syntax-icl

Model Params (est.) Pre-train Tokens (est.) % Code (est.) Additional Training

GPT-3 text-davinci-001 175B 400B ? Fine-tuned on human demonstrations and highly
rated model outputs

GPT-3.5 code-davinci-002 ? 500B 20% -

GPT-3.5 (Turbo) gpt-3.5-turbo-0301 ? 500B+ ? ?

GPT-3.5 text-davinci-002 ? 500B+ ? Fine-tuned on human demonstrations and highly
rated model outputs

GPT-3.5 text-davinci-003 ? 500B+ ? Reinforcement learning on human feedback

GPT-4 gpt-4-0314 ? ? ?7 7

PaLM 540B 780B 5% -

Flan-PaLM 540B 782B 5% Fine-tuned on human demonstrations

Llama 2 70B 2T 4% -

CodeLlama 34B 2.5T 20% Fine-tuned on human and model-generated

demonstrations

Table 1: Models used in this study, their estimated number of parameters and pre-training tokens, and the proportion
of the pre-training corpus estimated to be source code. We use the largest sizes of each PaLM and (Code)Llama
model, as larger models are typically better able to leverage in-context guidance (Wei et al., 2022a).

Because all nouns have the same number, a model
could learn to correctly convert “confused” to
“confuses” by simply agreeing the verbs with
the closest noun p (the AGREE-RECENT hypoth-
esis). To evaluate which hypothesis the model
has learned, we evaluate on examples where only
AGREE-SUBJECT produces correct outputs:

(5) The yak upon my ravens entertained her
zebras.

a. “AGREE-SUBJECT: The yak upon my
ravens entertains her zebras.

b. “AGREE-RECENT: *The yak upon my
ravens entertain her zebras.

Task formulation. Each syntactic transformation
example (x, y) consists of input sentence x and out-
put sentence y, where x and y are semantically and
lexically nearly identical but differ in the syntactic
arrangement of the words (as described above).
There is a training set Syin and two test sets:
an in-distribution (ID) test set Siest.ig Used to de-
termine whether the model has learned to perform
the task, and one out-of-distribution (OOD) test
set Stest-ood Used to determine whether the model
generalizes in a manner consistent with the latent
hierarchical structure of language. The distribu-
tions of Sirain and Siest.0oq differ in controlled ways:
the training examples Siain could be correctly trans-
formed using either syntactic feature s or positional
feature p, whereas the test examples require re-
liance on s for correct answers. In other words:

Strain = {(l’,y) | S(l’) =1n p(a?) = 1}
Stestid = {(xay> ’ S(CC) =1n p<$) = 1}
Stest-ood = {(x,y) ’ 3(-7}) =1n p<$) = 0}

See Figure 1 for an illustration. We

prompt models with up to 8 exemplars
{(1, y1)wain, - - - » (28, Y8)train }» followed by
the input of an example from one of the test sets
ZTiest- A model that has learned to rely only on
the spurious feature p will obtain 0% accuracy
on Siest-ood> DUt 100% on Sirain and Siegtig; only
reliance on the syntactic feature s will yield 100%
accuracy on Sest-ood-

2.2 Models

We use a series of Transformer-based (Vaswani
et al., 2017) decoder-only autoregressive language
models that are known to support in-context learn-
ing. Estimates of model sizes and pre-training cor-
pus sizes are presented in Table 1. Estimates are
derived from OpenAlI” and prior work, including
Kim and Schuster (2023) and Ye et al. (2023). As
OpenAl does not provide official parameter counts
or training set descriptions, the true numbers for
GPT models may differ.

The OpenAl GPT models we use include GPT-3
text-davinci-001 (Brown et al., 2020; Ouyang
etal., 2022), GPT-3.5,% and GPT-4.* The GPT-3.5
variants we use include code-davinci-002 (Chen
et al., 2021), which is pre-trained on natural
language and a large amount of source code;
text-davinci-002, a code-davinci-002 model
which is fine-tuned on instructions and human-
labeled examples from many tasks (Wei et al.,
2022a); and text-davinci-@03, which is pre-

The information OpenAl released about their models
was found here: https://platform.openai.com/docs/
model-index-for-researchers. This information has been
taken down, but is largely replicated in Ye et al. (2023).

3ht’cps: //platform.openai.com/docs/models/
gpt-3-5

4https: //platform.openai.com/docs/models/
gpt-4

4763

https://platform.openai.com/docs/model-index-for-researchers
https://platform.openai.com/docs/model-index-for-researchers
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-4
https://platform.openai.com/docs/models/gpt-4

No Chain of Thought
(Cinput)

Q: Transform this into a
yes/no question. The
yak has entertained our
newts near the
salamander.

A: Has the yak
entertained the newts
near the salamander?

... (up to 7 more
exemplars)

Q: Transform this into a
yes/no question. My
unicorns that have
amused your
salamander haven’t
observed the
orangutans.

A

N J

Verbal Chain of Thought
Cinput)

Q: Transform this into a yes/no
question. The yak has
entertained our newts near the
salamander.

A: The yak is the main subject.
Has entertained is the main verb
phrase. Our newts is the main
object. Near the salamander is
inside a prepositional phrase. We
have to move the auxiliary verb in
the main verb phrase to the front.
The answer is Has the yak
entertained the newts near the
salamander?

... (up to 7 more exemplars)
Q: Transform this into a yes/no
question. My unicorns that have

amused your salamander haven’t
observed the orangutans.
A:

N

AN

Code Chain of Thought

Input

~

Write a Python script to extract the main subject, main verb phrase, and any
distractor clauses/phrases from the text.

Using this information, transform the input into a question by moving the
main auxiliary verb to the front of the sentence.

main_subject = “The yak"

main_object = “our newts"

main_vp = “has entertained"

main_aux = "has"

distractors = [“near the salamander”]

Q: Transform this into a yes/no question. The yak has entertained our newts near the salamander.

words = sentence.split()

main_aux_idx = words.index(main_aux)

output_words = words.insert(@, words.pop(main_aux_idx))
output_sentence = "".join(output_words).capitalize()

answer = output_sentence.replace(".", "?")

The answer is Has the yak entertained our newts near the salamander?

... (up to 7 more exemplars)

Q: Transform this into a yes/no question. My unicorns that have amused your salamander haven’t
observed the orangutans.
A:

J

o)

Haven’t my unicorns that
have amused your
salamander observed
the orangutans?

Goam)—

My unicorns is the main subject.
“That have amused your
salamander” is a relative clause.
Haven't observed is the main
verb phrase. The orangutans is
the main object. We have to
move the auxiliary verb in the
main verb phrase to the front.
The answer is Haven’t my
unicorns that have amused your

A Output } *

Write a Python script to extract the main subject, main verb phrase, and
any distractor clauses/phrases from the text.

Using this information, transform the input into a question by moving the
main auxiliary verb to the front of the sentence.

main_subject = “My unicorns"

main_object = “the orangutans"

main_vp = “haven’t observed"

main_aux = “haven't"

distractors = [“that have amused your salamander”]

~

words = sentence.split()

salamander observed the
orangutans?

- AN J

main_aux_idx = words.index(main_aux)

output_words = words.insert(@, words.pop(main_aux_idx))

output_sentence = "".join(output_words).capitalize()

answer = output_sentence.replace(".", "?")

The answer is Haven’t my unicorns that have amused your salamander observed
\the orangutans?

Figure 2: The prompt formats we use for question formation. We give the model up to 8 exemplars, followed by a
test example. The model must generate the chain-of-thought reasoning and the answer. We highlight the answers
with a blue background. In the code prompt, we put code (except comments) in blue text. We construct similar

prompts for tense reinflection; see Appendix A.

trained similarly to text-davinci-002 and then
trained via reinforcement learning on human feed-
back (RLHF; Ouyang et al., 2022). GPT-3.5
(Turbo) builds on text-davinci-003’s methods,
optimizing it for chat. Each of these models is
estimated to be pre-trained on 400B or more to-
kens of text, as each is based on the 300B tokens
of Brown et al. (2020) plus 100B for instruction
tuning as described in Ouyang et al. (2022); mod-
els based on code-davinci-@02 are additionally
estimated to be pre-trained on at least 100B tokens
of code (Chen et al., 2021). Few details of GPT-4’s
architecture or pre-training have been made public.
PalLM models (Chowdhery et al., 2023) are pre-
trained on large amounts of English text and code;
5% of the pre-training corpus for PaLLM is source
code. The variants we test have 540B parameters.
Flan-PaLLM (Chung et al., 2022) is further trained
using instruction-finetuning (Wei et al., 2022a).
Finally, we evaluate Llama 2 models (Touvron
et al., 2023), which are among the few open-
source LMs capable of in-context learning. We
use the 70B-parameter model,> which is trained

SFor Llama 2 (70B), we use 4-bit quantization so that the
model will fit on a single GPU.

on 2T tokens of mostly natural language and an
unspecified amount of code. We also use CodelL-
lama (Roziere et al., 2023), which is Llama 2
trained on an additional 500B tokens of code. In
preliminary experiments, we found that the 34B-
parameter instruction-tuned variant of CodeLlama®
performed best, so we use that variant here.

For OpenAl and PalLM models, we use greedy
decoding and set the temperature to 0 to reduce vari-
ance. For Llama models, we use settings from Tou-
vron et al. (2023): nucleus sampling with p = 0.9
and temperature 0.1.7

2.3 Prompt Formats

In ICL, a set of labeled examples, concatenated into
a “prompt”, is provided in the model’s context. We
use 8 labeled examples (henceforth, exemplars).®

fcodellama/Codel lama-34b-Instruct-hf

"We use different decoding hyperparameters because repli-
cability is more crucial for models that are more difficult and
costly to access. For Llama models, we consider slightly
higher variance to be more acceptable in exchange for higher
expected performance, for replication and trying other settings
are both more accessible.

8We attempted zero-shot evaluations to avoid confounds
from the exemplar set. These did not score well: the models
would typically drop the auxiliaries and change the past par-

4764

Question formation exemplars are drawn from the
training portion of Mueller et al. (2022). Tense
reinflection exemplars are drawn from the training
portion of McCoy et al. (2020).

We also experiment with two types of manually
written CoT traces, which explicitly provide cues
to the syntactic structure of the exemplars; these
are provided between the input sequence and the
answer. The Verbal CoT prompt includes verbal
descriptions of the syntactic structure of the sen-
tence, where the model must describe which words
compose the main subject, the main verb phrase,
and other components. The Code CoT prompt like-
wise describes which words correspond to which
syntactic components, but in a Python code format
where each component is represented as a variable,
and then the model is explicitly instructed (in code)
how to combine these components to form the fi-
nal answer. The format of the inputs is shown in
Figure 2. We search over prompt formats by tuning
over training accuracy on 100 examples that were
not part of the exemplar set.

For the Code CoT prompt, the 8 exemplars ex-
ceed the maximum sequence length of GPT-3 and
(Flan-)PaLLM; in such cases, we use 4 Code CoT ex-
emplars, which is the maximum that will fit while
still allowing the model to generate the full reason-
ing trace and answer.’

2.4 Evaluation

We evaluate on a uniform subsample of 100 exam-
ples from the question formation generalization set
of Mueller et al. (2022) and 100 examples from the
tense reinflection generalization set of McCoy et al.
(2020). To verify whether models have learned
the task, we also present scores on 100-example
uniform subsamples from the in-distribution test
sets, where each example can be correctly trans-
formed using either syntactic or positional features.
All examples are generated from a probabilistic
context-free grammar; as such, the distribution of
syntactic structures is highly constrained, and the
variation across examples is primarily lexical. We
therefore reason that 100 examples should provide
a representative sample of the syntactic structures

ticiple into simple past form; for example, “The newts saw the
yak.” Or they would simply generate labels that we did not
prompt for, such as “True” or “No”.

9We observe in our results that (Flan-)PaLM ID and OOD
performance are still high for Code CoT despite using only 4
exemplars, and that GPT-3 does not achieve high ID or OOD
performance given any prompt (regardless of the number of
exemplars).

in the evaluation sets.

To evaluate question formation examples, we
use main auxiliary accuracy, which measures
whether the model has moved the correct main aux-
iliary to the front of the sentence. This is measured
by observing whether the first word is correct. For
tense reinflection, we use verb accuracy, which
measures whether each generated verb is correctly
inflected and in the correct relative position.

3 Results

All models except GPT-3 and GPT-3.5 (Turbo)
learn to perform the transformations tasks, as indi-
cated by high in-distribution accuracies. Among
models that learn the task well, there is large vari-
ance with respect to out-of-distribution accuracies.

Scale does not fully explain performance.
GPT-3, GPT-3.5 text-davinci-@02 and GPT-3.5
text-davinci-003 are estimated to be the same
size, but the GPT-3.5 models generalize better.
Llama 2 and CodeLlama outperform GPT-3 and
(Flan-)PalLM despite being far smaller, and CodeL-
lama significantly outperforms Llama 2 on question
formation despite being smaller. What explains dif-
ferences between models, then?

Pre-training on code improves OOD gen-
eralization. On average, scores are higher
given any prompt for models pre-trained on code:
CodeLlama significantly outperforms Llama 2
on question formation (and performs compa-
rably on tense reinflection), while GPT-3.5
code-davinci-002 outperforms all other GPT-3
and GPT-3.5 models. This agrees with and ex-
tends the finding of Mueller and Linzen (2023) that
the domain of the pre-training corpus significantly
affects syntactic generalization. This also agrees
with recent findings that code pre-training improves
other fundamental linguistic abilities (e.g., entity
tracking; Kim and Schuster, 2023).

Conversely, RLHF may harm OOD gen-
eralization. GPT-3.5 text-davinci-003 per-
forms at least as well as other GPT-3.5 mod-
els on in-distribution examples, but it general-
izes consistently worse than other models which
are fine-tuned on human demonstrations (includ-
ing text-davinci-002 and Codellama). Thus,
RLHF is effective when testing on in-distribution
test sets, but it may actively harm a model’s ability
to reason beyond its given exemplars. This finding
is preliminary, however, and should be confirmed
in future work via ablations over RLHF in a variety

4765

No CoT Verbal CoT

100

g oF
. -
0 = O
g 275 :
= c
g 2
<1

5]

g0
B
2 100 7
o s o
3 3 *H o
S 2
L E 75 A o
S 2 4
©

5

£ 50 -

50 75 100 50 75

Code CoT

Ess] apg
1 e GPT-3 text-davinci-001

s GPT-3.5 code-davinci-002
GPT-3.5 text-davinci-002
GPT-3.5 text-davinci-003
GPT-3.5 gpt-35-turbo-0301
GPT-4 gpt-4-0314

s o s R

PaLM
Flan-PaLM

>

Llama 2
e Codellama

y=X

100 50 75 100

In-distribution Accuracy

Figure 3: Main auxiliary accuracy on question formation and verb accuracy on tense reinflection. In-distribution
accuracies reveal whether the models have learned the task, and out-of-distribution accuracies reveal whether models
generalize robustly. Unfilled shapes (GPT-3, Llama 2) were trained on less than 5% code. We interpret the dashed

line as a ceiling on OOD accuracy given ID accuracy.

of architectures and model sizes.

Chain-of-thought prompting has different im-
pacts on in-distribution and out-of-distribution
accuracies. For question formation, CoT prompt-
ing tends to increase ID accuracy while not improv-
ing OOD generalization; this is especially apparent
for verbal CoT—and, for models trained on code,
the code CoT prompt as well. This reveals the
importance of testing OOD generalization when
designing CoT prompts: when chain-of-thought
prompting improves performance on ID exam-
ples, improvements will not necessarily gener-
alize to OOD examples. For tense reinflection,
verbal CoT equally harms both ID and OOD accu-
racy relative to No CoT prompts; conversely, Code
CoT maintains ID accuracy while harming OOD
accuracy. This generalizes the above point: depend-
ing on the task and prompt format, CoT can have
different impacts on ID and OOD performance.

We qualitatively analyze model errors to investi-
gate why models achieve imperfect OOD general-
ization (App. B). We find that code-davinci-002
is sensitive to variable names, and that most errors
are because models move affirmative verbs instead
of syntactically correct verbs.

4 Syntactic Generalization in Text
Classification: The Case of Natural
Language Inference

So far, our analyses indicate that LLMs lever-
age syntactic information to varying extents when
taught a task via ICL, and that code pre-training im-

proves OOD generalization. In this section, we test
whether these trends extend to classification tasks.
We leverage the Heuristic Analysis for NLI Sys-
tems (HANS; McCoy et al., 2019) dataset, which
contains natural language inference (NLI) exam-
ples designed to diagnose reliance on syntactic
heuristics. One typically trains the model on the
training set of another NLI dataset, such as MNLI
(Williams et al., 2018) or RTE (Dagan et al., 2006),
and then uses HANS as an evaluation set to measure
whether models rely on syntactic heuristics. Si et al.
(2023b) evaluate ROBERTa and GPT-3 on HANS
after training on MNLI; they find that both models
perform similarly, suggesting that scale may not
be enough to overcome syntactic heuristics. We
extend this analysis to a wider variety of LLMs and
to chain-of-thought prompting.

HANS diagnoses reliance on lexical overlap, sub-
sequence, or constituent heuristics. Models that
systematically rely on any of these heuristics are
expected to obtain 100% accuracy on examples
where the label is “entailment” because the heuris-
tics happen to make the correct prediction; however,
models that rely on these heuristics will also obtain
0% accuracy on examples where the label is “non-
entailment”. We average scores across heuristics
here; see App. D for full results.

We evaluate LLMs on HANS in the ICL setting.
The 8 ICL exemplars are drawn from MNLI, and
the test examples are from HANS. Our results are
based on a uniform subsample of 100 examples per
heuristic and per label. We test across 3 syntactic

4766

Entailment Non-entailment

No CoT Verbal CoT No CoT Verbal CoT

Model

GPT-3 text-davinci-001 56 99 82 2
GPT-3.5 code-davinci-002 92 97 81 59
GPT-3.5 text-davinci-002 72 97 91 57
GPT-3.5 text-davinci-003 97 100 70 48
GPT-3.5 gpt-3.5-turbo-0301 82 8 39 9
GPT-4 gpt-4-0314 97 97 64 58
PaLM 98 99 60 55
Flan-PaLM 100 100 39 46
Llama 2 94 98 68 51
CodeLlama 89 68 69 79

Table 2: Accuracies on HANS. Scores are split by label,
and then by prompt format; we aggregate across syn-
tactic heuristics (full table in App. D). High scores on
entailment coupled with low scores on non-entailment
signify that the model relies on the syntactic heuristic to
predict the label. Chain-of-thought can increase reliance
on heuristics: Compared to No CoT, Verbal CoT often
demonstrates higher scores on entailment, but signifi-
cantly lower scores on non-entailment.

heuristics, and there are 2 labels (entailment and
non-entailment); thus, we have 600 test examples
in total. We use No CoT prompts and Verbal CoT
prompts similar to those we depict in Figure 2; see
App. D for examples of our prompt formats.

Our results (Table 3) suggest that LLMs are sus-
ceptible to syntactic heuristics, but to a lesser ex-
tent than smaller-scale LMs fine-tuned on MNLI
(McCoy et al., 2019). Most models achieve near
100% accuracy on examples where the gold label
is “entailment”, as expected. However, on “non-
entailment” examples, models perform much more
poorly. Unlike in the transformation tasks, code
pre-training does not lend a significant advantage.

We also observe that chain-of-thought can
make models significantly more prone to rely-
ing on syntactic heuristics. With Verbal CoT,
scores on entailment examples generally increase
(except for GPT-3.5 (Turbo)). On non-entailment
examples, however, scores reduce to near-random-
chance—and, for some models, to near-zero. This
pattern suggests that models rely more extensively
on the heuristic given Verbal CoT prompts. This
reinforces the importance of detailed evaluation
when tuning one’s prompts: results from prompt
tuning experiments can often be misleading if one
only observes in-distribution accuracies, or overall
(as opposed to label-specific) accuracies.

5 Do LLMs Generalize Faithfully?

LLMs have been found to generate answers which
are not faithful to their own chain-of-thought rea-
soning (Lyu et al., 2023; Turpin et al., 2023). In

this section, we test the relationship between mod-
els’ CoT reasoning and their answers. There are
at least two possibilities that could lead to low ac-
curacy: First, the models could produce incorrect
CoT reasoning traces, but answer consistently with
those traces. Second, they could produce correct
reasoning traces, but ignore those traces when pro-
ducing the output. Here, we evaluate the accuracy
of models’ reasoning, as well as the faithfulness of
models’ final answers to their reasoning traces.

5.1 Method

The templatic format of the Code CoT prompt al-
lows us to easily extract each component of the
model’s reasoning from the variable values. We
observe whether the reasoning matches what the
ground-truth values should be (reasoning accu-
racy) and whether the model’s prediction aligns
with the generated reasoning (faithfulness).

For question formation, we measure how often
the model extracts the main subject, the main verb
phrase (VP), and the object, and how often its out-
put follows its analysis of each component:

(6) The salamanders near my yaks that haven’t
entertained your unicorn have amused the
newt. = Have the salamanders near my yaks
that haven’t entertained your unicorn amused
the newt?

For tense reinflection reasoning, we measure
whether each noun is detected and whether each
verb is correctly associated with its subject (subject-
verb association). When evaluating faithfulness,
we also measure whether the verbs in the output
agree with the subjects they were associated with
in the CoT reasoning (verb number). For example,
given the following prompt and answer:

(7) Your peacocks that admired the raven remem-
bered your vulture. = Your peacocks that
admire the raven remember your vulture. !

We present a subset of our analysis, focusing
on components that are essential for achieving the
correct answer. See App. C for the full analysis and
details on how we extract each component from a
model’s generated reasoning and answer.

10 Alternating colors mean that a word is used in evaluating
multiple components.

4767

@@ GPT-3 text-davinci-001
[GPT-3.5 code-davinci-002

[GPT-3.5 text-davinci-002
[GPT-3.5 text-davinci-003

Main VP
100

100[(100[10
9551 N 95/95 o €8
75 83 84
72
50
42
25 31
22
14
0

Reasoning accuracy Faithfulness

(a) Question formation

0 GPT-3.5 gpt-35-turbo-0301
BN GPT-4 gpt-4-0314

PaLM
@ Flan-PaLM

[Llama 2
Il Codellama

Subject-Verb Association
100

9B1_Tg1 9 5p] 94 91
7 L IR 7 | o °° 2
501 g 60
2
0

Reasoning accuracy Faithfulness

(9]

o

[}

(b) Tense reinflection

Figure 4: Reasoning accuracies and faithfulness scores for question formation (left) and tense reinflection (right)
using the Code CoT prompt. Reasoning accuracies and faithfulness are highest for code-davinci-002, GPT-4,

(Flan-)PalLM, and CodeLlama.

5.2 Results

Reasoning accuracies and faithfulness (Fig-
ure 4) are highest for code-davinci-002, GPT-4,
(Flan-)PalLM, and Codel.lama. These are the same
models which had the highest OOD accuracies; in-
deed, OOD accuracies correlate strongly with rea-
soning accuracies (pspearman = 0.71, p < .01) and
faithfulness scores (pspearman = 0.71, p < .01). This
is unsurprising, but it still aids our understanding of
why certain models generalize better. For question
formation, models pre-trained on large amounts
of code—notably, GPT-3.5 code-davinci-002,
text-davinci-002, GPT-4, Flan-(PaLM), and
CodeLlama—show high reasoning accuracies and
faithfulness. GPT-3.5 text-davinci-003 reasons
less accurately, perhaps due to RLHF. Trends are
similar for tense reinflection, except that Llama 2
and CodeLlama perform more similarly to each
other and PaLM/Flan-PalLM perform worse than
GPT-3.5 models. These results raise two hypothe-
ses: (1) code pre-training induces better OOD gen-
eralization because it induces better (more accurate
and faithful) reasoning, whereas (2) RLHF induces
worse generalization because it optimizes features
that are orthogonal to linguistic reasoning. These
hypotheses are discussed in §6.

We also observe that reasoning accuracy corre-
lates strongly with faithfulness (pspearman = 0.87,
p < .01). Our hypothesis was that low performance
could be explained by models either reasoning well
but ignoring their reasoning, or reasoning poorly
and answering accordingly. Instead, we find that a
model’s ability to follow its own reasoning is linked
to how well it reasons. Future work should investi-
gate to what extent accuracy, reasoning accuracy,
and faithfulness are causally interdependent.

6 Discussion

LLMs guided via ICL often explain the structure
of input examples and tasks using spurious posi-
tional and word-level features (§3), as well as spu-
rious syntactic heuristics (§4). It is surprising that
LLMs generalize in a manner not consistent with
English grammar, given that language models are
directly optimized over a large quantity of long con-
texts to produce probable sequences. Larger and
deeper models generally behave in a manner more
consistent with syntactic structure when fine-tuned
(Mueller and Linzen, 2023), but this trend does not
generalize to ICL. Thus, despite impressive perfor-
mance on downstream tasks, our findings provide
evidence that LLMs do not consistently leverage
the latent structure of language when process-
ing or generating language. LLMs will therefore
struggle to generalize well outside of their exem-
plars’ distribution.

Chain-of-thought has significantly different
impacts on ID vs. OOD examples. In transfor-
mations tasks, it sometimes improved ID perfor-
mance while maintaining or decreasing OOD per-
formance; on HANS, it significantly increased re-
liance on syntactic heuristics. This reveals an ac-
tionable takeaway: one should perform thorough
evaluations when prompt tuning. Results from over-
all (rather than label-specific) accuracies and in-
distribution examples can be misleading. A caveat
is that one could always tune these prompts further
to obtain better performance, just as one could al-
ways tune hyperparameters to obtain better models.

Code pre-training improves LLM generaliza-
tion. Various studies observe that LMs trained
on large amounts of code perform better on vari-
ous NLP tasks and linguistic evaluations (Kim and
Schuster, 2023; Madaan et al., 2022; Sap et al.,

4768

2022). Why is code such an effective signal when
mixed with natural language? Some have spec-
ulated that code provides additional grounding
(Potts, 2020; Merrill et al., 2021, inter alia). Per-
haps more importantly, code contains frequent in-
stances of long-range state tracking, as well as hi-
erarchically structured classes and function stacks;
these may impart inductive biases that are helpful
for learning hierarchical linguistic structure.

It is unclear why GPT-3.5 text-davinci-003—
the only model in the GPT-3.5 family trained with
RLHF—performs significantly worse than com-
parable GPT-3.5 models. This goes against con-
ventional wisdom that RLHF generally improves
performance on downstream NLP tasks (Ye et al.,
2023),!! but corroborates preliminary evidence that
RLHF degrades certain aspects of performance,
like certainty calibration.'? Further work is needed
to fully understand RLHF’s impact on generaliza-
tion and whether these findings are causally linked.
Perhaps the reinforcement learning procedure op-
timizes models to generate language that seman-
tically aligns with human quality judgments, but
at the cost of causing the model to assign lower
importance to structural features. Meanwhile, pro-
viding human feedback via fine-tuning may be less
optimal for aligning outputs to human judgments,
but better for preserving sensitivity to syntax.

Larger models often perform better on many
NLP tasks. However, our findings reveal that scale
is not a panacea for robust generalization: rather,
other factors like training objectives, the type of pre-
training data, and the supervision method(s) make
a significant difference. This agrees with and ex-
tends findings from Mueller and Linzen (2023) that
the domain of the pre-training data significantly
influences how models generalize.

7 Related Work

Since the discovery that LMs are capable of ICL,
studies have explored ICL’s limits (e.g., Akyiirek
et al. 2023; Chan et al. 2022). Analyses of ICL
have revealed counterintuitive biases: for example,
correct labels are not necessary for strong perfor-
mance (Min et al., 2022b), and models can perform
very well even given misleading/irrelevant prompts
(Webson and Pavlick, 2022) or flipped/semantically
misleading label names (Wei et al., 2023; Pan et al.,

" OpenAl also officially states that text-davinci-003 is
more capable than text-davinci-002 in multiple locations
on their website, including here and here.

]zhttps ://openai.com/research/gpt-4

2023). In contemporaneous work, Si et al. (2023a)
analyze which semantic features (e.g., sentiment
vs. topic) LLMs prefer by designing underspecified
exemplars. Their method is similar to ours in that
they use ambiguous exemplars and disambiguating
test examples; however, we apply this approach
to syntactic processes to analyze the fundamental
linguistic structural abilities of LLMs.

Any finite training set is consistent with multi-
ple generalizations. Crucially, most benchmarking
tasks rely on data where the training and test sets
are drawn from the same distribution, which limits
our understanding of how well models truly gener-
alize (Linzen, 2020). Saparov and He (2023) find
that LLMs are prone to relying on spurious cor-
relations that hinder robust generalization, while
Drozdov et al. (2023) find that a series of chain-
of-thought prompts can yield more robust gener-
alization. With respect to syntax, LSTM- and
Transformer-based encoder-decoder models trained
from scratch on syntactic transformations do not
generalize in a syntax-sensitive manner (McCoy
et al., 2018, 2020; Petty and Frank, 2021), but pre-
trained encoder-decoder models do generalize syn-
tactically (Mueller et al., 2022). Similar positive
results have been reported for ROBERTa, but only
after large-scale pre-training (Warstadt and Bow-
man, 2020; Warstadt et al., 2020).

Hu and Levy (2023) prompt LLMs on metalin-
guistic judgments; they find that prompting under-
estimates syntactic awareness compared to prob-
ability measurements. Our findings extend this
conclusion: this issue is more pronounced when
test examples are not identically structured to the
exemplars. When fine-tuning, larger models gener-
ally have inductive biases that align more strongly
with syntactic structure (Mueller and Linzen, 2023),
so it is plausible that greater scale should lead to
more syntax-sensitive behavior when using ICL.
Nonetheless, this is not what we find.

8 Conclusions

We have investigated how well LLMs generalize
out-of-distribution on tasks requiring syntax for ro-
bust performance. Our findings reveal significant
variance across models that is not fully explained
by scale. Models trained on code are better at lever-
aging in-context examples to generalize more ro-
bustly, and at reasoning accurately and faithfully—
even at smaller scales.

4769

https://help.openai.com/en/articles/6779149-how-do-text-davinci-002-and-text-davinci-003-differ
https://beta.openai.com/playground
https://openai.com/research/gpt-4

Acknowledgments

We thank Jacob Eisenstein for helpful comments
on a previous draft of this paper. We also thank Mi-
crosoft for supporting experimentation with Ope-
nAl models via Azure under the Accelerate Foun-
dation Models Research program. Aaron Mueller
was supported by a National Science Foundation
Graduate Research Fellowship (Grant #1746891).
This work was supported in part through the NYU
IT High Performance Computing resources, ser-
vices, and staff expertise.

Limitations

Using closed-source language models presents
many scientific challenges. There are no public
resources that contain exact information about the
models we test, such as their parameter counts,
training distributions, and corpus sizes, among
other important details. We also cannot definitively
rule out that the transformations data is contained
in the pre-training corpus. When asking the GPT
models directly if they have seen the dataset or
its GitHub repository, they did not state that they
have seen them. However, Bard (not used in this
study) directly admits to having seen syntax-aware
evaluation datasets like HANS.

OpenAl support for the Codex model was dis-
continued while this project was in progress. This
reveals another set of challenges of working with
closed-sourced models in scientific contexts: long-
term replicability becomes difficult, and access is
dependent on the support of non-accountable en-
tities. While we were able to attain access again
by applying to a research program, access is not
guaranteed indefinitely.

Regarding our experimental design, it is difficult
to disentangle whether model errors are due to sub-
human syntactic reasoning abilities, faulty induc-
tive biases, or simply poor ICL abilities (App. B).
We partially controlled for this by evaluating on in-
distribution transformations, which evaluates how
well models can leverage ICL on in-distribution
examples. However, the transformations task does
not in itself tell us what specific mechanism leads
to incorrect results: perhaps LLMs do robustly rep-
resent the syntactic structure of input sentences,
but preferentially rely on superficial features. Or,
perhaps they do not robustly represent sentence
structure, instead relying on a series of heuristics
that allow certain models to approximate syntactic
generalization in specific circumstances. Future

work should employ mechanistic interpretability
methods to uncover what, precisely, causes errors
in transformations tasks.

Ethics Statement

Regardless of how well large language models gen-
eralize or to what extent they demonstrate language
understanding, they are still eminently capable of
misuse and harm. LLMs excel at generating con-
vincing arguments for false conclusions, or for gen-
erating false information and confidently present-
ing it as fact—for example, when generating fake
news. Our findings may erroneously suggest to
some readers that addressing these concerns can
wait, as LMs are still incapable of robustly under-
standing sentence structure. We disagree with this
takeaway: research that addresses the harms of
LLMs should occur in parallel with research that
investigates (and improves) their decision-making
mechanisms.

References

Ekin Akyiirek, Dale Schuurmans, Jacob Andreas,
Tengyu Ma, and Denny Zhou. 2023. What learn-
ing algorithm is in-context learning? investigations
with linear models. In The Eleventh International
Conference on Learning Representations.

Edwin L Battistella. 1996. The Logic of Markedness.
Oxford University Press.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

Stephanie C. Y. Chan, Ishita Dasgupta, Junkyung Kim,
Dharshan Kumaran, Andrew K. Lampinen, and Felix
Hill. 2022. Transformers generalize differently from
information stored in context vs in weights. Comput-
ing Research Repository, arXiv:2210.05675.

Angelica Chen, Ravid Shwartz-Ziv, Kyunghyun Cho,
Matthew L Leavitt, and Naomi Saphra. 2024. Sudden
drops in the loss: Syntax acquisition, phase transi-
tions, and simplicity bias in MLMs. In The Twelfth
International Conference on Learning Representa-
tions.

4770

https://openreview.net/forum?id=0g0X4H8yN4I
https://openreview.net/forum?id=0g0X4H8yN4I
https://openreview.net/forum?id=0g0X4H8yN4I
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.48550/arXiv.2210.05675
https://doi.org/10.48550/arXiv.2210.05675
https://openreview.net/forum?id=MO5PiKHELW
https://openreview.net/forum?id=MO5PiKHELW
https://openreview.net/forum?id=MO5PiKHELW

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluating
large language models trained on code. Computing
Research Repository, arXiv:2107.03374.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2023. Palm: Scaling language mod-
eling with pathways. Journal of Machine Learning
Research, 24(240):1-113.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdh-
ery, Alex Castro-Ros, Marie Pellat, Kevin Robinson,
Dasha Valter, Sharan Narang, Gaurav Mishra, Adams
Yu, Vincent Zhao, Yanping Huang, Andrew Dai,
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja-
cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le,
and Jason Wei. 2022. Scaling instruction-finetuned
language models. Computing Research Repository,
arXiv:2210.11416.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The PASCAL recognizing textual entailment
challenge. In Machine Learning Challenges Work-
shop, pages 177-190. Springer.

Andrew Drozdov, Nathanael Schirli, Ekin Akyiirek,
Nathan Scales, Xinying Song, Xinyun Chen, Olivier
Bousquet, and Denny Zhou. 2023. Compositional
semantic parsing with large language models. In
The Eleventh International Conference on Learning
Representations.

Robert Frank and Donald Mathis. 2007. Transforma-
tional networks. In Proceedings of the Workshop on
Psychocomputational Models of Human Language
Acquisition. Cognitive Science Society.

Joseph H Greenberg. 1966. Language Universals:
With Special Reference to Feature Hierarchies. De
Gruyter Mouton.

Jennifer Hu and Roger Levy. 2023. Prompting is not
a substitute for probability measurements in large
language models. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 5040-5060, Singapore. Associa-
tion for Computational Linguistics.

Najoung Kim and Sebastian Schuster. 2023. Entity
tracking in language models. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
3835-3855, Toronto, Canada. Association for Com-
putational Linguistics.

Henry Kucera. 1982. Markedness and frequency: A
computational analysis. In Coling 1982: Proceed-
ings of the Ninth International Conference on Com-
putational Linguistics.

Tal Linzen. 2020. How can we accelerate progress
towards human-like linguistic generalization? In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5210—
5217, Online. Association for Computational Lin-
guistics.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang,
Delip Rao, Eric Wong, Marianna Apidianaki, and
Chris Callison-Burch. 2023. Faithful chain-of-
thought reasoning. In Proceedings of the 13th In-
ternational Joint Conference on Natural Language
Processing and the 3rd Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 305-329,
Nusa Dua, Bali. Association for Computational Lin-
guistics.

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang,
and Graham Neubig. 2022. Language models of code
are few-shot commonsense learners. In Proceedings
of the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1384—1403, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

R. Thomas McCoy, Robert Frank, and Tal Linzen. 2018.
Revisiting the poverty of the stimulus: Hierarchical
generalization without a hierarchical bias in recurrent
neural networks. In Proceedings of the 40th An-
nual Meeting of the Cognitive Science Society, pages

4771

http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://jmlr.org/papers/v24/22-1144.html
http://jmlr.org/papers/v24/22-1144.html
http://arxiv.org/abs/2210.11416
http://arxiv.org/abs/2210.11416
https://openreview.net/forum?id=gJW8hSGBys8
https://openreview.net/forum?id=gJW8hSGBys8
https://blogs.umass.edu/brain-wars/files/2017/06/cogsci-2007.pdf
https://blogs.umass.edu/brain-wars/files/2017/06/cogsci-2007.pdf
https://doi.org/10.18653/v1/2023.emnlp-main.306
https://doi.org/10.18653/v1/2023.emnlp-main.306
https://doi.org/10.18653/v1/2023.emnlp-main.306
https://doi.org/10.18653/v1/2023.acl-long.213
https://doi.org/10.18653/v1/2023.acl-long.213
https://aclanthology.org/C82-1027
https://aclanthology.org/C82-1027
https://doi.org/10.18653/v1/2020.acl-main.465
https://doi.org/10.18653/v1/2020.acl-main.465
https://doi.org/10.18653/v1/2023.ijcnlp-main.20
https://doi.org/10.18653/v1/2023.ijcnlp-main.20
https://doi.org/10.18653/v1/2022.emnlp-main.90
https://doi.org/10.18653/v1/2022.emnlp-main.90
https://cogsci.mindmodeling.org/2018/papers/0399/0399.pdf
https://cogsci.mindmodeling.org/2018/papers/0399/0399.pdf
https://cogsci.mindmodeling.org/2018/papers/0399/0399.pdf

2096-2101, Madison, Wisconsin. Cognitive Science
Society.

R. Thomas McCoy, Robert Frank, and Tal Linzen. 2020.
Does Syntax Need to Grow on Trees? Sources of Hi-
erarchical Inductive Bias in Sequence-to-Sequence
Networks. Transactions of the Association for Com-
putational Linguistics, 8:125-140.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019. Right
for the wrong reasons: Diagnosing syntactic heuris-
tics in natural language inference. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 3428-3448, Florence,
Italy. Association for Computational Linguistics.

William Merrill, Yoav Goldberg, Roy Schwartz, and
Noah A. Smith. 2021. Provable Limitations of Ac-
quiring Meaning from Ungrounded Form: What Will
Future Language Models Understand? Transactions
of the Association for Computational Linguistics,

9:1047-1060.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Han-
naneh Hajishirzi. 2022a. MetalCL: Learning to learn
in context. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 2791-2809, Seattle, United States.
Association for Computational Linguistics.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022b. Rethinking the role of demonstrations:
What makes in-context learning work? In Proceed-
ings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 11048—11064,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Aaron Mueller, Robert Frank, Tal Linzen, Luheng Wang,
and Sebastian Schuster. 2022. Coloring the blank
slate: Pre-training imparts a hierarchical inductive
bias to sequence-to-sequence models. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 1352-1368, Dublin, Ireland. Association
for Computational Linguistics.

Aaron Mueller and Tal Linzen. 2023. How to plant trees
in language models: Data and architectural effects
on the acquisition of syntactic inductive biases. In
Proceedings of the 61st Annual Meeting of the Asso-
ciation for Computational Linguistics, Toronto, ON.
Association for Computational Linguistics.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, volume 35, pages 27730-27744.
Curran Associates, Inc.

Jane Pan, Tianyu Gao, Howard Chen, and Danqi Chen.
2023. What in-context learning "learns" in-context:
Disentangling task recognition and task learning. In
Findings of the Association for Computational Lin-
guistics (ACL).

Jackson Petty and Robert Frank. 2021. Transformers
generalize linearly. Computing Research Repository,
arXiv:2109.12036.

Christopher Potts. 2020. Is it possible for language
models to achieve language understanding? Medium
blog post.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle,
Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish
Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wen-
han Xiong, Alexandre Défossez, Jade Copet, Faisal
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. 2023. Code
llama: Open foundation models for code. Computing
Research Repository, arXiv:2308.12950.

Maarten Sap, Ronan Le Bras, Daniel Fried, and Yejin
Choi. 2022. Neural theory-of-mind? on the limits of
social intelligence in large LMs. In Proceedings of
the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 3762-3780, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Abulhair Saparov and He He. 2023. Language models
are greedy reasoners: A systematic formal analysis
of chain-of-thought. In International Conference on
Learning Representations.

Chenglei Si, Dan Friedman, Nitish Joshi, Shi Feng,
Dangqi Chen, and He He. 2023a. Measuring induc-
tive biases of in-context learning with underspecified
demonstrations. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics, Toronto, ON. Association for Computational
Linguistics.

Chenglei Si, Zhe Gan, Zhengyuan Yang, Shuohang
Wang, Jianfeng Wang, Jordan Lee Boyd-Graber, and
Lijuan Wang. 2023b. Prompting GPT-3 to be reli-
able. In The Eleventh International Conference on
Learning Representations (ICLR).

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-

4772

https://doi.org/10.1162/tacl_a_00304
https://doi.org/10.1162/tacl_a_00304
https://doi.org/10.1162/tacl_a_00304
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.1162/tacl_a_00412
https://doi.org/10.1162/tacl_a_00412
https://doi.org/10.1162/tacl_a_00412
https://doi.org/10.18653/v1/2022.naacl-main.201
https://doi.org/10.18653/v1/2022.naacl-main.201
https://aclanthology.org/2022.emnlp-main.759
https://aclanthology.org/2022.emnlp-main.759
https://doi.org/10.18653/v1/2022.findings-acl.106
https://doi.org/10.18653/v1/2022.findings-acl.106
https://doi.org/10.18653/v1/2022.findings-acl.106
https://arxiv.org/abs/2305.19905
https://arxiv.org/abs/2305.19905
https://arxiv.org/abs/2305.19905
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://doi.org/10.48550/ARXIV.2109.12036
https://doi.org/10.48550/ARXIV.2109.12036
https://chrisgpotts.medium.com/is-it-possible-for-language-models-to-achieve-language-understanding-81df45082ee2
https://chrisgpotts.medium.com/is-it-possible-for-language-models-to-achieve-language-understanding-81df45082ee2
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
https://doi.org/10.18653/v1/2022.emnlp-main.248
https://doi.org/10.18653/v1/2022.emnlp-main.248
http://arxiv.org/abs/2305.13299
http://arxiv.org/abs/2305.13299
http://arxiv.org/abs/2305.13299
https://openreview.net/forum?id=98p5x51L5af
https://openreview.net/forum?id=98p5x51L5af

bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. Computing Research Repository,
arXiv:2307.09288.

Miles Turpin, Julian Michael, Ethan Perez, and
Samuel R. Bowman. 2023. Language models don’t
always say what they think: Unfaithful explanations
in chain-of-thought prompting. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Alex Warstadt and Samuel R. Bowman. 2020. Can
neural networks acquire a structural bias from raw
linguistic data? In Proceedings of the 42nd Annual
Meeting of the Cognitive Science Society, Online.
Cognitive Science Society.

Alex Warstadt, Yian Zhang, Xiaocheng Li, Haokun Liu,
and Samuel R. Bowman. 2020. Learning which fea-
tures matter: RoBERTa acquires a preference for
linguistic generalizations (eventually). In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
217-235, Online. Association for Computational Lin-
guistics.

Albert Webson and Ellie Pavlick. 2022. Do prompt-
based models really understand the meaning of their
prompts? In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 2300-2344, Seattle, United States.
Association for Computational Linguistics.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M.
Dai, and Quoc V Le. 2022a. Finetuned language
models are zero-shot learners. In International Con-
ference on Learning Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022b. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824-24837. Curran Associates,
Inc.

Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Al-
bert Webson, Yifeng Lu, Xinyun Chen, Hanxiao
Liu, Da Huang, Denny Zhou, and Tengyu Ma.

2023. Larger language models do in-context learn-
ing differently. Computing Research Repository,
arXiv:2303.03846.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112—-1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Junjie Ye, Xuanting Chen, Nuo Xu, Can Zu, Zekai
Shao, Shichun Liu, Yuhan Cui, Zeyang Zhou, Chao
Gong, Yang Shen, et al. 2023. A comprehensive
capability analysis of gpt-3 and gpt-3.5 series models.
Computing Research Repository, arXiv:2303.10420.

4773

http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://openreview.net/forum?id=bzs4uPLXvi
https://openreview.net/forum?id=bzs4uPLXvi
https://openreview.net/forum?id=bzs4uPLXvi
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://cogsci.mindmodeling.org/2020/papers/0381/index.html
https://cogsci.mindmodeling.org/2020/papers/0381/index.html
https://cogsci.mindmodeling.org/2020/papers/0381/index.html
https://doi.org/10.18653/v1/2020.emnlp-main.16
https://doi.org/10.18653/v1/2020.emnlp-main.16
https://doi.org/10.18653/v1/2020.emnlp-main.16
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101

A Tense Reinflection Prompt Formats

In Figure 5, we present the prompt formats we use
for the tense reinflection task.

B Ablations and Error Analysis

In this appendix, we analyze which aspects of the
prompt affect OOD generalization and investigate
the type of errors that LMs make.

When reasoning with code, GPT-3.5
code-davinci-002 is sensitive to variable
names, but GPT-4 is not. GPT-4 and
code-davinci-@02 perform best on both
transformations, and seem to improve with Code
CoT prompting. We note that in the prompts we
used in the main text, the variables had semanti-
cally meaningful names, such as main_subject;
here, we ask how crucial this factor is for the
models’ ability to benefit from the Code CoT
prompt. We present the prompt formats we use for
this analysis in Figure 6.

We first replace variable names (like
main_auxiliary and main_subject) with
nonce words (like wug and dax). We ensure that
the same variable name is used for the same
syntactic component in each exemplar, such that
the model can form meaningful associations
with the nonce (or swapped, as in the following
analysis) variable names. For code-davinci-002,
this reduces 8-shot performance from 97% to 76%.
For GPT-4, this only reduces 8-shot performance
from 97% to 96%.

In a second experiment, we assign variable
names adversarially, such that seemingly mean-
ingful variable names are no longer associated with
their conventional linguistic category; for exam-
ple, the main verb phrase is associated with the
variable main_object (e.g.,main_object = "has
entertained”), or the main subject is associated
with the variable main_vp (e.g., main_vp = "The
newt"). For code-davinci-002, this reduces per-
formance from 98% to 83%, but for GPT-4, the
accuracy stays the same at 97%. These patterns in-
dicate that code-davinci-002 is sensitive to—and
may usably understand and rely on—terminology
like “subject” and “verb”. Meanwhile, GPT-4 may
or may not understand the “subject” and “verb”
names, but it does not crucially rely on them to per-
form the task; it instead shows an ability to adapt
to arbitrary variable names.

GPT-3 and GPT-3.5 (Turbo) rely heavily on
spurious lexical features. What kinds of errors
are causing such low performance in GPT-3 and
GPT-3.5 (Turbo)? In a qualitative analysis, we
find that when these models do not produce the
correct answer, it is typically because they move
the affirmative (non-negated) auxiliary, regardless
of whether it is the main auxiliary. We call this
the MOVE-AFFIRMATIVE heuristic. For example,
in Ex. (8-a) and (8-b) below, these models would
likely move the affirmative auxiliary, even though
it results in the incorrect output in Ex. (8-b).

(8) a. The unicorn that hasn’t entertained the
newts has observed the yak. = Has the
unicorn that hasn’t entertained the newts
observed the yak? ¢

b. The unicorn that has entertained the
newts hasn’t observed the yak. = Has
the unicorn that has entertained the newts
observed the yak? %

In fact, for all models we test, errors in ques-
tion formation are typically due to reliance on
MOVE-AFFIRMATIVE. The fact that models adopt
this heuristic is puzzling, as it is not consistent
with the in-context exemplars (half of the verbs
in the exemplars are negative verbs), and there-
fore reflects an inductive bias. We hypothesize that
the bias in question favors generating linguistically
unmarked forms in ambiguous contexts. Such an
unmarkedness bias would be easy to learn given
that unmarked forms are generally more frequent
(Greenberg, 1966). In this case, affirmative verb
forms are likely more frequent than negative ones,
especially at the beginning of a question. '> More
broadly, a systematic preference for linguistically
unmarked forms could be a form of overfitting to
the training data. Future work could assess whether
this type of overfitting is more likely with scale, or
whether it could be overcome with some form of
intervention to the data or model.

In tense reinflection, most errors are due to mod-
els relying on the linear AGREE-RECENT hypoth-
esis. Thus, errors in this case reflect reliance on
word position and relative word ordering in gen-
erating sentences. All models we test generalize
in a syntax-sensitive manner more often than not,

BThe relationship between markedness and frequency is
disputed (Battistella, 1996). Frequency and markedness often
correlate, but not always; see Kucera (1982) for an empirical
case study in English.

4774

No Chain of Thought

Q: Convert this
sentence to present
tense. Some
salamanders who
smiled admired her
newts.

A: Some salamanders
who smile admire her
newts.

... (up to 7 more
exemplars)

Q: Convert this
sentence to present
tense. The yak upon my
ravens entertained her
zebras.

A:

Verbal Chain of Thought

Q: Convert this sentence to
present tense. Some
salamanders who smiled admired
her newts.

A: “salamanders” is the main
subject. “smiled” agrees with
“salamanders”. “admired” agrees
with “salamanders”. We need to
convert every verb to present
tense. “salamanders” is plural, so
smiled becomes smile.
“salamanders” is plural, so
admired becomes admire. The
answer is Some salamanders
who smile admire her newts.

... (up to 7 more exemplars)

Q: Convert this sentence to
present tense. The yak upon my
ravens entertained her zebras.
A:

Code Chain of Thought

Input

‘\

Q: Convert this sentence to present tense. Some salamanders who smiled admired her newts.
A

Write a Python script to extract each subject and their associated verbs.
Using this information, transform each past-tense verb into a present-tense
verb by agreeing the verbs with their subjects.

sentence = “Some salamanders who smiled admired her newts.”

answer = sentence

keys are subjects, values are associated verbs
subjects_verbs = {“salamanders”: [“smiled”, “admired”], “newts”: []}
for subject in subjects_verbs.keys():
for verb in subjects_verbs[subject]:
if is_singular(subject):
present_verb = make_singular(verb)
else:
present_verb = make_plural(verb)
answer.replace(verb, present_verb, 1)
The answer is Some salamanders who smile admire her newts.

... (up to 7 more exemplars)

Q: Convert this sentence to present tense. The yak upon my ravens entertained her zebras.

N AN NG

/

12

/ - N /- BN A Output)}
The yak upon my ravens “yak” is the main subject. #

Write a Python script to extract each subject and their associated verbs.

~

entertains her zebras.

-

J

“ravens” is inside a prepositional
phrase. “entertained” agrees with
“yak”. We need to convert every
verb to present tense. “yak” is
singular, so entertained becomes
entertains. The answer is The yak
upon my ravens entertains her
zebras.

o

) \# The

Using this information, transform each past-tense verb into a present-tense
verb by agreeing the verbs with their subjects.

sentence = “The yak upon my ravens entertained her zebras.”

answer = sentence

keys are subjects, values are associated verbs
subjects_verbs = {“yak”: [“entertained”], “ravens”: [], “zebras”: []}
for subject in subjects_verbs.keys():
for verb in subjects_verbs[subject]:
if is_singular(subject):
present_verb = make_singular(verb)
else:
present_verb = make_plural(verb)
answer.replace(verb, present_verb, 1)
answer is The yak upon my ravens entertains her zebras.

J

Figure 5: The prompt formats we use for tense reinflection. We give the model up to 8 exemplars, followed by a test
example. The model must generate the chain-of-thought reasoning and the answer. We highlight the answers with a
blue background. In the code prompt, we put code (except comments) in blue text.

Code CoT: Nonce Variable Names

Code CoT: Swapped Variable Names

Input

output_sentence =

... (up to 7 more exemplars)

observed the orangutans.

KA:

wug = “The yak"

dax = “our newts"

bouba = “has entertained"
kiki = "has"

blickets =

words = sentence.split()
kiki_idx = words.index(kiki)

output_words = words.insert(@, words.pop(kiki_idx))
.join(output_words).capitalize()
answer = output_sentence.replace(".", "
The answer is Has the yak entertained our newts near the salamander?

Q: Transform this into a yes/no question. The yak has entertained our newts near the salamander.

A

Write a Python script to extract the main subject, main verb phrase, and
any distractor clauses/phrases from the text.
Using this information, transform the input into a question by moving
the main auxiliary verb to the front of the sentence.

[“near the salamander”]

")

Q: Transform this into a yes/no question. My unicorns that have amused your salamander haven’t

AV = ™

: Transform this into a yes/no question. The yak has entertained our newts near the salamander.
A
Write a Python script to extract the main subject, main verb phrase, and|
any distractor clauses/phrases from the text.
Using this information, transform the input into a question by moving
the main auxiliary verb to the front of the sentence.
main_vp = “The yak"

main_aux = “our newts"
main_object = “has entertained"
main_subject = "has"

distractors = [“near the salamander”]

words = sentence.split()

main_subject_idx = words.index(main_subject)

output_words = words.insert(@, words.pop(main_subject_idx))
output_sentence = "".join(output_words).capitalize()

answer = output_sentence.replace(".", "?")

The answer is Has the yak entertained our newts near the salamander?

... (up to 7 more exemplars)

Q: Transform this into a yes/no question. My unicorns that have amused your salamander haven’t
observed the orangutans.

¥

A_ Output)
#

output_sentence =

observed the oranguta

N

words = sentence.split()
kiki_idx = words.index(kiki)

output_words = words.insert(@, words.pop(kiki_idx))
.join(output_words).capitalize()
answer = output_sentence.replace(".",
The answer is Haven’t my unicorns that have amused your salamander

ns?

Write a Python script to extract the main subject, main verb phrase,
and any distractor clauses/phrases from the text.
Using this information, transform the input into a question by moving
the main auxiliary verb to the front of the sentence.

wug = “My unicorns"

dax = “the orangutans"

bouba = “haven’t observed"

kiki = “haven't"

blickets = [“that have amused your salamander”]

up)

AN .
N e R

Write a Python script to extract the main subject, main verb phrase,
and any distractor clauses/phrases from the text.
Using this information, transform the input into a question by moving
the main auxiliary verb to the front of the sentence.
main_vp = “My unicorns"

main_aux = “the orangutans"

main_object = “haven’t observed"

main_subject = “haven't"

distractors = [“that have amused your salamander”]

words = sentence.split()

main_subject_idx = words.index(main_subject)

output_words = words.insert(@, words.pop(main_subject_idx))
output_sentence = "".join(output_words).capitalize()

answer = output_sentence.replace(".", "?")

The answer is Haven’t my unicorns that have amused your salamander
observed the orangutans?

N

J J

Figure 6: Prompt formats for our Code CoT analyses. For each exemplar, we ensure that the same variable
name is used for the same syntactic component, such that the model can form meaningful associations with the
nonce/swapped variable names.

4775

but this error pattern reflects that models are not
entirely dependent on syntactic inductive biases:
rather, given in-context examples, models can gen-
eralize using either inductive bias.

C Faithfulness of Chain-of-Thought
Reasoning Traces: Full Analysis

C.1 Extracting Components from Model
Reasoning

Question formation. The model must generate
variables corresponding to the main subject, main
object, and main verb phrase. For example, given
Ex. (6), the model must predict main_subject =
"The salamanders” for its reasoning to count as
correctly identifying the main subject. For faith-
fulness, if the model predicts main_subject =
"The salamanders” in its reasoning and then be-
gins its answer with “Have the salamanders...”,
this would be considered faithful to its own reason-
ing on the main subject; conversely, if it predicts
main_subject = "The salamanders” in its rea-
soning but then begins its final answer with “Have
the yaks...”, this would not be considered faithful.

Tense reinflection. The model must generate a
Python dictionary of subjects (keys) and verbs
(values) as part of its CoT prompt. In this ex-
ample, the correct dictionary is subjects_verbs
= {"peacocks": ["admired”, "remembered"],
"raven”: [], "vulture”: [1}. The noun rea-
soning accuracy is the proportion of nouns from the
sentence that are present in the dictionary, while
the subject-verb association accuracy is the propor-
tion of verbs associated with the correct subject
key. For faithfulness, we measure how many nouns
from the dictionary are present in the answer, and
whether the verbs’ subjects in the answer are the
same as they are in the dictionary (i.e., whether the
sentence structure is compatible with the reason-
ing). For verb number faithfulness, we measure
the proportion of verbs in the dictionary whose
grammatical number in the final answer is the same
as the grammatical number of their subject in the
dictionary.

C.2 Full Results

Here, we present reasoning accuracies and faithful-
ness scores for all reasoning components, models,
and tasks. See Figure 7 for results on question
formation, and Figure 8 for results on tense rein-
flection.

D Syntactic Generalization in Text
Classification: Prompts and Full
Results

The analyses reported in the main text found that
LLMs leverage syntactic information to varying
extents when taught a task via ICL, and that code
pre-training improves OOD generalization. In this
section, In this section, we test if these trends are
specific to tasks where models must generate trans-
formed versions of their inputs, or if they also
extend to classification tasks. We leverage the
Heuristic Analysis for NLI Systems (HANS; Mc-
Coy et al., 2019) dataset, which consists of Natural
Language Inference (NLI) examples designed to
diagnose reliance on syntactic heuristics. One typi-
cally trains the model on the training set of another
NLI dataset, such as MNLI (Williams et al., 2018)
or RTE (Dagan et al., 2006), and then uses HANS
as an evaluation set to measure whether models rely
on syntactic heuristics. Si et al. (2023b) evaluate
RoBERTa and GPT-3 on HANS after fine-tuning
on MNLI; they find that both models perform simi-
larly, suggesting that scale may not be enough for
models to overcome syntactic heuristics. We ex-
tend this analysis to a wider variety of LLMs and
to chain-of-thought prompting, and further break
down performance by label.

HANS disagnoses reliance on three particular
heuristics: lexical overlap, subsequence, and con-
stituent heuristics. A model relying on lexical over-
lap heuristics assumes that two sentences with high
word overlap entail each other. For example, al-
though “The actor paid the doctor” means the op-
posite of “The actor was paid by the doctor”, a
model could assume these are entailed because of
the high amount of word overlap between the two
sentences. A model relying on subsequence heuris-
tics assumes that a hypothesis is entailed if it is a
subsequence in the premise. For example, although
“The actor near the doctor danced” does not imply
that “The doctor danced”, a model may assume
they are entailed because the latter sentence is fully
contained in the first. Finally, a model relying on
constituent heuristics assumes that a hypothesis
is entailed if it is a subtree of the premise. For ex-
ample, “If the artist slept, the doctor ran”” does not
imply that “The artist slept”, but a model relying
on this heuristic would assume that it is entailed.
Models that systematically rely on any of these
heuristics are expected to obtain 100% accuracy on
examples where the label is “entailment” because

4776

@ GPT-3 text-davinci-001 [GPT-3.5 text-davinci-002 [0 GPT-3.5 gpt-35-turbo-0301
@ GPT-3.5 code-davinci-002 [GPT-3.5 text-davinci-003 N GPT-4 gpt-4-0314

100

Reasoning accuracy
s o
5 8 8

N
S

100{100(100|
95

Faithfulness

Main subject

Main VP Object

[PalM E Llama 2
I Flan-PaLM EEl Codellama

Figure 7: Reasoning accuracies and faithfulness scores for various models and syntactic components using the Code
CoT prompt on question formation. “All” refers to the proportion of examples where models correctly label each
syntactic component, or where outputs are entirely faithful to the model’s generated reasoning.

[0 GPT-3 text-davinci-001 [GPT-3.5 text-davinci-002 [0 GPT-3.5 gpt-35-turbo-0301
@@ GPT-3.5 code-davinci-002 [GPT-3.5 text-davinci-003 I GPT-4 gpt-4-0314

100

©
3

Reasoning accuracy

Faithfulness

0
All Noun Detection

[PalM E Llama 2
B Flan-PaLM EEE Codellama

Subject-Verb Association Verb Number

Figure 8: Reasoning accuracies and faithfulness scores for various models and syntactic components using the Code
CoT prompt on tense reinflection. “All” refers to the proportion of examples where models correctly label each
syntactic component, or where outputs are entirely faithful to the model’s generated reasoning.

the heuristics happen to make the correct predic-
tion; however, models that rely on these heuristics
will also obtain 0% accuracy on examples where
the label is “non-entailment”.

We evaluate our LLMs on HANS in the ICL set-
ting. The 8 ICL exemplars are drawn from MNLI,
and the test examples are from HANS. Our results
are based on a uniform subsample of 100 examples
per heuristic and per label. We test across 3 syntac-
tic heuristics, and there are 2 labels (entailment and
non-entailment); thus, we have 600 test examples
in total. We use No CoT prompts and Verbal CoT
prompts similar to those we depict in Figure 2. For

example:
9) No CoT
a. Input:

Q: There are many regulations in place
that will reduce air emissions from
electric power generation. Is it definitely
true that There are a lot of regulations in
place that reduce emissions?

4777

A: Yes

..(up to 7 more exemplars from
MNLI)

Q: The lawyer was advised by the
actor. Is it definitely true that The lawyer
advised the actor?

A:

Output:

Yes

Lexical Overlap Subsequence Constituent

Model No CoT Verbal CoT No CoT Verbal CoT No CoT Verbal CoT
GPT-3 text-davinci-001 59 100 55 97 59 99
GPT-3.5 code-davinci-002 81 99 99 96 96 96
GPT-3.5 text-davinci-002 84 98 67 99 64 95
GPT-3.5 text-davinci-003 96 99 100 100 96 100
GPT-3.5 gpt-3.5-turbo-0301 81 16 69 3 96 6
GPT-4 gpt-4-0314 94 98 100 96 98 98
PaLM 94 98 99 100 100 100
Flan-PaLM 99 100 100 100 100 100
Llama 2 84 93 98 100 99 100
CodeLlama 80 65 95 50 91 89

(a) Entailment

Lexical Overlap Subsequence Constituent
Model No CoT Verbal CoT No CoT Verbal CoT No CoT Verbal CoT
GPT-3 text-davinci-001 86 0 76 0 85 6
GPT-3.5 code-davinci-002 99 94 70 48 74 35
GPT-3.5 text-davinci-002 98 84 86 48 88 38
GPT-3.5 text-davinci-003 99 99 50 34 61 11
GPT-3.5 gpt-3.5-turbo-0301 82 5 27 11 9 12
GPT-4 gpt-4-0314 94 92 48 46 49 35
PalLM 97 94 57 57 27 13
Flan-PaLM 78 96 36 41 3 2
Llama 2 99 91 78 51 27 11
CodeLlama 96 100 56 89 55 47

(b) Non-entailment

Table 3: Accuracies on HANS. Scores are split by label: test examples whose label is “entailment” are presented in
the top table (a), while examples whose label is “non-entailment” are presented in the bottom table (b). High scores
on entailment coupled with low scores on non-entailment signify that the model relies on the syntactic heuristic to
predict the label.

(10) Verbal CoT The lawyer is the subject of the first sen-
a. Input: tence. The actor is the subject of the sec-
Q: There are many regulations in place ond sentence. Advised is the verb in the
that will reduce air emissions from first sentence. Was advised is the verb in
electric power generation. Is it definitely the second sentence. The answer is Yes.

true that There are a lot of regulations in

place that reduce emissions? Our results (Table 3) suggest that LLMs are suscep-

A: Regulations is the agent of both (jpe 1o syntactic heuristics, but to a lesser extent
sentences. Emissions is the object inside (han smaller-scale LMs fine-tuned on MNLI (Mc-
the clauses in both sentences. Reduce is gy et al., 2019). Most models achieve close to
inside a clause in both sentences. The 1009 accuracy on examples where the gold label
answer is Yes. is “entailment”, as expected. However, on “non-

entailment” examples, variance is very high: all
~(up to 7 more exemplars from pqdels (except GPT-3.5 (Turbo)) achieve high ac-
MNLI) curacies on lexical overlap examples using both

prompts, suggesting that they do not succumb to
Q: The lawyer was advised by the (he Jexical overlap heuristic when generalizing. For
actor. Is it definitely true that The lawyer per syntactic heuristics, however, non-entailment

advised the actor? scores tend toward 0-50%. This suggests that mod-
A els rely on subsequence and constituent heuristics
b. Output: when guided via ICL, though the extent to which

4778

they rely on the heuristic depends on the prompt
format. Unlike in the transformation tasks, here
code pre-training does not seem to lend a signifi-
cant advantage: there is no consistent significant
gain (nor loss) on entailment or non-entailment
examples in models pre-trained on code.

We also find that chain-of-thought reasoning
makes models more prone to relying on syntactic
heuristics. With Verbal CoT, scores on entailment
examples tend to increase across models and across
syntactic heuristic types. On non-entailment exam-
ples, however, it reduces scores to near-random-
chance or near-zero. This pattern suggests that
Verbal CoT pushes models to prefer the syntactic
heuristics more strongly.

4779

