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Abstract

Prior study shows that pre-training techniques
can boost the performance of visual document
understanding (VDU), which typically requires
models to gain abilities to perceive and reason
both document texts and layouts (e.g., loca-
tions of texts and table-cells). To this end, we
propose visually guided generative text-layout
pre-training, named ViTLP. Given a document
image, the model optimizes hierarchical lan-
guage and layout modeling objectives to gen-
erate the interleaved text and layout sequence.
In addition, to address the limitation of pro-
cessing long documents by Transformers, we
introduce a straightforward yet effective multi-
segment generative pre-training scheme, facil-
itating ViTLP to process word-intensive doc-
uments of any length. ViTLP can function as
a native OCR model to localize and recognize
texts of document images. Besides, ViTLP can
be effectively applied to various downstream
VDU tasks. Extensive experiments show that
ViTLP achieves competitive performance over
existing baselines on benchmark VDU tasks, in-
cluding information extraction, document clas-
sification, and document question answering1.

1 Introduction

Processing and reasoning document images with
dense texts (e.g., scanned PDF files, digital forms,
and spreadsheets) is a persistent yet challenging
task for the research community and industry (Katti
et al., 2018; Majumder et al., 2020; Li et al., 2021a).
Advances in multimodal pre-training substantially
improve the performance of visual document under-
standing (VDU) (Xu et al., 2020, 2021; Gu et al.,
2021; Appalaraju et al., 2021; Wang et al., 2022a).
These pre-training methods typically take multi-
modal inputs of given document images including
i) visual features, ii) pre-processed OCR texts, and
iii) spatial layouts of document elements (e.g., 2D

1∗Haoli is the corresponding author. Code and checkpoint
will be at https://github.com/Veason-silverbullet/ViTLP.

Figure 1: An overview workflow of the proposed ViTLP.
Given a document image as input, ViTLP can generate
sequences of text and layout (i.e., word bounding boxes)
for various VDU tasks with task-specific prefixes.

coordinates of texts and table-cells). Among these
inputs, spatial layout information plays an essential
role in connecting visual and textual features, as
well as developing thorough reasoning of document
structures (Chen et al., 2021; Lee et al., 2022).

Though effective, the performance of most ex-
isting VDU approaches relies heavily on the OCR
pipelines, because the pre-processed OCR texts and
corresponding 2D coordinates are used as interme-
diate inputs to pre-trained VDU models. The exter-
nal OCR pipelines may produce incorrect or incom-
plete recognition results, which cannot be jointly
optimized by the gradient back from VDU models.
Another research line (Kim et al., 2022; Lee et al.,
2023b) explores pre-training VDU models solely
based on image inputs. Despite no OCR errors
introduced, these methods focus on understanding
texts from raw document images but neglect layout
information modeling. Since the spatial informa-
tion contained in layout locations is not exploited,
it may hinder the models from understanding com-
plex document structures, especially for documents
containing nested paragraphs, forms, and tables.

In this work, we propose Visually guided gener-
ative Text-Layout Pre-training (ViTLP) to jointly
model text and layout information from document
images. As shown in Figure 1, ViTLP can localize,
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recognize, and understand visual document texts
given the input document image and task prefixes.
To achieve this goal, ViTLP is pre-trained to gen-
erate unified text-layout sequences from document
images. Since natively generating text and layout
tokens in a flattened sequence is token-inefficient
(see Sec. 2.1), we introduce hierarchical genera-
tion modules to achieve both effective and efficient
text-layout sequence generation. To the best of our
knowledge, ViTLP is the first attempt to learn OCR
(i.e., text localization and recognition) and VDU
(i.e., document understanding) abilities in a unified
generative text-layout pre-training framework.

Besides, ViTLP is designed to handle long docu-
ments with intensive texts. Long document process-
ing is ubiquitous in real-world scenarios. However,
existing pre-trained models are constrained to cer-
tain token limits of input sequences. For instance,
LayoutLMv2 (Xu et al., 2021) accepts the max-
imum inputs of 512 word tokens using a BERT-
structure encoder. In both pre-training and fine-
tuning, the exceeded text tokens are truncated, lead-
ing to incomplete document information modeling.
To tackle this issue, we introduce a multi-segment
pre-training scheme which divides the target text-
layout sequence into consecutive segments to per-
form generative pre-training. Given that the full
document information is already encoded in vi-
sual representations, ViTLP takes the suffix tokens
from previous segments as prefix prompts to gen-
erate the next-segment tokens. This multi-segment
pre-training scheme further enables ViTLP to pro-
cess documents of arbitrary length in fine-tuning.
Notably, our multi-segment generation scheme re-
tains the intact transformer architecture. Thus, it is
more feasible than other long-document modeling
workarounds, e.g., sparse attention (Beltagy et al.,
2020) and memory modules (Bulatov et al., 2022),
which need to modify the Transformer architecture
and may affect the capacity of pre-trained models.

We evaluate ViTLP on a variety of OCR and
VDU tasks. Experiment results demonstrate that
ViTLP can achieve superior overall performance
on both OCR and VDU tasks. For instance, ViTLP
achieves the 95.59% F1 score on CORD informa-
tion extraction and 95.36% accuracy on RVL-CDIP
document classification, both of which outperform
most previous approaches. Notably, ViTLP can
intrinsically generate 2D layout locations for visual
grounding, which helps in certain generative VDU
tasks (e.g., visual document question answering) to
be more interpretable and reliable to humans.

2 Approach

2.1 Problem Formulation
We study multimodal pre-training for visual docu-
ment modeling. As widely studied (Xu et al., 2020,
2021; Appalaraju et al., 2021; Li et al., 2021b;
Powalski et al., 2021; Wang et al., 2022a; Huang
et al., 2022; Wang et al., 2022b), document images
V, texts T, and layouts L are three fundamental
modalities for visual document modeling.

Unified Text-Layout Generation. We cast the
pre-training objective on visual documents as text-
layout sequence (i.e., {T;L}) generation condi-
tioned on document images V. The document texts
T are represented as word-token sequences. The
layouts L, following prior studies (Xu et al., 2020,
2021), can be represented by location bounding
boxes of words. Instead of generating two separate
sequences of T and L, ViTLP generates the texts
with corresponding layout locations in a sequence
of interleaved text-layout tokens, which facilitates
compact multimodal interaction between texts and
layouts. For the i-th word of a document, its text-
layout tokens {T;L}i are represented as

{T;L}i =
{
{w}i, {zx1 , zy1 , zx2 , zy2}i

}
, (1)

where {w}i denotes the BPE tokens (Radford et al.,
2019) of the i-th word, {zx1 , zy1 , zx2 , zy2}i ∈ Z4

+

are the corresponding left-top and right-bottom
bounding box coordinates. Given a document with
N words, the objective is to maximize the likeli-
hood function log p(T;L|V) which can be decom-
posed as autoregressive text and layout modeling:

log p(T;L|V) =

N∑

i=1

(
log p(Ti|T<i,L<i,V)︸ ︷︷ ︸

Text-modeling

+ log p(Li|T≤i,L<i,V)︸ ︷︷ ︸
Layout-modeling

)
. (2)

Note that Eq. (2) shares similar ideas with Chen
et al. (2022), where word and bounding box gener-
ation can be formulated as language modeling on
a unified text-layout sequence. However, it is in
fact nontrivial to generate sequences as in Eq. (1),
because real-world documents commonly contain
intensive texts, generating each word followed by
four coordinate tokens in a long flattened sequence
is especially token-inefficient. This would bring
prohibitive computational and space overhead2 to
the Transformer-based text-layout decoder.

2Recall that both the computational and space complexities
of Transformers are quadratic O(L2) in sequence length L.
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Figure 2: Overview of the ViTLP architecture. ViTLP is a generative pre-training model that performs autoregressive
text-layout modeling conditioned on visual document inputs. ViTLP adopts hierarchical decoder heads to generate
target text-layout sequences in a global-to-local manner. The segment mode tokens ∈ {[BOS],[CONT]} prompt
the beginning and continuous modes of generation, respectively.

2.2 Model Architecture
The architecture of ViTLP is shown in Figure 2.
ViTLP employs an encoder-decoder framework to
encode document images V and generate target
text-layout sequences {T;L}. Specifically, given
an input document image V, ViTLP employs a vi-
sion transformer (ViT) (Dosovitskiy et al., 2021) to
learn visual representations HV ∈ R|V |×d, where
|V | is the ViT patch number and d is the hidden
size. The decoder receives the visual represen-
tations HV and generates the unified text-layout
sequence {T;L}. To address the token-inefficiency
issue discussed in Sec. 2.1, we design the global-
to-local text-layout generation process as follows.

2.2.1 Global Text-Layout Modeling
Instead of directly generating the text-layout se-
quence as in Eq. (1), we first replace the bounding
box coordinates {zx1 , zy1 , zx2 , zy2} with a generic
layout location token ŵ = [LOC]. This integrates
the mixed text-layout sequence {T;L} to unified
language modeling. Given the original vocabulary
V , the global text-layout sequence T̂ derives from
the augmented vocabulary V̂ = V ∪ [LOC]. The
layout token embeddings E[LOC] are computed as

E[LOC] =
[
Ex(zx1),Ey(zy1),Ex(zx2),Ey(zy2)

]
,

where Ex(·) ∈ R
d
4 and Ey(·) ∈ R

d
4 denote the x-

and y-axis spatial embeddings. Besides, the word
tokens are embedded by Ew(·) ∈ Rd. Given a doc-
ument of N words and the corresponding bounding
boxes, the text-layout input embeddings are repre-
sented as HTL = {Ew,E[LOC]} ∈ R|T̂|×d.

The ViTLP text-layout decoder performs multi-
modal interaction among visual, textual, and layout
information via the Transformer cross-attention

HV TL = Transformer-Decoder(HV ,HTL).

For the i-th target token T̂i, the multimodal de-
coder output HV TL

i is fed to a linear language
modeling (LM) head with the softmax function
to compute the conditional generative probability

p(T̂i|T̂<i,V) = Softmax
(
Linear(HV TL

i )
)
.

With the generic layout token [LOC] incorporated,
the text-modeling term in Eq. (2) is expressed as

Lglobal-text = − 1

|T̂|

|T̂|∑

i=1

log p(T̂i|T̂<i,V). (3)

2.2.2 Local Layout Modeling
Local layout modeling aims to generate specific lay-
out locations for each generic layout token [LOC].
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To capture the spatial relation among coordinates,
we employ a lightweight sequential MLP layout
head (see details in Appendix B) to decode the short
sequence of four layout coordinate tokens from the
last hidden state of [LOC]. For notation simplicity,
we denote {Li,j}4j=1 = {zx1 , zy1 , zx2 , zy2}i as the
corresponding layout coordinates of the [LOC]
token at the i-th position, and its generative proba-
bility is modeled as

p(Li,j |T̂≤i,Li,<j ,V) = Softmax
(
MLP(Hi,<j)

)
,

where Hi,0 = HV TL
i is selected from the learned

multimodal representations where T̂i = [LOC].
Here, we denote the index set of [LOC] tokens as
SL =

{
i : T̂i = [LOC]| i = 1, 2, ..., |T̂|

}
. The

layout-modeling term in Eq. (2) is expressed as

Llocal-layout = −
∑

log p(Li|T̂≤i,L<i,V) (4)

= − 1

4|SL|
∑

i∈SL

4∑

j=1

log p(Li,j |T̂≤i,Li,<j ,V).

In summary, with the global and local text-layout
modeling in a hierarchy, the original pre-training
objective in Eq. (2) evolves to

L = Lglobal-text + Llocal-layout. (5)

The global-to-local generation process aims to
be effective and efficient for text-layout modeling.
On effectiveness, the interleaved text-layout se-
quence modeling enables compact interaction be-
tween text and layout inputs, which can effectively
fuse the information of text and layout modalities.
On efficiency, suppose that the average BPE tokens
of a document word are |w|, and the compression
ratio of the text-layout sequence is |w|+1

|w|+4 , i.e., four
coordinate tokens are compressed to one. In our
experiment datasets, the compression ratio is 0.48.

2.3 Multi-segment Pre-training Scheme
Documents are usually intensive in text and layout,
and it would be computationally intractable to fit
the entire sequence into a generative model. To pro-
cess documents with arbitrary length, we propose a
multi-segment pre-training scheme that divides the
long sequence into multiple segments for genera-
tion. Since a document image already contains all
necessary information of the text and layout, long
document modeling is feasible based on the visual
representations and localized generation-context.

Given the maximum sequence length of the de-
coder as M , we first divide the text-layout sequence

into K segmented sequences {Si}Ki=1. The begin-
ning segment S1 contains M tokens to be gener-
ated, and the continuous segment Si>1 contains
αp ·M prefix tokens and (1 − αp) ·M tokens to
be generated. Here, αp is the pre-defined prefix
ratio. The overall generation process comprises
beginning and continuous modes.

Beginning Generation Mode. In this mode, we
prepend a special mode token [BOS] to the be-
ginning sequence S1. The model then follows the
objective in Eq. (5) to generate the first M tokens.

Continuous Generation Mode. For the contin-
uous segments Si>1, we prepend a special mode
token [CONT] to the input sequence. |P | = αp·M
prefix tokens are prepended to the input sequence.
These |P | prefix tokens of segmented sequence Si

come from the |P | suffix tokens of the previous
segmented sequence Si−1. The prefix tokens serve
as a prompt of localized generation-context3 which
guides the decoder to generate subsequent tokens
from arbitrary locations of a document. The special
token [EOS] is appended to the last segmented se-
quence SK to signal the end of generation.

Segmentation in Pre-training and Fine-tuning.
In pre-training, the segmented sequences of a long
document are randomly scattered into different data
batches. In this way, ViTLP learns to model the
complete textual and layout information of a docu-
ment, conditioned on different prefix history-token
contexts. In fine-tuning (and inference), ViTLP can
also apply the multi-segment scheme to process
those long text-layout sequences, which is consis-
tent with the pre-training phase. For instance, OCR
and sequence labeling on long document texts can
be processed segment by segment.

2.4 Applications of ViTLP

2.4.1 OCR Text Localization and Recognition

Text localization and recognition are two funda-
mental functions of OCR engines (Li et al., 2023).
As ViTLP is pre-trained to generate text and layout
(i.e., 2D bounding boxes) sequences from docu-
ment images, it can intrinsically perform text lo-
calization and recognition by generating a unified
OCR sequence of texts and bounding boxes. ViTLP
can function as a word-level OCR model.

3The historical context contains the generated coordinate
tokens from the previous segment, which serves as an informa-
tively complete prompting signal for next-segment generation.
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Approach OCR Tasks VDU Tasks
Text Local. Text Recog. Info. Extraction Doc. Classification Document VQA VQA Grounding

OCR Pipelines ✓ ✓
Discriminative VDU Models ✓ ✓ ✓
Generative VDU Models ✓ ✓ ✓
ViTLP ✓ ✓ ✓ ✓ ✓ ✓

Table 1: The comprehensive capabilities of ViTLP and its comparison with the associated baselines on each task.

2.4.2 Downstream VDU Tasks
Information Extraction. The information ex-
traction task is formulated as sequence labeling on
the target texts given document image input. Fol-
lowing BART (Lewis et al., 2020), we feed ViTLP
decoder’s final hidden states of a target word (with
layout coordinate inputs) to a linear classifier which
outputs the token-level semantic label.

Document Classification. Given an input docu-
ment image to the encoder, we feed a task prefix
token [DOC_CLS] as input to the decoder to out-
put the document classification label.

Document Visual Question Answering. Unlike
discriminative VDU models that perform extrac-
tive QA on pre-processed OCR results, ViTLP di-
rectly generates answers given a task prefix token
[VQA] followed by the question. It is noteworthy
that ViTLP can intrinsically generate interpretable
grounding regions of interest (ROI), i.e., layout
coordinates of answers, to verify the generation.

3 Experiments

3.1 Experiment Setup
Implementation Details. We implement ViTLP
with a 12-layer ViT (Dosovitskiy et al., 2021) im-
age encoder and a 6-layer text-layout decoder. The
Transformer hidden size is d = 768 with 12 atten-
tion heads. In pre-training, the input image height
and width are 1920×1600 with the 32×32 ViT
patch size, and the decoder segmented sequence
length is M = 1024. Following LayoutLMv2 (Xu
et al., 2021), the layout location coordinates are
normalized into discrete bins of [0, 1000], resulting
that the vocabulary size of the layout head is 1001.
The multi-segment prefix ratio is set as αp = 0.25.
We use the AdamW optimizer (Loshchilov and Hut-
ter, 2019) to train ViTLP in 250K steps, with the
batch size of 384 and initial learning rate of 2e-4
with cosine decay. More implementation details
are provided in Appendix A.2.

Pre-training Data. Following prior work (Xu
et al., 2021), we use IIT-CDIP Test Collection 1.0

(Lewis et al., 2006) containing 11M document im-
ages for pre-training. Following DONUT (Kim
et al., 2022), we generate 2M synthetic document
images with text and layout annotations. Another
four supplementary datasets with 0.4M document
images are also added to augment the diversity
of pre-training data, including PubLayNet (Zhong
et al., 2019), DocBank (Li et al., 2020), SciTSR
(Chi et al., 2019), and IAM (Marti and Bunke,
2002). We use our internal OCR tool to extract
words with location coordinates from the IIT-CDIP
and PubLayNet images. Words with locations are
provided in IAM, SciTSR, and DocBank. Refer to
Appendix A.1 for more detailed data statistics.

Evaluation Tasks. We highlight that ViTLP are
capable of handling both 1) perception tasks of
document OCR and 2) cognition tasks of visual
document understanding (VDU). To evaluate the
comprehensive capabilities of ViTLP, we compare
to baselines on each task as summarized in Table 1.

For OCR evaluation, we conduct two benchmark
OCR sub-tasks, i.e., document text localization and
recognition. We evaluate model performance on
SROIE competition4 Task #1 for text localization
and Task #2 for text recognition. The text localiza-
tion task is evaluated by DetEval protocol (Wolf
and Jolion, 2006) which calculates the precision,
recall, and F1 based on the area of overlapping re-
gions between model predictions and ground-truth
text coordinates. The text recognition task evalu-
ates the word-level precision, recall, and F1 based
on exact word match.

For VDU evaluation, we conduct three docu-
ment understanding tasks. 1) Form Understanding.
Given a document image and its word entities, it is
a sequential labeling task to predict the BIO tags
for each textual entity. We use FUNSD (Jaume
et al., 2019) which contains 199 scanned forms, and
the entities are labeled in four categories: Header,
Question, Answer, and Other. FUNSD is divided
into 149 images for training and 50 for testing. We
report entity-level F1 as the evaluation score. 2)

4https://rrc.cvc.uab.es/?ch=13&com=tasks
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Receipt Understanding. We use CORD (Park et al.,
2019) containing 800 training and 100 testing im-
ages of real-world receipts. The receipt entities are
labeled in 30 categories. We use entity-level F1 for
evaluation. 3) Document Classification. We con-
duct experiments on the RVL-CDIP dataset (Harley
et al., 2015) containing 400K scanned documents
in 16 classes. We adopt classification accuracy
as the evaluation metric. For the sequence label-
ing tasks on FUNSD, we perform multi-segment
fine-tuning on those samples whose entity-word
sequences exceed the maximum decoder sequence
length. This differs from previous work that trun-
cates the input sequences into certain tokens, e.g.,
512 tokens in LayoutLMv2 (Xu et al., 2021).

Besides, we evaluate generative question answer-
ing tasks on the DocVQA (Mathew et al., 2020) and
InfographicVQA (Mathew et al., 2022) datasets.
DocVQA consists of 12K document images with
50K QA pairs, and InfographicVQA contains 5.4K
document images with 30K QA pairs. Since the an-
swer word locations are not provided in the training
sets, we use an OCR tool to locate the coordinates
of answer words with heuristic text matching. In
this way, we feed the answers with grounding coor-
dinates to ViTLP for document VQA fine-tuning.

3.2 OCR Evaluation Results
We compare ViTLP with representative OCR base-
lines on SROIE 2019 benchmark (Huang et al.,
2019). The text localization baselines include
CRAFT (Baek et al., 2019), YOLO-v3 (Redmon
and Farhadi, 2018), CTPN (Tian et al., 2016),
and EAST (Zhou et al., 2017). The text recogni-
tion baselines include BiLSTM-ResNet, BiLSTM-
CTC (Lee and Osindero, 2016), UNet-CRNN (Ron-
neberger et al., 2015), and TrOCR (Li et al., 2023).
Unlike conventional OCR models that first perform
text localization and then use the localized text-
regions for text recognition, ViTLP performs text
localization and recognition in unified text-layout
sequence generation, which does not need ground
truth text-region inputs in the recognition task.

Table 2 shows the OCR evaluation performance.
ViTLP outperforms most baseline methods on both
localization and recognition tasks. ViTLP under-
performs TrOCR, given that TrOCR is a strong
pre-trained model for two-stage OCR text recogni-
tion, while ViTLP performs text localization and
recognition in one stage. Note that the SROIE train-
ing samples are few, i.e., only 626 images, and the
input text coordinates are at textline-level, which

Text Localization Task
Method Area-Precision Area-Recall Area-F1

CRAFT 62.73 59.94 61.31
YOLO-v3 77.29 79.32 78.29
CTPN 81.14 87.23 84.07
EAST 85.07 87.17 86.11
ViTLP 91.62 91.68 91.65

Text Recognition Task
Method Word-Precision Word-Recall Word-F1

BiLSTM-ResNet 74.05 77.81 75.88
BiLSTM-CTC 83.38 87.37 85.33
UNet-CRNN 85.77 86.48 86.12
TrOCR† 95.89 95.74 95.82
ViTLP 93.07 92.52 92.79

Table 2: OCR text localization and recognition results
on SROIE 2019 benchmark. †TrOCR uses the ground-
truth cropped image regions as inputs, whereas ViTLP
performs text localization and recognition in a unified
stage. All scores are reported in percentage.

are different from our word-level pre-training input
format and thus render it challenging to fine-tune
our model. Nonetheless, ViTLP can still achieve
competitive performance by fine-tuning on the lim-
ited samples without additional data augmentation
(Li et al., 2023), successfully adapting to output the
textline coordinates that have never met in the pre-
training phase. We also provide qualitative ViTLP
zero-shot OCR examples in Appendix C.

3.3 VDU Evaluation Results

We compare ViTLP with competitive pre-trained
baselines including i) general method RoBERTa
(Liu et al., 2019), ii) discriminative VDU models:
LayoutLM (Xu et al., 2020), SPADE (Hwang et al.,
2021), SelfDoc (Li et al., 2021b), TITL (Powalski
et al., 2021), LayoutLMv2 (Xu et al., 2021), LiLT
(Wang et al., 2022a), FormNet (Lee et al., 2022)
and iii) generative VDU model DONUT (Kim et al.,
2022). Table 3 shows the VDU task performance.

Information Extraction. According to Table 3,
our model achieves better F1 scores compared to
most baselines on FUNSD and CORD. The results
indicate that ViTLP can develop a thorough under-
standing of form/receipt structures from images.
Nonetheless, ViTLP underperforms the best dis-
criminative baselines, i.e., LiLT on FUNSD and
FormNet on CORD. We believe this is because pre-
trained discriminative VDU models have natural
advantages over generative models for the informa-
tion extraction task, which is formulated as token-
level classification. Besides, ViTLP outperforms
DONUT, proving that layout modeling is as nec-
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Method Modeling Type # Param. Maximum
Doc-Length FUNSD (F1) CORD (F1) RVL-CDIP (Acc)

RoBERTabase (Liu et al., 2019) 125M 512 66.48 93.54 90.06
LayoutLMbase (Xu et al., 2020) 160M 512 79.27 – 94.42
SPADE (Hwang et al., 2021) 110M 512 70.50 91.50 –
SelfDoc (Li et al., 2021b) Discriminative 137M 1024 83.36 – 93.81
TILTbase (Powalski et al., 2021) (w/ OCR Input) 230M 512 – 95.11 95.25
LayoutLMv2base (Xu et al., 2021) 200M 512 82.76 94.95 95.25
LiLTbase (Wang et al., 2022a) – 512 88.41 96.07 95.68
FormNet (Lee et al., 2022) 217/345M† 1024 84.69 97.28 –

DONUT (Kim et al., 2022) Generative 259M 1536 – 84.10 95.30
ViTLP (w/o OCR Input) 253M Any-length 87.61 95.59 95.36

Table 3: VDU evaluation results on form understanding (FUNSD), receipt understanding (CORD), and document
classification (RVL-CDIP). † FormNet has different sizes of 217M and 345M for FUNSD and CORD (Lee et al.,
2022). “Maximum Doc-Length” denotes the maximum tokens of an input text sequence that the model can handle.

essary as language modeling to generative VDU
models. For example, for the CORD images, enti-
ties with the same semantic label <menu.price>
are always located in the same rightmost column
of the receipt, sharing adjacent layout coordinates.
Layout modeling can help generative VDU models
better extract such structural-aware information.

Document Classification. From Table 3, we can
see that ViTLP achieves the second best perfor-
mance on classification accuracy. We also observe
that the performance among TILT, LayoutLMv2,
DONUT, and ViTLP are quite close. This may
be because document classification is a coarse-
grained task, wherein the vision modality con-
tributes the most to classification performance, and
the OCR text modality brings an incremental gain.
Though ViTLP is suboptimal compared to LiLT,
OCR-free generative methods are more flexible and
lightweight because no pre-processed OCR texts
are needed for input.

3.4 Further Discussion

3.4.1 Ablation Study
We conduct ablation studies on the effect of hierar-
chical text-layout modeling and multi-segment pre-
training scheme. We compare ViTLP with three
variants: i) pre-training with the language modeling
objective only, without the layout modeling objec-
tive; ii) truncating long input document sequences
in pre-training, without the multi-segment strategy;
iii) generating four layout coordinate tokens for
each word in a long flatten sequence, without hier-
archical text-layout modeling.

Table 4 displays the ablation performance. We
can observe that discarding the layout modeling
objective leads to a substantial performance drop,

Ablation Variants FUNSD (F1) CORD (F1)

ViTLP 87.61 95.59
w/o layout modeling 81.42 91.54
w/o multi-segment training 86.73 95.01
w/o hierarchical modeling 86.28 94.86

Table 4: Ablation model performance on the informa-
tion extraction tasks.

Generative Model DocVQA InfographicVQA

Dessurt (Davis et al., 2022) 63.2 –
DONUT (Kim et al., 2022) 67.5 11.6
ViTLP 65.9 28.7

Table 5: The results are reported on Average Normal-
ized Levenshtein Similarity (ANLS) between the model-
generated answers and ground truth.

i.e., 6.19 and 4.05 F1 drops on FUNSD and CORD.
The results suggest that generative pre-training on
the layout modality can enhance the document un-
derstanding capability of VDU models. Besides,
truncating long document inputs without the multi-
segment pre-training strategy leads to lower per-
formance. We believe that the multi-segment pre-
training scheme enables ViTLP to model complete
text and layout tokens of the pre-training corpora,
which benefits the pre-trained model performance.
We can also see that removing hierarchical text-
layout modeling causes performance descent. It
validates that hierarchical modeling is effective for
interleaved text-layout information fusion.

3.4.2 Generative Document VQA
Results and Analysis. Table 5 presents the per-
formance of generative VDU models on DocVQA
and InfographicVQA datasets. We can see that
ViTLP underperforms DONUT by a slight margin
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Question: What % of families are in poverty in the 

                 county 'Stoddard'?

 ViTLP output: {[“29.9”, [314, 336, 346, 354]]}

Question: For which individual was this request made?

 ViTLP output: {[“Dr.”       , [593, 245, 626, 266]], 

                         [“Robert” , [634, 245, 702, 266]],

                         [“E.”        , [713, 245, 738, 266]], 

                         [“Shank” , [748, 245, 804, 266]]}

Question: How much grands paid in the year 1981,        

                according to the table?

 ViTLP output: {[“$81,520.00”, [557, 229, 632, 251]}

Figure 3: Visualization of ViTLP generated answers on DocVQA. The ViTLP output answer sequences consist of
answer words (in blue) and corresponding location coordinates (in red). For direct visualization, we draw the region
of interest (ROI) referring to the output layout coordinates on the image.

on DocVQA and surpasses DONUT by a signifi-
cant margin on InfographicVQA. As discussed in
Kim et al. (2022), DocVQA images are similar
to the pre-training IIT-CDIP images, pre-training
data quality may have a considerable influence on
the performance of DocVQA. The average results
show that ViTLP develops better overall document
VQA performance than the strong generative model
DONUT, which validates the effectiveness of our
generative pre-training approach.

Document VQA with Interpretable Grounding.
Owing to the fine-grained word-level grounding
capability learned in the pre-training stage, ViTLP
can be fine-tuned to predict the regions of interest
(ROI) associated with the generated answers, which
is unprecedented to prior document VQA models.
As shown in Figure 3, the output ROI grounding-
boxes as visual rationales can help humans easily
verify the model-generated answers, making the
answer generation process interpretable to humans
where the model output derives from. See more ex-
amples of grounding document VQA with ViTLP
in Appendix D.

4 Related Work

Visual document processing with multimodal pre-
training is widely studied. From the perspectives of
the document processing pipelines and model archi-
tectures, existing works can be generally divided
into strands of research as listed below.

OCR-based Methods. Most initial VDU efforts
adopt OCR tools to localize and recognize docu-
ment layouts and texts, and then feed them to the
multimodal pre-trained models (Xu et al., 2021;

Appalaraju et al., 2021; Li et al., 2021a; Peng et al.,
2022; Li et al., 2021b; Bai et al., 2023; Lee et al.,
2023a). These methods usually involve multiple
pre-training objectives over the vision, text, and lay-
out. For instance, document text location (Xu et al.,
2020, 2021), paragraph and table regions (Li et al.,
2021b; Wang et al., 2022b) are rich in structural in-
formation to align visual features with text embed-
dings. Though promising, these pipeline models
suffer from heavy OCR pre-processing overhead.
Moreover, incorrect OCR results may propagate
errors to downstream tasks like document question
answering (Kim et al., 2022).

OCR-free Methods. There appear recent stud-
ies (Kim et al., 2022; Lee et al., 2023b; Kil et al.,
2023) that jointly consider text reading and under-
standing without external OCR pipelines. For in-
stance, Kim et al. (2022) takes document images as
input to the model without prerequisite OCR results
and conducts visual language pre-training. Lee
et al. (2023b) further improves the pre-training ob-
jectives over large-scaled visual webpage corpora.
Kil et al. (2023) employs multiple pre-training
tasks jointly to encourage the pre-trained model
to learn text recognition capability explicitly and
spatial reasoning capability implicitly.

Our research falls within the OCR-free branch.
Different from existing works, we first study gen-
erative joint text-layout modeling conditioned on
input document images. Our empirical results also
validate that layout information not only enhances
the learned representations for downstream VDU
tasks but also can make the generation outputs more
interpretable with visual groundings.
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LLM-backbone Methods. Most recent studies
leverage large language models (LLMs) to tackle
multimodal document tasks (Zhang et al., 2023; Ye
et al., 2023; Wang et al., 2023). LLaVAR (Zhang
et al., 2023) inherits LLaVA architecture (Liu et al.,
2023) which directly projects the visual features to
LLM embeddings and performs instruction tuning
on visual document data. DocLLM (Wang et al.,
2023) uses spatial attention to inject 2D layout
information into Llama 2 (Touvron et al., 2023)
with supervised fine-tuning and first enables LLMs
to process document information extraction tasks.
Thanks to LLMs’ powerful reasoning and genera-
tion abilities, utilizing LLMs for visual document
processing has become a prominent research trend.

5 Conclusion

We propose visually guided generative text-layout
pre-training (ViTLP) to enhance visual document
processing covering the OCR and VDU tasks. In
the pre-training phase, ViTLP optimizes hierarchi-
cal language and layout modeling objectives to
generate interleaved text-layout target sequences.
Moreover, the proposed multi-segment pre-training
scheme enables ViTLP to process long documents
with arbitrary lengths. ViTLP can function as a
native OCR model to locate and recognize texts
of document images. Experiments also show that
ViTLP achieves superior performance on various
VDU tasks with document grounding capability.

Limitations

Our community has entered the era of large lan-
guage models with multimodal capabilities (Dai
et al., 2023; OpenAI, 2023). However, regarding
the model size, ViTLP is still a rather small-scale
pre-trained model5, which limits its potential to
become an interactive and generalized document
AI assistant. In future work, we plan to explore
two paths: i) scaling up ViTLP with more parame-
ters and training data, extending it to a more pow-
erful foundation document model; ii) integrating
ViTLP’s document-specific text-layout image en-
coder with generalized advanced LLMs (Chiang
et al., 2023; Touvron et al., 2023) and visual in-
struction tuning (Liu et al., 2023; Zhu et al., 2024)
to build up an interactive document AI assistant.

5It is because we commenced the ViTLP project in mid-
2022 and finished pre-training in early 2023, see the first
version at https://openreview.net/forum?id=ARtBIBAmNR.

Remarks and Future direction. i) ViTLP pro-
cesses document images already calibrated in angle.
Hence, we use 4 coordinates to represent the local-
ization of words. It is feasible to pre-train ViTLP to
generate 8 coordinates which can represent the an-
gle of words. We choose word-level segmentation
for pre-training because a word is the elementary
unit of document texts. Word-level segmentation
is also beneficial to fine-grained grounding, e.g.,
VQA with answer-word grounding. ii) We propose
a multi-segment processing scheme to permit long
sequence lengths on the decoder side. However,
the document pixel inputs are also constrained by
the resolution on the ViT encoder side. For the
problem of long document processing, ViTLP only
tackles the half. Processing document images with
high resolutions and multiple pages is an intriguing
problem for future research.
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Dataset Size Proportion Document Type

IIT-CDIP 10, 816, 672 81.89% Scanned Document
SynthDog 2, 000, 000 15.14% Synthetic Document
PublayNet 261, 076 1.98% Scientific Paper
DocBank 125, 815 0.95% Arxiv Paper
SciTSR 3, 536 0.03% Figure and Table

IAM 1, 198 0.01% Hand Written

Table 6: Pre-training dataset statistics.

A Experiment Details

A.1 Pre-training Data Statistics

Table 6 shows the pre-training data statistics. Fol-
lowing previous work, e.g., LayoutLMv2 (Xu et al.,
2021), we use 11M IIT-CDIP document images as
the main pre-training data. Besides, we follow Kim
et al. (2022) and Davis et al. (2022) to include 2M
machine-rendered synthetic documents for gener-
ative pre-training. Specifically, we adapt the of-
ficial SynthDog generator6 to generate synthetic
document images with text and layout metadata.
The other four corpora, i.e., PublayNet, DocBank,
SciTSR, and IAM, account for only ∼ 3% pre-
training data whereby we aim to improve the diver-
sity of pre-training document types.

The distribution of document sequence lengths
is displayed in Figure 4. The number of text-layout
sequence tokens follows a long-tailed distribution:
there exist some long documents with the sequence
lengths ranging from 1024 to 3072. This brings
a trade-off to pre-training. With a relatively short
sequence length (e.g., 512 tokens in LayoutLMv2),
language modeling on long documents is incom-
plete, as the sequence tokens are truncated and
wasted. However, with a relatively long sequence
length (e.g., 3072), the GPU computation and mem-
ory overload would become prohibitive, which also
forbids large batch sizes for better performance.7

The proposed multi-segment pre-training scheme
can circumvent this bitter trade-off. Notably, the
multi-segment processing scheme can be directly
applied to long document fine-tuning (and infer-
ence). For example in the OCR and sequence label-
ing tasks, ViTLP also employs the multi-segment
scheme to process the long documents by multiple
segments with prefix context tokens.

6https://github.com/clovaai/donut/tree/master/synthdog
7Even assuming sufficient computation resources, the long-

tailed distribution of document lengths would also cause enor-
mous padding tokens in long sequence input to Transformers,
leading to considerable waste of computational resources.
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Figure 4: Distribution of document sequence lengths.
The text sequences are tokenized by the standard BPE
tokenizer (Radford et al., 2019).

A.2 Fine-tuning Hyperparameter Settings
OCR Text Localization and Recognition. Fine-
tuning ViTLP for text localization and recognition
follows the same objective Eq. (5) as pre-training.
Since the SROIE 2019 (Huang et al., 2019) training
set is rather small containing only 626 images, we
fine-tune ViTLP for 10 epochs with the batch size
of 1. The used learning rate and weight decay are
2e-5 and 1e-2. The input image resolution remains
the same as pre-training, i.e., 1920×1600.

Information Extraction. For FUNSD (Jaume
et al., 2019), the selected learning rate and weight
decay are 1e-4 and 1e-2. For CORD (Park et al.,
2019), the selected learning rate and weight decay8

are 5e-5 and 1e-4. For both datasets, we fine-tune
ViTLP for 75 epochs with the batch size of 8, us-
ing the same input image resolution as pre-training.
Following the practice of prior work (Huang et al.,
2022; Lee et al., 2023a), we use the shared segment-
level layout coordinates as input instead of word-
level coordinates, which can benefit the token clas-
sification accuracy in sequence labeling.

Document Classification. We use the learning
rate of 1e-4 and weight decay of 1e-2 for the doc-
ument classification task. We fine-tune ViTLP for
100 epochs with the global batch size of 320. The
input image resolution is the same as pre-training.

Document VQA. Since the layout coordinates of
answer words are not provided in the DocVQA
(Mathew et al., 2020) and InfographicVQA

8For CORD, we search the configuration of learning rate
in {2e-4, 1e-4, 5e-5, 3e-5, 2e-5, 1e-5} and weight decay in
{1e-2, 1e-4}.
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(Mathew et al., 2022) datasets, we first conduct
OCR on the training document images to obtain
the texts with bounding-box coordinates. Then we
apply a heuristic text-matching method to assign
corresponding bounding-box coordinates to the an-
swer words. It is worth noting that for the "Yes/No"
questions that have no grounding answers on the
images, we train ViTLP to generate a special an-
swer token [ANS_YES] or [ANS_NO] without
layout coordinates. For both datasets, we fine-tune
ViTLP for 60 epochs with a batch size of 128. We
use a learning rate of 3e-5. Since the document im-
ages are high-resolution, for DocVQA, we set the
fine-tuning image resolution as 2304×1920 which
is multiplied by 1.2 based on the pre-training reso-
lution. For InfographicVQA, the fine-tuning image
resolution is set as 3200×1600. From our empir-
ical experiments, we find that input image resolu-
tion is essential to document VQA performance,
especially for InfographicVQA.

B Implementation Details of Sequential
Layout Head

Given that multimodal interaction is learned by the
stacked Transformer text-layout decoder layers, the
LM and layout heads hereby function as a prober
to output the next word and coordinate predictions.
As introduced in Sec 2.2.2, the layout head predicts
output probability Prob(Li,j) of the four coordi-
nates {Li,j}4j=1 = {zx1 , zy1 , zx2 , zy2}i based on
the i-th global [LOC] token’s final hidden state
Hi,0 = HV TL

i ∈ Rd as follows.




Hi,1 = GELU
(
WhHi,0

)

Hi,2 = GELU
(
WhHi,1 +E

′
x(Li,1)

)

Hi,3 = GELU
(
WhHi,2 +E

′
y(Li,2)

)

Hi,4 = GELU
(
WhHi,3 +E

′
x(Li,3)

)

Prob(Li,j) = Softmax
(
WLHi,j

)
, j ∈ {1, 2, 3, 4}

The coordinate tokens are quantized into a discrete
range of [0, 1000], making the layout-token vocab-
ulary size of |L| = 1001. The layout head’s pa-
rameters are lightweight including a hidden matrix
Wh ∈ Rd×d, two embeddings E

′
x(·) ∈ Rd and

E
′
y(·) ∈ Rd, and a linear projection WL ∈ R|L|×d.

We use the same GELU activation (Hendrycks and
Gimpel, 2016) as in the Transformer layers. The
layout head works sequentially, which is similar to
a vanilla RNN, as each coordinate decoding step
also considers the information of previous coordi-
nates. Compared with naively using four indepen-

dent linear heads, the sequential layout head can
capture the spatial relation among the output coor-
dinates (e.g., x1 < x2 and y1 < y2), bootstrapping
more accurate coordinate prediction.

C Qualitative Cases of ViTLP Document
OCR Functionality

Figure 5 to 7 demonstrate ViTLP’s functionality
on zero-shot document OCR. ViTLP outputs the
interleaved OCR sequence consisting of words and
corresponding bounding boxes.

D Qualitative Cases of ViTLP Document
VQA with Grounding Capability

Figure 8 showcases the ViTLP’s VQA outputs on
DocVQA with grounding capability. The top two
examples are successful cases, and the bottom two
are failure cases.
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Figure 5: ViTLP OCR results on a webpage. For comprehensive visualization, we render the output texts (in blue)
and bounding boxes (in red) according to the ViTLP’s interleaved output sequence.
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Figure 6: ViTLP OCR results on a paper. For comprehensive visualization, we render the words and bounding
boxes according to ViTLP’s interleaved output sequence. The shown generated OCR results comprise two segments,
as the generated tokens reach the decoder sequence length (M = 1024) in the first segment generation, and the
generation process continues by the second segment. The bounding boxes of the first segment are in red, and the
second are in green. 4728



Figure 7: ViTLP OCR results as visualized in Figure 6 above.4729



Question: What is the yield M.C % for MGC-817?

ViTLP output: {[“28.0”, [728, 434, 770, 446]]}

Ground-truth: {“28.0” or “28.0%”}

Question: For which position were the interviews  

                 conducted?

ViTLP output: {[“Summer”, [550, 457, 609, 472]],

                        [“Intern”     , [612, 457, 656, 472]]}

Ground-truth: {“Summer Intern Position”}

Question: What is the date of the C. V.?

ViTLP output: {[“March”, [445, 207, 508, 221]],

                        [“22”       , [515, 207, 550, 221]],

                        [“1921”  , [554, 207, 600, 221]]}

Ground-truth: {“December 1958”}

Question: What is the 'actual' value per 1000, 

                 during the year 1975?

ViTLP output: {[“0.2”, [184, 696, 215, 718]]}

Ground-truth: {“0.24”}

Figure 8: Four examples (two successful cases & two failure cases) of ViTLP document VQA outputs with
grounding locations.
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