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Abstract

We present an effective recipe to train strong
long-context LLMs that are capable of utiliz-
ing massive context windows of up to 32,000
tokens. Our models are built through continual
pretraining from LLAMA 2 checkpoints with
longer text sequences and on a dataset where
long texts are upsampled. We perform exten-
sive evaluation using language modeling, syn-
thetic context probing tasks, and a wide range
of downstream benchmarks. Across all evalua-
tions, our models achieve consistent improve-
ments on most regular-context tasks and sig-
nificant improvements on long-context tasks
over LLAMA 2. Moreover, with a cost-effective
instruction tuning procedure that is free of ex-
pensive annotation, the presented models can
already surpass gpt-3.5-turbo-16k’s over-
all performance on long-context benchmarks.
Alongside these results, we provide an in-depth
analysis on each individual component of our
method. We delve into LLAMA’s position en-
codings and discuss its key limitation in mod-
eling long data. We examine the impact of
various design choices in the pretraining pro-
cess, including the data mix and the training
curriculum of sequence lengths – ablation re-
sults suggest that having abundant long texts in
the pretrain dataset is not the key to achieving
strong performance, and we empirically verify
that long context continual pretraining is more
efficient and similarly effective compared to
pretraining from scratch with long sequences.

1 Introduction

Large language models (LLMs), trained with an un-
precedented magnitude of data and compute, hold
the promise of fundamentally improving the way
we interact with the digital world. As LLMs get
rapidly deployed and continue to evolve through
scaling, we envision these models to serve more
intricate and complex use cases, such as analyzing
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Figure 1: We show that our model’s validation loss
can be fit as a function of the context length: L(c) =
(αc )

β + γ with a different set of α, β, γ for each model
size. This power-law relationship suggests that context
length is another important axis of scaling LLMs and
our model can continually improve its performance as
we increase the context length up to 32,768 tokens.

dense knowledge-rich documents, powering more
genuine and engaging chatbot experiences, and aid-
ing human users in iterative creation processes such
as coding and design, etc. A crucial feature sup-
porting this evolution is the ability to effectively
process long-context inputs.

LLMs with robust long-context capabilities
are primarily provided through proprietary LLM
APIs (Anthropic, 2023; OpenAI, 2023) and there is
no open recipe for building long-context model that
can demonstrate on-par downstream performance
as these proprietary models. Moreover, existing
open-sourced long-context models (Tworkowski
et al., 2023a; Chen et al., 2023; Mohtashami and
Jaggi, 2023; MosaicML, 2023b) often fall short on
evaluations and primarily measure long-context ca-
pabilities with the language modeling loss and syn-
thetic tasks, which do not comprehensively demon-
strate their effectiveness in diverse, real-world sce-
narios. Additionally, these models often overlook
the necessity of maintaining strong performance
on standard short-context tasks, either bypassing
the evaluations or reporting degenerated perfor-

4643



mance (Peng et al., 2023; Chen et al., 2023).
In this work, we present a method to build long-

context LLMs with superior performance over ex-
isting open-sourced models. We build our models
by continually pretraining from LLAMA 2 check-
points with additional 400 billion tokens formed
as long training sequences. Among the model se-
ries, the smaller 7B/13B variants are trained with
32,768-token sequences while the 34B/70B vari-
ants with 16,384-token sequences. In contrast to
the limited evaluation performed by existing stud-
ies, we extensively evaluate our models across var-
ious types of benchmarks. On language modeling,
our model demonstrates a clear power-law scal-
ing behavior with respect to context lengths. This
scaling behavior, as shown in Figure 1, not only
shows our models’ ability to consistently benefit
from more contexts but also suggest that context
length is another importance axis of scaling LLMs.
When comparing our models to LLAMA 2 on stan-
dard benchmarks, we not only observe significant
improvements on long-context tasks but also mod-
est improvements on standard short-context tasks,
especially on coding, math, and knowledge bench-
marks. We explored using a simple and cost-
effective procedure to instruction finetune our con-
tinually pretrained long models without any human-
annotated data. The end result is a chat model
that can achieve stronger overall performance than
gpt-3.5-turbo-16k on a series of long-context
benchmarks covering question answering, summa-
rization, and multi-document aggregation tasks.

In the remaining part of this paper, we begin
by presenting the continual pretraining approach
and a lightweight instruction tuning procedure, fol-
lowed by detailed results on a range of short and
long context tasks. To facilitate future research, we
complement our results with a thorough analysis
discussing how the design of positional encodings,
the length distribution of the dataset, and the train-
ing curriculum contribute to the final performance.

2 Method

2.1 Continual Pretraining

Training with longer sequences can introduce sig-
nificant computational overhead due to quadratic
attention calculations. This motivates us to take
a continual training approach instead of training
from scratch. The underlying hypothesis that simi-
lar long-context capabilities can be learned by con-
tinually pretraining from a short-context model is

later validated in Section 4.4. We keep the original
LLAMA 2 architecture nearly intact during contin-
ual pretraining and only make a necessary modifica-
tion to the positional encoding that is crucial for the
model to attend long context. We also choose not
to apply sparse attention (Child et al., 2019) in this
work, since given LLAMA 2 70B’s model dimen-
sion (h = 8192), the cost of attention matrix calcula-
tion and value aggregation only becomes a compu-
tation bottleneck when the sequence length exceeds
49,152 (6h) tokens (Narayanan et al., 2021).1

Positional Encoding Through early experiments
at the 7B scale, we identified a key limitation of
LLAMA 2’s positional encoding (PE) that prevents
the attention module from aggregating information
of distant tokens. We adopt a minimal yet neces-
sary modification to the RoPE positional encod-
ing (Su et al., 2022) for long-context modeling –
decreasing the rotation angle (controlled by the hy-
perparameter “base frequency b”), which reduces
the decaying effect of RoPE for distant tokens. In
Section 4.1, we show this simple method outper-
forms a concurrent approach (Chen et al., 2023) for
extending LLAMA’s context length.

Data Mix On top of the working model with
the modified PE, we further explored different pre-
train data mixes in Section 4.2 for improving long-
context abilities, either by adjusting the ratio of
LLAMA 2’s pretraining data or adding new long
text data. We found that often the quality of the
data plays a more critical role than the length of
texts for long-context continual pretraining.

Optimization Details We continually pretrain
LLAMA 2 checkpoints with increased sequence
length while using the same number of tokens per
batch as in LLAMA 2. We train all models for
a total of 400B tokens over 100,000 steps. With
FlashAttention (Dao et al., 2022a), there is negli-
gible GPU memory overhead as we increase the
sequence length and we observe around 17% speed
loss when increasing the sequence length from
4,096 to 16,384 for the 70B model. For the 7B/13B
models, we use learning rate 2e−5 and a cosine
learning rate schedule with 2000 warm-up steps.
For the larger 34B/70B models, we find it impor-
tant to set a smaller learning rate (1e−5) to achieve
monotonically decreasing validation losses.

1While sparse attention might be useful for reducing the
key/value cache size at inference time when trading off per-
formance, it can complicate the inference pipeline and the
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Model Size Coding Math MMLU Commonsense OpenQA

LLAMA 2

7B 16.8 8.55 45.3 63.9 48.9
13B 24.5 16.3 54.8 66.9 55.4
34B 27.8 24.2 62.6 69.9 58.7
70B 37.4 35.2 68.9 71.9 63.6

LLAMA 2 LONG

7B 20.6 10.5 47.8 64.9 51.0
13B 25.7 21.5 60.1 67.8 56.8
34B 29.9 29.0 65.0 70.9 60.3
70B 39.9 41.3 71.7 72.7 64.0

Table 1: Performance on standard short-context benchmarks. We report Coding score as the average of pass@1 of
HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021); Math score as the average of top-1 accuracy of
8-shot GSM8K (Cobbe et al., 2021) and 4-shot MATH (Hendrycks et al., 2021); OpenQA score as the average of 5-
shot performance on NaturalQuestions (Kwiatkowski et al., 2019) and TriviaQA (Joshi et al., 2017); Commonsense
score as the average of PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019), HellaSwag (Zellers et al., 2019),
WinoGrande (Sakaguchi et al., 2021), ARC easy and challenge (Clark et al., 2018), OpenBookQA (Mihaylov et al.,
2018) and CommonsenseQA (Talmor et al., 2018).

2.2 Instruction Tuning

Collecting human demonstration and preference
labels for LLM alignment is a cumbersome and
expensive process (Ouyang et al., 2022; Touvron
et al., 2023b). The challenge and cost are more pro-
nounced under long-context scenarios, which often
involve complex information flow and specialized
knowledge, e.g., processing dense legal/scientific
documents, making the annotation task nontrivial
even for skilled annotators. In fact, most existing
open-source instruction datasets (Conover et al.,
2023; Köpf et al., 2023) predominantly consist of
short samples.

In this work, we found that a simple and cheap
approach which leverages a pre-built large and di-
verse short-prompt dataset works surprisingly well
on long-context benchmarks. Specifically, we take
an in-house short-context finetuning dataset (re-
ferred as “FT-Short”) and augment it with synthetic
self-instruct (Wang et al., 2022) long data generated
by LLAMA 2 CHAT, in the hope that the model can
learn a diverse set of skills through the large amount
of short-context data and transfer that knowledge
to long-context scenarios. The data generation pro-
cess focuses on QA-format tasks: starting from a
long document in our pretraining corpus, we select
a random chunk and prompt LLAMA 2 CHAT to
write question-answer pairs based on information
in the text chunk. We collect both long and short
form answers with different prompts. After that,
we also adopt a self-critique step where we prompt
LLAMA 2 CHAT to verify the model-generated
answers. Given a generated QA pair, we use the
original long document (truncated to fit the model’s

improvements can also be offset by quantization methods.

maximum context length) as the context to build a
training instance.

For short instruction data, we concatenate them
as 16,384-token sequences. For long instruction
data, we add padding tokens on the right so that
models can process each long instance individu-
ally without truncation. While standard instruc-
tion tuning only calculates loss on the output to-
kens, we find it particularly beneficial to also calcu-
late the language modeling loss on the long input
prompts, which gives consistent improvements on
downstream tasks (Section 4.3).

3 Main Results

3.1 Pretrained Model Evaluation

Short Tasks To make long-context LLMs uni-
versally useful, an important desiderata is to en-
sure robust performance on standard short-context
tasks. We verify our models’ performance on a
series of common benchmarks following the pre-
vious work (Touvron et al., 2023b). The aggre-
gated results are shown in Table 1. Overall, we
observe on-par and, in most cases, stronger re-
sults than LLAMA 2. Notably, we observe sig-
nificantly improved results on coding, math, and
knowledge intensive tasks such as MMLU. As
shown in Table 2, our model outperforms both
GPT-3.5 and PaLM (Chowdhery et al., 2023) on
MMLU and GSM8k. This is in contrast to a pre-
vious work (Chen et al., 2023) which observes
degradation on short tasks. We attribute the im-
provements to additional training FLOPs and the
knowledge learned from newly introduced data.

Long Tasks Different from previous
works (Chen et al., 2023; Mohtashami and
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Task GPT-3.5 GPT-4 PaLM PaLM-2-L LLAMA 2 LLAMA 2 LONG

MMLU (5-shot) 70.0 86.4 69.3 78.3 68.9 71.7
Natural Questions (1-shot) - - 29.3 37.5 33.0 35.7
GSM8K (8-shot) 57.1 92.0 56.5 80.7 56.8 65.4
HumanEval (0-shot) 48.1 67.0 26.2 - 29.9 32.9

Table 2: Comparison with closed models on standard short tasks.

Model NarrativeQA Qasper QuALITY QMSum
F1 (0-shot) F1 (2-shot) EM (2-shot) ROUGE-geo∗ (1-shot)

Focused Transformer (3B) 16.3 15.4 20.5 10.6
Yarn-7B-128k 20.9 26.2 32.3 11.4
Together-7B-32k† 23.3 27.3 41.2 12.6
Xgen-7B-8k-base 17.4 20.5 21.0 6.79
MPT-7B-8k 18.8 24.7 23.7 8.78
Yarn-13B-128k 23.4 27.1 46.4 11.9
MPT-30B-8k 22.9 29.0 41.5 10.3

LLAMA 2 70B 25.7 27.5 53.0 11.9

LLAMA 2 LONG 7B 21.9 27.8 43.2 14.9
LLAMA 2 LONG 13B 25.6 31.2 57.6 15.7
LLAMA 2 LONG 34B 29.4 33.7 65.7 15.9
LLAMA 2 LONG 70B 30.9 35.7 79.7 16.5

Table 3: Comparison with open-source long-context models on research benchmarks. †: “together-7B-32k” is not a
purely pretrained model and has been trained using supervised datasets which can improve its few-shot results. ∗:
ROUGE-geo is the geometric mean of ROUGE-1, 2 and L. All numbers are validation results and the maximum
allowed prompt length is set to 16,384 tokens.
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Figure 2: Performance on long-context tasks as the
maximum context lengths of prompts increase.

Jaggi, 2023) that mostly rely on perplexity and syn-
thetic tasks to gauge long-context performance, we
perform long-context evaluation using real-world
language tasks. We evaluate 0-shot performance
on NarrativeQA (Kočiský et al., 2018), 2-shot on
QuALITY (Pang et al., 2022) and Qasper (Dasigi
et al., 2021), and 1-shot on QMSum (Zhong et al.,
2021). The number of shots are decided based
on the average sample length of each dataset
(i.e., samples in Qasper and QuALITY are often

much shorter than those of NarrativeQA). We
focus these QA-style tasks because of the ease of
prompt engineering2 and less biased automatic
evaluations The input prompts are truncated from
the left side if the prompts exceed the maximum
input length of the model or 16,384 tokens. We
compare with open-source long-context models
available in Huggingface Transformers, namely
Focused Transformer (Tworkowski et al., 2023b),
YaRN (Peng et al., 2023), Xgen (Nijkamp et al.,
2023), MPT (MosaicML, 2023b,a) and Together’s
LLAMA 2 fork (Together, 2023). As shown in
Table 3, our models achieve superior performance
compared to these models. At the 7B scale,
only “Together-7B-32k” can match our model’s
performance. Note that this model is not a purely
self-supervised model and has been finetuned using
a large supervised dataset to improve its few-shot
results. As the 7/13B variants of our models have
been trained with 32k-token sequences, we also
perform comparisons using 32,768 maximum
prompts lengths and the results are consistent, as
shown in Table 11.

2We use simple prompt “{CONTEXT} Q: {QUESTION}, A:”
to evaluate all pretrained models.
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Model Summarization Question answering Aggregation
GR SS QM SQAL Qspr Nrtv QALT MuSQ SpDg BkSS Avg

GPT-3.5-turbo (4k) 21.3 16.1 15.6 20.4 49.3 25.1 66.6 27.1 49.1 49.8 34.0
GPT-3.5-turbo-16k† 24.3 16.2 17.4 21.4 50.0 29.5 72.0 27.0 54.1 54.6 36.7
Claude (8k) 24.2 16.1 14.6 21.0 52.3 32.6 84.8 36.1 61.6 47.4 39.1
GPT4 (8k) 26.3 17.3 18.5 22.6 50.7 27.6 89.2 41.1 62.8 60.5 41.7

LLAMA 2 LONG CHAT 70B 26.0 15.0 20.0 20.9 52.0 31.7 82.6 27.3 55.5 46.2 37.7

Table 4: ZeroSCROLLS long-context leaderboard results. †Evaluated as of 8/7/2023. The GPT-4 and Claude
results are directly copied from the leaderboard. Underscored are the 7/10 tasks where our model outperforms
gpt-3.5-turbo-16k.

Effective Context Utilization To validate that
our models can effectively use increased context
window, we first show in Figure 2 that the results
on each long task improve monotonically as we
increase the context lengths. Inspired by (Kaplan
et al., 2020; Hoffmann et al., 2022), we also found
that the language modeling loss of our model fol-
lows a power-law plus constant scaling relationship
with the context length (Figure 1), suggesting: 1)
our model continues to show gain in language mod-
eling up to 32,768 tokens of text, despite having
diminishing returns (e.g., for the 70B model, if
we double the context length, we can expect the
loss to be reduced by a factor of 2−β ≈ 0.7 plus a
model specific constant (1−2−β) ·γ), and 2) larger
models can leverage the contexts more effectively,
indicated by the larger β value of the curves.

3.2 Instruction Tuning Results

We test our instruction tuned model on Zero-
SCROLLS (Shaham et al., 2023) which bundles
10 long-context datasets spanning from summa-
rization, question answering, to multi-document
aggregation tasks. For a fair comparison, we use
the same configuration (prompts, truncation strat-
egy, and maximum generation lengths, etc) as spec-
ified by the benchmark. As shown in Table 4,
without using any human annotated long context
data, our 70B chat model is able to outperform
gpt-3.5-turbo-16k on 7 out of the 10 tasks. In
addition, we run evaluations on six new long tasks
introduced in L-Eval (An et al., 2023) and again
observe strong results, as shown in Table 15 in
the Appendix. We see that the finetuned model is
particularly good at QA tasks which is the main
theme of the self-instruct data. We expect the per-
formance to be further improved if more diverse
data are used for finetuning.

It is worth mentioning that evaluating long-
context LLMs is a nontrivial task. The automatic
metrics used in these benchmarks are limited in
many ways. For instance, the summarization tasks

PE Books CC Wikipedia

RoPE 6.548 6.816 3.802

ROPE PI 6.341 6.786 3.775
ROPE ABF 6.323 6.780 3.771
XPOS ABF 6.331 6.780 3.771

Table 5: Validation perplexity of models with different
positional encoding variants. All samples are 32, 768-
token sequences (CC: CommonCrawl).

only come with a single ground-truth summary
and the n-gram matching metrics do not neces-
sarily align with human preference. For QA and
aggregation tasks, where the metric is less of a
concern, truncating the input context might also
remove the information necessary to answer the
question. Another important caveat is that most
proprietary models do not share their training data
details, which makes it hard to take into considera-
tion the potential leakage during public benchmark
evaluation.

4 Analysis

4.1 Positional Encoding for Long Text

Our early experiments used a synthetic “FIRST-
SENTENCE-RETRIEVAL” task to probe the effective
context window of the pretrained models where we
simply prompt the model to return the first sen-
tence of the input. Our initial task results suggest
that, with the original LLAMA 2 architecture un-
touched, our model was unable to effectively attend
beyond 4, 000 - 6, 000 tokens even after extensive
long-context continual pretraining. We hypothe-
size that this bottleneck comes from the ROPE
positional encoding used in LLAMA 2 series which
imposes a heavy decay on the attention scores3

for distant tokens. We propose a simple modifica-
tion to the default RoPE encoding to reduce the
decaying effect – increasing the “base frequency

3The quantity that heavily decays is
Eq,k[ROPE(q,m)⊤ROPE(k, n)|m,n] as the relative
position |m− n| gets larger where q, k are the query and key
of the two tokens at position m and n.
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Figure 3: Comparison of positional encoding variants on synthetic sentence retrieval task and validation perplexity
evolution during continual pretraining.
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Figure 4: Decaying raw attention scores for distant to-
kens of explored positional encoding variants (assuming
keys and queries are all-ones vectors).

b” of ROPE from 10, 000 to 500, 000, which essen-
tially reduces the rotation angles of each dimension.
The idea is also concurrently suggested in the Red-
dit (r/LocalLLaMa) community and Rozière et al.
(2023). The effect of the base frequency change
is visualized in Figure 4. Another concurrent ap-
proach named “position interpolation” (PI) (Chen
et al., 2023) proposes to linearly scale the input
positions such that the positions of tokens in the
long sequences will to mapped to the model’s orig-
inal position range. As shown by the figure, it also
implicitly achieves a decay reduction effect.

Another interesting observation from the visual-
ization is that RoPE introduces large “oscillation”
in the long-range regions, which could be undesir-
able for language modeling (Sun et al., 2022). To
investigate whether this effect hurts performance,
we also explored another recently proposed variant
of rotary encoding, XPOS (Sun et al., 2022), which
smooths the high-frequency component. Note that
XPOS with the default parameters suffers from the
same decaying issue as ROPE and therefore, we
also applied a similar decay fix to XPOS.

Specifically, we empirically compare the follow-

ing methods: the ROPE baseline, PI, our proposed
RoPE with adjusted base frequency (denoted as
ROPE ABF), and XPOS ABF (visual comparisons
in Figure 4). We report results on 1) long-sequence
validation perplexity in Table 5 and Figure 3a,
and 2) the FIRST-SENTENCE-RETRIEVAL context
probing task4 in Figure 3b. All model variants
are continually pretrained from the 7B LLAMA 2
checkpoint with additional 80B tokens organized
as 32,768-token long sequences. Results on these
evaluations suggest that ROPE ABF performs the
best among all explored variants. In particular,
we see that ROPE ABF is the only variant that
can maintain its performance up to the full 32,768-
token context window on the FIRST-SENTENCE-
RETRIEVAL task. We found that XPOS ABF with
less oscillation does not lead to substantial gains,
suggesting that these artifacts are not detrimental to
language modeling. While XPOS is claimed to pos-
sess better extrapolation property (Sun et al., 2022),
we show XPOS does not extrapolate better than
ROPE after the base frequency modification (see
Appendix C). We provide a theoretical analysis of
RoPE ABF and its difference to PI in Appendix B.

4.2 Pretraining Data Mix
The data used to continually pretrain our model
combines existing datasets used by LLAMA 2 and
new long text data. We also adjusted the data
source mix ratio to up-weight long data samples.
Our early experiments with 7B models confirms the
significant improvements using this data mix for
long-context tasks, as shown in the first two rows
of Table 6. In this section, we aim to rigorously
investigate the source of improvements. In particu-

4We also test on the PASSKEY task as used in (Mohtashami
and Jaggi, 2023). All the model variants except ROPE can
achieve perfect accuracy. We believe this task is overly simple
for context probing.
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Continual Pretrain Data NarrativeQA Qasper Quality QMSum
∆ F1 ∆ F1 ∆ EM ∆ ROUGE-geo

LLAMA 2 LONG data mix 23.70% 43.64% 75.5% 45.70%
LLAMA 2 data mix 18.23% 38.12% 60.3% 44.87%
- remove long text data 19.48% 39.14% 67.1% 36.60%
- upsample existing long text data 22.15% 36.82% 65.0% 42.83%

Table 6: Comparison of different pretraining data mix on long-context tasks. Instead of showing the absolute
performance, we report relative improvements over the 7B LLAMA 2 which has a 4,096-token context window. All
models are evaluated with prompts truncated at 16,384 tokens.

Continual Pretrain Data HumanEval Math MMLU HellaSwag TQA

LLAMA 2 LONG data mix 17.08 4.09 48.62 76.74 66.24
LLAMA 2 data mix 15.24 3.61 46.30 76.63 66.71
- remove long text data 17.07 3.57 46.25 76.76 65.90
- upsample existing long text data 17.07 3.53 46.25 76.74 66.04

Table 7: Standard short task performance of long-context models with different pretrain data mix.

lar, we are interested in differentiating the effects
of the data length distribution and the quality of the
corpus itself.

We perform two additional ablations using
LLAMA 2’s pretrain datasets: 1) we remove the
long text data from the LLAMA 2 dataset and con-
tinually pretrain our model with mostly short docu-
ments; 2) we increase the sample weights of exist-
ing long text data to be similar to the long text ratio
used by proposed new model. Interestingly, even
with most of the long texts removed, the model
can still obtain most of the performance gain over
LLAMA 2. We also find that there is no clear and
consistent advantage as we greatly increase the
long data ratio (the third row v.s. the fourth row in
Table 6 and Table 7). We observe similar results on
the FIRST-SENTENCE-RETRIEVAL task as shown
by Figure 6 in the Appendix.

Based on the above ablations, we can see that
adjusting the length distribution of the pretrain data
does not provide major benefits. However, as we
evaluate these model variants’ performance on stan-
dard short-context tasks, we find that new data mix
also leads to large improvements in many cases,
especially knowledge-intensive tasks like MMLU,
as shown in Table 7. These results suggest that
long-context LLMs can be effectively trained even
with very limited long data and the improvements
of our pretrain data over the one used by LLAMA 2
mostly come from the quality of the data itself,
instead of the length distribution difference.

4.3 Instruction Tuning

We explored various strategies to instruction-
finetune the pre-trained long context model which
do not require any supervised long data. We start
with only finetuning the models with the in-house

short instruction data (FT-Short) and then blend
in with some pretrain data to avoid forgetting of
previous long context continual pretraining. As
demonstrated in Table 8, using only short instruc-
tion data can already produce a decent long model
that significantly outperforms LLAMA 2 on various
long-context tasks. On top of this dataset that only
includes short prompts, we see that adding pretrain
data (calculating language modeling loss on the
whole sequence) can further boost the performance
on most datasets. Inspired by this, we add the LM
loss over the long context inputs when we finetune
with self-instruct data. This simple trick makes
learning more stable when we have unbalanced in-
put and output lengths5, which gives significant
improvements on most of the tested tasks (the last
two rows of Table 8).

4.4 Training Curriculum

Continual pretraining has demonstrated its efficacy
in our experiments, but an open question still re-
mains: does pretraining from scratch with long
sequences yield better performance than contin-
ual pretraining? In this section, we study different
training curricula and try to investigate if contin-
ual pretraining can offer competitive performance
with less computation budget. We start off by pre-
training a 7B model with 32,768 sequence length
from start to the end. Then we explored various
two-stage training curricula where we begin with
4096 sequence length and switch to 32,768 when
the model completes 20%, 40%, 80% of whole
training process. For all cases, we keep the same
number of total training tokens and make sure the
number of tokens per each gradient update remains

5In our cases, the output lengths of most samples are a lot
shorter than the those of the long-context inputs.
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Settings Qasper NarrativeQA QuALITY SummScreenFD QMSum

LLAMA 2 CHAT baseline 12.2 9.13 56.7 10.5 14.4

LLAMA 2 LONG finetuned with:
FT-Short 22.3 13.2 71.4 14.8 16.9
FT-Short mix pretrain 23.7 16.6 76.2 15.7 17.8
FT-Short mix self-inst w/o LM loss 35.7 22.3 59.3 12.2 13.4
FT-Short mix self-inst with LM loss 38.9 23.3 77.3 14.5 18.5

Table 8: Comparison of different instruction finetuning data mixes.

Pretrain Curriculum FLOPs NarrativeQA Qasper Quality QMSum
F1 F1 EM ROUGE-geo

32k from scratch 3.783× 1022 18.5 28.6 37.9 11.46
4k→32k @ 20% 3.405× 1022 20.0 28.1 38.8 12.09
4k→32k @ 40% 3.026× 1022 20.1 27.0 37.4 12.44
4k→32k @ 80% 2.270× 1022 18.5 25.0 38.3 11.00

Table 9: Comparison of models with different training curricula on long context QA tasks.

constant (4 million tokens) by adjusting the batch
size and sequence length accordingly.

We evaluate our models on the long-text QA
tasks used in Section 4.2. As shown in Table 9,
continual pretraining from short context models
can save around 40% FLOPs while imposing al-
most no loss on performance. These results also
align with the validation perplexity and training
loss curves that we observed from each run (shown
in Figure 5 in the Appendix A) – the models can
quickly adapt to the increased sequence length and
get to similar loss scale.

5 Related Work

Long Sequence Models. A long line of research
in handling long data focus on building more ef-
ficient attention variants. Popular methods in-
clude limiting the attention to a subset of the
context (Beltagy et al., 2020; Tay et al., 2020;
Roy et al., 2021) and decomposing the quadratic
computation by removing the softmax normaliza-
tion (Peng et al., 2021; Katharopoulos et al., 2020).
However, the efficiency improvements largely di-
minish as the model size grows. We do not explore
this direction since the attention computation is not
the major bottleneck at the studied scale. We also
leave the investigation of completely new model-
ing paradigms, e.g., state-space models (Gu et al.,
2021) or hybrid architectures (Dao et al., 2022b), to
future work, which would require customized train-
ing framework including hardware-friendly kernels
and optimized training parallelisms.

Position Encoding. In contemporary Trans-
former models, relative position encoding has
emerged as the standard due to its superior perfor-
mance over early absolute variants (Vaswani et al.,

2017). Initial designs of relative encoding (Shaw
et al., 2018; Raffel et al., 2020) integrated position
information by adding an additional learnable term
to the attention scores. Press et al. (2022) proposes
a simplified design with manually defined position
terms and show improved length extrapolation re-
sults. Rotation-based methods (Su et al., 2022; Sun
et al., 2022) maintain the core principle of rela-
tive encoding but directly incorporate the position
information into query and key vectors. This de-
sign was originally motivated by the compatibility
with linear attention methods but later popularized
through their adoption in LLMs (Chowdhery et al.,
2023; Touvron et al., 2023a). We investigate this
line of method due to the constraint of the based
models and focus on evaluating their performance
in modeling long text.

6 Conclusion

We present a series of long-context LLMs that
leverage a simple yet necessary position encod-
ing refinement and continual pretraining to achieve
strong long-context performance. Our long con-
text scaling is performed by continually pretrain-
ing from LLAMA 2 with additional 400B tokens
and outperform LLAMA 2 on both short and long-
context tasks. Our models also demonstrate supe-
rior performance compared to existing open-source
long-context models and compare favorably against
gpt-3.5-turbo-16k on a suite of long-context
tasks after a simple instruction finetuning proce-
dure without human supervision. We complement
our results with a comprehensive analysis, provid-
ing insights on the influences of various factors
including the nuances of position encodings, the
data mix, and the pretraining curriculum on the
final performance. We hope our study could make
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long-context LLMs more accessible and facilitate
further advancements in this field.

7 Limitations

Limited Functionality. The our model proposed
in this paper has not yet been finetuned for a wide
range of long-context applications, such as creative
writing that require long-form outputs. Applying
existing alignment recipes, e.g., RLHF, for various
scenarios is expensive and nontrivial. Even skilled
annotators may struggle to the intricate details in
dense texts. In this regard, we consider developing
efficient alignment methods for long LLMs to be a
very valuable direction for future research.

Tokenizer Efficiency. While the proposed our
model series can consume contexts up to 32,768
tokens, the actually number of words our model
can take is largely affected by the tokenizer be-
haviour. The tokenizer used by the Llama series
has a relatively small vocabulary (32k symbols)
and often produces longer sequences compare to
the sequences given by GPT-3.5’s tokenizer – we
observe our tokenizer often produce 10% more to-
kens on average. Additionally, the tokenizer we use
also cannot efficiently handle whitespace, making
it inefficient to process long code data.

Hallucination. Like other LLMs, we have ob-
served hallucination issue when testing the pro-
posed our model. While this issue is common for
short-context models, tackling with this problem
for long-context models can be more pronounced
because of the dense information they consume and
the insufficient alignment process.
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A More Results
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Figure 5: Smoothed loss curves for the training curriculum ablation. On the left, we show losses for models trained
with a fixed context window. On the right, we compare training curricula where we switch the context length from
4,096 to 32,768 tokens at different stages indicated by the dashed lines. Our models can quickly adapt to the new
sequence length within a few thousand steps.

Model CC Books Wikipedia

32k from scratch 7.67 6.52 4.31
4k→32k @ 20% 7.59 6.46 4.26
4k→32k @ 40% 7.59 6.46 4.25
4k→32k @ 80% 7.59 6.49 4.25

Table 10: Perplexity evaluation of models with different training curricula on three validation sets.

Model Prompt length NarrativeQA Qasper QuALITY QMSum
F1 (0-shot) F1 (2-shot) EM (2-shot) ROUGE-geo∗ (1-shot)

Yarn-7B-128k 16k 20.9 26.2 32.3 11.4
Together-7B-32k 16k 23.3 27.3 41.2 12.6
Yarn-13B-128k 16k 23.4 27.1 46.4 11.9
Yarn-7B-128k 32k 24.0 26.2 30.4 13.6
Together-7B-32k 32k 24.7 27.3 41.3 14.2
Yarn-13B-128k 32k 25.5 27.1 48.0 13.8

LLAMA 2 LONG 7B 16k 21.9 27.8 43.2 14.9
LLAMA 2 LONG 13B 16k 25.6 31.2 57.6 15.7
LLAMA 2 LONG 7B 32k 24.4 28.7 43.6 15.9
LLAMA 2 LONG 13B 32k 27.4 31.6 59.0 17.0

Table 11: Comparison of our models with open-source long-context models on research benchmarks using a
maximum prompt length of 32,768 tokens.

B Theoretical Analysis of Positional Encodings

RoPE maps an argument vector x ∈ Rd into the embedding curve on a sphere in Cd/2 parametrized by a
real parameter t ∈ R and “base frequency” b:

fRoPE(x, t)j = (x2j + ix2j+1) e
ib−

2j
d t.

The purpose of this mapping is to help the attention module to separate the vectors corresponding to
two instances of the same token that are situated at different positions in the input sequence.

Aiming at extending the sequence length of a transformer pretrained with a particular positional
embedding f from L to L̂, we would like to come up with a positional embedding f̂ that minimizes the
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Model Humanities STEM Social Sciences Other

LLAMA 2 LONG 7B 54.8 35.7 58.4 53.2
LLAMA 2 LONG 13B 69.0 44.4 71.3 65.8
LLAMA 2 LONG 34B 73.5 49.9 78.4 69.3
LLAMA 2 LONG 70B 80.1 55.5 84.4 74.9

Table 12: Decomposed MMLU results.

Model HumanEval MBPP MATH GSM8k NQ TQA

LLAMA 2 LONG 7B 18.3 23.0 4.22 16.8 27.5 74.4
LLAMA 2 LONG 13B 19.5 31.8 8.38 34.6 32.5 81.1
LLAMA 2 LONG 34B 22.6 37.2 10.6 47.4 35.0 85.6
LLAMA 2 LONG 70B 32.9 46.8 17.2 65.4 39.8 88.2

Table 13: Results on HumanEval (0-shot), MBPP (3-shot), MATH (4-shot), GSM8K (8-shot), NaturalQuestions
(5-shot) and TriviaQA-wiki (5-shot).

Model PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA CSQA

LLAMA 2 LONG 7B 78.9 48.7 77.8 70.4 76.2 52.0 59.0 61.0
LLAMA 2 LONG 13B 81.6 50.7 81.2 74.1 77.7 51.4 55.6 70.4
LLAMA 2 LONG 34B 82.6 51.7 83.8 77.5 79.7 54.8 60.2 77.0
LLAMA 2 LONG 70B 83.3 52.8 85.7 79.6 80.3 58.4 59.6 81.9

Table 14: Commonsense reasoning decomposed results. We use the same number of shots and evaluation metrics
for all tasks as LLAMA 2.
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Figure 6: FIRST-SENTENCE-RETRIEVAL performance of models trained with different data mixes.

distance between the old and the new images of the embedded vectors:

d(f, f̂) = max
x∈X

min
k∈{0,..N−1} j∈{0,..N̂−1}

dist[f(x, k), f̂(x, j)],

where X ⊂ Rd is the set of vectors that would need to be positionally embedded. (Chen et al., 2023)
computed this distance through the magnitude of the attention scores, but still argued for the efficiency of
their method “position interpolation”) due to its reduced value of the distance to the original RoPE images
when compared to the naive extrapolation of the positional embedding.

With this in mind, we consider two different methods to extend the sequence length of a trained
transformer: Position Interpolation (PI) parameterized with α, and Adjusted Base Frequency (ABF)
parameterized with β. These two methods correspond to the following embedding curves:
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Model Coursera TPO TopicRetrieval FinQA ContractQA NaturalQuestions

Claude 1.3 100k 60.2 83.6 70.6 - - -
gpt-3.5-turbo-16k 59.7 69.9 69.3 45.4 24.9 45.9

Best open models reported in An et al. (2023)
longchat-13b-16k 36.8 55.4 33.3 37.9 21.1 22.8
chatglm2-6b-8k 47.2 54.6 10.0 34.8 16.4 17.6

LLAMA 2 LONG CHAT 52.9 81.8 76.0 47.3 25.5 66.7

Table 15: Evaluation on additional long-context tasks from L-Eval. We report the official metrics defined in An et al.
(2023) and the results of compared models are directly token from the paper.

fRoPE+PI(x, t)j = (x2j + ix2j+1) e
iα·(b−

2j
d )t

fRoPE+ABF (x, t)j = (x2j + ix2j+1) e
i(βb)−

2j
d t

Evaluating a positional embedding a-priori, we should consider the degree of granularity with which
the embedding images are being distributed over the embedding space. Comparing alternative positional
embeddings f̂ mapping Rd×N into Cd/2, we should prefer the one with the maximal value of the distance
between the two closest images:

q(f̂) = min
x∈X ;k ̸=j∈{0..N̂−1}

dist[f̂(x, k), f̂(x, j)].

This leaves us with a multi-objective decision selecting the positional embedding for a model with
extended context: on one hand, f̂ should be chosen so that it minimizes d(f, f̂), while on the other hand
its value of q(f̂) should be big enough.

Before proceeding to the explanation on how we make this multi-objective decision, we would like
to provide a geometric intuition for the positional embeddings considered here. While it is difficult to
visualize a mapping Rd×N → Cd/2, we can consider x ∈ Rd to be fixed and visualize the projection R →
R3. To get the intuition behind PI and ABF, let us consider the helix that is formed by Re

[
fRoPE(x, t)0

]
,

Im
[
fRoPE(x, t)0

]
and Re

[
fRoPE(x, t)j

]
. The example on the Figure 7a depicts a black helix line given

with the system
x = cos t; y = sin t; z = sin at.

The red dots on the line correspond to 11 integer values of t.
Figure 7b aims to illustrate the impact of Position Interpolation on the relative position of the mapped

vectors. The distance between the consecutive points got reduced considerably compered to Figure 7a.
The impact of Adjusted Base Frequency is illustrated on Figure 7c. The distance between the consecutive
points remained almost the same as on Figure 7a, although the minimal distance between points got
considerably reduced due to the increased frequency of the helix. This effect of increased frequency of the
helix would be reduced in the high dimension setting. The value of the coefficient a for the helix depicted
on Figure 7a is two times larger than the value of the coefficient a for the helix depicted on Figure 7c. If
the dimension of the input of the attention mechanism is d = 128, then the difference between θ1 = b−

2j
d

at b = 10, 000 and θ1 = b−
2j
d at b = 500, 000 is only 6%. Thus, we further focus specifically on the

distance between the consecutive images of the embeddings.
We make a formal comparison between Positional Interpolation and Adjusted Base Frequency by

analytically comparing the pairwise distances between the images given by fRoPE+PI and fRoPE+ABF

for consecutive integer values of t. This corresponds to the evaluation of q(f̂) discussed earlier. We will
measure the distance between embedding images in terms of the Euclidean sine similarity metric since all
versions of RoPE are norm-preserving.

sin∠(a, b) = Im⟨a, b⟩
∥a∥∥b∥
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Figure 7: RoPE variants visualization as helices.

The following result states that in a high-dimensional space, the sine similarity
sin∠(fRoPE+ABF (x, n + 1), fRoPE+ABF (x, n)) between two consecutive embedding images
of a vector x can be bounded with a value proportional to (log b + log β)−1. Moreover, the similarity
sin∠(fRoPE+PI(x, n+ 1), fRoPE+PI(x, n)) can be bounded using α(log b)−1.

Theorem 1. For x ∈ Rd and n ∈ N, the Euclidean sine similarity between the two consecutive images of
a positional embedding can be bounded as

mink x2
k

∥x∥2 Cd ≤ sin∠(f(x, n+ 1), f(x, n)) ≤ maxk x2
k

∥x∥2 Cd

where limd→∞Cd ≈
{
(log b+ log β)−1 if f = fRoPE+ABF

α(log b)−1 if f = fRoPE+PI
under the assumptions of α ≪ 1 and

b ≫ 1.

Proof. Let us begin the proof by writing down the expressions for the inner product between two images
of RoPE variants.

⟨fRoPE+PI(x,m), fRoPE+PI(x, n)⟩ = ∑ d
2
−1

j=0

(
x22j + x22j+1

)
eib

− 2j
d α(m−n)

⟨fRoPE+ABF (x,m), fRoPE+ABF (x, n)⟩ = ∑ d
2
−1

j=0

(
x22j + x22j+1

)
eib

− 2j
d β− 2j

d (m−n)

From them, we can derive the expressions for the Euclidean sine similarity between the images of the
positional embeddings:

sin∠(fRoPE+PI(x,m), fRoPE+PI(x, n)) =
∑ d

2−1

j=0 (x
2
2j+x2

2j+1) sin(b
− 2j

d α(m−n))
∑d−1

j=0 x2
j

sin∠(fRoPE+ABF (x,m), fRoPE+ABF (x, n)) =
∑ d

2−1

j=0 (x
2
2j+x2

2j+1) sin(b
− 2j

d β− 2j
d (m−n))

∑d−1
j=0 x2

j

Let’s put m = n+1 to compare the distance between the two consecutive positional embedding images
of the same vector x.

∥x∥2 sin∠(fRoPE+PI(x, n+ 1), fRoPE+PI(x, n)) =
∑ d

2
−1

j=0

(
x22j + x22j+1

)
sin(b−

2j
d α)

∥x∥2 sin∠(fRoPE+ABF (x, n+1), fRoPE+ABF (x, n)) =
∑ d

2
−1

j=0

(
x22j + x22j+1

)
sin(b−

2j
d β− 2j

d ) Due
to the range of b, α and β that is typically considered, we can bound the arguments of the sine functions as
0 < αb−

2j
d ≤ 1 as well as 0 < (βb)−

2j
d ≤ 1. Using that, we derive that sin(b−

2j
d β− 2j

d ) and sin(b−
2j
d α)

are non-negative as well as x2j for any j ∈ {1, . . . d}. Thus, the following inequalities hold:

d
2
−1∑

j=0

min
k

x2k sin(b
− 2j

d β− 2j
d ) ≤

d
2
−1∑

j=0

(
x22j + x22j+1

)
sin(b−

2j
d β− 2j

d ) ≤
d
2
−1∑

j=0

max
k

x2k sin(b
− 2j

d β− 2j
d ),
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d
2
−1∑

j=0

min
k

x2k sin(b
− 2j

d α) ≤
d
2
−1∑

j=0

(
x22j + x22j+1

)
sin(b−

2j
d α) ≤

d
2
−1∑

j=0

max
k

x2k sin(b
− 2j

d α).

Carrying mink x
2
k and maxk x

2
k out of the summation signs, we obtain

min
k

x2k

d
2
−1∑

j=0

sin(b−
2j
d β− 2j

d ) ≤
d
2
−1∑

j=0

(
x22j + x22j+1

)
sin(b−

2j
d β− 2j

d ) ≤ max
k

x2k

d
2
−1∑

j=0

sin(b−
2j
d β− 2j

d ),

min
k

x2k

d
2
−1∑

j=0

sin(b−
2j
d α) ≤

d
2
−1∑

j=0

(
x22j + x22j+1

)
sin(b−

2j
d α) ≤ max

k
x2k

d
2
−1∑

j=0

sin(b−
2j
d α).

Introducing CABF
d =

∑ d
2
−1

j=0 sin(b−
2j
d β− 2j

d ) and CPI
d =

∑ d
2
−1

j=0 sin(b−
2j
d α) proves the first part of the

Theorem:

mink x
2
k

∥x∥2 CABF
d ≤ sin∠(fRoPE+ABF (x, n+ 1), fRoPE+ABF (x, n)) ≤ maxk x

2
k

∥x∥2 CABF
d ,

mink x
2
k

∥x∥2 CPI
d ≤ sin∠(fRoPE+PI(x, n+ 1), fRoPE+PI(x, n)) ≤ maxk x

2
k

∥x∥2 CPI
d .

Now, considering the limit of Cd, we notice that due to the inequalities on the arguments of the sines,
the following bounds hold:

(bβ)−
2j
d

(
1− (bβ)−

2j
d /π

)
≤ sin(b−

2j
d β− 2j

d ) ≤ (bβ)−
2j
d ,

αb−
2j
d

(
1− αb−

2j
d /π

)
≤ sin(b−

2j
d α) ≤ αb−

2j
d

Using the formula of geometric sums and a corollary of the exponential (second) foundational limit, we
establish the limits of the sums of these bounds as d → ∞:

d
2
−1∑

j=0

αb−
2j
d =

α(b− 1)b2/d

b2/d+1 − b
→ α

b− 1

b log b
as d → ∞

d
2
−1∑

j=0

α2b−
4j
d =

α2(b2 − 1)b4/d

b4/d+2 − b2
→ α2 b

2 − 1

b2 log b
as d → ∞

d
2
−1∑

j=0

(bβ)−
2j
d =

(bβ − 1)(bβ)2/d

(bβ)2/d+1 − bβ
→ (bβ)− 1

(bβ) log(bβ)
as d → ∞

d
2
−1∑

j=0

(bβ)−
4j
d =

(b2β2 − 1)(bβ)4/d

(bβ)4/d+2 − b2β2
→ (bβ)2 − 1

(bβ)2 log(bβ)
as d → ∞

Substituting these into the bounds on limd→∞Cd, one achieves:

(log b+ log β)−1

(
(bβ)− 1

(bβ)
− (bβ)2 − 1

π(bβ)2

)
≤ lim

d→∞
CABF
d ≤ (log b+ log β)−1 (bβ)− 1

(bβ)
,

α(log b)−1

(
b− 1

b
− α

π

b2 − 1

b2

)
≤ lim

d→∞
CPI
d ≤ α(log b)−1 b− 1

b

From these bounds, one can see that in the setting considered within this paper, where b = 10000 and
α < 1/4, the approximation of limd→∞Cd used in the statement of the Theorem is of a high quality.
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Based on this theoretical derivation, we return to the interpretation of our experimental resuts. On one
hand, the experiments have shown that the model can adapt to the new sequence length with both RoPE PI
(α = 1/4 or α = 1/8) and RoPE ABF (β = 50). Thus, we can conclude that the chosen hyperparameters
provide a sufficient degree of approximation of RoPE images under b = 10000. In other words, both
d(f, fRoPE+ABF ) and d(f, fRoPE+PI) are small enough to allow rapid adaptation. On the other hand,
comparing the expressions of Cd for RoPE ABF and RoPE PI, we can observe that for the values of α = 1

4
or α = 1

8 and b = 10000 that were used in our experiments, the granularity (the distance between two
consecutive images of RoPE) is much lower for the RoPE PI (α(log b)−1 ≈ 0.027) than for RoPE ABF
((log b+ log β)−1 ≈ 0.076) with β = 50. We further hypothesise that the higher degree of granularity is
related to the higher evaluation on the downstream tasks of the RoPE ABF variant compared to RoPE
PI because it makes the task of distinguishing between the positional embedding images simpler for the
model. In other words, this corresponds to the case of q(fRoPE+ABF ) > q(fRoPE+PI).

Throughout this consideration we implicitly assumed that the distance between the consecutive images
of an embedding is smaller than the distance between any other pair of the images. While this assumption
is likely to hold true in a high-dimensional space, significantly increasing the parameter of β in RoPE
ABF may violate this assumption due to the changed geometry of the embedding curve.
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Figure 8: Evaluation on our 70B model’s extrapolation capabilities.

C Length Extrapolation Results

Despite not the focus of this work, extrapolation is an important property for long context models.
Extrapolation refers to a model’s ability to conduct inference on input sequences that are longer than its
training sequences. We evaluate how our 70B model extrapolates with two tasks:

• Validation loss at each position: In Figure 8a, we visualize the average loss at each position of the
32,768 sequence length where the first 16,384 is the interpolation area (within training sequence
length) and the second half is extrapolation. We use 50 batches of samples and average across them.
To make plots smoother, we also take the mean of losses every 500 positions. As we can see, our
70B model with either ROPE ABF or XPOS ABF maintain the loss in the extrapolation area. To
contrast this, we also plot the result for LLAMA 2 with 4,096 context window: the loss explodes
after the position goes beyond training sequence length, which suggests that LLAMA 2 does not
extrapolate effectively.

• Synthetic FIRST-SENTENCE-RETRIEVAL task: To complement validation loss evaluation, we also
test our 70B model with two different PEs on the context probing task. Unlike validation loss task
where it is hard to find data samples that require very long range dependencies consistently, FIRST-
SENTENCE-RETRIEVAL imposes a very strict requirement for models to attend with a specific length.
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In Figure 8b, we visualize the results up to 32,768 where we do see some performance degradation
when the model needs to extrapolate. In addition, we observe that, despite often considered as having
better extrapolation properties, XPOS ABF does not outperform ROPE ABF in our setting.

D AI Safety

D.1 Evaluation on Safety Benchmarks

Despite showing excellent performance on various of downstream tasks, large language models are prone
to generating harmful, misinformative, and biased contents (Lin et al., 2021; Hartvigsen et al., 2022;
Dhamala et al., 2021; Ji et al., 2023). Long-context language models can process extended inputs in their
context window, but at the same time, they also face a higher risk of jailbreak, especially through means
such as prompt injection (Greshake et al., 2023). In this section, we evaluate the safety capability of
instruction fine-tuned model using three standard academic benchmarks including TruthfulQA (Lin et al.,
2021), ToxiGen (Hartvigsen et al., 2022), and BOLD (Dhamala et al., 2021), similar to (Touvron et al.,
2023b). We focus on the largest instruction fine-tuned model variant (i.e., 70B) and compare its results
with both open sourced LLMs (Falcon-instruct (Almazrouei et al., 2023), MPT-instruct (MosaicML,
2023a)) and propriety LLMS (GPT-3.5, GPT-4 (OpenAI, 2023), Claude-2 (Anthropic, 2023)) in Table 16.

We observe that in general instruction fine-tuned model maintains similar safety performance com-
pared to LLAMA 2 CHAT and is safer and less biased compared to other open-source LLMs such as
Falcon-instruct and MPT-instruct. AI safety is a complex domain and it can be extremely difficult to
comprehensively evaluate all safety aspects of instruction fine-tuned model with three benchmarks. How-
ever, we hope our analysis can serve as a pilot study and provide directional signals on long-context
large language models’ safety performance, which are not discussed in other works on the same topic
(Tworkowski et al., 2023a; Ding et al., 2023; Chen et al., 2023). Currently the community also lacks
dedicated safety benchmarks for long-context large language model evaluation and we plan to invest in
this direction in our future work.

TruthfulQA We evaluate instruction fine-tuned model on TruthfulQA (Lin et al., 2021) to benchmark
its factuality. The benchmark consists of 817 questions covering 38 categories including health, law,
finance, and politics (Lin et al., 2021). Similar to (Touvron et al., 2023b), we use few-shot prompts with 6
random QA pairs for generation and then leverage two fine-tuned GPT-3 models to classify whether the
generation is truthful and informative. We report the percentage of generations that are both truthful and
informative as the final metric in Table 16.

ToxiGen We measure the toxicity of instruction fine-tuned model using ToxiGen (Hartvigsen et al.,
2022) where we check the percentage of toxic and hateful generations against 13 minority groups.
Following (Touvron et al., 2023b), we filtered out prompts where annotators disagree with each other on
the target demographic group. We use the default ToxiGen classifier fine-tuned based on RoBERTa (Liu
et al., 2019) to evaluate the level of toxicity of the model’s outputs. We report the percentage of toxic
generations across all groups in Table 16.

BOLD Bias in Open-Ended Language Dataset (BOLD) (Dhamala et al., 2021) is used in this work
to quantify how biased the models are against people from different demographic groups. This dataset
consists of 23,679 prompts extracted from English Wikipedia covering five domains including race, gender,
religion, political ideology and profession with 43 subgroups in total. Following (Touvron et al., 2023b),
we exclude prompts belonging to Hinduism and Atheism religious subgroups as they only feature 12 and
29 prompts, respectively. After generations are inferred from each model, we leverage the Valence Aware
Dictionary and Sentiment Reasoner (VADER) (Hutto and Gilbert, 2014) to perform sentiment analysis
with a score ranging between -1 and 1. A positive score corresponds to a positive sentiment towards the
subgroup mentioned in the prompt and vice versa. A sentiment score close to 0 indicates neutral sentiment
which is desired. We report the average sentiment score across 43 demographic subgroups as the final
metric for BOLD in Table 16.
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Model Size TruthfulQA ↑ ToxiGen ↓ BOLD ↓
GPT-3.5-turbo - 78.46 0.01 0.50
GPT-3.5-turbo-16k - 75.15 0.07 0.49
Claude-2 - 62.66 0.05 0.46
GPT4 - 80.66 0.03 0.43
Falcon-instruct 40B 57.41 3.3 0.39
MPT-instruct 30B 42.71 16.85 0.34

LLAMA 2 CHAT 70B 64.14 0.01 0.41

LLAMA 2 LONG CHAT 70B 60.95 0.00 0.40

Table 16: Evaluation of fine-tuned LLMs on three safety benchmarks. For TruthfulQA, we present the percentage
of generations that are both truthful and informative (the higher the better). For ToxiGen, we present the percentage
of toxic generations across all groups (the smaller the better). For BOLD, we report the average sentiment score
across 43 demographic groups (the closer to 0 the better).

E Self-Instruct Data

As described in Section 4.3, we use LLAMA 2 CHAT to bootstrap self-instruct data for instruct finetuning.
In this section we describe the detailed procedure as well as providing the necessary prompts used for
generating this dataset. The main challenge is that we need an automated process of generating long
context instruct data with only short context models at hand. The core idea behind this is to split the
long documents into chunks of texts that can fit into short model’s context and apply self-instruct. We
focus primarily on question answering dataset. We first split the long document into smaller chunks,
and for each chunk we construct a prompt as in Figure 9 which gets fed into LLAMA 2 CHAT to get a
question-answer pair. To diversify the question types, we randomly choose between the two prompts that
ask for either normal or short answers. Once we extract the question and answer from the response (using
tags as required by the prompt), we can construct long question answering instruct data together with the
original long document, using the templates in Figure 10 of the corresponding answer type.
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Normal Answer Prompt:
[INST] You are given a text chunk (delimited by triple quotes) taken from a long
text. Write a question about this text and provide the correct answer. The answer
needs to be based on the text. This question will later be used as a reading
comprehension test over the entire document. Wrap the question and answer using
XML tags (<question> and </question>, <answer> and </answer>).
"""
{TEXT_CHUNK}
"""
[/INST]

Short Answer Prompt:
[INST] You are given a text chunk (delimited by triple quotes) from a long
document. Based on information from the text, come up with a specific question
**which can be answered in a few words or a single phrase** and provide the
correct answer without explanation. The answer needs to be based on the text.
This question will later be used as a reading comprehension test over the
entire document. Wrap the question and answer using XML tags (<question>
and </question>, <answer> and </answer>). Again, the answer needs to be short.
"""
{TEXT_CHUNK}
"""
[/INST]

Figure 9: Prompts used for generating question and answer pairs by boostrapping LLAMA 2 CHAT. We split the
long documents into chunks and feed each chunk into one of the prompts with equal probability. We prompt the
models to wrap the answer with XML tags, which enables more accurate answer extraction.

Normal Answer Data Template:
[INST] You are given a long text (delimited by triple quotes) and a question.
Read the text and answer the question in the end.
"""
{FULL_DOCUMENT}
"""
Question: {QUESTION}
[/INST]
{ANSWER}

Short Answer Data Template:
[INST] You are given a long text (delimited by triple quotes) and a question.
Read the text and answer the question in the end as concisely as you can,
using a single phrase or sentence if possible. Do not provide any explanation.
"""
{FULL_DOCUMENT}
"""
Question: {QUESTION}
[/INST]
{ANSWER}

Figure 10: Data templates for constructing long question-answer data. The question and answer pair is extracted
from the response of LLAMA 2 CHAT.
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