
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 4031–4055

June 16-21, 2024 ©2024 Association for Computational Linguistics

Advancing Beyond Identification:
Multi-bit Watermark for Large Language Models via Position Allocation

KiYoon Yoo1 Wonhyuk Ahn2 Nojun Kwak1*

1Seoul National University 2Webtoon AI
{961230,nojunk}@snu.ac.kr whahnize@gmail.com

Abstract

We show the viability of tackling misuses of
large language models beyond the identifica-
tion of machine-generated text. While existing
zero-bit watermark methods focus on detection
only, some malicious misuses demand tracing
the adversary user for counteracting them. To
address this, we propose Multi-bit Watermark
via Position Allocation, embedding traceable
multi-bit information during language model
generation. Through allocating tokens onto dif-
ferent parts of the messages, we embed longer
messages in high corruption settings without
added latency. By independently embedding
sub-units of messages, the proposed method
outperforms the existing works in terms of ro-
bustness and latency. Leveraging the benefits
of zero-bit watermarking (Kirchenbauer et al.,
2023a), our method enables robust extraction
of the watermark without any model access,
embedding and extraction of long messages
(≥ 32-bit) without finetuning, and maintain-
ing text quality, while allowing zero-bit de-
tection all at the same time. Code is released
here: https://github.com/bangawayoo/mb-lm-
watermarking.

1 Introduction

How can we take a step further from merely identi-
fying machine-generated text to proactively tack-
ling misuses of large language models? The emer-
gence of human-like language models and their
easily accessible nature via web interface and APIs
have garnered unprecedented attention from the
public and academia (Hu, 2023). The ability to fol-
low complex instructions has boosted the productiv-
ity of various tasks such as programming, creative
writing, and more. However, there have been in-
creasing concerns about exploiting such language
models to automate malicious activities such as
spreading disinformation. This has necessitated the

*Corresponding author

development of various methods to detect machine-
generated texts through techniques such as zero-
shot detection, supervised training, watermarking,
and more (Mitchell et al., 2023; Wang et al., 2023b;
Kirchenbauer et al., 2023a; Krishna et al., 2023).
These endeavors focus on the crucial task of identi-
fying machine-generated content, which serves as a
pivotal step in mitigating the potential harm caused
by such text.

However, when it comes to more pernicious
misuses of large language models, such as the
dissemination of misinformation and war pro-
paganda on social media platforms for political
or financial gains (Badawy et al., 2018; Pierri
et al., 2023; Annie, 2023), the stakes are consid-
erably higher, potentially leading to the erosion
of social trust (Valenzuela et al., 2022). In such
circumstances, merely identifying the machine-
generated text may not suffice for the language
model providers. Instead, the ability to trace back
to the adversary user responsible for generating the
content becomes pivotal in counteracting such mis-
uses. By doing so, the API providers can take a pre-
cursory measure to ban these users from their sys-
tems and allow media and social platforms, along
with API providers, to collaborate with law en-
forcement authorities and take more decisive ac-
tions. All in all, watermarking the user information
(or part thereof) can hold the adversary user ac-
countable for potential harms facilitated through
language model APIs without having to store user
queries (Krishna et al., 2023), which would be pro-
hibitively expensive and concern ordinary users
who value privacy.

All this can be achieved by embedding multi-
bit information. Recent works (Fernandez et al.,
2023b; Wang et al., 2023a) have achieved this by
providing a distinct signal for each multi-bit mes-
sage. While this is effective in low bit-width and
low noise settings, maintaining the integrity of the
watermark becomes increasingly difficult as the bit-

4031

https://github.com/bangawayoo/mb-lm-watermarking
https://github.com/bangawayoo/mb-lm-watermarking

Figure 1: Comparison of how messages are encoded for zero-bit watermarking (Kirchenbauer et al., 2023a), recent
multi-bit methods, and our proposed method MPAC. For MPAC, the number inside a token (e.g. p = 1) denotes the
allocated position.

width increases due to the exponential number of
possible messages. This is further aggravated in
the presence of higher noise. In addition, having
to consider all the possible messages also follows
with the side effect of increased latency during en-
coding and/or decoding phase, the former of which
degrading the end user experience.

As opposed to this, our proposed method Multi-
bit watermark via Position Allocation (MPAC) first
allocates each token pseudo-randomly onto a sub-
unit of the message to be embedded (Fig. 1). The
allocation of tokens onto different parts of the mes-
sages allows the embedding of longer messages
without added generation latency and fares well in
high corruption settings. Then the message content
at the allocated position determines the state to en-
code using a zero-bit watermarking scheme. For
instance, when following the zero-bit watermarking
scheme of Kirchenbauer et al. (2023a), the message
content decides which token subsets are biased. To
increase load capacity, we can further partition the
vocabulary into multiple “colored” lists instead of
a single green list, effectively encoding multiple
states for every token. Our experiments show our
method improves upon the runner-up baseline in
terms of robustness of the watermark ≥20% in
high-noise setting for 16-bit and 24-bit messages.

2 Related Works

Watermarking has been studied in various types of
multimedia such as image (Potdar et al., 2005),
video (Asikuzzaman and Pickering, 2017), au-
dio (Hua et al., 2016), and natural language (Top-
kara et al., 2005). Following previous works (Zhu
et al., 2018; Luo et al., 2020), we use the term
watermarking to denote embedding information
into natural language in a manner that is robust
against possible attacks given a watermarked text
– in our case, this is the output generated by a lan-
guage model given the prompt. This differs from
steganography (Cheddad et al., 2010; Fang et al.,

2017; Ziegler et al., 2019; de Witt et al., 2023),
which focuses more on the undetectability of a se-
cret message that is embedded in the multimedia
rather than robustness. For instance, Ziegler et al.
(2019) sequentially encodes information via arith-
metic coding every token. Naively applying this
deterministic encoding scheme makes the water-
mark extremely fragile to simple corruptions as
shown in Appendix Fig. 7.

Recently, methods relying on neural networks
have shown progress in natural language water-
marking, outperforming traditional methods that
rely on rule-based watermarks (Topkara et al.,
2006b,a; Atallah et al., 2001). Abdelnabi and Fritz
(2021) proposed an end-to-end framework where
a decoder network predicts the encoded message.
Yang et al. (2022) improved upon the quality of
the watermarked text by using an algorithmic ap-
proach. Building upon this, Yoo et al. (2023) fo-
cused on robustness and capacity, outperforming
previous works on both aspects. However, since
the proposed method works at the sentence-level,
any addition or removal of a sentence will fail to ex-
tract the watermark. Moreover, these works cannot
distinguish non-watermarked texts, making them
unsuitable for distinguishing between machine text
and human text.

Meanwhile, directly watermarking language
models in a zero-bit manner during token gener-
ation has emerged as a promising approach for
distinguishing language model outputs from hu-
man text (Kirchenbauer et al., 2023a; Aaronson and
Kirchner, 2023) while achieving robustness against
realistic attacks (Kirchenbauer et al., 2023b). Sev-
eral works have improved upon Kirchenbauer et al.
(2023a), e.g., in low entropy generation tasks such
as code generation (Lee et al., 2023), undetectabil-
ity of the watermark (Christ et al., 2023), and its
robustness (Munyer and Zhong, 2023). We focus
on extending the prior work for a more proactive
counteraction towards identifying malicious users

4032

of language models by embedding any information
while maintaining the key advantages.

Concurrent to our work, Fernandez et al. (2023a)
and Wang et al. (2023a) use the entire message to
create a signal unique to each message. Crucially,
both works use the entire message content directly
during embedding as input to the random seed gen-
erator, which leads to key differences in terms of
robustness and latency. We further discuss their
methodology in comparison with ours in the next
section. Aside from this, Wang et al. (2023a) fur-
ther utilize a proxy language model to enhance text
quality.

To give a rough estimate of the required mes-
sage length for encoding a user ID, consider the
POSIX (Group, 2018) standard used when creating
usernames in operating systems. 65 characters (∼7
bits) are permitted by POSIX, meaning at least 35
bits are required to encode a username of 5 charac-
ters. Accordingly, works in image watermarking
embeds messages easily over 32-bits (Zhu et al.,
2018; Zhao et al., 2023; Fernandez et al., 2023b).
Our method makes this feasible by encoding each
bit position independently.

3 Method

We outline the multi-bit watermark protocol:

1. A user sends a prompt X to the language
model provider.

2. Using the message encoding function E ,
the language model provider generates wa-
termarked text Y embedded with a multi-
bit information. The message contains user-
specific meta-data that can aid tracing back to
the user (e.g. timestamp, location, ID).

3. The user publishes the text Ỹ , which may be
edited from the original watermarked text.

4. If the published text is deemed unsafe or mali-
cious, the detector inspects Ỹ (i) to determine
whether the watermark is present (zero-bit de-
tection) and (ii) decode the multi-bit message
to take further measure.

3.1 Zero-bit Watermarking
Throughout the paper, we focus on applying our
multi-bit framework using the zero-bit zero-bit
watermarking scheme introduced in Kirchenbauer
et al. (2023a).* As a preliminary, we briefly review

*Extension to other schemes are in Appendix A.4.

the scheme. An auto-regressive language model
p(y|x) predicts the probability distribution over
the next token ∆(V) given arbitrary length prefix
tokens where V is the vocabulary. A zero-bit water-
mark is embedded by biasing the language model
to output a certain subset of tokens. That is, the
message encoding function E : ∆(V) → ∆(V)
generates another probability distribution that al-
ters the original distribution of p(y|x).

For Kirchenbauer et al. (2023a), the message
encoding function pseudo-randomly chooses a sub-
set of tokens at each token step t to form a green
list Gt. The logit scores lt ∈ R|V| are modified
towards selecting the green-listed tokens in favor
of the other tokens by adding a bias term δ to the
logits in Gt. Instead of fixing the greenlist using
rule-based heuristics such as spelling or synonym
variations (He et al., 2022), the greenlist is selected
pseudo-randomly at each time step to minimize a
noticeable shift in text distributions. At each time
step, a seed s is outputted depending on the pre-
vious h tokens using a pseudo-random function
f : Nh → N, and s is used to sample Gt from V .

We dub this message encoding function as
Greenlist. Given t− 1 prefix tokens X1:t−1, and
pseudo-random function f , the tth token is gener-
ated by

Greenlist

1. Compute hash of tokens s = f(Xt−h:t−1).
2. Permute vocabulary Vt using s as seed for a

random number generator (RNG).
3. Let Gt be the first γ|V| tokens from Vt
4. Add δ to token logits in Gt.

Decoding. To determine the presence of the water-
mark, the detector inspects the ratio of the green-
listed token using the same pesudo-random func-
tion f . A watermarked text will ideally have a
high ratio of green tokens. Without the knowledge
of the greenlist (null hypothesis), the number of
tokens in the greenlist (g) follows a binomial dis-
tribution. (Kirchenbauer et al., 2023a) used the
normal approximation to the binomial distribution
to compute the z-statistics for a text with T tokens:
z = g−γT√

γ(1−γ)T
.

3.2 MPAC: Extending to Multi-bit
Watermark

The objective of multi-bit watermarking is to em-
bed and extract a message m ∈ Σb where Σ de-

4033

notes the r-ary possible strings, or more commonly
referred to as the alphabet. For a binary message,
Σ = {0, 1}. We let p ∈ {0, . . . , b− 1} denote the
position of the message and m[p] ∈ {0, . . . , r−1}
the message content at position p. Hereafter, we
use [a] to denote the integer set {0, . . . , a− 1}.

Our proposed method Multi-bit watermarking
via Position Allocation (MPAC) works by allocating
the tokens to message positions. First, notice that
zero-bit watermarking can be viewed as watermark-
ing a single bit of information stating the existence
of a watermark. In essence, each token generated
by the language model is a signal that reinforces
the watermark.

Our message encoding function E : Σb ×
∆(V) → ∆(V) alters the probability distribution
dependent on the message. We first assign a po-
sition p using a random number generator seeded
with s. Then the message content m = m[p] ∈ [r]
is encoded by permuting V and favoring the mth

subset. Our message encoding function is ex-
tremely easy to implement over the Greenlist
scheme. We highlight the steps in colors that are
specific to ours. An illustrative flow diagram is
shown in Fig. 2.

MPAC

1. Compute s = f(Xt−h:t−1).
2. p← sample([b]) using s as seed.
3. m←m[p]
4. Permute vocabulary Vt using s as seed.
5. Partition Vt = [C0t , · · · , Cr−1

t] discarding re-
mainders if any.

6. Add δ to token logits in Cmt .

Colorlisting In Step 5, r is the number of available
partitions. The number of vocabulary partitions
is determined by the greenlist proportion γ, i.e.
r = ⌊ 1γ ⌋. When r > 2, we can further increase
the load capacity by taking advantage of all the
‘colored’ lists (hence, the notation C), instead of
only using the greenlist. Given a binary message
of length b, the message is convereted to radix r

attaining mr ∈ [r]b̃ where b̃ = ⌈ b
log2 r
⌉. In Fig. 2,

we illustrate the case of r = 4 and b = 8, where the
8-bit message is converted into radix 4, resulting in
an effective message length of b̃ = 4. When b̃ ̸= b,
we sample the position from b̃.

At each token generation, the message content at
the assigned position p determines which colorlist
to add δ to. If the message content is ‘0’, the tokens

Figure 2: An overview of our method MPAC. See §3.2
for details.

from the first list (red in Fig. 2) are favored. Note
that zero-bit watermarking can be seen as a special
case of embedding the same single bit message
(b = 1,m = 0).
Message Decoding Given a watermarked language
model output, we determine the position and which
colorlist each token is from and increment the num-
ber of tokens in the colored lists. For instance, for
the tth token with message position p = i and the
jth colorlist Cjt , we increment the counter W[i][j]

where W ∈ Rb̃×r. After computing this on the
entire text segment, we predict the message con-
tent by taking the colorlist with the most tokens for
each position. A Pythonic algorithm is shown in
Algorithm 1.

3.3 Detecting Machine Text

While we can use MPAC to decode the multi-bit
watermark in conjunction with another detection
mechanism, MPAC alone can detect human text
from watermarked text just like zero-bit watermark-
ing. To distinguish between a watermarked text and
a non-watermarked (human-written) text, we count
the number of tokens assigned to the predicted
message. This corresponds to w in Line 12 of Al-
gorithm 1. We model the number of tokens in the
argmax colorlist of position i as a random variable
Ci

H0∼ Binomial(Ti, γ) where Ti is the number of
tokens assigned to position i. As C0, . . . , Cb−1 are
independent for a fixed set of trials (Ti, . . . , Tb−1)

4034

Algorithm 1: Message Decoding

Input: Text X1:T , context width h, effective message length b̃, counter W ∈ Rb̃×r

Output: Predicted message m̂, number of colorlisted tokens w
/* Initialize counter */

1 W[p][m] = 0 ∀p,m
/* Count tokens in colorlists */

2 for t in [h+ 1, T] do
3 s = f(Xt−h:t−1)

4 p = sample([b̃]) using s as seed
5 Vt = permute(Vt) using s as seed
6 for m in [r] do
7 if Xt ∈ Gmt then
8 W[p][m] += 1
9 continue

10 end
11 end

12 end
/* Predict message */

13 m̂r = “ "
14 w = 0

15 for p in [b̃] do
16 w += max(W[p][:])
17 m̂ = argmax(W[p][:])
18 m̂r += str(m̂)
19 end
20 Get bit message m̂ by converting m̂r

21 return m̂, w

and have the same success probability parameter,
the sum of these is a binomial random variable as
well:

C = C0 + · · ·+ Cb−1
H0∼ Binomial(T, γ) (1)

where T = T0 + · · · + Tb−1. This reduces to the
same random variable used in zero-bit watermark-
ing and we can compute the z-statistics. More dis-
cussions regarding the details of the z-statistic and
other possible statistics are outlined in Appendix
A.2.

3.4 Comparison to Other Works

The message encoding function of existing works
use the entire message m. After permuting Vt, Fer-
nandez et al. (2023a) cyclically shift the vocabulary
m10 times where m10 is the radix-10 form of m.
This modifies Step 2 of Greenlist. Wang et al.
(2023a) hashes m to attain a seed s′ to permute the
vocabulary along with the seed attained from prefix
tokens, modifying Step 1.

Cyclic-Shift

2’. Permute Vt using s as seed. Then, cyclic shift
m10 times.

Message-Hash

1’. s′ ←Hash (s+Hash (m10))

Using the entire message leads to two key charac-
teristics that diverge from ours. First, the hamming
distance between two messages is not necessarily

preserved after applying the encoding function. As
an example, consider Message-Hash. Using the
final seed s′ created from m = 0000 does not guar-
antee an output from the RNG that is any closer
to that of m = 0001 (hamming distance of 1) as
it is to m = 1111 (hamming distance of 4). This
leads to an all-or-nothing behavior where either the
entire message is extracted without error or is a
completely random message. In the presence of
high corruption, which reflects the real-world case,
we show this behavior is not desirable as it lacks
enough signal to correctly predict the message.

In addition, the exponential number of messages
(O(2b)) should be considered during message de-
coding to find the optimal message, which renders
decoding of long messages (≥ 32-bit) computation-
heavy† . For Fernandez et al. 2023a, the bit-width
affects the encoding phase due to the cyclic shift
operation, which is more problematic as it affects
the end users. MPAC encodes and decodes each
bit position of the message independently, which
brings a negligible increase in the computation as
the message length is increased.

The simplicity of our multi-bit watermark
scheme via position allocation makes it easy to
apply it on top of other methods. For example,
using the position allocation scheme, we can de-
compose the multi-bit message into blocks and
hierarchically embed them using the message en-
coding scheme of Fernandez et al. (2023a). Details
are in Appendix A.3. In addition, the message
encoding function of MPAC can be generalized to

†See Section 7.5 of Wang et al., 2023a.

4035

other zero-bit watermark approaches that uses the
exponential minimum sampling approach (Aaron-
son and Kirchner, 2023; Kuditipudi et al., 2023).
The scheme is provided in Appendix A.4.

3.5 Techniques for Practical Use

List decoding is a well-established field in cod-
ing theory that decodes a list of messages that are
within a certain hamming distance (Elias, 1991;
Guruswami and Rudra, 2008; Guruswami, 2004).
Inspired by this, we alter our decoding function to
output candidate messages sorted by the level of
confidence. In practice, list decoding is especially
useful because provenance tracing via watermark-
ing is far from finding an exact solution, but nar-
rowing down the possible leakage points for a more
detailed inspection that may be costly. For instance,
when watermarking the timestamp of activity, it is
useful to have a likely set of timestamps for which
the practitioners to manually inspect, rather than a
single candidate.

Denoting the predicted message for position
i by m̂, and the observed number of tokens in
the colored list (strength of the watermark) by
w = Wi[m̂], the confidence of m̂ should be higher
if w deviates from the expected mean under the null
hypothesis that all colored lists are equally likely to
be sampled. We define confidence at position i as
ci ∝ Pr(Wmax

i ≤ w|H0) where Wmax
i is the maxi-

mum cell value of Wi
H0∼Multinomial(Ti, [γ · · · γ])

where Ti is the number of tokens assigned to posi-
tion i. The distribution of Wmax

i is approximated
using techniques from Levin (1981) (See Appendix
A.2.2).

Our algorithm can be parameterized by the con-
fidence bound on each position:

• Input: Best prediction m̂ found by majority
voting via Alg. 1, confidence bound c0

• Output: m̂1, · · · , m̂|L| ∈ L whose predictions
are altered on positions with confidence under
c0

Empirically, we determine c0 by constraining
|L|. Note that since m̂ is always the most confident
message, we comprise L with the next confident
messages. To do this, we greedily alter the posi-
tions with the lowest confidence to the colorlist
with the second largest number of tokens. Note
that this list decoding technique is not unique to
ours and can be applied to other methods as long
as the decoding stage is computationally feasible.

This technique is not unique to ours and can be
applied to other methods as long as the decoding
stage is computationally feasible. Moreover, ap-
plying other techniques from coding theory such
as error correction codes (Wicker and Bhargava,
1999) to MPAC is straightforward as we indepen-
dently encode the position of the message. More
examples are in Appendix A.3.

4 Experiments

4.1 Experimental Settings

For our main experiments, we use LLaMA-2-7B
(Touvron et al., 2023) to generate sequences us-
ing the newslike subset of the Colossal Common
Crawl Cleaned corpus (C4) dataset (Raffel et al.,
2020) following previous work (Kirchenbauer et al.,
2023a). This simulates the scenario of generating
fake news given a certain topic. For watermark-
ing and text generation, we follow the configura-
tions used in Kirchenbauer et al. (2023b) unless
otherwise denoted: bias δ = 2.0, greenlist ratio
γ = 0.25, which have shown a good trade-off be-
tween the detection performance and generation
quality. Since γ = 0.25, the number of colors
r is 4. We embed a random b-bit message onto
>500 samples and report the mean metrics across
samples.

When using the term ‘bit’ or ‘bit-width’, this
denotes the initial message length; the effective
message length is determined by r. When neces-
sary, we also show the three standard error ranges.
More details are in Appendix A.5.
Metrics To measure the performance of multi-bit
watermarking, we use bit accuracy following previ-
ous works in the watermarking literature (Zhu et al.,
2018; Luo et al., 2020; Yang et al., 2022; Yoo et al.,
2023) to measure how much of the embedded bits
can be extracted without error. For zero-bit wa-
termark performance (i.e. machine-text detection),
we use area under the ROC curve (AUROC) and
the true positive rate (TPR) at various false pos-
itive rate thresholds. Since all the baselines and
ours are implemented on top of Greenlist, the
impact on the text distribution is equivalent for all
the methods when δ is equal. While MSG-HASH pro-
pose to use an auxiliary language model to aid the
partitioning in the vocabulary, this is not feasible
when the tokenizers of the main language model
and the auxiliary one are different. Thus, we use
the ’Vanilla Marking’ proposed in their paper. We
further discuss the validity of the metrics in Ap-

4036

pendix A.6. To compute the performance of list
decoding, we take the closest message out of the
candidates.
Threat Model In the real world, a user may edit
the generated text before publishing to refine the
language model output or in an attempt to evade
the watermark. We study two types of attacks stud-
ied in the past work (Kirchenbauer et al., 2023b):
copy-paste mixes the watermarked text and human
text and paraphrasing uses another language model
to paraphrase the watermarked text. For the copy-
paste attack, we randomly interleave the generated
watermarked text into a non-watermarked text, mix-
ing a p percentage of non-watermarked texts while
maintaining the total length. For paraphrasing, we
use GPT-3.5-turbo (the prompt is shown in Table
16). Both attacks do not maintain the start and end
tokens of the watermarked text.

4.2 Results
For numerical results, see the tables in Appendix
A.10.
Comparison with Other Works. We compare
MPAC with Fernandez et al. (2023a, Cyclic-Shift)
and Wang et al. (2023a, Message-Hash). We do
not compare with other steganography and post-
processing works as they are extremely fragile
in real-world corruption settings. Please refer to
Sec. 2 for details. For Cyclic-Shift, the bit-width
is bounded by log2 |V| ≈15 bits, since the cyclic-
shift operation is only unique up to the size of the
vocabulary. Due to this, we also experiment with
extending Cyclic-Shift to another zero-bit water-
mark method scheme called exponential minimum
sampling (Aaronson and Kirchner, 2023, EMS),
which does not have a theoretical upperbound. We
call this Cyclic-Shift (EMS).

The results in Fig. 3 show the clean and ro-
bust multi-bit accuracy in the presence of the copy-
paste attack. At 8-bit, all methods achieve nearly
100% accuracy and do fairly well even in the pres-
ence of corruption. At higher bit-width, MPAC out-
performs others in both clean and robust accu-
racy. As corruption rate is increased, the other
methods show dramatic degradation. In contrast,
MPAC can withstand them due to position alloca-
tion, which independently encodes each position.
In Fig. 3 Right, we compare the watermark detec-
tion performance at 8-bit. For Cyclic-Shift and
Message-Hash , we use 10,000 negative samples
and the TPRs@FPR=1e−5 are linearly interpo-
lated due to the lengthened decoding time. The

results demonstrate that MPAC outperforms them at
low FPR thresholds. Notably, at FPR=1e-5, our
true positive rate is .951.

Enlarging the message length comes at the cost
of computation for prior works. Increasing the
bit-width from 16-bit→24-bit, lengthens the gen-
eration time of Cyclic-Shift by roughly 3.6x
(14 seconds → 50 seconds) per sample, while
MPAC does not have increased latency (Fig. 5b).
Message-Hash does not suffer from latency over-
head during encoding, but the computation and
memory overhead increase exponentially during
decoding.
MPAC can maintain the watermark under var-
ious corruptions. The full results of copy-paste
attack in Appendix Fig. 12. Even at 32-bit, our wa-
termark is not entirely destroyed as we encode each
position of the watermark independently, which
shows that it can benefit from error correction
codes. We found paraphrasing to be much more
challenging than the copy-paste attack when para-
phrasing a short segment (T=250) and thus, ex-
perimented with only 8-bit messages and increas-
ing the token lengths (Fig. 4). Nonetheless, the
trends in robustness in the copy-paste attack re-
mains the same with MPAC performing better than
the baselines (Tab. 7). With T=500, the bit accu-
racy reaches nearly 80% and with 16-list decoding,
we are able to attain 90% bit accuracy across all
token lengths. More attacks using a different para-
phraser model are considered in Appendix A.8.
Colorlisting improves multibit performance.
Next, we verify the effectiveness of ‘colorlisting’,
which takes advantage of the surplus vocabulary
partitions. Fig. 5a demonstrates the gain in the
load capacity by using r=4 colorlists as opposed to
r=2 given a fixed γ. Besides the 8-bit case, which
already achieves high accuracy, the performance of
γ = 0.25, r=4 is statistically significant at p=1e−2
than the second best variant. We further discuss the
implications of varying γ, r in Section 5.

Next, we increase the number of tokens (T) and
bit width accordingly to demonstrate the feasibility
of embedding longer messages. While the perfor-
mance degrades as we increase the bit-width, the
watermark does not entirely break, demonstrating
the benefits of decomposing the message by posi-
tions. Moreover, the degradation can be partially
compensated for by using list decoding. For 32-
bit, the best possible message in the list achieves
95% bit acc. by verifying only 16 out of 232 pos-
sible messages. For 64-bit, the absolute perfor-

4037

Clean 10% 30% 50%

8b

0.6

0.8

1.0

B
it
 A

cc
.

MPAC CS (Greenlist) CS (EMS) MSG-HASH

Clean 10% 30% 50%

16b

Clean 10% 30% 50%

24b

1E-2 1E-3 1E-4 1E-5

FPR

0.6

0.7

0.8

0.9

1.0

T
P

R

Figure 3: Left: Comparison with prior works without corruption (clean) and in the presence of copy-paste attack
with p%. On 24-bit, only 100 samples were watermarked for Cyclic-Shift and Message-Hash due to lengthened
encoding / decoding time. Right: TPR for various FPR thresholds.

250T 400T 500T

GPT-3.5

Figure 4: Corrupted bit accuracy for paraphrasing attack
using GPT-3.5 embedding 8-bit messages at varying
token lengths. We show multiple sizes of list (|L| ∈{2,
4, 8, 16}) by color gradation as 8-bit has relatively small
output space.

mance gain is 3.0% by generating merely 16 more
candidate messages, which corresponds to roughly
1e−20 of the total possible messages. Excluding the
8-bit case, whose AUC=.988, all the others have
AUC > .99.
Detection performance is affected by bit-width.
To get a clearer picture of the detection perfor-
mance, we compute AUC vs. the number of tokens
observed in Fig. 6a following Kirchenbauer et al.
(2023b). We see that the detection performance
decreases as the message bit is increased. This
phenomenon is similarly observed in other works
as the increase in the number of “hypotheses" re-
quired to check leads to an increase in the false
positive rate (Fernandez et al., 2023b). We further
discuss the reasons behind this in the subsequent
section. Note, however, that a watermarked text
with 32-bit message reaches AUC over 0.99 once
observing 200 tokens (≈ 150 words). The TPR at
FPR=1e−3 for b={0, 8, 16, 24, 32} are 0.98, 0.98,
0.95, 0.93, and 0.91, respectively (shown in Table
8).
Text quality is not affected by bit-width. MPAC ex-

tends zero-bit watermarking by allocating tokens
to message positions and partitioning vocabular-
ies, which would otherwise be allocated to a single
position and a single vocabulary partition. Con-
sequently, given the same δ and γ, it only alters
the text distribution to an extent that zero-bit water-
marking does regardless of the bit-width. Indeed,
our empirical results in Fig. 5b demonstrate that the
text quality is statistically indistinguishable across
bit-widths. We also show that the encoding latency,
which directly experiences user experience, does
not increase with bit-width. Three standard error
ranges are shown.
Across Model Scales, Datasets, Hash Schemes.
We further experiment with other pretrained mod-
els (Jiang et al., 2023; Zhang et al., 2022) and their
finetuned versions in Table 1. The results demon-
strate Mistral and OPT also achieve a similar per-
formance, showing that our method is not limited
to a specific pretrained model. We also find that the
finetuned versions are also capable of watermark-
ing, though the finetuned LLaMA model show a
slight drop-off. The results for larger models (13B,
70B) and other datasets are in Appendix A.9. To
summarize, we found that text distributions with
low entropy inherently have lower load capacity as
observed similarly in prior works. However, our re-
sults consistently show that multi-bit watermarking
is possible for open-form generation – which re-
sembles disinformation generation – across model
types and scales. We also present results for using
another hash scheme with a longer context width
in Appendix Table 13 and 14, which show a similar
level of performance.

5 Discussions
Load capacity and detection performance trade-
off. As noted above, embedding longer messages
degrades the watermark detection performance due

4038

8b 16b 24b 32b

0.6

0.8

1.0

B
it
 A

cc
.

= 0.25, r = 4 = 0.25, r = 2 = 0.5, r = 2 16-List decoded

8b
125T

16b
250T

32b
500T

64b
1000T

0.6

0.8

1.0

250T

(a)

0b 8b 16b 24b 32b

Bit Width

0.4

0.5

0.6

P
-S

P

5.0

7.5

P
P

L
L
a
te

n
cy

(b)

Figure 5: (a) Clean bit accuracy with 3 standard errors for a fixed number of tokens (left) and fixed BPT (right). (b)
Text quality (PPL, P-SP) and encoding latency across bit widths. 3 standard errors are shown.

0 100 200

of Tokens Observed

0.6

0.8

1.0

A
U

C

AUC=0.92

AUC=0.97

AUC=0.99

(a)

0.80 0.85 0.90 0.95

Bit Acc.

0.96

0.98

1.00
A

U
C

r=2

4

8

r=2

4

r=2.125

.25

.5

(b)

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9

Confidence

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

E
rr

or
 R

at
e

(c)

Figure 6: (a) AUC@number of tokens observed for b={0, 8, 16, 24, 32}. Darker colors denote larger bit-widths. (b)
Zero-bit and multi-bit watermark performance for varying γ and r for 1000 samples at T=100,b=8. (c) Error rate as
a function of confidence.

Model Bit Acc.
LLaMA-2-7b .986 (.06)

+ Chat .922 (.13)
Mistral-7b .987 (.06)

+ Chat .977 (.08)
OPT-1.3b .982 (.07)

Table 1: Performance on other pretrained models and
their SFT and RLHF variants (Llama-2-7b-chat-hf and
Mistral-7B-Instruct-v0.1). Results on b=8, T=250.

to overestimating the statistics of non-watermarked
human texts (Fig. 8). This is because computing
the statistics involved finding the maximum cell
value for each position. One natural solution is
to use a better statistic that models the maximum
cell value of a multinomial distribution. Empiri-
cally, we found that this performed on par or even
slightly worse compared to the current approach,
which may be due to the approximation error when
using a small sample size. We give a more detailed
discussion on this in Appendix A.2.

Radix and Colorlist proportion How do radix
and colorlist proportion γ influence multi-bit wa-
termark performance? For γ=.125, the benefits of
enlarging r to 8 are saturated and show no statisti-
cal significance to r=4. While larger r allows more

tokens to be assigned to each position by reducing
the effective length of the message, it challenges
the problem by increasing the number of possi-
ble answers (digits) per position. Additionally, we
observed that increasing radix trade-offs zero-bit
performance for multi-bit performance. The obser-
vations are illustrated in Fig. 6b.
List Decoding Ablation In Fig. 6c, we show a plot
of bit error rate stratified by the confidence. While
not properly calibrated (under-estimation), having
higher confidence leads to lower error rate. We
also highlight the effectiveness of this technique
by comparing it with randomly outputting candi-
date messages from scratch in Table 3. We also
observed that randomly altering a single position
provides a good list as the best candidate message
is already a good starting point.

6 Conclusion
Our findings demonstrate the effectiveness of em-
bedding multi-bit message by allocating tokens to
sub-units of the message. We show that this does
not lead to quality degradation compared to its zero-
bit counterpart nor latency overhead as bit-width is
increased. This unveils a novel prospect of counter-
acting high-stake misuse of large language models
via API. We also analyze the trade-off between
multi-bit watermark and the detection rate.

4039

Limitations

Watermarking is an prospective technology that can
contribute to a safer use of large language models
through promoting accountability. However, it is
not yet a ready-made solution that can be deployed
in the wild. One clear aspect that needs further
study is quality compared to the non-watermarked
generations. Recent empirical results demonstrate
that watermarking generally leads to degradation
in the quality (Tu et al., 2023). Several works at-
tempt to tackle this by using techniques such as
smaller language models to evenly partition the
watermark (Wang et al., 2023a) or adaptive water-
marks based on entropy threshold (Lee et al., 2023).
Since our proposed method MPAC can maintain
the quality as its zero-bit counterpart, these im-
provements can be easily extended to our multi-bit
framework as well. Another line of research pro-
pose different sampling strategies such as the expo-
nential minimum sampling (Aaronson and Kirch-
ner, 2023) or non-distortionary functions (Hu et al.,
2023). We believe the general framework of de-
composing multi-bit message into units is easily
generalizable to other watermarking scheme. An
example is shown in Appendix appendix A.4.

Another limitation of multi-bit watermark is its
trade-off between the load capacity and detection
rate (zero-bit watermark). While ours outperform
the baselines in the zero-bit watermark setting (§4),
overhauling this inherent limitation of multi-bit
watermark remains another challenge in deploying
multi-bit watermark over its zero-bit counterpart.

Ethics Statement

Watermarking can mitigate malicious use cases by
being able to trace back to the malicious user. This
will enable holding accountability on adversaries
for their malfeasance. However, ordinary users
may find the idea discomforting as it may give the
sense that the API provider can know what outputs
are fed to the individual users. This is not the case
unless the content is published to the public by the
user, which – in many cases – is already done in
an environment where the user can be identified
(e.g. social media). All in all, the identification
of machine-generated texts and tracing their prove-
nance can enhance the accountability of API access
of large language models without breaching indi-
vidual users’ privacy.

Acknowledgements

This work was supported by IITP grant (2021-
0-01343) and NRF grants (2021R1A2C3006659,
2022R1A5A7026673), all funded by MSIT of the
Korean Government.

References
Scott Aaronson and Hendrik Kirchner. 2023.

Watermarking gpt outputs. https://www.
scottaaronson.com/talks/watermark.ppt.
Accessed: 2023-09-14.

Sahar Abdelnabi and Mario Fritz. 2021. Adversarial wa-
termarking transformer: Towards tracing text prove-
nance with data hiding. In 2021 IEEE Symposium on
Security and Privacy (SP), pages 121–140. IEEE.

Palmer Annie. 2023. People are using a.i. chatbots to
write amazon reviews. CNBC.

Md Asikuzzaman and Mark R Pickering. 2017. An
overview of digital video watermarking. IEEE Trans-
actions on Circuits and Systems for Video Technology,
28(9):2131–2153.

Mikhail J Atallah, Victor Raskin, Michael Crogan,
Christian Hempelmann, Florian Kerschbaum, Dina
Mohamed, and Sanket Naik. 2001. Natural language
watermarking: Design, analysis, and a proof-of-
concept implementation. In International Workshop
on Information Hiding, pages 185–200. Springer.

Adam Badawy, Emilio Ferrara, and Kristina Lerman.
2018. Analyzing the digital traces of political manip-
ulation: The 2016 russian interference twitter cam-
paign. In 2018 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining
(ASONAM), pages 258–265.

Elwyn R Berlekamp. 1964. Block coding with noiseless
feedback. Ph.D. thesis, Massachusetts Institute of
Technology.

Abbas Cheddad, Joan Condell, Kevin Curran, and Paul
Mc Kevitt. 2010. Digital image steganography: Sur-
vey and analysis of current methods. Signal process-
ing, 90(3):727–752.

Miranda Christ, Sam Gunn, and Or Zamir. 2023. Un-
detectable watermarks for language models. arXiv
preprint arXiv:2306.09194.

Thomas M Cover. 1999. Elements of information theory.
John Wiley & Sons.

Christian Schroeder de Witt, Samuel Sokota, J Zico
Kolter, Jakob Nicolaus Foerster, and Martin
Strohmeier. 2023. Perfectly secure steganography
using minimum entropy coupling. In The Eleventh
International Conference on Learning Representa-
tions.

4040

https://www.scottaaronson.com/talks/watermark.ppt
https://www.scottaaronson.com/talks/watermark.ppt
https://www.cnbc.com/2023/04/25/amazon-reviews-are-being-written-by-ai-chatbots.html
https://www.cnbc.com/2023/04/25/amazon-reviews-are-being-written-by-ai-chatbots.html
https://doi.org/10.1109/ASONAM.2018.8508646
https://doi.org/10.1109/ASONAM.2018.8508646
https://doi.org/10.1109/ASONAM.2018.8508646

Peter Elias. 1991. Error-correcting codes for list de-
coding. IEEE Transactions on Information Theory,
37(1):5–12.

Tina Fang, Martin Jaggi, and Katerina Argyraki. 2017.
Generating steganographic text with lstms. In Pro-
ceedings of ACL 2017, Student Research Workshop,
pages 100–106.

Pierre Fernandez, Antoine Chaffin, Karim Tit, Vivien
Chappelier, and Teddy Furon. 2023a. Three bricks
to consolidate watermarks for large language models.
arXiv preprint arXiv:2308.00113.

Pierre Fernandez, Guillaume Couairon, Hervé Jégou,
Matthijs Douze, and Teddy Furon. 2023b. The stable
signature: Rooting watermarks in latent diffusion
models. arXiv preprint arXiv:2303.15435.

Philip Gage. 1994. A new algorithm for data compres-
sion. C Users Journal, 12(2):23–38.

The Open Group. 2018. The open group base spec-
ifications issue 7, 2018 edition ieee std 1003.1™-
2017 (revision of ieee std 1003.1-2008) copyright ©
2001 2018 ieee and the open group. https://pubs.
opengroup.org/onlinepubs/9699919799/. Ac-
cessed: 2023-09-14.

Meghal Gupta, Venkatesan Guruswami, and Rachel Yun
Zhang. 2023. Binary error-correcting codes with min-
imal noiseless feedback. In Proceedings of the 55th
Annual ACM Symposium on Theory of Computing,
pages 1475–1487.

Venkatesan Guruswami. 2004. List decoding of error-
correcting codes: winning thesis of the 2002 ACM
doctoral dissertation competition, volume 3282.
Springer Science & Business Media.

Venkatesan Guruswami and Atri Rudra. 2008. Ex-
plicit codes achieving list decoding capacity: Error-
correction with optimal redundancy. IEEE Transac-
tions on information theory, 54(1):135–150.

Xuanli He, Qiongkai Xu, Lingjuan Lyu, Fangzhao Wu,
and Chenguang Wang. 2022. Protecting intellectual
property of language generation apis with lexical
watermark. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pages 10758–
10766.

Krystal Hu. 2023. Chatgpt sets record for fastest-
growing user base - analyst note. Reuters.

Zhengmian Hu, Lichang Chen, Xidong Wu, Yihan Wu,
Hongyang Zhang, and Heng Huang. 2023. Unbiased
watermark for large language models. arXiv preprint
arXiv:2310.10669.

Guang Hua, Jiwu Huang, Yun Q Shi, Jonathan Goh, and
Vrizlynn LL Thing. 2016. Twenty years of digital au-
dio watermarking—a comprehensive review. Signal
processing, 128:222–242.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

John Kirchenbauer, Jonas Geiping, Yuxin Wen,
Jonathan Katz, Ian Miers, and Tom Goldstein. 2023a.
A watermark for large language models. arXiv
preprint arXiv:2301.10226.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Manli
Shu, Khalid Saifullah, Kezhi Kong, Kasun Fer-
nando, Aniruddha Saha, Micah Goldblum, and Tom
Goldstein. 2023b. On the reliability of water-
marks for large language models. arXiv preprint
arXiv:2306.04634.

Kalpesh Krishna, Yixiao Song, Marzena Karpinska,
John Wieting, and Mohit Iyyer. 2023. Paraphras-
ing evades detectors of ai-generated text, but re-
trieval is an effective defense. arXiv preprint
arXiv:2303.13408.

Rohith Kuditipudi, John Thickstun, Tatsunori
Hashimoto, and Percy Liang. 2023. Robust
distortion-free watermarks for language models.
arXiv preprint arXiv:2307.15593.

Taehyun Lee, Seokhee Hong, Jaewoo Ahn, Ilgee Hong,
Hwaran Lee, Sangdoo Yun, Jamin Shin, and Gunhee
Kim. 2023. Who wrote this code? watermarking for
code generation. arXiv preprint arXiv:2305.15060.

Bruce Levin. 1981. A representation for multinomial
cumulative distribution functions. The Annals of
Statistics, pages 1123–1126.

Xiyang Luo, Ruohan Zhan, Huiwen Chang, Feng Yang,
and Peyman Milanfar. 2020. Distortion agnostic deep
watermarking. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 13548–13557.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky,
Christopher D Manning, and Chelsea Finn. 2023.
Detectgpt: Zero-shot machine-generated text detec-
tion using probability curvature. arXiv preprint
arXiv:2301.11305.

Travis Munyer and Xin Zhong. 2023. Deeptextmark:
Deep learning based text watermarking for detec-
tion of large language model generated text. arXiv
preprint arXiv:2305.05773.

Francesco Pierri, Luca Luceri, Nikhil Jindal, and Emilio
Ferrara. 2023. Propaganda and misinformation on
facebook and twitter during the russian invasion of
ukraine. In Proceedings of the 15th ACM Web Sci-
ence Conference 2023, pages 65–74.

4041

https://pubs.opengroup.org/onlinepubs/9699919799/
https://pubs.opengroup.org/onlinepubs/9699919799/
https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/
https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/
http://arxiv.org/abs/1609.07843
http://arxiv.org/abs/1609.07843

Vidyasagar M Potdar, Song Han, and Elizabeth Chang.
2005. A survey of digital image watermarking tech-
niques. In INDIN’05. 2005 3rd IEEE International
Conference on Industrial Informatics, 2005., pages
709–716. IEEE.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Christoph Schuhmann. 2022. Hugging-
face datasets: Christophschuhmann/essays-
with-instructions. https://huggingface.
co/datasets/ChristophSchuhmann/
essays-with-instructions. Accessed: 2023-09-
14.

Mercan Topkara, Giuseppe Riccardi, Dilek Hakkani-
Tür, and Mikhail J Atallah. 2006a. Natural language
watermarking: Challenges in building a practical sys-
tem. In Security, Steganography, and Watermarking
of Multimedia Contents VIII, volume 6072, pages
106–117. SPIE.

Mercan Topkara, Cuneyt M Taskiran, and Edward J
Delp III. 2005. Natural language watermarking. In
Security, Steganography, and Watermarking of Mul-
timedia Contents VII, volume 5681, pages 441–452.
SPIE.

Umut Topkara, Mercan Topkara, and Mikhail J Atallah.
2006b. The hiding virtues of ambiguity: quantifi-
ably resilient watermarking of natural language text
through synonym substitutions. In Proceedings of
the 8th workshop on Multimedia and security, pages
164–174.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Shangqing Tu, Yuliang Sun, Yushi Bai, Jifan Yu, Lei
Hou, and Juanzi Li. 2023. Waterbench: Towards
holistic evaluation of watermarks for large language
models. arXiv preprint arXiv:2311.07138.

Sebastián Valenzuela, Daniel Halpern, and Felipe
Araneda. 2022. A downward spiral? a panel study of
misinformation and media trust in chile. The Inter-
national Journal of Press/Politics, 27(2):353–373.

Lean Wang, Wenkai Yang, Deli Chen, Hao Zhou,
Yankai Lin, Fandong Meng, Jie Zhou, and Xu Sun.
2023a. Towards codable text watermarking for large
language models. arXiv preprint arXiv:2307.15992.

Yuxia Wang, Jonibek Mansurov, Petar Ivanov, Jinyan
Su, Artem Shelmanov, Akim Tsvigun, Chenxi

Whitehouse, Osama Mohammed Afzal, Tarek Mah-
moud, Alham Fikri Aji, et al. 2023b. M4: Multi-
generator, multi-domain, and multi-lingual black-box
machine-generated text detection. arXiv preprint
arXiv:2305.14902.

Stephen B Wicker and Vijay K Bhargava. 1999. Reed-
Solomon codes and their applications. John Wiley &
Sons.

John Wieting, Kevin Gimpel, Graham Neubig, and Tay-
lor Berg-Kirkpatrick. 2022. Paraphrastic representa-
tions at scale. In Proceedings of the The 2022 Con-
ference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 379–388.

Xi Yang, Jie Zhang, Kejiang Chen, Weiming Zhang, Ze-
hua Ma, Feng Wang, and Nenghai Yu. 2022. Tracing
text provenance via context-aware lexical substitu-
tion. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 36, pages 11613–11621.

KiYoon Yoo, Wonhyuk Ahn, Jiho Jang, and Nojun
Kwak. 2023. Robust multi-bit natural language wa-
termarking through invariant features. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2092–2115.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Yunqing Zhao, Tianyu Pang, Chao Du, Xiao Yang,
Ngai-Man Cheung, and Min Lin. 2023. A recipe
for watermarking diffusion models. arXiv preprint
arXiv:2303.10137.

Jiren Zhu, Russell Kaplan, Justin Johnson, and Li Fei-
Fei. 2018. Hidden: Hiding data with deep networks.
In Proceedings of the European conference on com-
puter vision (ECCV), pages 657–672.

Zachary Ziegler, Yuntian Deng, and Alexander M Rush.
2019. Neural linguistic steganography. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 1210–1215.

4042

https://huggingface.co/datasets/ChristophSchuhmann/essays-with-instructions
https://huggingface.co/datasets/ChristophSchuhmann/essays-with-instructions
https://huggingface.co/datasets/ChristophSchuhmann/essays-with-instructions

A Appendix

Table of Contents

1. Decoding Algorithm

2. Analysis on Watermark Detection

3. List Decoding and Other Techniques

4. Extending MPAC to other methods

5. Implementation, Hardware, Code Details

6. Metrics: Bit Accuracy, Text Quality

7. Discussion on the Hashing Scheme

8. More on Robustness: Other Attacks, Detec-
tion

9. Ablations on Datasets and Model Sizes

10. Tabular Results

11. Generation Samples

4043

A.1 Decoding Algorithm

Algorithm 2: Message Decoding
Input: Watermarked text X1:T , hash

context width h, effective message
length b̃

Output: Predicted message m̂, number of
colorlisted tokens w

/* Initialize counter */

1 Wp[m] = 0 ∀p,m
/* Count tokens in colored lists */

2 for t in [h+ 1, T] do
3 s = f(Xt−h:t−1)

4 p = sample([b̃])
5 for m in [r] do
6 Permute Vt using s as seed
7 if Xt ∈ Gmt then
8 Wp[m] += 1
9 end

10 end
11 end

/* Predict message */

12 m̂r = “ "
13 w = 0

14 for p in [b̃] do
15 w += max(Wp[m])
16 m̂ = argmaxm(Wp[m])
17 m̂r += str(m̂)
18 end
19 Get bit message m̂ by converting m̂r

20 return m̂, w

A.2 Analysis on Watermark Detection

A.2.1 Watermark Detection
The presence of a watermark is determined by
counting the number of tokens in the greenlist. For
a human-generated text that has no knowledge of
the greenlist rule, a token will be from the green-
list with the probability γ ≤ 0.5, the proportion of
the greenlist size compared to the entire vocabu-
lary. Without the knowledge of the greenlist (null
hypothesis), the number of tokens in the greenlist
(g) follows a binomial distribution. (Kirchenbauer
et al., 2023a) used the normal approximation to the
binomial distribution to compute the z-statistics for
a text with T tokens: z = g−γT√

γ(1−γ)T
.

Next, we further analyze how bit-width of the
message and radix affect detection performance.
Our analysis stems from the observation that as

8b 16b 24b 32b

0
-.1
-.2
-.3
-.4R

ob
u
st

n
es

s

Position Allocation Schemes

pseudo-random

deterministic

Figure 7: Performance difference between watermark
extraction with and without corruption. "Deterministic"
denotes sequentially encoding each position of the mes-
sage as done in Ziegler et al. (2019) in the Greenlist
framework. Mixing 20% of non-watermarked text
makes the bit accuracy of sequential encoding scheme
nearly random.

we increase the bit-width the detection score for
the non-watermarked text increases more rapidly
than that of the watermarked text. Consequently,
the difference in the two scores decreases as larger
bit-width is used, leading to reduced seperability.
The results are in Fig. 8. Notice that the differ-
ence between the scores of watermarked and non-
watermarked texts decreases for larger bit-width.

To grasp a hint of what is going on, we do away
with the language model and other complexities by
modeling this only through statistical distributions.
To recap, our detection statistic (Eq. 1) was com-
puted by aggregating the number of tokens in each
position of the message. Letting Ci as the number
of tokens in the colorlist for the position i, we can
write the aggregated form as

C = C0 + · · ·+ Cp−1
H0∼ Binomial(T, γ) (2)

However, note that during decoding the ground
truth message is unknown and thus, is predicted
by taking the colorlist that has the max number
of tokens. This is problematic when decoding
for non-watermarked text as it biases the statis-
tic to be higher when bit-width is increased. We let
Wi = [w0, . . . , wr−1] be the number of tokens in
r colorlists (strength of watermark) for position i.
For a non-watermarked text, we can assume that
this is a random variable with equal probability for
each colorlist

Wi ∼Multinomial(ni, [γ · · · γ]) (3)

where ni is the number of tokens allocated to posi-
tion i. Our decoding method takes the maximum
cell value of this, which makes itself a random
variable:

Wmax
i = max(Wi) = max([w0, . . . , wr−1]). (4)

4044

0 200
0

2

4

6

Z
-s

co
re

No watermark

8b 16b 24b 32b

0 200
0.0

2.5

5.0

7.5

10.0

Watermarked

0 200

0

2

4

6

Difference

of Tokens Observed

Figure 8: The detection scores of non-watermarked texts, watermarked texts and their difference as a function of
number of tokens observed. We see that the difference in the scores decreases as bit-width increases, leading to
reduced seperability.

8b 16b 24b 32b

Bit-Width

3

4

5

S
co

re

2 4 8

Radix

10

20

S
co

re

Figure 9: Simulation of the difference between (unor-
malized) scores for watermarked and non-watermarked
multinomial distributions. Higher score signify higher
seperability, hence higher detection performance. We
use ϵ=0.1. For right, we use γ=.125 to allow more radix.

Our final statistic used for our detection score is
the sum of this variable over the entire positions:

Wmax =

p∑

i

Wmax
i (5)

We see that our statistic is dependent upon the num-
ber of candidates when selecting the maximum cell
(i.e. radix) through Eq. 4 and the number of posi-
tions (i.e. bit-width) through Eq. 5.

To verify the effect of bit-width and radix on

the detection score, we compare the difference in
the statistics for a uniform multinomial distribu-
tion, which signify non-watermarked text, and a
multinomial distribution with a slightly modified
probability [γ + ϵ, γ, . . . , γ] to signify the added
bias term for the watermarked distribution. We
sample 1000 samples of Wmax and compute the
difference in the detection scores for the two distri-
butions. The results in Fig. 9 corroborate that an
increase in bit-width / radix decreases the separa-
bility of the detection scores.

In an attempt to overhaul this, we tried comput-
ing the likelihood of W rm

i before aggregating them
using an approximation of (Levin, 1981) (More
details in the next section). However, this only led
to on par or slightly worse performance. This may
be because ni is small for cases when T is small
compared to the length of the message. Other than
this, some of the approaches we attempted were:

• Computing test statistic per position or weight-
ing the statistic of each position with ni before
aggregating.

• Computing the p-value of the binomial ran-
dom variables rather than using the normal
approximation, i.e. regularized incomplete
beta function.

• Computing the p-value under the null hypoth-
esis that the distribution of the colorlists fol-
lows a uniform distribution, i.e. Chi-square
Goodness of Fit test

All the approaches either led to on-par or slightly
worse results.

4045

A.2.2 Approximating Max Multinomial Cell
Distribution

We used the approximation of (Levin, 1981) for
modeling the distribution of the maximum cell fre-
quency. For completeness, we present the steps
used for the approximation adapted to our case.
For a multinomial distribution with sample size N
and probability vectors [p0, . . . , pr−1], Let a be the
maximum cell value, then the cumulative distribu-
tion function of having a maximum value of a can
be approximated for any real number s > 0

P (a) =
N !

sNe−s
{
r−1∏

i

P (Xi ≤ a)}P (W = N)

(6)
where Xi∼Poisson(spi) and W =

∑r−1
i =

Yi∼Truncated Poisson(spi) with range 0, 1, . . . , a.
Following Example 1 of (Levin, 1981), we set
s = N and use Stirling’s approximation for N !.
We also approximate W using the normal approxi-
mation to the Poisson distribution.

A.3 List Decoding and Other Techniques

The decomposition of the message into each bit po-
sition bounds the computation during decoding to
the number of tokens. This allows MPAC to output a
list of most likely messages without exhaustively
considering all the possible messages. We alter
our decoding function to output candidate mes-
sages sorted by the level of confidence. Denoting
the predicted message for position i by m̂, and
the observed number of tokens in the colored list
(strength of the watermark) by w = Wi[m̂], the
confidence of m̂ should be higher if w deviates
from the expected mean under the null hypothe-
sis that all colored lists are equally likely to be
sampled. We define confidence at position i as
ci ∝ Pr(Wmax

i ≤ w|H0) where Wmax
i is the maxi-

mum cell value of Wi
H0∼Multinomial(Ti, [γ · · · γ])

where Ti is the number of tokens assigned to posi-
tion i. The distribution of Wmax

i is approximated
using techniques from Levin (1981) (See Appendix
A.2.2).

Our algorithm can be parameterized by the con-
fidence bound on each position:

• Input: Best prediction m̂ found by majority
voting via Alg. 1, confidence bound c0

• Output: m̂1, · · · , m̂|L| ∈ L whose predictions
are altered on positions with confidence under
c0

Bit Accuracy
δ 0.5 1 2

No feedback .626 .766 .948
δ̃ = δ + 1 .769 .860 .960

Table 2: Results for using feedback for adapting bias on
T=100,b=8

Accuracy Gained
8b 16b 24b 32b

ci-sorted list 1.1% 3.7% 6.0% 5.6%
Random list 0.6% 0.4% 0.5% 0.3%

Latency (seconds/250 tokens)
0b 8b 16b 24b 32b

Encoding (7.9) 8.19 7.98 8.01 7.96 8.24
Decoding (.09) .08 .09 .09 .09 .10

Table 3: Comparison of absolute improvement in bit
accuracy when using confidence-based list decoding
and random list.

Empirically, we determine c0 by constraining
|L|. Note that since m̂ is always the most confident
message, we comprise L with the next confident
messages. To do this, we greedily alter the posi-
tions with the lowest confidence to the colorlist
with the second largest number of tokens. Note
that this list decoding technique is not unique to
ours and can be applied to other methods as long
as the decoding stage is computationally feasible.

A.3.1 Results
We show absolute accuracy gained using
confidence-based list decoding (|L|=16) compared
with random decoding. We further compare the
encoding and decoding latency for sequences
with ∼ 250 tokens using a single Nvidia A100
when using an additive left hash scheme with
context width 1. The results are in Table 3. The
latency does not proportionally increase with
message bit length, making it scalable to long
messages. When using an efficient hashing scheme
watermarking has a negligible increase in both
encoding and decoding compared to vanilla
generation, which requires 7.9 seconds and 0.09
seconds, respectively.

A.3.2 Error Correction Codes
We first use the basic notions from coding theory
adapted from Cover (1999) to formulate our prob-
lem:

• Encoding function is a function E : M →
X that maps the original message into
longer, usually redundant string whereM⊆

4046

[r]b,X ⊆ ΣT . The rate of E is given by
b
T log2 r bits/symbol.

• p(y|x) is a noisy channel that models the trans-
mission of the encoded message.

• A channel’s capacity is the upper bound of
the rate of an encoding function in order for a
reliable transmission.

• Decoding function is a function D : Y →M
that recovers the original message from y.

We first simplify our setting to embedding a single-
digit message (b = 1), which does not lead to a loss
of generality as MPAC encodes each position inde-
pendently. Each token of a language model is a sig-
nal for embedding the message (m) by repetitively
sampling from the mth colorlist. Therefore, our
encoding function is a repetition code that maps a
redundant message content T (number of tokens)
times. Our channel is the generation process of
the language model, which stochastically transmits
the encoded message by sampling from the vocab-
ulary distribution that has been modified to favor
the selected colorlist. The success probability of
each transmission depends on the magnitude of the
bias δ, the entropy of the vocabulary distribution,
and, more holistically, the text distribution. The de-
coding function selects the argmax of the colorlist
to predict the message content, i.e. majority vot-
ing. To attain a higher match rate at the expense of
rate E, one can use error correction codes such as
(Wicker and Bhargava, 1999) prior to the encoding
function and after the decoding function.

A.3.3 Message Correction with Feedback
One key characteristic of our p(y|x) is that we can
instantly check whether the message was correctly
transmitted by examining whether the sampled to-
ken is in the correct colorlist. This property resem-
bles the settings of error correcting codes with feed-
back, in which the receiver can send feedback to
the sender after receiving the message(Berlekamp,
1964; Gupta et al., 2023). One can take advantage
of this property by adapting the magnitude of the
bias during encoding when the majority vote of a
given position differs from the actual message.

We provide some preliminary results of taking
advantage of feedback during message encoding.
One simple scheme is adapting the magnitude of
the bias so that when the message is not correctly
encoded, we enlarge the bias. Concretely, for 0 ≤

t ≤ T that is allocated to position p, if the current
max colorlist does not match the actual message
content, i.e. m[p] ̸= argmaxjW[j], we use a larger
bias δ̃ > δ. The results in Table 2 show that all lead
to an increase in the multi-bit accuracy. However,
we observed this came with a degradation in text
quality measured by automatic metrics. We leave
finding better methodology as a future work.

A.4 Extending MPAC to other methods

Block Allocation Instead of allocating a sin-
gle position as done in MPAC, we can allocate
a block of message, after which techniques of
Cyclic-Shift can be used to encode the block
message. This ensemble approach enables the prior
works to embed longer messages. Deriving it name
from Position Allocation, we dub this as Block
Allocation.

Block Allocation

1. Compute s = f(Xt−h:t−1).
2. Chunk message in n blocks. m =

[m1, . . . ,mn] where mn ∈ Σ
b
n

3. p← sample([n]) using s as seed.
4. Run Cyclic-Shift with message as mp

At decoding, we predict the message for each
block and concatenate them. As a prelimi-
nary experiment, we use Block Allocation
with Cyclic-Shift using n=4 blocks. Block
Allocation can embed 24-bit messages with .901
bit accuracy (c.f. Cyclic-Shift achieves .775)
and 32-bit with .871 accuracy.
Extension to Other Zero-bit Watermarking
Aaronson and Kirchner (2023) is another line of
work in zero bit watermarking that modifies the
sampling process by generating a secret vector
r ∈ [0, 1]|V| based on the random seed s. Given
the original probability distribution p|V|, the token
with both large pv and rv is favored by choosing

x = argmaxv∈Vr
1/pv
v . (7)

We can adapt our position allocation method
to this as well by preceding the above step with
position allocation. Then, the secret key can be
modified depending on the message content by the
following rule:

r =

{
r if m[p] = 0

1− r if m[p] = 1
(8)

4047

where 1 is a vector with 1 in all the elements. Anal-
ogous to favoring mutually exclusive colorlists, this
allows favoring different tokens depending on the
message content. At decoding time, we can simi-
larly maintain a counter for each position for the
two cases.

A.5 Implementation, Hardware, Code Details

We follow (Kirchenbauer et al., 2023a) in most ex-
perimental settings. For the hashing scheme in the
main paper, we use LeftHash scheme with context
window h = 1. In the appendix, we provide results
for the SelfHash scheme. For further discussions
regarding the hash scheme see Appendix A.7. To
generate sequences with the desired token length T ,
we generate with the max token set as T . Then we
filter out the watermarked and non-watermarked
sequences with token lengths under Tlow = T − τ .
We set τ=25, except for the LFQA dataset, which
was set to τ=50 as it has instructions that state to
generate answers with 200-300 words. For gener-
ation, we use sampling with a temperature of 0.7.
For each bit-width, a new set of generations had to
be made as the length of the message differed.

For the copy-paste attack, we sample a random
non-watermarked text and truncate to have the
same length. Then, a position is randomly sam-
pled to insert a p percentage of the watermarked
text into the non-watermarked text. We experiment
with varying degrees of p (10%∼ 50%).

We used float16 for all our models during
generation. Our experiment was run on a single
NVIDIA A100. For T=250, generating around
500 watermarked and non-watermarked samples
took approximately 200 minutes for the left hash
scheme. When using the self-hash scheme, this
took significantly longer (∼ 550 minutes). Our
implementation is based on the official codebase
of Kirchenbauer et al. (2023a): https://github.
com/jwkirchenbauer/lm-watermarking.

For baselines, we use the official repository of
Fernandez et al. (2023a)‡ and Wang et al. (2023a)§.
For Message-Hash , following the same configura-
tion presented in their work (GPT-2 as the proxy
model) cannot watermark the outputs of LLaMA-
based models due to the difference in the tokeniz-
ers. Consequently, we resort to the Vanilla Marking
scheme. This makes all the other factors equiva-

‡https://github.com/facebookresearch/three_
bricks

§https://github.com/lancopku/
codable-watermarking-for-llm

0.8 0.9 1.0

Bit Acc.

.325

.350

.375

P
-S

P = 1 = 1.5
5

10

15

P
P

L

Figure 10: Text quality vs. δ across bias@T=100,b=8

lent for the three methods (MPAC, Message-Hash,
Cyclic-Shift) except the message encoding func-
tion E described in §3. Besides, we believe this has
little to no effect on the watermark performance,
since the use of proxy model is intended to enhance
the quality of the text (in terms of perplexity) rather
than the strength of the watermark.

A.6 Metrics: Bit Accuracy, Text Quality

Text Quality Metrics We use the automatic met-
rics used in Kirchenbauer et al. (2023b) such as per-
plexity (PPL) using a larger oracle model (LLaMA-
2-13B) and semantic similarity based on a para-
phraser model (Wieting et al., 2022, P-SP). Using
P-SP, we measure the semantic similarity between
the human text and watermarked text given the
same prompt. While human evaluation is consid-
ered to be the golden label, our main purpose is to
show that our multi-bit watermarking does not de-
grade the quality compared to zero-bit watermark-
ing. Moreover, the effect of watermarking on the
text quality compared to no watermarking shows
promising results in human evaluations when suffi-
ciently large models are used for open-ended gener-
ation by Kirchenbauer et al. 2023b (Appendix A.2
and A.9). Additionally, Fernandez et al. (2023a)
also demonstrate that watermarking does not lead
to noticeable performance degradation even on
benchmarks with non-ambiguous answers such as
coding and math especially with sufficiently larger
models, albeit at a small bias. We further show in
Fig. 10 the trade-off curve between bit accuracy
and text quality. The size indicates the magnitude
of bias ({1, 1.5 2, 3, 4, 5}) and horizontal dashed
lines indicate non-watermarked counterparts. Anal-
ysis of text quality shows δ = 2 lies at a good
trade-off point.
Bit Accuracy for Multi-bit Watermark In our
experiments, we used bit accuracy (error) as our
metric for multi-bit watermark performance. This
is a general metric that is independent of the down-

4048

https://github.com/jwkirchenbauer/lm-watermarking
https://github.com/jwkirchenbauer/lm-watermarking
https://github.com/facebookresearch/three_bricks
https://github.com/facebookresearch/three_bricks
https://github.com/lancopku/codable-watermarking-for-llm
https://github.com/lancopku/codable-watermarking-for-llm

stream application or the encoding scheme. How-
ever, computing the exact match of a message
should be done dependent on the context. To il-
lustrate this, we start with some examples. First,
consider the case where the encoding scheme to
identify users is simply assigning a message to
each user. Then, by embedding 4-bit message one
can encode 24 different users : m=‘0000’ for Bob,
m=‘0001’ for Alice, and so on. For such a sce-
nario, one might be interested in computing the
exact match of the 4-bit message, also known as
the packet error ratio. While this encoding scheme
enables tracing back to the exact users at low load
capacity, this is extremely inflexible as it cannot
handle influx or outflux of users.

Conversely, one can turn to a more flexible en-
coding scheme by encoding each character. Using
UTF-8, this requires 8 bits per character, which
would mean 40 bits is required just for encoding
5 character user ID. For this scenario, one might
be more interested in computing the packet error
ratio of each character or the entire 40-bit mes-
sage. A more realistic encoding scheme will be
somewhere between the middle, which uses a more
efficient representation, e.g. by merging often-used
bytes as done in Byte pair encoding (Gage, 1994).
Added with error correction codes such as the Reed-
Solomon code (Wicker and Bhargava, 1999), this
allows a more robust representation. Since focus-
ing on a single type of encoding scheme – and more
fundamentally, what information to embed – nar-
rows down the potential applications, we present
bit accuracy in our main experiments as done in
previous works in the literature (Zhu et al., 2018;
Luo et al., 2020; Yang et al., 2022; Yoo et al., 2023;
Fernandez et al., 2023b). For T=250, the packet
error ratio for the 8-bit message was 7.1%, which
is +5.7 % higher than the bit error rate. With 16-list
decoding, this is reduced to 2.4%.

Another metric considered in Table III of Fer-
nandez et al. (2023a) was combining the detection
scheme and packet error ratio. In this scenario, they
assume an encoding scheme of assigning each user
to a single message and compute the percentage of
finding the exact user given a fixed false positive
rate. At FPR=1e-3 and using 8-bit message (256
users), we can correctly identify 90.5% cases. Our
true positive rate was computed by the setting used
in Table 8.

Ratio Sampled Position (Sorted)
LeftHash (h=1) 0.319 0.251 0.235 0.195
SelfHash (h=4) 0.264 0.257 0.242 0.238

Table 4: Ratio of the sampled position for b=8,r=4 (four
positions total) for the two hashing schemes for position
allocation.

A.7 Discussion on the Hashing Scheme

The hashing scheme for generating the seed plays
a significant role in watermarking. For our MPAC,
the hashing scheme is employed once for position
allocation and once for permuting the vocabulary
list. Here, we discuss some implications of the
design choices.

To recap, the function f(Xt−h:t−1) is used to
hash h most recent tokens before generating the tth

token. Following the terminology of Kirchenbauer
et al. (2023b), LeftHash takes the leftmost token,
while SelfHash is determined in a slightly more
complex way that is dependent on the tth token
(see Algorithm 1 of Kirchenbauer et al. (2023b)).
The context width and the hashing scheme deter-
mine robustness and quality (diversity) trade-offs.
For our experiments, we use the two configurations
(LeftHash with h=1 and SelfHash with h=4) pro-
posed in the previous work found to be effective in
the two aspects without further fine-tuning.

As expected by the trade-off, the perplexity was
slightly higher for LeftHash compared to SelfHash
(5.1 vs. 4.9 on average for 250 tokens), while P-
SP was at the same level. One clear distinction
between the two schemes was the encoding time la-
tency. As SelfHash iteratively searches for tokens,
this took significantly longer than the LeftHash
scheme, which had nearly no overhead compared
to no watermarking (appendix A.5 and Table 3).
In addition, we observed that the sampled posi-
tions were not uniform for LeftHash with h = 1
as shown in Tab. 4 due to the reduced diversity
of the tokens in the context width. Despite this,
the multi-bit performance was similar for the two
schemes (Table 13 and 14). A possible direction
for improvement may be using different hashing
schemes for position allocation (more robust) and
vocabulary partitioning (more quality-focused).

A.8 More on Robustness: Other Attacks,
Detection

We also test our watermark against DIPPER (Kr-
ishna et al., 2023), which is a specialized para-

4049

0 50 100 150 200 250

of Tokens Observed

0.4

0.6

0.8

1.0

A
U

C

50%

40%

30%

20%

10%

Clean

Figure 11: AUC vs. number of tokens observed when corrupted with copy-paste attack for 8-bit message.

8b 16b 24b 32b

0.6

0.8

1.0

B
it
 A

cc
.

Clean cp=0.1 cp=0.2 cp=0.3 cp=0.4 cp=0.5

(a)
250T 400T 500T

GPT-3.5

(b)
Figure 12: Corrupted bit accuracy for (a) copy-paste attack controlled by the human text percentage at T-250 and (b)
paraphrasing attack using GPT-3.5 embedding 8-bit messages at varying token lengths. For (b), we show multiple
sizes of list (|L| ∈{2, 4, 8, 16}) by color gradation as 8-bit has relatively small output space.

C4
(Newslike)

LFQA Essays Wikitext
0.5

0.6

0.7

0.8

0.9

1.0

B
it
 A

cc
.

7b 13b 70b

Figure 13: Multi-bit performance across datasets and model sizes.

4050

Bit Acc. after Paraphrasing with DIPPER
Bit-width 8 16 24 32

Best Prediction .922 (.13) .825 (.12) .778 (.12) .736 (.10)
16-List Decoded .982 (.05) .924 (.08) .864 (.10) .801 (.09)

Table 5: Robustness under paraphrasing using DIPPER (Lexical diveristy=20)

DIPPER

GPT-3.5 Lex.=20 Lex.=40 Lex.=60
Lex.=60

Ordering=60

P-SP .815 .933 .897 .844 .827
Absolute Change in # of Words 36 13 16 19 20

Bit Acc. .733 .922 .849 .757 .719

Table 6: Comparison of the two paraphrasing method on text quality.

Robustness on GPT-3.5 paraphrasing
Methods Bit Acc.

MPAC .733 (.19)
Cyclic-Shift∗ .655 (.25)
Message-Hash∗ .540 (.24)

Table 7: Bit accuracy after paraphrasing on T=250,
b=8. For Cyclic-Shiftand Message-Hash, we use 100
samples due to resource constraint on GPT-3.5.

phrasing model. DIPPER is parameterized by two
scalers, which control lexical diversity and token
order diversity. We first present the results across
bit-width with a lexical diversity of 20 (out of 100).
We see that the watermark fares considerably better
than using GPT-3 attack in Table 5.

To see the magnitude of semantic drift of the
two paraphrasing methods, we compute the P-SP
between the original watermarked text and its para-
phrased counterpart. We also compute the absolute
change in the number of words. Table 6 demon-
strates that paraphrasing using GPT-3.5 changes
the semantic and the number of words greater than
the setting used in Table 5, which may explain why
the multi-bit watermark performance is lower for
GPT-3.5. When we control the diversity parameters
of DIPPER, this is able to degrade the watermark
performance as well as GPT-3.5.

Some other forms of possible attacks considered
in the literature are word substitution, insertion,
and deletion. Word substition is very similar to
the copy-paste attack considered in the main paper.
Our watermark scheme is also robust to partial
insertion and deletion of words as MPAC relies on

the local context to synchronize the positions of the
message and the ordering of the vocabulary.
Robustness of zero-bit Watermark Here we pro-
vide results for the detection performance under
corrptuion. We use the copy-paste attack with the
attack percentage ranges of {10%, 20%, 30%, 40%,
50%} and compare the AUC vs. number of tokens
observed curve similar to Fig. 11. While the de-
tectability is noticeably affected, the final AUC is
recovered to a large degree only after observing
250 tokens. In order of the attack strength, the final
AUC’s are .992, .987, ,980, ,971, .942, respectively.
For the zero-bit counterpart, all the scores are over
.990.

A.9 Ablations on Datasets and Model Sizes

We show additional results on other datasets and
model sizes in Fig. 13. C4 news-like subset
is the dataset we used for our main experiment.
"Long-form Question-Answering" (LFQA) is a
dataset curated by Krishna et al. (2023) on the
Reddit’s “Explain Like I’m Five” (ELI5) forum.
The Essays dataset comprises pairs of instructions
and essays (Schuhmann, 2022). Wikitext (Merity
et al., 2016) comprises Wikipedia article. We use
the ‘wikitext-2’ subset. For LFQA, we use the
finetuned version, LLaMA-2-Chat, specialized for
chats as they explicitly have questions or instruc-
tions as prompts.

It is apparent that the watermark performance
is affected by the text distribution. When the en-
tropy of the vocabulary distribution is low (low
diversity), there is little room for encoding the mes-
sage with a fixed bias, which has been observed in
zero-bit watermarking as well where the watermark

4051

True Positive Rate
Bit-width 0 8 16 24 32
FPR=1e-2 0.999 0.986 0.974 0.964 0.958
FPR=1e-3 0.997 0.974 0.956 0.943 0.915
FPR=1e-4 0.997 0.96 0.934 0.905 0.88
FPR=1e-5 0.994 0.951 0.907 0.851 0.793

Table 8: True positive rate at a fixed false positive rate
across bit-widths. We use ∼ 500 positive sample and
∼100,000 negative samples. We only count the unique
tokens following (Kirchenbauer et al., 2023a; Fernandez
et al., 2023a). This has an effect of removing outlier
human text samples that have exceptionally high scores.

performance suffers for low entropy text distribu-
tions such as coding (Lee et al., 2023; Kirchenbauer
et al., 2023b). For our multi-bit case, this means the
load capacity is inherently low for such text distri-
butions. This is especially observed for LFQA, in
which the model consistently starts the response by
restating the question (e.g. "The reason for [Ques-
tion] is . . . "). Across the model scale, the trend is
not as apparent although we found that the largest
model consistently has a lower performance. This
hints that the entropy of the vocabulary distribu-
tion is lower for the largest model, which might
explain the higher text quality in general when we
increase the model size. Larger models might have
the capacity to form high-quality sequences even
when the text distribution is altered by increasing
the entropy via temperature or explicitly increasing
the magnitude of the bias during watermarking. We
leave this as a future work.

A.10 Tabular Results
Here we present the numerical results of the ex-
periments done in the main paper. Numbers in the
parenthesis signify the standard deviation.

• Table 9 and 10↔ Figure 3 show the compar-
isons with baseline methods.

• Table 11↔ Figure 10 show the relationship
between δ vs. text quality and watermark
strength.

• Table 12↔ Figure 5 left compare the different
configurations of radix and colorlist propor-
tion.

• Table 13↔ Figure 5 left show the multibit wa-
termark performance on a fixed token length.

• Table 14↔ Figure 5 right show the multibit
watermark performance on a fixed load capac-
ity (bits per token).

• Table 15↔ Figure 5a show the multibit water-
mark performance under copy-paste corrup-
tion.

• Table 16↔ Figure 5b show the multibit wa-
termark performance under paraphrasing.

A.11 Generation Samples
We show below in Table 17 generated samples.

4052

B=8,T=250
Copy-Paste (p) Clean cp=10% cp=30% cp=50%

Ours .986 (.06) .981 (.07) .956 (.10) .900 (.13)
FCT+EMS .979 (.10) .943 (.17) .858 (.24) .800 (.28)

FCT+Greenlist .995 (.05) .988 (.08) .970 (.12) .908 (.20)
CTWL .977 (.11) .973 (.12) .951(.16) .858(.24)

Table 9: Comparison of multibit watermark performance with other methods on clean and corrupted settings. For
corruption, we use the copy-paste attack. *The load capacity of FCT+Greenlist is limited to 15-bit.

B=16,T=250 B=24,T=250
Copy-Paste (p) Clean cp=10% cp=30% cp=50% Clean cp=10% cp=30% cp=50%

Ours .951 (.07) .939 (.08) .887 (.09) .819 (.12) .899 (.09) .882 (.09) .830 (.10) .755 (.11)
FCT+EMS .905 (.20) .811 (.26) .702 (.26) .601 (.23) .775 (.26) .729 (.24) .633 (.23) .513 (.13)

CTWL ..936 (.18) .909 (.20) .810 (.26) .614 (.22) .876 (.22) .828 (.25) .663 (.26) .516 (16)

Table 10: Comparison of multibit watermark performance with other methods on clean and corrupted settings.

δ 0.5 1 1.5 2 3 4 5
Bit Acc. .626 (.19) .766 (.18) .887 (.15) .947 (.11) .982 (.08) .993 (.05 .995 (.05)

P-SP (w/ reference) .385 (.15) .379 (.15) .372 (.15) .371 (.15 .360 (.14) .336 (.13) .319 (.13)
P-SP (w/ non-wm.) .526 (.18) .460 (.16) .433 (.15) .417 (.15) .388 (.14) .349 (.14) .330 (.13)

PPL 4.41 (1.5) 4.64 (1.8) 5.01 (2.0) 5.6 (2.0) 7.41 (2.7) 10.3 (4.1) 13.67 (5.9)

Table 11: Bit accuracy and text quality on embedding 8 bit-width message on T=250 across various magnitudes of
bias δ.

Bit Accuracy @ T=250
Bit 8 16 24 32

γ=.25,r=4 .986 (.06) .951 (.07) .900 (.09) .871 (0.08)
γ=.25,r=2 .966 (.07) .905 (.08) .858 (.08) 0.820 (.08)
γ=.50,r=2 .978 (.05) .922 (.07) .875 (.08) 0.849 (.07)

Table 12: Multibit watermark performance measured by bit accuracy for varying configurations of colorlist
proportion and radix.

Bit Acc. @ T=250
Bit 8 16 24 32

LeftHash(h = 1) .986 (0.06) .951 (.07) .900 (.09) .871 (0.08)
SelfHash(h = 4) .976 (.08) .905 (.08) .895 (.09) .862 (.09)

Table 13: Bit accuracy for two different hash schemes for a fixed token length.

Bit Acc. @ BPT=.064
T 63 125 250 500 1000

Bit 4 8 16 32 64

LeftHash(h = 1) .961 (.13) .958 (.09) .951 (.07) .913 (.08) .846 (.09)
SelfHash(h = 4) .952 (.13) .953 (.10) .945 (.08) .911 (.08) .850 (.08)

Table 14: Bit accuracy for two different hash schemes for a fixed bits per token.

4053

Copy-paste Attack
Attack Strength Clean 10% 20% 30% 40% 50%

8-bit
Best .986 (.06) .981 (.07) 0.971 (.08) .956 (.10) .938 (.12) .900 (.13)

+16-List .997 (.02) .997 (.02) .995 (.03) .993 (.03) .991 (.04) .980 (.05)

16-bit
Best .951 (.07) .939 (.08) .918 (.09) .887 (.09) .858 (.11) .819 (.12)

+16-List .988 (0.04) .983 (.04) .978 (.05) .964 (.06) .947 (.07) .918 (.08)

24-bit
Best .899 (.09) .882 (.09) .858 (.10) .830 (.10) .797 (.11) .755 (.11)

+16-List .959 (.06) .944 (.06) .927 (.08) .907 (.08) .879 (.09) .840 (.09)

32-bit
Best .871 (.08) .851 (.09) .828 (.09) .801 (.09) .765 (.09) .723 (.1)

+16-List .927 (.07) .910 (.08) .888 (.08) .863 (.08) .831 (.09) .792 (.09)

Table 15: Robustness when certain percentage of human text is mixed into the watermarked text.

GPT-3.5 Paraphrasing
Token Length 250T 400T 500T

8-bit

Best .733 (.19) .792 (.19) .795 (.19)
+2-List .825 (.16) .874 (.15) .875 (.15)
+4-List .856 (.14) .894 (.13) .898 (.13)
+8-List .893 (.12) .924 (.11) .928 (.11)
+16-List .911 (.10) .934 (.09) .939 (.09)

Prompt
“As an expert copy-editor, please rewrite the following text in
your own voice while ensuring that the final output contains
the same information as the original text and has roughly the
same length. Please paraphrase all sentences and do not omit
any crucial details. Additionally, please take care to provide
any relevant information about public figures, organizations,
or other entities mentioned in the text to avoid any potential
misunderstandings or biases.”

Table 16: Robustness when paraphrased with GPT-3.5.

4054

Prompt Non-Watermarked Watermarked

A blind man in his 60s is searching for
the young man who pulled him back
from an approaching train and saved
his life last Thursday, Nov. 9. Mike
Wyatt stood at the stairs to the Peoria
train station in Aurora, Colorado, on
Monday, looking for the young man
who saved his life days earlier

“He told me he was 20 years old and
he was going to college," Wyatt told
reporters. “He said he was going to
be a doctor." Wyatt, who is blind and
has been for most of his life, was at the
train station ready to catch a train to
the airport when he slipped and almost
fell in front of an oncoming train.[...]

and has given him new life. Inside the
station, he spoke to the counter clerk,
hoping the clerk might have informa-
tion that might lead him to the young
man, who jumped at the chance to help
Wyatt when he saw he was in danger.
But, he said, he found nothing.[...]

[...] Shortly after the release of the lead
single “Life’s About to Get Good,” it
hit number one on the Billboard 200.
Of course, fans were simply dying to
see how their favourite country icon
was doing, so

the album was released on CD, vinyl,
and digital. But, Shania took things
to the next level and released a deluxe
version with added tracks. [...]

the song was released a few months
earlier in June. “OK so I am sooooo
proud that my song Life’s About to Get
Good is now the number one song on
Billboard country,” she tweeted back
in June.[...]

[..] Amazon’s offices will be located
within an already-established special
tax district where a portion of the prop-
erty tax revenue goes toward infrastruc-
ture improvements such as parks and
wider sidewalks. The incentive agree-
ment says that half of any new revenue
from that district starting in 202

3 would go to Amazon to help pay for
employee benefits and transportation,
but the county has said it would not be
required to pay those benefits.[...]

7 would go to Amazon through a 15-
year payment schedule. This amount
would grow to more than 60 percent
if the company exceeds 10.24 mil-
lion square feet of office space. Ama-
zon is expected to reach that level in
2027.[...]

[...] "Below the surface of the Sun a
dynamo process is working creating
magnetic field," Harra explained in an
email interview. "When this becomes
buoyant it can rise to the surface of the
Sun,

and this is what we call a sunspot." The
new research shows that the initial ex-
plosion was actually a series of smaller
blasts that combined to create the X-7
flare.

and form coronal holes and sunspots.
This happens in a fairly homogeneous
area on the Sun, so there can be several
sunspots with a single magnetic field
underneath.

[...]The merge listing the most impor-
tant changes to Linux 3.8’s sound sub-
system includes some other changes to
audio drivers. The kernel now includes
a driver for human interface devices
(HIDs) that use I2C (1, 2 and others),
using the "HID over I2C" protocol de-
signed by Microsoft and implemented
in WindowsÂ

7 and later versions of the operat-
ing system. The kernel now has a
driver for the Samsung Galaxy S III
smartphone’s touchscreen (1, 2 and
others), and the rt2800usb driver, for
the RaLink RT2800USB WLAN chip,
now supports devices that have Blue-
tooth 3.0 (1, 2).[...]

7 and Windows Vista. The drivers can
read out data from HIDs and set the
appropriate commands to them. An ex-
ample of such a device is a BT-USB
adapter. The sound subsystem now
supports two new, high-quality audio
codecs (1, 2):[...]

Table 17: Randomly sampled examples of watermarked texts on the C4 newslike subset with 100% bit accuracy.
Samples are truncated for readability.

4055

