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Abstract

Cognitive science and symbolic AI research
suggest that event causality provides vital in-
formation for story understanding. However,
machine learning systems for story understand-
ing rarely employ event causality, partially due
to the lack of methods that reliably identify
open-world causal event relations. Leverag-
ing recent progress in large language models,
we present the first method for event causality
identification that leads to material improve-
ments in computational story understanding.
Our technique sets a new state of the art on
the COPES dataset (Wang et al., 2023c) for
causal event relation identification. Further, in
the downstream story quality evaluation task,
the identified causal relations lead to 3.6-16.6%
relative improvement on correlation with hu-
man ratings. In the multimodal story video-text
alignment task, we attain 4.1-10.9% increase
on Clip Accuracy and 4.2-13.5% increase on
Sentence IoU. The findings indicate substantial
untapped potential for event causality in com-
putational story understanding. The codebase
is at https://github.com/insundaycathy/
Event-Causality-Extraction.

1 Introduction

Stories manifest in various forms in modern soci-
ety, such as myths, fables, gossip, comic books,
bedtime rituals for children, and million-dollar the-
atrical productions. Stories are theorized to play
crucial roles in civilization, from building collec-
tive identities (Lincoln, 1999) to familiarizing read-
ers with social skills (Oatley, 2008). Research on
computational story generation (Guan et al., 2020;
Ammanabrolu et al., 2021; Xie et al., 2022; Yang
et al., 2022; Hong et al., 2023; Yang et al., 2023)
and understanding (Du et al., 2021; Xu et al., 2022;
Andrus et al., 2022; Sang et al., 2022; Dong et al.,
2023) has gained traction in recent years.

∗Equal Contribution.

Converging evidence points to the information
value of event causality in story understanding.
Cognitive science indicates that humans heavily
rely on event causality in story comprehension
(Fletcher and Bloom, 1988; Graesser et al., 2003),
as reflected by experiments on event recall and pre-
diction (Trabasso and Van Den Broek, 1985; Keefe
and McDaniel, 1993). Intuitively, causal relations
affect story understanding and value judgements.
Story events at the end of properly linked causal
chains may appear believable (e.g., the deaths of
Romeo and Juliet), even though the events may be
unusual. Based on the causes of events, we make
moral judgments and assign blame. For instance,
the revenge of Hamlet is caused by his uncle mur-
dering his father and hence may be considered just.

The symbolic AI approach to computational
story generation also makes extensive use of
human-crafted event causal relations (Meehan,
1976; Young et al., 1994; Li and Riedl, 2010; Por-
teous et al., 2011; Soo et al., 2016). Anecdotally,
merely adding the word “causal” to the ChatGPT
prompt of Wang et al. (2023b) leads to a 3% rela-
tive boost in story evaluation (§5). However, event
causal relations are rarely utilized by deep learning-
based methods for story understanding, possibly
due to the difficulty in identifying event causal re-
lations in an open-world setting.

In this paper, we argue that causal structures —
the story events and the causal relations among
them — offer crucial and operationalizable infor-
mation for computational story understanding; we
further propose an easy-to-use technique for ex-
tracting such relations by prompting large language
models (LLMs). With few-shot in-context learning,
we enable LLMs to reconstruct causal structures
from open-domain, free-form story text.

To verify the validity of the extracted causal
structures, we first compare them against human-
annotated causal relations of Mostafazadeh et al.
(2020) and Wang et al. (2023c), leveraging a di-
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verse range of LLMs. Empirically, the proposed
method performs comparably with and sometimes
surpasses supervised state-of-the-art baselines.

However, even if the causal structures are cor-
rect, they may not be of value to story understand-
ing. To examine the value of the causal structures,
we conduct further tests on two downstream tasks:
story quality evaluation (Guan et al., 2021) and
story video-text alignment (Dogan et al., 2018; Sun
et al., 2022). In story quality evaluation, incorporat-
ing the extracted event causal structures improves
Kendall’s tau relatively by 6.4%-15.6%. In story
video-text alignment, it improves clip accuracy by
4.1-10.9% and sentence IoU by 4.2-13.5%.

In summary, the experimental results indicate
that (1) the simple prompting technique we pro-
pose can identify story causal relations with high
accuracy, and (2) the identified story structures
indeed benefit story understanding tasks. Since
the identified structures coincide substantially with
human-annotated causal relations, we argue the
empirical evidence supports the thesis that auto-
matically extracted event causality facilitates com-
putational story understanding. Our contributions
can be summarized as:

• We propose a simple prompt-based technique
for identifying event causal structures from
free-form stories in diverse domains.

• With the proposed technique, we set a new
state of the art on the COPES event causality
benchmark (Wang et al., 2023c).

• To our best knowledge, this is the first work
to demonstrate the practical benefits of causal
story structures in automated story understand-
ing, leading to substantial improvements on
two distinct tasks, the text-only story quality
evaluation and the multimodal story video-
text alignment.

The organization of the paper may be somewhat
unconventional. After reviewing the background
knowledge of causal reasoning and related work
in Section 2, we introduce our method in Section
3. Our method is evaluated on three different tasks
related to causal relation extraction and story under-
standing in Sections 4, 5 and 6, respectively. Each
of the last three sections presents its own experi-
ment setup, results, and discussion.

2 Background and Related Work

2.1 Causal Reasoning about Events

Causal reasoning about the effects and counter-
factual effects of actions and events is undoubt-
edly an important tool in modern scientific thinking
(Shoham, 1990) and an integral area of AI research
(Pearl, 2018). However, causality appears surpris-
ingly difficult to define. Pearl (2018) suggests
that attempts to define causality are “unproductive”
(Chapter 1) and we should focus on the benefits
of causal reasoning instead. Nevertheless, at the
behest of the anonymous reviewers, we present two
definitions of event causality, both compatible with
our work.
Definition 1. We say Event A causes Event B if:

• (the multi-factorial definition) in combination
with other factors, Event A is a necessary or a
sufficient condition for Event B (Oppenheimer
and Susser, 2007; Morabia, 2007), or

• (the probabilistic definition) the occurrence
of Event A raises the probability of Event B
occurring (Reichenbach, 1991).

Event causality is often conditioned on a myriad
of other factors and may be neither necessary or
sufficient by itself. For example, we may say the
event Alice divorcing Bob is caused by the event
Bob having an extramarital affair. However, an
affair may not end every marriage, and some mar-
riages end for different reasons. Hence, what we
take for the cause is neither necessary nor sufficient
for the effect.

To understand the concept, it is perhaps useful to
review common categories of event causality. Tra-
basso et al. (1989) provide four categories. First, an
event physically causes another event, like kicking
a ball causing the ball to move. Second, a physical
event causes a psychological reaction, like winning
a lottery causing joy. Third, a psychological con-
dition may motivate an action, such as the desire
for a driver’s license causing someone to take the
driving test. Fourth, an event may establish condi-
tions for a second event to happen. An example is
that organizing a chess tournament causes someone
to become the champion. In this paper, we focus
on commonsense interpretations of causality, as ex-
act analysis according to the definitions is usually
infeasible (e.g., probabilities of events in a story
world are hard to determine).
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2.2 Event Causality in Human Story
Understanding

Cognitive science research indicates event causal-
ity offers crucial information in human narrative
comprehension. Gernsbacher (1997) discover that
when two events in a sentence are joined by a causal
connective, the second event is better memorized
than if the two events are joined by a non-causal
connective. Story events with more causal connec-
tions are better recalled and are judged by humans
as more important (Trabasso and Van Den Broek,
1985; Van den Broek et al., 1996). Furthermore,
event causality also influences the prediction of
future events in a narrative. Keefe and McDaniel
(1993) discover that, immediately after reading an
event, words related to the possible effects of the
event are recognized faster than unrelated words.

2.3 Event Causality in Computational Story
Generation

Event causality has been widely used in computa-
tional story generation (Lebowitz, 1985; Bae and
Young, 2008; Swartjes, 2010; Simon and Muise,
2022; Liu et al., 2023; Kelly et al., 2023). Early
works in symbolic story generation constructed
story plans from human-written action templates
that stipulate the preconditions and effects of ac-
tions (Lebowitz, 1985; Young et al., 1994; Bae and
Young, 2008; Riedl and Young, 2010; Li and Riedl,
2010; Brenner, 2010; Swartjes, 2010). A story plan
arranges the story events so that the preconditions
of later events are fulfilled by the effects of prior
events.

The reliance on human-crafted knowledge lim-
its story planners to narrow domains. Recent
works attempt to utilize large language models
commonsense to acquire action templates (Ye et al.,
2022; Simon and Muise, 2022; Spiliopoulou et al.,
2022; Kelly et al., 2023). Ammanabrolu et al.
(2021) attempt to build story graphs with neural
networks trained to perform causal relation com-
pletion. However, we are not aware of the utility
of the extracted templates and story graphs in story
understanding tasks. Compared to story planning,
which sometimes can operate with a known list of
people, objects, and actions, story understanding
needs to deal with a vast assortment of narratives in
open-world settings. As a result, the ability to iden-
tify causal structures in arbitrary stories becomes
crucial (Caselli et al., 2021).

2.4 Commonsense Causal Reasoning

The objective of Commonsense Causal Reasoning
(CCR) is to identify commonsense causal relations
between events from text (Kuipers, 1984; Roem-
mele et al., 2011; Zhang et al., 2022), which is
distinct from causal relation identification that re-
quire domain expertise, such as medical knowledge
(Gurulingappa et al., 2012). Such causal relations
are often heavily dependent on context, such as par-
ticipants, time, and locations of events. For exam-
ple, the two events “cooking at home” and “cook-
ing at a restaurant” likely have different causes.
The former is likely caused by hunger for food,
but the latter is likely caused by the job require-
ment. COPA (Roemmele et al., 2011), GLUCOSE
(Mostafazadeh et al., 2020), and COPES (Wang
et al., 2023c) are prototypical datasets for CCR. In
this paper, we focus on GLUCOSE and COPES,
as their problem formulations contain more story
context than COPA.

Prior works test LLMs on COPA (Wei et al.,
2021; Anil et al., 2023; Gao et al., 2023), and LMs
on GLUCOSE and COPES (Li et al., 2022; Colon-
Hernandez et al., 2023; Wang et al., 2023a,c). To
the best of our knowledge, this work is the first to
quantitatively explore the ability of ChatGPT 3.5 to
understand Contextualized CCR (i.e., GLUCOSE
and COPES) and its impact on downstream tasks.

2.5 Open-ended Generated Story Evaluation

A critical ingredient in story generation research
is the automatic evaluation of story quality, as hu-
man comparisons can be expensive and difficult to
replicate. Metrics that involve direct comparisons
against gold references, such as BLEU (Papineni
et al., 2002), have limited applicability as there is
no single correct story for each writing prompt. Re-
searchers have proposed supervisedly trained tech-
niques (Ghazarian et al., 2019; Sellam et al., 2020;
Guan and Huang, 2020) and in-context learning
methods based on LLMs (Wang et al., 2023b; Chi-
ang and Lee, 2023; Shen et al., 2023). In this work,
we demonstrate that providing event causality in-
formation in the LLM context can further enhance
the correlation between LLM ratings and human
ratings.

3 Methodology

Our objective is to acquire a causal graph, a di-
rected graph that contains events as nodes and
causal relations as directed edges. At the core of
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Here is a list of nodes (events) from a
story event graph. We want you to fill
in the edges of the event graph with
causal connections between nodes. An event
graph contains nodes and edges. Each
node represents an event, and each edge
represents the causal connection between
two events.

Example Input:
Node 0: When Dan goes to school in the
morning, he has to take the bus.
Node 1: One day Dan was running late, and
missed the bus to school.
Node 2: Dan called his friend Pete, and
asked for a ride to school.
Node 3: Pete gave Dan a ride to school,
but Dan was late for his first class.
Node 4: Luckily Dan wasn’t late for any of
his other classes that day.
Example Output:
Edge 0: (Node 0 -> Node 1)
Edge 1: (Node 1 -> Node 2)
Edge 2: (Node 2 -> Node 3)
Edge 3: (Node 1 -> Node 3)
Edge 4: (Node 3 -> Node 4)
(continue with another five demonstrations)

Now, it is your turn to construct the event
graph for the following event list.
Event List:
Node 0: <S1>
Node 1: <S2>
Node 2: <S3>
Node 3: <S4>
Node 4: <S5>
Output:

Figure 1: The LLM prompt for event causal relationship
extraction.

our approach is an LLM prompt that includes an
instruction and a list of story events, as shown in
Figure 1. The prompt can contain a number of ex-
amples, though we show only one due to length
considerations. The prompt requests the LLM to
detect and output causal relations among the events.
For simplicity, we consider each sentence in the
story as an event.

The output format for the causal relations is
Edge: (Node A -> Node B). In preliminary
experiments, we find that the arrow “->” notation,
similar to the influential DOT language (Gansner
et al., 2015) of graph representation, tends to yield
better results than other notations we tried.

4 Event Causality Extraction

To assess the quality of LLM-extracted event
causal relations, we compare against two human-

annotated benchmarks: COPES (Wang et al.,
2023c) and GLUCOSE (Mostafazadeh et al., 2020).
It is worth noting that the purpose of these experi-
ments is not to seek state-of-the-art performance,
but to verify the identified causal relations are of
decent quality. However, we still manage to beat
state-of-the-art baselines on COPES.

Task Definition and Datasets For the COPES
task, the input is a pair of events and the output is
whether or not a causal relationship exists between
the events. COPES contains 340 stories and 1360
event pairs from ROCStories, split 50/50 into the
validation set and the test set.

The GLUCOSE dataset contains a number of
causal dimensions. We select only Dimensions
1 and 6, which concern causality between events.
Given a story and one of its events, the task is to
identify all of the direct causes or effects of the
event from the story. GLUCOSE paraphrases the
identified causes and effects as well as the current
event in a subject-verb-object format and applies
reference-based evaluation such as BLEU. As our
technique only outputs causal relations and does
not perform paraphrasing, we directly use the orig-
inal sentences from the story.

Model For event causality extraction, we experi-
ment with four advanced LLMs: Llama2-13B-chat
(Touvron et al., 2023), Falcon-instruction-40B1, Yi-
34B-chat2 and ChatGPT-3.5-turbo-0631 (Ouyang
et al., 2022).

Evaluation For COPES, we follow Wang et al.
(2023c) and report accuracy, Micro F1, and Macro
F1. We use 6 randomly selected stories from the
validation set as in-prompt examples and report
performance on the COPES test set.

For GLUCOSE, we choose in-prompt examples
randomly from the training set and conduct evalua-
tion on the GLUCOSE test set of 293 stories. As of
evaluation metrics, our main objective is to evalu-
ate if the model can accurately distinguish between
causally related, positive event pairs and unrelated,
negative event pairs. Hence, we compute the preci-
sion and recall of the predicted positive class, and
combine them as the F1 score. For completeness,
we also adopt BLEU3 following Mostafazadeh et al.
(2020) as well as the BERTscore (Zhang et al.,
2019) and Sentence BERT similarity (Reimers and

1https://falconllm.tii.ae/falcon.html
2https://01.ai/
3Implementation from Post (2018)
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Acc. Micro F1 Macro F1

Supervised
ClozePromptScore 62.06 45.57 58.22
ROCK 66.47 51.90 63.08
COLA 70.29 57.38 67.29

Few-shot (Ours)
Falcon-40B-instuct 65.74 41.60 58.68
Llama-2-13B-chat 71.47 47.58 63.99
Yi-34B-chat 72.94 55.98 68.22
ChatGPT-3.5 74.26 57.42 69.49

Table 1: Performance on COPES.

F1 BLEU BERTScore BERT
Similarity.

Supervised
GPT-2large 59.54 28.92 79.86 84.64
T5large 61.50 31.75 84.34 88.77

Few-Shot (Ours)
Falcon 28.57 13.43 38.65 25.68
Llama-2 51.70 19.77 58.22 54.82
Yi 57.95 18.95 77.42 84.32
ChatGPT 60.75 21.20 75.33 80.89

Table 2: The BLEU, BERTScore, BERT Similarity, and
F1 score on GLUCOSE dataset, averaged over dimen-
sions 1 & 6.

Gurevych, 2019a), but these metrics mostly eval-
uate the surface form and are not as important as
F1.

Baselines For COPES, we directly compare our
model with COLA (Wang et al., 2023c). Also,
we compare against ROCK (Zhang et al., 2022)
and ClozePromptScore (Tamborrino et al., 2020)
as replicated and reported by Wang et al. (2023c).

For GLUCOSE, we replicated the two models
used by Mostafazadeh et al. (2020) as baselines.
We train the same networks (T5 and GPT2-large)
on the training split. However, the training set of
Mostafazadeh et al. (2020) contains only positive
examples, or pairs of causally related events. In
order to handle causally unrelated, negative event
pairs, which are abundant in open-world stories,
we exhaustively add all negative event pairs to the
training set, yielding 590K training samples. After
that, from pretrained LLM weights, we train base-
line network to output a description of the cause or
effect for positive cases or “Nil” for negative cases.
See Appendix A.2 for more details.

Results In Table 1, we show performance on
COPES. With only 6 example stories, our tech-
nique with ChatGPT outperforms the state-of-the-

art (SOTA) supervised model, COLA, by 4.2% in
accuracy and 2.3% in Macro F1. Furthermore,
our method is robust and can generalize to dif-
ferent LLMs. We observe our technique with
Yi-34B-chat also outperforms the SOTA on accu-
racy and Macro-F1 and Llama-2-13B outperforms
ClozePromptScore.

Table 2 shows performance on GLUCOSE. In
terms of F1 score, our technique with ChatGPT-3.5
outperforms supervised GPT2-large model trained
on 590K causal statements and performs compara-
bly to the supervised T5 model. Among the open-
source models, Yi-34B-chat performs best and can
match the GPT2-large baseline on most metrics.
On reference-based metrics, LLMs score lower
than supervised models mainly because supervised
models are trained to imitate paraphrased annota-
tions of GLUCOSE whereas while the few-shot
LLMs are not trained or prompted to paraphrase.
Hence, the reference-based metrics underestimate
the actual performance of our technique. However,
on BERT similarity, our few-shot technique with
Yi-34B-chat closes the gap with GPT-2.

Case Study We show an example of a gener-
ated event graph in Figure 2. More examples are
in Appendix D. Here, all edges identified agree
with GLUCOSE annotations. The man lying down
(Node 0) enables the cat to jump on his stomach
(Node 1). This is the fourth category of Trabasso
et al. (1989). The causality between Node 1 (the
cat jumping on the man’s stomach) and 3 (the man
petting the cat) is twofold. First, cat puts itself
within the reach of the man, thereby enabling pet-
ting. Also, the cat shows affection for the man,
motivating him to reciprocate. Between Node 3
and Node 4 (the cat took a nap), the reciprocated
affection comforts the cat and motivates it to stay
put, possibly taking a nap. The model outputs two
repeated edges (Edge 0 and Edge 3), which can be
easily filtered out.

5 Open-domain Story Evaluation

Having established that the event causality that we
identified are quite accurate, we still need to verify
if the event causality provide valuable information
to actual story understanding tasks. To this end,
we conduct two tests. This section describes the
first test, automatic story quality evaluation. We
generate the quality ratings from ChatGPT with and
without the automatically extracted event causal
relations, and compare how they correlate with
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Event List:
Node 0: The man laid down for a nap.
Node 1: His cat jumped on his stomach.
Node 2: That woke the man up.
Node 3: The man petted the cat.
Node 4: The cat took a nap with the man.
Output:
Edge 0: (Node 1 -> Node 2) [Correct]
Edge 1: (Node 0 -> Node 1) [Correct]
Edge 2: (Node 0 -> Node 2) [Correct]
Edge 3: (Node 1 -> Node 2) [Correct]
Edge 4: (Node 1 -> Node 3) [Correct]
Edge 5: (Node 3 -> Node 4) [Correct]

Figure 2: Example of ChatGPT-generated event graph.
The example is from GLUCOSE, the [Correct] labels
are not part of the model output.

human ratings.

Approach: Quality Ratings Conditioned on
Causal Graphs We propose a two-stage prompt-
ing method that scores the quality of a story condi-
tioned on its causal graph. First, we prompt Chat-
GPT to generate the causal graph of the story, using
the same prompt in Figure 1. Then, we include the
causal graph, which contains a list of causal re-
lations between event descriptions, in a scoring
prompt that asks ChatGPT to generate an overall
score for story quality. The scoring prompt is de-
rived from Wang et al. (2023b) (see Appendix B).

We test three settings, zero-shot, in-domain few-
shot, and cross-domain few-shot, which differ in
examples used in the scoring prompt. In zero-shot,
we do not include any examples in the scoring
prompt. In in-domain few-shot, we include two
example stories we wrote manually in the style
of OpenMEVA-ROC and OpenMEVA-WP respec-
tively. In cross-domain few-shot, we include two
example stories from OpenMEVA-ROC when test-
ing on OpenMEVA-WP and vice versa. In all set-
tings, the causal graph generation stage uses the
same six story examples from GLUCOSE.

Dataset The dataset we use is OpenMEVA (Guan
et al., 2021). The dataset was acquired from five
different story generation models trained on ROC-
Stories (Mostafazadeh et al., 2016) and another
five trained on WritingPrompt (WP) (Fan et al.,
2018). Each model generates stories from 200 writ-
ing prompts. As a result, OpenMEVA consists of
two parts: OpenMEVA-ROC and OpenMEVA-WP,
each containing 1,000 generated stories. Each story
is evaluated by five human annotators, each assign-

ing a score between 1 and 5. The final score for the
story is the average of the five.

OpenMEVA-ROC and OpenMEVA-WP have
different characteristics. Stories in OpenMEVA-
ROC always contain 5 sentences and, on average,
34 words. The lengths of stories in OpenMEVA-
WP are more varied, with an average of 20 sen-
tences and 194 words. Qualitatively, we ob-
serve that OpenMEVA-ROC mostly retain the style
of ROCStories, where the sentences are simple
and describe clear-cut events. In comparison,
OpenMEVA-WP is much more diverse, containing
much non-event content such as conversations and
monologues, and much more vague event bound-
aries. We show two examples in Figure 11 of the
Appendix.

Evaluation We employ correlation to assess the
similarity between ChatGPT scores and human rat-
ings. We report three well-established correlations:
Pearson correlation (Benesty et al., 2009), Spear-
man rank correlation (Zar, 2005), and Kendall’s tau
coefficient (Kendall, 1938). All of these measures
have values ranging from -1 to 1, with values closer
to 1 indicating a stronger positive correlation.

We calculate the correlation between human rat-
ings and ChatGPT ratings at two aggregation lev-
els: (1) dataset level, where we measure the cor-
relation between two scoring systems across the
entire dataset, and (2) writing prompt level, where
we compute the correlation between the two scor-
ing systems for the five stories generated for each
writing prompt and then average the results. The
formula can be found in Appendix B.

Baselines We compare our method with seven
baselines, including two reference-based meth-
ods, one hybrid method, two reference-free meth-
ods, and two LLM methods. First, the reference-
based baselines rate the computer-generated stories
by matching them against a human-written story
for the same writing prompt. The two baselines
are (1) BERTScore (Zhang et al., 2019) and (2)
BARTScore+CNN+Para (Yuan et al., 2021), which
computes the perplexity of the text conditioned
on the reference text. The hybrid method is (3)
BLEURT (Sellam et al., 2020), a neural network
that Guan and Huang (2020) adapt to evaluate ma-
chine stories against a reference.

The two reference-free baselines are (4) perplex-
ity on GPT-2 (Radford et al., 2019), which gives
higher rankings to stories with lower perplexity
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Metrics
OpenMEVA-ROC (n=1000) OpenMEVA-WP (n=1000)

Writing Prompt Level Dataset Level Writing Prompt Level Dataset Level
Pear. Spear. Kend. Pear. Spear. Kend. Pear. Spear. Kend. Pear. Spear. Kend.

BART+CNN+Para 0.050 0.064 0.062 0.062 0.074 0.043 0.014 0.046 0.045 0.083 0.077 0.053
BERTScore-F1 0.144 0.131 0.103 0.127 0.113 0.079 0.089 0.085 0.077 0.033 0.031 0.022
BLEURT in-domain∗ - - - 0.316 - - - - - 0.212 - -
Perplexity 0.330 0.324 0.265 0.255 0.306 0.213 0.373 0.381 0.318 0.303 0.324 0.225
UNION in-domain∗ - - - 0.412 - - - - - 0.326 - -
UNION cross-domain∗ - - - 0.213 - - - - - 0.229 - -
Original Wang et al. (2023b) 0.490 0.472 0.427 0.439 0.415 0.342 - - - - - -

ChatGPT zero-shot
Repl. Wang et al. (2023b)♠ 0.526 0.520 0.472 0.446 0.436 0.366 0.281 0.257 0.236 0.203 0.199 0.165
ChatGPT-“causal” 0.531 0.522 0.474 0.460 0.451 0.379 0.301 0.275 0.246 0.215 0.215 0.183
ChatGPT-causal-graph 0.576 0.562 0.510 0.520 0.505 0.423 0.331 0.299 0.273 0.277 0.277 0.230

ChatGPT in-domain few-shot
Repl. Wang et al. (2023b)♠ 0.553 0.526 0.466 0.498 0.496 0.398 0.313 0.291 0.257 0.269 0.262 0.208
ChatGPT-“causal” 0.560 0.537 0.480 0.501 0.503 0.402 0.327 0.305 0.270 0.276 0.276 0.218
ChatGPT-causal-graph 0.592 0.575 0.520 0.526 0.514 0.425 0.339 0.313 0.285 0.284 0.294 0.246

ChatGPT cross-domain few-shot
Repl. Wang et al. (2023b)♠ 0.519 0.500 0.433 0.462 0.452 0.348 0.373 0.345 0.301 0.293 0.297 0.228
ChatGPT-“causal” 0.506 0.513 0.449 0.461 0.463 0.357 0.404 0.353 0.303 0.314 0.316 0.243
ChatGPT-causal-graph 0.547 0.530 0.459 0.498 0.482 0.370 0.387 0.367 0.323 0.328 0.328 0.258
∗: Results are taken from OpenMEVA benchmark Guan et al. (2021)
♠: For fair comparison, We replicate Wang et al. (2023b) using the same few-shot settings and ChatGPT model (gpt3.5-turbo-
0613, temp=0) as in other experiments.

Table 3: Writing prompt-level and dataset-level correlations on OpenMEVA. (Spear.: Spearman correlation; Pear.:
Pearson correlation; Kend.: Kendall’s Tau).

and (5) UNION (Guan and Huang, 2020), a neu-
ral network trained to discriminate machine stories
from human stories; machine stories that are more
similar to human stories are considered better.

In addition, we compare against the ChatGPT
prompt of Wang et al. (2023b), which rates the
OpenMEVA-ROC dataset on a scale of 1-5 stars.
For fair comparisons, we also replicate this base-
line using the same few-shot settings and the same
ChatGPT-3.5 model. Finally, we create another
variation (ChatGPT-“causal”) by adding the word
“causal” to the prompt of Wang et al. (2023b). De-
tails can be found in Appendix B.

Results and Discussion We show results in Ta-
ble 3, where our approach is denoted as ChatGPT-
causal-graph. We observe that event causality
provides significant improvements, especially in
zero-shot settings. On zero-shot ROC, our method
achieves relative improvements of 8.05% to 16.59%
over the best baseline. On few-shot ROC, our
method achieves relative improvements of 3.65%
to 11.59% over the best baseline. On zero-shot
WP and few-shot WP, causality graph brings even
greater gains over the (Wang et al., 2023b) baseline,
due to the low baseline performance. However, on
WP stories, we surpass all baselines only in the

cross-domain few-shot condition.
The performance on WP warrants further anal-

ysis. Our technique performs worse with in-
domain examples than cross-domain examples,
which seems to contradict machine learning com-
monsense. We attribute this to two reasons. First,
the WP stories are longer and hence more difficult
to understand as in-context examples. Second, WP
stories are less event-centric and have more vague
event boundaries than ROC. This may cause errors
in ChatGPT-extracted causal graphs, which hurt
in-context learning. Instead, when we use the more
correct causal graphs from ROC as examples in the
prompt, performance improves.

Though the WP results suggest that our tech-
nique for causal graph extraction may not work
equally well in all story domains, we emphasize
that this is the first work that has ever shown causal
graphs provide benefits for any computational story
understanding task.

6 Story Video-text Alignment

The second test task for the automatically extracted
event causal relations is story video-text alignment.
Due to the wide use of storytelling techniques,
aligning the video and the text modalities requires
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Figure 3: The process of video context identification. The causal context is marked in green, the temporal context in
purple, and the current item in red. For illustration purposes, the number of causal and temporal context items are
both set to 2.

significant story understanding (Sun et al., 2022).
We show that preceding events on the causal graph
provide crucial context for this task. Considering
the domain gaps between this multimodal task and
previous pure text tasks, this experiment supports
the argument that our proposed technique can cope
with a broad range of real-world stories.

Task Definition and Datasets The task starts
with a movie summary video from YouTube, which
contains shots selected from a movie and human
narration of the main plotline. The video has been
segmented into a number of clips, and the narra-
tion has been transcribed into text and segmented
into chunks. However, due to modality differences,
the text chunks and video clips at the same time
may not match each other semantically. The task
is weakly supervised; we need to find the correct
semantic alignment without training on gold align-
ment labels.

We adopt the Synopsis of Movie Narratives
(SyMoN) dataset (Sun et al., 2022) for training,
which contains 5,193 movie summary videos. The
test set comes from the YouTube Movie Summary
(YMS) dataset (Dogan et al., 2018), which has gold
alignment labels. We report results on two different
splits and textual chunking levels.

Approach: Context-aware video-text alignment
To align a video sequence and a text sequence, we
follow a three-step procedure. First, we encode
each video clip and each text chunk together with
their temporal and causal contexts. Then, we calcu-
late the cosine similarity between each video-text
pair. Finally, we calculate the overall sequence

alignment from the individual similarity scores us-
ing Dynamic Time Warping (DTW), a sequence
alignment algorithm detailed in Appendix C.

We finetune pretrained visual and textual en-
coders from UniVL (Luo et al., 2020). The vi-
sual encoder contains an S3D network that encodes
1-second clips into tokens, followed by a Trans-
former. The text encoder is a Transformer. We
denote the encoded features for the ith text chunk
as ti and the encoded features of the ith video clip
as vi. The feature vectors are normalized to unit
length, so that cosine similarity is simply dot prod-
uct. With randomly sampled negative text features
tk and video features vk, we finetune the encoders
by minimizing the contrastive NCELoss (Gutmann
and Hyvarinen, 2010),

LNCE =
1

N

N∑

i=1

−v⊤
i ti + log

(
expv⊤

i ti+

K∑

k ̸=i

expv⊤
i tk +

K∑

k ̸=i

expv⊤
k ti

)
,

(1)

where N is the total number of training samples
and K is the number of negative samples.

Note that the training set of Sun et al. (2022)
does not contain human-annotated alignment.
Therefore, we adopt a weakly supervised approach
that considers video clips and text chunks with
similar temporal positions as positive pairs and ran-
domly sample negative pairs during training.

When encoding the current video and text, the
visual and textual Transformer networks also take
in a number of contextual items (video clips or text
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chunks). These contextual item values are retrieved
from a memory bank, which stores the item values
from all layers of the Transformer network. After
retrieval, the item values are fed to the correspond-
ing Transformer encoder layers. We will discuss
how the context is constructed momentarily.

Context Identification Here we distinguish be-
tween two types of contexts, temporal context and
causal context. The temporal context contains m
number of items (video clips or textual chunks)
that immediately precede the current item being en-
coded. The causal context contains c items preced-
ing the current item on the causal graph extracted
from the entire story text by ChatGPT.

The causal context for a textual chuck can be
directly identified from the causal graph, but the
causal context for a video clip requires some ex-
tra processing. During training, we first find the
textual causal predecessors from the causal graph.
Next, the video clips temporally closest to the text
predecessor chunks are deemed as the causal con-
text for the current video clip. During inference,
we align the two sequences incrementally from the
beginning. Given a text predecessor, we use the
aligned portion of the two sequences to locate the
corresponding video clips as the causal context.
The process is illustrated in Figure 3.

Evaluation Metrics Following Dogan et al.
(2018), we use two evaluation metrics: Clip Accu-
racy, defined as the temporal proportion of correctly
aligned video segments, and Sentence IoU, defined
as the intersection-over-union between the aligned
video durations and the ground-truth durations.

Baselines Our main baseline is the temporal con-
text only, ablated version of our technique, which
uses c + m temporal context items instead of c
causal context items and m temporal context items.
Additionally, we compare against (1) the Minimal
Distance and Dynamic Time Warping baseline in
NeuMATCH (Dogan et al., 2018), and (2) the Mini-
mal Distance baseline in SyMoN (Sun et al., 2022).
Both baselines did not utilize context.

Results and Discussion As shown in Table 4,
incorporating causal context from the identified
causal graph yields improvements across the board.
The highest improvement for Clip Accuracy is
10.9% and the highest improvement for Sentence
IoU is 13.5%. Note the SyMoN test split contains
65 videos whereas the NeuMATCH test split con-

Clip Acc. Sent. IoU

NeuMATCH Split (sub-sentence level)
NeuMATCH-MD (Supervised) 4.0 2.4
NeuMATCH-DTW (Supervised) 10.3 7.5
SyMoN-MD 5.9 2.7
Temporal Context-DTW 12.3 7.1
Causal+Temporal Context-DTW 23.2 (↑10.9) 18.4 (↑ 10.9)

SyMoN Split (sub-sentence level)
SyMoN-MD 10.1 1.9
Temporal Context-DTW 10.2 8.0
Causal+Temporal Context-DTW 24.2 (↑ 8.2) 21.5 (↑13.5)

NeuMATCH Split (sentence level)
SyMoN-MD 7.4 3.4
Temporal Context-DTW 29.2 18.3
Causal+Temporal Context-DTW 33.3 (↑ 4.1) 22.5 (↑ 4.2)

SyMoN Split (sentence level)
SyMoN-MD 7.7 3.3
Temporal Context-DTW 32.5 19.6
Causal+Temporal Context-DTW 40.2 (↑ 7.7) 27.6 (↑ 8.0)

Table 4: Alignment performance on YMS. The improve-
ment over baseline is shown in the parentheses. The best
performance in each section and the best improvements
overall are in bold.

tains only 15 videos. Hence, the SyMoN split num-
bers may be more trustworthy. In the sentence-level
SyMoN split, which is arguably more natural than
the sub-sentence level, adding event causality im-
proves Clip Accuracy by 7.7% and Sentence IoU
by 8.0%. These results convincingly demonstrate
that the automatically extracted causal graphs pro-
vide real benefits in the story video- text alignment
task, even though the multimodal task clearly dif-
fers from the text-only tasks considered earlier.

7 Conclusion

In this paper, we propose a simple and effective
in-context-learning method for extracting event
causality from stories with LLMs. We match and
outperform supervised baselines in event causality
extraction. Furthermore, we validate the quality
of the extracted event causality by applying them
in downstream story understanding tasks. Experi-
ments show that event causality assists story evalu-
ation and video-text alignment, indicating the criti-
cal role of event causality in story understanding.
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Limitations

The scope of our research is limited to causality be-
tween events. As such, the results may not extend
to other types of causality (e.g. causality between
events and emotion, location or possession states).
Additionally, our technique works best on stories
with clear event boundaries. When the stories con-
tain dialogues or when the events are unclear, the
improvements achieved by the causal graphs are
limited.

Furthermore, our exploration of event causality
is confined to fiction stories and does not involve
other domains such as news and tweets. While
stories are a reflection of real life, their distribution
emphasizes drama over realism. Therefore, it is not
immediately clear if the event causality could play
similar roles in other domains.

Our research on event causality for automatic
story evaluation is primarily focused on the overall
score, while some other studies delve into scoring
different dimensions of quality, such as coherence,
logicality, and relevance (Chhun et al., 2022; Ke
et al., 2022; Xie et al., 2023). We argue that event
causality may contribute to more than one dimen-
sion, since a clear and accurate causal graph im-
plies relevance among events, logical causality, and
overall coherence. Exploring how event causality
contributes to the quality dimensions could be an
interesting line of future research.

Broader Impact

In this paper, we explore the use of LLM-extracted
event causality in story understanding. We recog-
nize LLMs may inadvertently contain bias derived
from training data. Furthermore, the story content
we use may contain the biases of their creators,
as well as social biases from the time periods of
production.

Consequently, the causal relationships generated
in our study are not intended as unbiased presen-
tations of social norms. For this reason, we urge
researchers to take caution when relying on LLMs
or stories as a source for learning cultural and social
conventions.
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A Causality Extraction on Glucose

A.1 GLUCOSE Causality Dimensions
GLUCOSE (Mostafazadeh et al., 2020) divides
causality within a story into ten dimensions. Here
X represents the current event:

1. Event that directly causes or enables X

2. Emotion or basic human drive that motivates
X

3. Location state that enables X

4. Possession state that enables X

5. Other attributes enabling X

6. Event that X directly causes or enables

7. An emotion that is caused by X

8. A change in location that X results in

9. A change of possession that X results in
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10. Other changes in property that X results in

In the paper, we focus on dimensions 1 and 6 as
they are about event causal relations.

A.2 GLUCOSE Finetuning Setup

We finetuned two types of LMs, Decoder-only
(GPT2) and Encoder-Decoder (T5), on 590K
causal statements from GLUCOSE. These state-
ments comprise 290K positive samples and 300K
negative samples. The statements that explain the
causal relationship between events, states or emo-
tions are positive samples generated by AMT work-
ers from the original GLUCOSE dataset. When
there was no causal relationship between two
events/states/emotions, there was no statement gen-
erated by AMT works. In this case, we generate a
simple negative statement: "No, escaped." for such
events/states/emotions.

GPT-2 We finetuned gpt2-large on 4 NVIDIA
A6000 GPUs with a learning rate of 3× 10−5 for
10 epochs. The batchsize is set to 64. The weight
decay factor is 5× 10−4. 15% of the input tokens
are masked at random.

T5 We finetuned T5-large on 4 NVIDIA A6000
GPUs for 10 epochs, using a batch size of 32 on
each GPU. The learning rate was 5× 10−4 under
the cosine schedule with a warmup for the first 500
steps, and we adjusted the weight decay factor to
1× 10−2. No masked tokens were applied.

A.3 The Causal Graph Generation Prompt

In the paper, the causal graph generation prompt
(Figure 1) contains an instruction and a number of
examples. In Section 4, the examples are always
the same six in-domain, random selected stories
from the GLUCOSE training set and the COPES
validation set respectively. In Section 5, the causal
graph generation stage uses the same six stories
from the GLUCOSE training set. In Section 6, we
use a single manually written example story.

A.4 Comparison of Prompts

Aside from the prompt shown in Figure 1, we de-
sign 11 additional prompts for event causality ex-
traction. In this section, we present a comprehen-
sive list of the 12 prompts we experimented with
for causality extraction.

Basic Prompt We show the basic prompt we
use for causality extraction in Figure 4, all of the

other prompts in this section are variations of this
prompt.

Your job is to find all the causalities in
a story.
You will be given a list of events in the
story. An event can be caused by another
event, an emotion, a possession state,
a location state or some other property.
Similarly, the effect of an event can be
another event, an emotion, a possession
state, a location state or some other
property. For every event in the story,
find all its causes and effects. For the
description of events, you should write
the event id in the parentheses after the
description. For descrption of emotions,
possession states, location states or
other properties, write the type of the
description in the parantheses after the
description.
Example Input:
Event 0: When Dan goes to school in the
morning, he has to take the bus.
Event 1: One day Dan was running late, and
missed the bus to school.
Event 2: Dan called his friend Pete, and
asked for a ride to school.
Example Output:
Dan’s routine of taking the bus to
school(Event 0) >Results in> Dan taking
the bus to school(other property)
Dan takes the bus to school(other property)
>Causes/Enables> Dan to miss the bus (Event
1).
Dan missing the bus (Event 1)
>Causes/Enables> Dan to call his friend
Pete for a ride (Event 2)
Input:
Event 0: <S1>
Event 1: <S2>
Event 2: <S3>

Output:
[Output from ChatGPT]

Figure 4: The basic prompt for event causality

Separate Cause and Effect Dimensions 1 to 5
of GLUCOSE represent the causes of the event
and Dimensions 6 to 10 represent the effects of the
event, it seems natural to generate the causes and
effects separately.

The prompt instructions remain unchanged, but
when generating dimensions 1 to 5, the causal state-
ments of dimensions 6 to 10 are removed from the
example outputs.

Prompts Containing Definitions of Causality
Note that in the above prompt, we do not include
any definitions of causality. Next, we experiment
with prompts that define causality in 4 different
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Identify and describe the causal
relationships among the events in
the narrative, highlighting how one event
leads to or influences another.

Figure 5: The prompt instruction generated by ChatGPT

ways. Each prompt replaces the first line of the
Basic Prompt with one definition below.

• Multifactorial: Your job is to find all the
causalities in a story using the multifactorial
definition of causality: A causes B when, in
combination with other factors, it is a neces-
sary or sufficient condition for the occurrence
of event B.

• Interventionist: Your job is to find all the
causalities in a story using the intervention-
ist definition of causality: A causes B when
changing or intervening in the occurrence of
A results in a corresponding change in the
occurrence of B.

• Probabilistic: Your job is to find all the causali-
ties in a story using the probabilistic definition
of causality: A causes B when the likelihood
or probability of B happening is significantly
higher when A occurs compared to when A
does not.

• Counterfactual: Your job is to find all the
causalities in a story using the counterfactual
definition of causality: A causes B if and only
if when A does not happen, B will not happen.

ChatGPT Generated Instruction We input the
examples into ChatGPT and asked ChatGPT to gen-
erate an instruction. To maximize reproducibility,
we set the temperature to 0 when using the OpenAI
API. We replace the instruction part of the prompt
with instruction shown in Figure 5.

Natural Language Form Output We keep the
instructions and example input of the prompt un-
changed, but change the format of the example out-
put so that it is a grammatically correct sentence.
See Figure 6.

ChatGPT Generated Format First, we remove
the examples from the Basic Prompt. Then we use
ChatGPT to perform zero-shot detection of causal
relations between story events. We take the format
created by ChatGPT (Figure 7) and use that to

Example Output:
Dan’s routine of taking the bus to
school(Event 0) results in Dan taking the
bus to school(other property)
Dan takes the bus to school(other property)
enables Dan to miss the bus (Event 1).
Dan missing the bus (Event 1) causes Dan to
call his friend Pete for a ride (Event 2)

Figure 6: Constrain the output format to a natural lan-
guage.

format the few-shot examples. Finally, we add the
re-formatted examples back into the basic prompt
to get this new prompt.

Output:
Original Event ID: 0
Event: Dan goes to school in the morning,
Dan takes the bus
Effect: Dan missed the bus to school
Original Event ID: 1
Event: Dan was running late, and missed the
bus to school
Cause: Dan takes the bus to school
Effect: Dan asks for a ride to school
Emotional Effect: Dan feels worried
Original Event ID: 2
Event: Dan calls his friend Pete and asks
for a ride to school
Motivation: Dan feels worried
Cause: Dan missed the bus to school
Effect: Pete gave Dan a ride to school
Emotional Effect: Dan feels relieved

Figure 7: The output format generated by ChatGPT

Curated Examples In every other prompt, the
few-shot examples in the prompt are randomly cho-
sen from the GLUCOSE training set.

In this prompt, we select high-quality examples
from the training set. In GLUCOSE, every pair
of events is annotated by one human worker, who
judges if there is a causal relation between them.
Each human annotator also has a quality score be-
tween 1 and 3. In this prompt, we pick only exam-
ple stories that are completely annotated by anno-
tators with quality scores of 3.

Causal Graph This is the main prompt of Figure
1 that we use throughout the paper. The LLM is
asked to generate a list of edges between the nodes.

Event Chain We ask the LLM to describe how
events are connected in causal chains. The LLM
should generate a complete chain at a time, instead
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Here is a list of events from a story.
Trace the domino effect of events in the
story and explain how one event led to the
next.
Example Input:
Event 0: When Dan goes to school in the
morning, he has to take the bus.
Event 1: One day Dan was running late, and
missed the bus to school.
Event 2: Dan called his friend Pete, and
asked for a ride to school.
Example Output:
Chain 0: Event 0 -> Dan takes the bus to
school(other property) -> Event 1 -> Event
2
Input:
Event 0: <S1>
Event 1: <S2>
Event 2: <S3>

Output:
[Output from ChatGPT]

Figure 8: The prompt for event causality extraction in
the form of event chains.

of a single causal relation at a time. Figure 8 shows
the prompt.

A.5 Evaluation Protocols

Before event causality extraction, we first divide
the story text into a sequence of sentences with the
NLTK sent_tokenizer: https://www.nltk.org/
api/nltk.tokenize.html

For BLEU score, we calculate with the Sacre-
BLEU implementation (Post, 2018), with equal
weights up to 4-grams at corpus level on the three-
reference test set.

We use the sentence-transformer implementa-
tion (Reimers and Gurevych, 2019b) to calculate
the BERTscore, using the average of token em-
beddings from the bert-nli-mean-tokens model
without considering the “idf” weight of each token.
The average of token embeddings is also used in
calculating the BERT Similarity.

See Table 5 for results on GLUCOSE dimen-
sions 1 and 6. The results reported in Tables 1, 2,
and 5 are all from a single run.

B Open-ended Generated Story
Evaluation

Story Evaluation The prompt for scoring the
story is first introduced by Wang et al. (2023b),
and we insert a single word ‘causal’ into it for
exploratory experiments, shown in Figure 9.

BLEU BERTScore
BERT

Similar.
F1

Basic Prompt 30.20 65.96 65.61 54.11
Separate Cause and Effect 30.37 59.90 54.71 59.82
Multifactorial 35.95 60.45 55.82 52.85
Interventionist 36.11 59.50 54.24 52.28
Probabilistic 32.13 59.18 53.79 50.90
Counterfactual 37.54 54.98 48.89 49.12
ChatGPT Generated Instruction 30.12 55.31 50.73 50.96
Natural Language Form Output 31.66 68.51 66.57 54.44
ChatGPT Generated Format 24.23 68.44 68.93 54.75
Curated Examples 33.97 69.74 69.40 55.34
Causal Graph (Ours) 21.2 75.33 80.89 60.75
Event Chain 23.29 49.63 42.01 43.71

Table 5: Results of different prompts on GPT 3.5, aver-
aged over dimensions 1 and 6.

Score the following storyline given the
beginning of the story with one to five
stars.
Where one star means “Nonsense”,
two stars mean “The storyline has some
connections with the beginning, but is not
understandable”,
three stars mean “The storyline has some
causal connections with the beginning and
is understandable”,
four stars mean “The storyline is causally
consistent with the beginning and possibly
involves a few grammar mistakes”,
and five stars mean “Perfect storyline with
causal connections and perfect grammar”.

The beginning of the story: <prompt>
Storyline: <generated story>
Stars:

Figure 9: The story scoring prompt from Wang et al.
(2023b) with the word “causal” inserted.

Figure 10 demonstrates the prompt for the
method “ChatGPT-causal-graph" on WP under the
few-shot cross-domain setting, as introduced in §5

Correlation Computation We calculate average
correlations at two aggregation levels: dataset level
and writing prompt level.

Given a set of N writing prompt sentences and
M generative language models. The story gen-
erated by the mth model using the nth writing
prompt is denoted as Tn,m. The scoring for Tn,m

from ChatGPT or human workers are denoted as
SL(Tn,m) or Shuman(Tn,m).

Dataset Level

Corrd =ρ([SL(T1,1), . . . , SL(TM,N )],

[Shuman(T1,1), . . . , Shuman(TM,N )])
(2)

Writing Prompt Level
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Corrp =
1

N

N∑

n=1

(ρ([SL(T1,n), . . . , SL(TM,n)],

[Shuman(T1,n), . . . , Shuman(TM,n)]))
(3)

C Video-Text Alignment

The causal graph used in this experiment is gen-
erated with the prompt shown in Figure 1. The
LLM prompt includes an instruction and one exam-
ple written by the authors. As the SyMoN stories
are very long, we use a manually written story as
demonstration instead of actual data samples from
the SyMoN dataset.

An average story in the SyMoN dataset contains
2408 tokens, however, the story length sometimes
exceeds the context length of 4097 tokens. When
this happens, we divide it into overlapping seg-
ments and concatenate the generated causal graphs.

Training Following UniVL, we use S3D to ex-
tract 1 video feature per second. The video clips
are trimmed or appended to 4 seconds. A video
clip A is represented as 4 video feature vectors
{vA1 , . . . , vA4 }. The text chunks are trimmed or ap-
pended to 64 tokens. The video features and text
tokens are then passed into the video and text en-
coders. Both encoders are 12-layer Transformers.

The model is trained on SyMoN with an initial
learning rate of 5× 10−5 and cosine learning rate
decay. We use a batch size of 256 and train for
40 epochs. The first epoch applies linear warm-up
of learning rates. SGD with momentum of 0.9 is
used for optimization and a weight decay term of
0.5 is added for regularization. 60% of the text are
masked at random.

The number of parameters within the models is
153,784,064. The model is trained for 2.8 days on
1 NVIDIA A6000 1015 GPU.

Evaluation In YMS, a text chunk may corre-
spond to multiple video clips, whereas a video clip
may correspond to one or zero text chunks. During
inference, we first calculated the pair-wise similar-
ity between every video clip and text chunk. Then
we calculate the global alignment with DTW (in-
troduced momentarily). If the similarity between
an aligned video clip and text chunk falls below
a threshold, tuned on the validation set, the video
clip is considered to not match anything.

The YMS dataset consists of 94 movie summary
videos in total. In the NeuMatch split, the test set

consists of 15 videos and the validation set consists
of 12 videos. In the SyMoN split, the test set and
validation set contain 65 and 29 videos respectively.

The results in Table. 4 are from a single run.

Dynamic Time Wrapping DTW uses dynamic
programming to find the best correspondence be-
tween two sequences based on distance (or similar-
ity), the final alignment corresponds to the shortest
distance or highest similarity.

We use DTW to align a sequence of video
clips V = (v1, . . . , vN ) and a sequence of text
chunks T = (t1, . . . , tM ). We first assume that
v1 is aligned to t1, thus the cost of matching v1
and t1 is c(1, 1) = 0, and the cost of match v1
with tj(j ̸= 1) is c(1, j) = ∞, and vice versa.
Then, the minimal cost of aligning (v1, . . . , vi)
with (t1, . . . , tj), can be calculated as:

c(i, j) = min(c(i− 1, j) + d(i, j),

c(i, j − 1) + d(i, j),

c(i− 1, j − 1) + d(i, j))

(4)

where d(i, j) denotes the distance between vi and
tj . Since we have the cosine similarity between
each video-text pairs, the distance can be calculated
as d(i, j) = 1− s(i, j), where s(i, j) is the cosine
similarity between vi and tj .

D Case Studies of Identified Causal
Relations

In this section, we present case studies, including
failure cases, of event causality identified using our
approach. Note that the [Correct] / [Wrong] labels
are not present in the model output. We add them
as part of our analysis.

D.1 Case Study from COPES

COPES contains annotations for causal predeces-
sors of the last event only. The model output is
correct on that edge. Edge 0 is a little ambiguous.
One plausible interpretation is that the game moti-
vates her to win. Another possible interpretation is
that Alicia likes to win no matter what game she
plays, so Edge 0 would be incorrect. We argue the
relation in Edge 3 is correct because Alicia win-
ning made her feel good, and the desire to repeat
the good experience of winning motivated Alicia
to play again.
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D.2 Case Study from OpenMEVA
OpenMEVA does not contain causal relation an-
notations. The labels reflect our own judgments.
Edges 2 and 3 are ambiguous but it is possible
that learning about vegan food allows my friend to
teach other people. We consider Edge 4 wrong, as
the friend teaching a class and my liking vegetar-
ians seem unrelated. At the minimum, a number
of additional events are needed to bridge the gap
between the two statements.

D.3 Case Study from SyMoN
SyMoN does not contain causal relation annota-
tions. The labels reflect our own judgments. Note
that the LLM correctly singles out Node 2 as not
causally related to any event. Edge 2 may appear
dubious, as the action of asking for clothes does not
immediately lead to getting dressed. However, one
may reasonably infer that asking leads to receiving
an answer, which enables getting dressed.

E Licensing Information

The Glucose dataset is licensed under the Creative
Commons Attribution-NonCommercial 4.0 Inter-
national Public License. The COPES dataset is
licensed under the MIT License. The OpenMEVA
dataset is from https://github.com/thu-coai/
UNION. The SyMoN dataset is from https:
//github.com/insundaycathy/SYMON. The
YMS dataset is from https://github.com/
pelindogan/NeuMATCH/tree/master.

ChatGPT is under the GNU AFFERO GEN-
ERAL PUBLIC LICENSE Version 3. Llama-2
is licensed under LLAMA 2 COMMUNITY LI-
CENSE AGREEMENT. Yi-34b-chat is licensed
under Yi Series Models Community License Agree-
ment Version: 2.1. Falcon is licensed under
Apache License Version 2.0. The Union model
is from https://github.com/thu-coai/UNION.
The UniVL model is licensed under the MIT Li-
cense.

Score the following storyline given the
beginning of the story with one to five
stars.
Where one star means "Nonsense",
two stars mean "The storyline has some
connections with the beginning, but is not
understandable",
three stars mean "The storyline has some
causal connections with the beginning and
is understandable",
four stars mean "The storyline is causally
consistent with the beginning and possibly
involves a few grammar mistakes",
and five stars mean "Perfect storyline with
causal connections and perfect grammar".

We also provide causal connections
analyzed by experts, where each event is
represented as a node, and the causal
connections between these nodes are listed.

Here are two examples:
Example1:
The beginning of the story: i was sitting
on the bench today.
Storyline: i heard my neighbor ’s dogs
barking. i looked at his dog and realized
it was a Monday. the monday still runs
through monday. i called my neighbor to
let her know how i felt.
Event graph:
Edge 0: (Node 0 -> Node 1)
Edge 1: (Node 1 -> Node 2)
Edge 2: (Node 2 -> Node 3)
Edge 3: (Node 2 -> Node 4)
Stars: 1.4

Example2:
The beginning of the story: [FEMALE] is an
actress who just turned 19.
Storyline: she had a bad acting performance
in an upcoming movie. she was disappointed.
then, she decided to try something
different. she filmed herself playing in
her very own version.
Event graph:
Edge 0: (Node 0 -> Node 1)
Edge 1: (Node 1 -> Node 2)
Edge 2: (Node 2 -> Node 3)
Edge 3: (Node 3 -> Node 4)
Stars: 5
(End of examples)

The beginning of the story: <prompt>
Storyline: <generated story>
Event graph:
[list the event graph generated with
ChatGPT, here is just an example:]
Edge 0: (Node 0 -> Node 1)
Edge 1: (Node 1 -> Node 2)
Edge 2: (Node 2 -> Node 3)
Edge 3: (Node 3 -> Node 4)
Your score should reward stories with rich
causal chains and penalize those that lack
or have confusing causal chains.

Figure 10: The story prompt we propose.
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Figure 11: Example of OpenMEVA stories.

Event List:
Node 0: Alicia was playing solitaire.
Node 1: She really wanted to win.
Node 2: Finally after twenty minutes, she
won.
Node 3: Alicia decided to play again.
Node 4: This time she won in five minutes.
Output:
Edge 0: (Node 0 -> Node 1) [Ambiguous]
Edge 1: (Node 0 -> Node 2)
Edge 2: (Node 1 -> Node 2)
Edge 3: (Node 2 -> Node 3)
Edge 4: (Node 3 -> Node 4) [Correct]

Figure 12: Example of event graph for stories in the
COPEs dataset.

Event List:
Node 0: My friend [FEMALE] became a vegan
at age twenty.
Node 1: She bought many fruits and
vegetables from the store.
Node 2: She learned a lot about vegan
foods on the internet.
Node 3: She is now teaching a vegetarian
class in her neighborhood.
Node 4: I am very happy to help out a
vegetarian.
Output:
Edge 0: (Node 0 -> Node 1)[Correct]
Edge 1: (Node 0 -> Node 2)[Correct]
Edge 2: (Node 1 -> Node 3)[Ambiguous]
Edge 3: (Node 2 -> Node 3)[Ambiguous]
Edge 4: (Node 3 -> Node 4)[Wrong]

Figure 13: Example of event graph for stories in the
OpenMEVA dataset.

Event List:
Node 0: Tree wakes up in a dorm room that’s
not Tree’s.
Node 1: Carter turns around and greets
Tree.
Node 2. Tree’s phone rings to the sound of
a birthday song.
Node 3: Tree asks where Tree’s clothes
are.
Node 4: Tree immediately stands up to get
dressed.
Node 5: Tree asks for Tylenol.
Node 6: Carter scrambles to find it.
. . .
Output:
Edge 0: (Node 0 -> Node 1) [Correct]
Edge 1: (Node 0 -> Node 3) [Correct]
Edge 2: (Node 3 -> Node 4) [Probable]
Edge 3: (Node 0 -> Node 5) [Correct]
Edge 4: (Node 5 -> Node 6) [Correct]
. . .

Figure 14: Example of event graph for stories in the
SyMoN dataset.
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