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Abstract

Pretraining data design is critically under-
documented and often guided by empirically
unsupported intuitions. We pretrain models on
data curated (1) at different collection times,
(2) with varying toxicity and quality filters,
and (3) with different domain compositions.
First, we find that temporal shift between eval-
uation data and pretraining data leads to per-
formance degradation, which is not overcome
by finetuning. Second, we measure the effect
of quality and toxicity filters, showing a trade-
off between performance on standard bench-
marks and risk of toxic generations. We also
find that the effects of different types of fil-
tering are not predictable from text domain
characteristics. Third, we empirically validate
that heterogeneous data sources, like books
and web, are beneficial and warrant greater
prioritization. To date, these experiments con-
stitute the single largest publicly documented
empirical study of the effects of pretraining
data. Spanning 28 unique 1.5 billion parame-
ter models pretrained from scratch, these find-
ings validate, quantify, and expose many un-
documented intuitions about text pretraining,
which ultimately support more informed data-
centric decisions in model development.

1 Introduction

The strong performance (Chowdhery et al., 2022;
Nostalgebraist, 2022; OpenAl, 2023; Google,
2023), and emergent abilities (Wei et al., 2022)
of modern language models (LMs) depend on self-
supervised pretraining on massive text datasets. All
model developers implicitly or explicitly decide the
composition of these datasets: what data sources to
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Figure 1: The experimental pretraining curation

pipeline sub-selects data from C4 or the Pile, pretrains
language models on each data split, and evaluates the
change in performance over benchmarks.

include, whether to filter for attributes such as qual-
ity and toxicity, and when to gather new documents.
While many of the most prominent models do not
document their curation procedures (OpenAl, 2023;
Google, 2023), or only document which procedures
they used (Brown et al., 2020; Nostalgebraist, 2022;
Scao et al., 2022; Touvron et al., 2023), they rarely
document why they chose those protocols or what
effect those had. This documentation debt leaves
practitioners to be guided by intuitions and prece-
dents, neither thoroughly evaluated (Bandy and
Vincent, 2021; Sambasivan et al., 2021). Given
the outsized and fundamental role of pretraining
data in modern LMs, we believe this practice has
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detracted from responsible data use and hampered
effective model development (Rogers, 2021; Gebru
et al., 2021; Bender and Friedman, 2018).

Among the small number of general-purpose
LMs dominating community use and discussion,
the prevailing focus has been on the scale of pre-
training data and number of optimization steps
(Brown et al., 2020; Nostalgebraist, 2022; Google,
2023). In this work, we select three common data
design decisions and systematically test how they
affect model performance—specifically, we choose
the time of collection, content filtering strategy
(toxicity/quality), and domain composition. We
study the impacts in two ways. First, we present
observational measurements of the effect of ex-
isting quality and toxicity filtering methods (Sec-
tion 3). We document how these filters affect a
range of characteristics in two major pretraining
datasets, C4 (Raffel et al., 2020) and the Pile (Gao
et al., 2020). Second, we rigorously evaluate these
dataset decisions on downstream tasks by evalu-
ating decoder-only autoregressive 1.5B-parameter
LMs each pretrained on a dataset modified along
one dimension of time, toxicity, quality, or domain
composition. We summarize our findings and rec-
ommendations to model developers as follows:

Dataset Age (Section 4). Performance degrades
when the age of evaluation data does not match pre-
training data, both when evaluation data is newer
and older. This phenomenon is not eliminated by
substantial finetuning and is exacerbated in larger
models. The effect can meaningfully complicate
comparisons between new and old models: for ex-
ample, frozen benchmark datasets give a subtle
advantage to models pretrained on older data.

Quality and Toxicity Filters (Section 5).
Though defining document quality and toxicity is
difficult, most language models use heuristics for
filtering documents by quality and/or toxicity (see
Appendix, Table 4). We evaluate the most com-
mon heuristics for content filtering used in practice,
finding that quality and toxicity filtering have sig-
nificant but opposite effects on model behaviour.
Quality filtering, removing “low-quality” text, sub-
stantially increases both toxic generation and down-
stream performance across tasks we tested, despite
reducing the amount of training data. In contrast,
removing “toxic” data trades-off fewer toxic gener-
ations for reduced generalization performance. In-
verse toxicity filters, which remove the least toxic
content, demonstrate targeted benefits. Removing
low-quality text from the dataset does not neces-

sarily improve results on datasets with high quality
text. Quality filtering shows mostly positive effects,
but the benefits are not predictable from text charac-
teristics. These findings demonstrate that one size
filter does not fit all. Practitioners should develop
more targeted quality or inverse toxicity filters for
their tasks.

Domain Composition (Section 6). The best
performing domains comprise high-quality (books)
and heterogeneous (web) data, corroborating
Brown et al. (2020); Chowdhery et al. (2022); Xie
et al. (2023a). However, these text sources con-
tribute most to toxic generation. Still, we found
that the benefit of training on these data sources is
often greater than data collection for a targeted do-
main, and so recommend practitioners focus future
collection on diverse, well-edited data. Addition-
ally, our best performing models still use all data
sources (even at the relatively small scale of 1.5B
parameters); thus, we recommend practitioners in-
clude broad data sources, even those less relevant
to their downstream tasks (Madaan et al., 2022).

As the majority of the community has adopted
a small set of models for most research and ap-
plications (BERT, T5, GPT-2, GPT-3), pretraining
data curation decision have long-term ramifications.
Our findings empirically quantify, validate, and,
occasionally, challenge an entrenched set of under-
examined pretraining assumptions.

We hope these results better inform model devel-
opers training the next wave of LMs and set a prece-
dent for more exploration of pretraining decisions.
To our knowledge, these constitute the largest pub-
licly documented LM data curation study, spanning
28 1.5B parameter models. While these models
come at substantial computational cost (Section 8),
we argue that the cost of not publicly evaluating
pretraining decisions is greater.

2 Methodology

We measure how pretraining data curation choices
affect downstream performance. Figure 1 illus-
trates our approach: each experiment starts with
a pretraining dataset, applies a filter that removes
documents, pretrains a language model on the cu-
rated dataset, and finetunes and evaluates the model
on downstream tasks.

2.1 Pretraining Datasets

We use two common publicly available pretraining
datasets: C4 (Raffel et al., 2020) and the Pile (Gao
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et al., 2020).! Both start with heuristic filtering
for English language and content quality; we also
deduplicate (Lee et al., 2022). Table 4 shows that
these two datasets are widely used. Many other
pretraining experiments are limited to only one of
these datasets (Dodge et al., 2021; Biderman et al.,
2023; Welbl et al., 2021; Xu et al., 2021).

2.2 Pretraining Data Variations

We evaluate variations in the pretraining data based
on three categories of interventions: (1) To test im-
pact of the age of a pretraining dataset, we create
four versions of C4 using snapshots of the Com-
mon Crawl from different years: 2013, 2016, 2019,
and 2022. (2) To examine the source composition
of a pretraining dataset, we partition the Pile’s 22
distinct sources into 9 parts: Common Crawl, Open-
WebText, books, Wikipedia, legal, social, biomed-
ical, academic, and code (see Appendix, Table 5).
We then ablate each source from the Pile one-at-
a-time and measure the performance change in
diverse QA tasks. (3) To examine the effect of
toxicity and quality filters, now a staple in pretrain-
ing (Appendix, Table 4), we use two document-
level, classifier-based filters and vary the confi-
dence thresholds to show different filter strengths.

Quality Filters We employ the proprietary qual-
ity filter used by PaLLM and GLaM, which assigns
each document a score from 0O (high quality) to 1
(low quality). We remove low-quality documents
that fall above four quality thresholds: 0.975, 0.95,
0.9, 0.7. We separately invert this filter to instead
remove the highest quality documents below a
threshold.

Toxicity Filters We use Jigsaw’s Perspective
API2, which was trained on comments from on-
line forums and assigns toxicity scores based on
whether annotators found the comment to contain
profanity/obscenity, identity-based negativity, in-
sults, or threats. Our experiments include five dif-
ferent toxicity threshold values 0.95, 0.9, 0.7, 0.5,
and 0.3, as well as one inverse filter that removes
documents with the least predicted toxicity below
a threshold. In addition to the classifier-based filter,
we also experiment with the n-gram based filter
used by Raffel et al. (2020) in the original version
of the C4 dataset. This filter removes all documents

!The datasets have the ODC-By and MIT Licenses, respec-
tively. We use the datasets for the intended purpose.
2https ://www.perspectiveapi.com

CURATION

Age Temporal degredation PubCLS, NewSum, PoliAff,
TwiERC, AIC (Luu et al., 2022)
RealToxicityPrompts (Gehman et al., 2020)
RepBias (Chowdhery et al., 2022)
Toxicity identification ~Social Bias Frames (Sap et al., 2020)
DynaHate (Vidgen et al., 2021)
Toxigen (Hartvigsen et al., 2022)
MRQA (Fisch et al., 2019)
UnifiedQA (Khashabi et al., 2020)
MRQA (Fisch et al., 2019)
UnifiedQA (Khashabi et al., 2020)

TASK DESCRIPTION DATASETS

Toxicity/quality filtering Toxic generation

Question answering

Domain composition Question answering

Table 1: We evaluate the effect of different curation
strategies on different downstream tasks.

that contain any word present in the “List of Dirty,
Naughty, Obscene, or Otherwise Bad Words”.

There are several important limitations with the
design and definition of “quality” and “toxicity”
filters in general, which we discuss in Section 8.
More details on pretraining data curation method-
ology are in Appendix B.

2.3 Evaluation

To measure the effects of time, domain, quality, and
toxicity, we evaluate pretrained models on English-
language tasks for toxicity identification, toxic gen-
eration, dozens of question answering (QA) tasks
from diverse domains, and several tasks with tem-
poral annotations (Table 1). These evaluations are
chosen to broadly understand the impact of dataset
ablations.

To evaluate domain generalization we combine
two question-answering benchmarks: Machine
Reading for Question Answering (MRQA) (Fisch
etal., 2019) and UnifiedQA (Khashabi et al., 2020),
which together consist of 27 unique QA datasets
that we partition into domain categories (see Ap-
pendix, Table 9). To evaluate temporal shift, Luu
et al. (2022) released several datasets in which in-
creasing temporal distance between finetuning and
evaluation time decreases test performance. We
choose 5 of these datasets from varying domains
to evaluate whether a similar phenomenon exists
between pretraining and evaluation time: PubCLS,
NewSum, PoliAff, TwiERC, and AIC.

To evaluate toxic generation tendencies, we
use the RealToxicityPrompts benchmark (Gehman
et al., 2020) and the Representational Bias bench-
mark used in Chowdhery et al. (2022) (see Ap-
pendix D.1 for details). To evaluate the model’s
ability to identify toxic content, which is critical
in content moderation applications (NYT, 2020;
Singh, 2019), we use Social Bias Frames (SBF,
Sap et al., 2020), DynaHate (DH, Vidgen et al.,
2021), and Toxigen (Hartvigsen et al., 2022).
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Figure 2: Feature differences across slices of the pre-
training datasets. Bars show the ratio between the
mean feature value for the slice and the mean value for
the dataset (the Pile or C4), which is indicated by a hor-
izontal gray line. For example, high toxicity Pile text
has 3.5x the number of characters per datapoint than
average for the Pile.

2.4 Models

We use a decoder-only Transformer-based lan-
guage model, trained using T5X (Roberts et al.,
2022). Our main experiments use LM-XL, a 1.5B
parameter model similar to the t5.1.1-XL archi-
tecture configuration trained with an autoregressive
next-token-prediction objective. For experiments
that measure scaling effects, we use LM-SMALL,
a 20M parameter decoder-only model similar to
the t5.1.1-small configuration. These configura-
tions are popular, show decent performance (Wang
et al., 2022), and can generate text without addi-
tional finetuning. We study one model family in
order to focus on the effects of data curation due to
the computational cost of pretraining. Additional
details on pretraining and finetuning are available
in Appendix C

3 Impact of Data Curation on Data
Characteristics

We first present observational statistics on the pre-
training datasets themselves. We find substantial
interactions between curation choices. For more
details on these features, see Appendix E.

Toxicity and Quality Figure 2 shows that toxi-
city and quality are surprisingly not well-aligned
with one another. There is little discernible differ-
ence in feature measurements for profanity, toxic-

PRETRAINING
LM-SMALL | LM-XL
TASK TD r| TD r TD r| TD r

PUBCLS |5.82 0.84|5.63 0.80( 0.02 0.017]0.59 0.67

NEwSUM [0.80  0.82{291 0.92|-0.31 -0.29|0.73 0.45

POLIAFF |3.74  0.84|4.93 0.89| 0.50 0.21]0.28 0.56
TWITTER

TWIERC 049  0.73/0.53 0.82|| 0.05 0.27|0.23 0.72

SCIENCE | AIC 0.94  0.83024 036 0.11 0.18"|0.23 0.66
|MEAN  [2.36  0.81|2.84 076 0.08 0.07[0.41 0.61

FINETUNING
LM-SMALL | LM-XL
DOMAIN

NEWS

Table 2: Temporal Degradation (TD) measures the ex-
pected performance degradation from one year of tem-
poral misalignment. We report TD first between fine-
tuning and evaluation, then pretraining and evaluation,
for LM-XL and LM-SMALL, across five tasks. Pear-
son correlation r indicates the correlation strength be-
tween performance change and temporal misalignment.
Temporal Degradation due to pretraining is signifi-
cant and persistent across domains. All correlations
are significant at p < 0.05 unless marked with .

ity, and sexually explicit content between content
classified as low vs. high quality. High toxicity doc-
uments have higher text quality than low toxicity
documents. This is explained by the Books sub-
set of the Pile having substantially more profane,
toxic, and sexual content, but also greater predicted
quality (see Appendix, Figure 7). While we might
expect books to be high quality, in the sense that
they typically contain meaningful, well-edited sen-
tences, they also contain strong language and erotic
subjects. This may also explain why documents
classified as high toxicity in both C4 and the Pile
are much longer (2.5x and 3.5x above dataset mean,
respectively), more profane (5x and 4.4x), sexually
explicit (4.6x and 4.2x), and toxic (3.6x and 3.5x).

Domains in the Pile Figure 7 in the Appendix
shows that OpenWeb provides the most lexical and
linguistic diversity, with the highest non-ASCII
characters and type-token ratio. Wikipedia presents
the highest quality text, before Books and Open-
Web. Technical domains such as PubMed, Code,
and Academic score low on predicted quality, in-
dicating that overly-specific positively-defined fil-
ters on web documents may remove substantial
amounts of potentially useful specialized text.

4 Impact of Dataset Age on Pretrained
Models

While models are frequently and cheaply updated
with new finetuning data, the expense of pretraining
means the NLP community has relied on relatively
few static pretrained models that are rarely updated
or exchanged. BERT, RoBERTa, GPT-2, and T5
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variants, all pretrained prior to 2020, constitute
the majority (estimated at ~58% as of April 16,
2023) of all models downloaded on Hugging Face.
Prior work demonstrates that language use changes
over time (Altmann et al., 2009; Labov, 2011) and
that temporal misalignment between finetuning and
evaluation datasets correlates with degraded perfor-
mance, visible across settings and domains (Luu
et al., 2022; Lazaridou et al., 2021; Agarwal and
Nenkova, 2022; Jang et al., 2022). In contrast,
we examine the effect of temporal misalignment
between pretraining data and evaluation. In eval-
uating the impact of pretraining time across data
domains, we can quantify the impact this design
choice has on NLP broadly.

We pretrain four autoregressive language models
on versions of C4 (2013, 2016, 2019, and 2022),
beginning with Common Crawl data and removing
all data that was scraped after the cutoff year. Fol-
lowing Luu et al. (2022), we measure the effect of
temporal misalignment by using evaluation tasks
that have training and test sets split by year (from
News, Twitter, and Science domains). After pre-
training, we finetune each model on each dataset’s
training-year split separately, then evaluate on ev-
ery test-year split. Full details and results are in
Appendix D.2 and Appendix F.1, respectively.

We estimate the effects of temporal misalign-
ment between pretraining and evaluation (Ap-
pendix, Figure 9). Since all models were finetuned
on the training sets of the evaluation tasks, we show
that temporal misalignment during pretraining per-
sists even with temporally-relevant finetuning data.

Performance degradation strongly correlates
with pretraining misalignment and its effects
are non-trivial. Luu et al. (2022) formalize a
definition for Temporal Degradation (TD), which
measures the performance change observed from a
one year difference between the finetuning and eval-
uation years. We generalize TD to also measure
the effect of a one year difference between pretrain-
ing time and evaluation time, as described in Ap-
pendix D.2. Furthermore, we quantify the strength
of the relationship between performance difference
and temporal difference using Pearson correlation.
In Table 2 we find temporal degradation is highest
for finetuning (2.8 on average), as expected, but
also surprisingly high for one year of pretraining
(0.4)—particularly for the News domain. The aver-
age Pearson correlation of 0.61 indicates a strong
correlation between pretraining temporal misalign-

w IS o

Relative Improvement (%)

o £'ii

8 7 6 5 4 -3 2 1 0 1 2 3 4 5 6 7 8 9 10 12
Pretrain Year - Evaluation Year

Figure 3: Relative performance degrades when
there is temporal mismatch between pretraining
and evaluation data. The boxplot indicates the
median (solid line), mean (triangles), quartile range
(boxes), and rest of the distribution (whiskers). Note
that each dataset has different evaluation year ranges.

ment and reduced performance. All five tasks pass
a one-sided Wald test with p < 0.05, validating
that the effect is significant.

Pretraining misalignment is not overcome by
significant finetuning. The temporal degrada-
tion due to pretraining suggests models pretrained
on data from the same timeframe as target evalu-
ations will have advantages over models trained
on much older or newer data. Notably, this effect
is observed for models which are finetuned on the
full temporally-relevant training sets. This suggests
that even substantial finetuning cannot overcome
pretraining data that is temporally misaligned.

Pretraining misalignment effects are asymmet-
ric and have implications for NLP evaluations.
Figure 3 summarizes temporal results, each of
which is associated with an evaluation dataset, a
pretraining year, a finetuning year, and an evalua-
tion year. Each result is compared to a baseline of
the lowest performance for that dataset’s evaluation
year (across any pretraining and finetuning year
combination). Zero on the y-axis represents the
lowest performance, and points are plotted based
on their percentage improvement over their corre-
sponding baseline. We observe performance degra-
dation regardless of whether the pretraining data
was collected before or after the evaluation data.
While we would not expect a 2019 model to per-
form well on questions about COVID, we also find
that 2022 models perform less well on Obama-era
evaluations than earlier models.
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Figure 4: Toxicity filtering the pretraining dataset
decreases the ability of LM-XL to identify toxicity
and to generate toxic text. Quality filtering surpris-
ingly increases both abilities. Documents with scores
above a given threshold were filtered out.

Figure 3 also shows performance degradation is
asymmetric: it is steeper when the evaluation year
is after the pretraining year (blue bars) as opposed
to the reverse (red bars). This finding suggests that
both models and evaluations become stale: older
models perform less well than newer models on
new evaluations and newer models will perform
less well on older evaluations. There are many
possible causes; it could be because a lower frac-
tion of the training dataset comes from the years
that are relevant to the time-dependent task, or it
might be because the facts change in pretraining
data from later years. Regardless of the cause,
this phenomenon has implications for NLP exper-
iments comparing models pretrained at different
times. For instance, newer evaluation sets may ap-
pear much more difficult than old evaluation sets
when applied to established, but less fresh, models.
Similarly, older evaluations may underestimate the
capabilities of newer models.

Temporal Degradation is greater for larger
models. We find more temporal degradation
for LM-XL (1.5B parameters) than for LM-
SMALL (20M parameters). As shown in Table 2,
we do not find the same temporal degradation
effects of pretraining were significant for LM-

Table 3: Quality filters improve performance, tox-
icity filters reduce performance. Quality and toxic-
ity filters on C4 (y-axis) reduce the pretraining data (%
Data), and impact LM-XL’s relative performance on
QA evaluations from domains Wiki, Web, Academic,
and Contrast Sets. Full results shown in Figure 10 and
Figure 11.

SMALL models. This suggests that larger models
may have a greater sensitivity to temporal infor-
mation than smaller models, which may not have
the capacity to take advantage of subtle temporal
features at all. Full results for LM-SMALL experi-
ments are provided in Appendix F.1.

5 Impact of Quality & Toxicity Filters on
Pretrained Models

Most modern large language models use some form
of quality and/or toxicity filtering for their pretrain-
ing datasets (Appendix, Table 4). To curb toxic-
ity, T5 uses n-gram filters; Gopher and Chinchilla
use SafeSearch filters; and LaMDA uses “safety
discriminators”. Quality heuristics are universally
applied for web-scraped data, with newer models
like LLaMA, the GPT-series and the PalLM-series
all relying on quality classifiers. To compare and
quantify the effects of these two filter types, we
implement quality and toxicity filters at various
thresholds, as described in Section 2, to vary toxic
and low-quality text present when pretraining mod-
els on the Pile and C4.

Quality filters significantly improve perfor-
mance across nearly all tasks, despite reducing
training data quantity and variety. Quality fil-
ters improve nearly all downstream tasks: toxicity
identification by 2% (Figure 4, bottom) and most
QA task categories by 1-6% (Table 3). These im-
provements are realized despite removing 10%+ of
the training data, even though we find that remov-
ing data usually leads to a decrease in performance
(Section 6). While the average performance peaks
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Wiki Web Biomed

Full Dataset (100%) 0.0 0.0 0.0
No Social (99%) -0.8 -3.7 0.1

No Wiki (98%) 13 0.2
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No Legal (91%) -2.7 -2.9 0.4
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Figure 5: QA tasks are affected by removing domains when pretraining LM-XL. Each row represents a
model with one domain removed, the size of the remaining dataset is shown at the left in parentheses. Each
column represents a set of QA evaluations from a domain. The FULL DATASET model represents the unfiltered
Pile LM-XL, and all scores are relative to this baseline model.

at T = 0.975 for the QA tasks, greater quality fil-
tering still outperforms the unfiltered baseline on
average. The performance on toxicity identification
is still improving after T" = 0.7, where 55% of the
dataset has been filtered out.

The effect of quality filtering varies by dataset.
In Section 3, Books, Wikipedia, and Web data
are classified as highest quality. Table 3 shows
that quality filtering provides the least benefit to
QA tasks in these categories, even hurting the per-
formance for Books. Academic and biomedical
data have lower initial estimated quality, and their
QA tasks benefit the most from quality filtering.
When we remove the highest estimated quality doc-
uments, Wikipedia and Web QA tasks are the most
hurt, suggesting that these domains are not affected
as much by the absence of the lowest quality data
as the presence of the highest quality data. Un-
expectedly, both the quality and inverse quality
filters led to models with higher toxic generation
tendencies (Figure 4, bottom). Different segments
of data along this classifier’s quality spectrum can
have strong but varied effects on different domains.
“Quality” is a complex, situational concept, for
which it is unlikely that one measure is sufficient.

Toxicity filtering leads to a trade-off between
toxicity identification and toxic generation
goals. We find that filtering using a toxicity clas-
sifier leads to a trade-off: models trained from heav-
ily filtered pretraining datasets have the least toxic
generation but also the worst toxicity identification
(Figure 4, top). Similarly, Table 3 shows the per-
formance of QA tasks unrelated to toxicity are hurt
by toxicity filtering, though this may be due to the

overall decrease in training data. Ultimately, the fil-
tering strategy should match the intended behaviour
of the model. The strongest performance on toxic-
ity identification for every dataset comes from the
inverse toxicity filter. Practitioners optimizing
for performance on toxic domains should inten-
tionally apply inverse filters.

6 Impact of Domain Composition on
Pretrained Models

As shown in Table 4 (Appendix), pretraining
datasets combine diverse data sources to generalize
widely. How does the choice of source domains im-
pact downstream performance? We empirically an-
swer this question by ablating pretraining sources
from the Pile one-at-a-time and measuring the per-
formance change in 27 diverse QA tasks.

As described in Section 2, we partition the Pile
data sources into 9 conceptual domains (see Ap-
pendix, Table 5), and the QA datasets into 7 do-
mains (see Appendix, Table 9). We choose to main-
tain the size disparities in the source domains, sim-
ply because they reflect reality: curated Wikipedia
content is finite, while web and books are much
more abundant. After pretraining each model, we
finetune on Natural Questions to prepare the model
for the QA task, then evaluate on all QA datasets.
Full details are in Appendix D.3.

Common Crawl, OpenWeb, and Books have
the strongest positive effects on downstream
performance. Figure 5 shows that average down-
stream performance degrades the most when we
remove web-based domains like CC, Books, and
OpenWeb, corroborating recent findings by Xie
et al. (2023a). These sources improve performance
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on challenging Common Sense and Contrast Sets
tasks. While CC is the largest chunk of text in the
Pile, Books and OpenWeb are smaller but more
diverse and high quality (see Section 3). These
results suggest that a combination of heterogeneity
and quality is more impactful than raw dataset size.

Domain heterogeneity is often more beneficial
than targeted data, even for targeted evalua-
tions. Performance degrades when we remove
domains with close alignment between the pre-
training and downstream data sources: removing
PubMed hurts the BioMed QA evaluations, drop-
ping Wikipedia hurts the Wikipedia benchmarks,
and removing web content hurts web evaluations.
However, removing the large heterogeneous do-
mains can have even more effect than the targeted
domains. For instance, removing CC from pretrain-
ing reduces performance on downstream Academic
QA tasks to a much greater extent than remov-
ing the Academic domain. We speculate that CC,
OpenWeb and Books cover many topics, so remov-
ing the Academic-specific category of sources does
not remove all relevant academic information.

The best performing models pretrain on all
data sources. Despite the importance of data het-
erogeneity, the best mean performance still comes
from models that train on all, or nearly all, avail-
able data. The exceptions are the removal of tar-
geted source domains like the Pile’s Code or Aca-
demic (advanced science and math journals) do-
mains. These are both large but perhaps not well
matched with the QA evaluation sets, which do not
require coding skills or scientific rigour beyond that
found on Wikipedia and from web-based sources.
This finding suggests that both the quantity and
diversity of open source data remain a bottleneck
for current pretraining methods.

Web and Books domains cause the biggest
trade-off between toxic identification and gen-
eration. Section 5 identifies a trade-off: better
performance on QA and toxicity identification
comes at the cost of more toxic generation. Ta-
ble 17 in the Appendix shows that the largest de-
creases in both toxicity generation and identifica-
tion were caused by removing CC (26.9% of the
data), OpenWeb (6.9%), and Books (6.9%). This
is consistent with our observation that Web and
Books data had the most text predicted to be toxic.

7 Discussion

Model developers often neglect to share empirical
insights, maintaining a knowledge gap often re-
ferred to as “documentation debt” (Bandy and Vin-
cent, 2021). As a result, pretraining dataset cura-
tion is frequently guided by intuitions or precedents
that have not been thoroughly evaluated (Samba-
sivan et al., 2021). Our results show that choices
made in pretraining curation affect models in ways
that are not easily erased by subsequent finetun-
ing. We urge both model producers and users to
think of dataset curation policies as a form of hy-
perparameter, much like learning rates or network
dimensions. Exhaustive search methods that work
for single scalar values will not, however, scale
to curation policies that affect terabytes of data.
In this section, we distill our findings into a few
specific recommendations.

Age of the pretraining corpus. Model creators
must choose between model staleness and expen-
sive continuous data collection and training. Even
with sufficient compute, newer data can add a “pre-
sentist” bias when evaluating retrospective tasks.
Our findings suggest the temporal properties of
pretraining corpora are increasingly essential to
consider for larger models, for more novel tasks
(less finetuning data), and for instruction tuning
models. For instance, Schulman (2023) suggests
that finetuning on new information not represented
during pretraining can encourage model halluci-
nation. Retrieval augmentation may offer some
mitigation but presents its own challenges.

We recommend model creators report the tem-
poral distribution of pretraining data, which is not
currently standard practice (Hoffmann et al., 2022;
Thoppilan et al., 2022; Anthropic Al, 2023; Co-
here Al, 2023). Users should be able to predict
otherwise unforeseen performance degradations on
much newer datasets, or be aware of the potential
side effects of finetuning models on information
not covered in pretraining.

Data source composition. We find that corpora
should be as diverse as possible, but we recognize
that this is time consuming and requires a wide
range of area expertise to ensure quality. Our re-
sults suggest that practitioners should not omit any
data sources if generalization to as many text-to-
text tasks is the goal, and that future work should
focus on collecting more diverse, high quality web
and books content, which yield the largest benefits.
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These findings are somewhat consistent with hy-
potheses that the volume of training data remains
a limiting factor, especially given licensing con-
straints (Nostalgebraist, 2022).

Filtering for toxicity and quality. The Com-
mon Crawl contains an enormous amount of toxic
and low quality text (spammy, repetitive, non-
human-readable, etc.). Many state-of-the-art lan-
guage models filter out this text before training,
either using bad words lists (Raffel et al., 2020),
heuristics, or classifiers (Du et al., 2022; Brown
et al., 2020; Chowdhery et al., 2022). Deciding
on how much and what kind of text to filter out
requires non-trivial normative decisions that affect
the biases of their datasets and thus their models.

In our experiments, we expose an implicit trade-
off between a model’s generalization abilities and
its tendency to generate toxic content, modulated
by content filters. In fact, over-sampling more toxic
documents leads to the best performance on toxic-
ity identification. This observation, coupled with
evidence that recent work is using post-hoc meth-
ods to curb unwanted toxic generation (e.g. instruc-
tion tuning (Chung et al., 2022) or steerable de-
coders (Dathathri et al., 2020; Welbl et al., 2021)),
suggests that pretraining should target toxicity iden-
tification rather than curbing toxic generation.

We find that our quality filter (the same used
by PalLM, trained to keep content resembling
Wikipedia and Books) significantly improves per-
formance across domains, despite removing large
portions of the training data. But surprisingly, ob-
servational quality characteristics of the data are
not sufficient to predict which domains will benefit
most from quality filtering. Our analysis suggests
that performance on a task/domain is not influenced
only by how much poor quality data (i.e. that which
is unlike Wikipedia/Books) is removed, but also
by other aspects of quality, such as how much of
the highest or mid-quality data is represented along
this specific measurement dimension.

Conclusion. We empirically show that pretrain-
ing data curation decisions for dataset age, compo-
sition, and content filtering have systematic impact
on downstream performance. Though we chose
these curation axes in order to analyze widespread
current practices, the scale and variety of pretrain-
ing data are so vast that no one paper can address
all possible variations. We hope this paper provides
the foundation for further work linking properties
of pretraining data to properties of models.

8 Limitations

English vs Multilingual Data Our analysis was
limited to two English pretraining datasets. It’s
important to note that training composition is an
even more crucial question for multilingual and
non-English models, where optimally balancing
corpora from different languages and finding large-
enough high-quality corpora can be very challeng-
ing (Chung et al., 2023).

That said, our experiments are among the most
comprehensive publicly available. Pretraining is ex-
tremely expensive, and we evaluate the intersection
of multiple factors, carefully chosen because they
are under-studied, and we lack empirical evidence
on their effects. Each of these factors has multiple
options, and interacting them with other features
in the experimental design can have exponential
impact on cost and running time. Prior work has
typically studied only one of the Pile/C4 at a time
(Dodge et al., 2021; Biderman et al., 2023; Welbl
et al., 2021; Xu et al., 2021). We hope future work
can study additional pretraining datasets.

Compute Expense & Single Shot Experiments
To our knowledge, this is the largest publicly docu-
mented LM pretraining data ablation study, span-
ning 28 1.5B parameter models—training more
models with different data variants from scratch
than GLaM (Du et al., 2022), miniBertas (Warstadt
et al., 2020), MultiBerts (Sellam et al., 2022), and
even Pythia (Biderman et al., 2023), which focuses
on preserving data composition and order. It is
important to acknowledge each of these pretrain-
ings, with their corresponding finetuning and eval-
uations, is computationally and environmentally
costly. With this in mind, we made the careful deci-
sion on what experiments to pursue, narrowing our
list to: age of the corpora, quality filters, toxicity
filters, and the choice of source domains. We care-
fully curated the choice of experiments in advance,
without the luxury of multiple rounds of reflection
and repetition, common in many NLP experimen-
tal settings. As a result, we struck a balance as
best we could between the computational costs and
reproducible validity.

Quality & Toxicity Filters Throughout the pa-
per, we refer to document ‘quality’ and ‘toxicity’
purely as the decision made by the classifiers, as
used in prior work (Brown et al., 2020; Chowdhery
et al., 2022; Du et al., 2022; Touvron et al., 2023).
However, it must be acknowledged these classifiers
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are imperfect (Friedl, 2023; Gargee et al., 2022;
Lees et al., 2022), and the underlying definitions
of quality and toxicity are shown to have high vari-
ance among human judges (Cortes and Lawrence,
2021). Though using these limited definitions risks
reinforcing them, a concrete conclusion of our and
others’ work is that a single measurement of each
of these is insufficient to capture either broader
human values or practical objectives.

Blackbox APIs An additional limitation is our
use of Perspective’s API for evaluating the toxicity
of generations. While most of our toxicity filters
and evaluations were in a compressed time period,
Pozzobon et al. (2023) have since demonstrated
the irreproducibility of black-box APIs, which may
have shifting implementations over time. We also
believe that while this is the standard procedure
for popular toxic generation benchmarks like Real-
ToxicityPrompts, the reliance on APIs and narrow
evaluation setting can have limited implications for
toxic generation in real applications. For the time
being, these are the best proxies we have.

Reproducibility Due to organizational con-
straints, we are unable to release the trained models
or code in these experiments. As a central goal of
this work is to bring greater shared knowledge and
empirical analysis to poorly documented practices,
we certainly feel this constraint is unfortunate and
suboptimal. Nonetheless, we have closely docu-
mented all of the hyperparameters in pretraining,
finetuning, and evaluation, and used (almost en-
tirely) publicly available data and evaluations. We
hope this careful documentation serves to improve
the reproducibility of these experiments, and would
defend the overarching contribution as greatly im-
proving visibility and understanding into under-
documented pretraining practices.

Relevance to Zero- & Few-Shot Prompted Set-
tings Our experiments focus on finetuned set-
tings rather than zero- or few-shot prompting. This
choice is motivated by finetuning being more appli-
cable for 1.5B parameter models and also in many
applied settings.

New & Contemporaneous Data Concurrent
with our work, new pretraining datasets have been
released: MPT (Team, 2023), RefinedWeb (Penedo
et al., 2023), RedPajama (Computer, 2023), and
Dolma (Soldaini et al., 2024). We expect our find-
ings to generalize as these datasets contain largely
the same ingredients as C4 and the Pile.
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A Expanded Literature Review

Pretraining Dataset Curation In Table 4 we
highlight the data characteristics of some popu-
lar models. There have been dozens of general-
purpose models trained for natural language under-
standing and generation tasks. Early models in this
space, such as ELMO (Peters et al., 2018), BERT
(Devlin et al., 2019), and BERT’s various descen-
dants (Liu et al., 2019; Lan et al., 2020), focused
on strong finetuning performance for a variety of
natural language inference tasks, as well as seman-
tically meaningful language embeddings. These
systems were trained on semi-curated datasets such
as Wikipedia, BookCorpus (Zhu et al., 2015), and
news articles from the One Billion Word Bench-
mark (Chelba et al., 2013). XLNet (Yang et al.,
2019) broke away from this use of curated datasets
to include documents from Common Crawl into
their pretraining dataset. TS (Raffel et al., 2020),
which introduced the C4 dataset, was one of the

first pretrained language models to train exclusively
on Common Crawl data. Multilingual versions of
T5 (Xue et al., 2021) and BERT were trained on
Common Crawl and Wikipedia, respectively.

GPT-2 was one of the first models intended pri-
marily for generation (Radford et al., 2019). Deem-
ing Common Crawl too noisy to be practical for
training generative models, they developed Web-
Text, a dataset containing websites linked to from
highly-ranked posts on Reddit. Subsequent gen-
erative models proposed mixing large amounts of
noisy Common Crawl data with smaller corpora
perceived as high-quality. The GPT-Neo model
family (Black et al., 2022) trained on the Pile,
which augments the Common Crawl with ArXiV,
Stack Exchange, legal documents, books, Github,
and other more curated sourced (Gao et al., 2020).
More recently, OPT (Zhang et al., 2022) trained on
the Pile augmented with social media data (Baum-
gartner et al., 2020), and LLaMA (Touvron et al.,
2023) trained on C4 augmented with Github, Stack
Exchange, books, and other sources. Pythia trained
on the Pile, with and without duplication (Bider-
man et al., 2023). The BLOOM model family
(Scao et al., 2022) trained on the ROOTS Corpus,
which crowd-sourced a collection of “identified”
datasets, coming from known, high-quality sources
in a variety of languages. Finally, the OLMo model
family (Groeneveld et al., 2024) trained on Dolma,
a cleaned English-language dataset of three trillion
tokens which augments C4 with sources spanning
the web, code, social media, scientific papers, and
Wikipedia (Soldaini et al., 2024).

All of the models mentioned so far are publicly
available. However, companies are increasingly
training their best models on proprietary datasets,
with only limited hints as to the data composition.
At Alphabet, models such as Gopher (Rae et al.,
2021), GLaM (Du et al., 2022) , LaMDA (Thop-
pilan et al., 2022), and PaLM (Chowdhery et al.,
2022) have been trained on mixtures of web text,
books, news, code, Wikipedia, and dialog data. At
OpenAl, GPT-3 (Brown et al., 2020) was trained
on Common Crawl, WebText (GPT-2’s training
set), books, and Wikipedia. Subsequent versions of
their model have also included code. Most of these
models have acknowledged using various forms
of filtering techniques to improve the quality of
web-derived training data. These include classifiers
designed to exclude content which looks least like
“high-quality” sources such as books or Wikipedia
(Chowdhery et al., 2022; Ouyang et al., 2022), us-
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REPRESENTED DOMAINS (%) FILTERS DATA
MODEL Wikt WEB BOOKS DiALOG CODE ACAD | PILE C4 M-L | Tox QUAL | PUB YEAR
BERT 24 X X H Part 2018
GPT-2 X X H Part 2019
ROBERTA 7 3 X H Part 2019
XLNET 8 3 X H Part 2019
TS5 <1 X H H 2019
GPT-3 3 16 X 7% C X 2021
GPT-J/NEO 1.5 38 15 4.5 13 28 Part C 2020
GLAM 6 46 20 28 X C X 2021
LAMDA 13 24 50 13 10% C C X 2021
ALPHACODE | 100 | X X H X 2021
CODEGEN 1 24 10 3 40 22 Part H Part 2020
CHINCHILLA 1 65 10 4 H C X 2021
MINERVA <1 1.5 <1 2.5 <l <1% C X 2022
BLOOM 5 60 10 5 10 10 71% H C Part 2021
PALM 4 28 13 50 5 X 22% C X 2021
GALACTICA 1 7 1 7 sa Part H Part 2022
LLAMA 4.5 - 4.5 2 4.5 2.5 Part 4% C Part 2020
PYTHIA 1.5 38 15 4.5 13 28 Part C 2023
OLMo <1 s <1 3 13 2 Part C C 2024

Table 4: A list of well-known language models and a quantitative breakdown of their pretraining data,
including represented domains; if the Pile or C4 are used, the percent of multilingual (M-L) data (meaning non-
English and non-code); if Toxicity or Quality data filters were used, as either automatic Heuristics (H) or Classifiers
(C); if the dataset is public (Pub), and what year the data was collected up to. If a dataset is “Part” public, then
all of its constituent corpora are public, but not the final mixture. In Represented Domains, extended from (Zhao
et al., 2023), Web includes the Common Crawl and other web scrapes; Dialog includes forum, social media and
conversations; Academic includes research papers, textbooks, and mathematics.

ing Google’s SafeSearch for identifying toxic con-
tent (Rae et al., 2021), and various heuristics based
on document length and the presence or absence of
certain words or characters.

Pretraining Dataset Analysis Dodge et al.
(2021) find significant amounts of low-quality
patent, military, and machine-generated text in C4,
and a dearth of English text from American minor-
ity communities as well as from non-Western com-
munities like India or Nigeria post-filtering, and so
recommend against filtering. In contrast, Luccioni
and Viviano (2021) recommend more robust fil-
tering practices to curb the significant presence of
hate speech and sexually explicit content they find
in C4 even after filtering. Similarly, Kreutzer et al.
(2022) find that multilingual pretraining corpora
are also dominated by low-quality text, particularly
for lower resource languages. Lee et al. (2022);
Kaddour (2023) show the benefits of deduplicating
pretraining datasets, which often contain a great
deal of repeated content. Lastly, Zhao et al. (2023)
reviews pretraining data sources, strategies for qual-
ity filtering, and the importance of data distribution.
Their summary corroborates our findings regard-
ing domain composition and quality filtering, in
particular.

Data, Toxicity, & Quality Research into the
quality and toxicity of datasets and their resulting
models has seen mixed findings. All of the major
models report using significant data pre-processing
and toxicity/quality filters, including BERT, TS5,
BLOOM, OPT, ChinChilla, PaLM, LaMDA, and
the GPT-3 series, with the largest of these now us-
ing classifiers. This widespread adoption suggests
there are significant implicit benefits, even though
they not often externally reported. GLaM does em-
pirically report performance improvements from
filtering, particularly on Natural Language Genera-
tion (NLG) tasks (Du et al., 2022).

However, in academia, a few works caution
against the use of detoxification techniques, includ-
ing data filters, which can increase model perplex-
ity on underrepresented communities (Xu et al.,
2021; Welbl et al., 2021). Welbl et al. (2021) also
reports that a toxicity classifier reduces toxicity
more than than applying data toxicity data filters,
but Xu et al. (2021) show this yields the worst per-
plexity on underrepresented communities. Meade
et al. (2022) further corroborate that improvements
on bias benchmarks correlates with deteriorations
in general language modeling abilities. Further-
more, investigating GPT-3’s described quality filter,
Gururangan et al. (2022) find its quality judgments
are unaligned with factuality or literary acclaim but
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are instead aligned with some notion of langauge
ideology more correlated with wealthier zip codes.
Works in the vision domain show data filtering has
important detoxification benefits but can reduce per-
formance (Nichol et al., 2022) or introduce other bi-
ases (Nichol, 2022). In summary, pretraining data
filters are ubiquitous in the development of non-
toxic and high-quality models, but they are prone
to reducing their abilities to serve underrepresented
communities and may introduce new biases.

Additional work has shown that instruction tun-
ing (Chung et al., 2022; Longpre et al., 2023) and
forms of alignment tuning (Ouyang et al., 2022;
Bai et al., 2022) have both reduced unwanted toxic
generation.

Data & Time Natural language is known to
evolve and change over time (Altmann et al., 2009;
Labov, 2011; Eisenstein et al., 2014; Jaidka et al.,
2018). As language’s distribution shifts, the ability
of models to perform well on new test sets has
also been shown to degrade, due to their static
knowledge of recent events, syntactic and seman-
tic practices (Lazaridou et al., 2021; Agarwal and
Nenkova, 2022; Longpre et al., 2021). Luu et al.
(2022); Lazaridou et al. (2021); Liska et al. (2022);
Yao et al. (2022); Zhang and Choi (2021); Jang
et al. (2022) offer evaluation sets to measure this
phenomena. Proposed remedies include finetun-
ing on more recent data (Luu et al., 2022), adap-
tive/continuous pretraining (Lazaridou et al., 2021;
Rottger and Pierrehumbert, 2021), data augmen-
tation (Singh and Ortega, 2022), modeling text
with its timpestamps (Dhingra et al., 2022). To
our knowledge, no work has thoroughly investi-
gated the effects of temporal degradation when
pretraining from scratch.

Data & Domains The composition of public
datasets, like C4 and the Pile, is guided mostly
by licensing, which severely restricts availability.
Even so, Villalobos et al. (2022); Nostalgebraist
(2022); Hoffmann et al. (2022) suggest we are im-
minently exhausting high-quality text data on the
web to train compute-optimal larger LMs, at least
with existing training efficiency. This poses a chal-
lenge, given the demonstrated importance of high
quality and diverse training data to strong general-
ization (Gao et al., 2020; Papadimitriou and Juraf-
sky, 2020). A great deal of literature has dedicated
itself to adapting static pretrained models to new
downstream domains, using domain adaptive pre-
training (Gururangan et al., 2020), finding interme-

diate finetuning tasks (Pruksachatkun et al., 2020),
dynamically balancing data sources (Wang et al.,
2020), data selection (Iter and Grangier, 2021; Al-
balak et al., 2023), augmentation (Longpre et al.,
2019), and active learning (Longpre et al., 2022).
Another line of work demonstrates the potential of
pretraining on carefully crafted synthetic data (Wu
et al., 2022).

Most similar to this section of our work, Xie et al.
(2023a) re-balance mixtures of the Pile to achieve
more performant and efficient convergence. Xie
et al. (2023b) use importance sampling to select
subsets of the Pile most useful for target down-
stream tasks, in lieu of quality filters, to achieve 2%
improvement on downstream tasks. Pruksachatkun
et al. (2020) systematically benchmark the effects
of intermediate finetuning tasks, similar to how we
benchmark different compositions of pretraining
tasks.

Model & Data Scaling Prior work has explored
scaling model size (Kaplan et al., 2020; Tay et al.,
2022; Du et al., 2022), the amount of pretrain-
ing data or the number of pretraining steps (Liu
et al., 2019; Chowdhery et al., 2022; Brown et al.,
2020). Chinchilla investigated and reported opti-
mal compute scaling laws, expressing a relation-
ship between model and data size (Nostalgebraist,
2022). Recent work has demonstrated that new
abilities emerge at greater scale (Wei et al., 2022),
but also that many of these benefits can be distilled
or compressed into smaller models (Taori et al.,
2023; Movva et al., 2022). In this work, we investi-
gate how temporal pretraining misalignment varies
on different model sizes, which to our knowledge
was previously unanswered.

B Detailed Pretraining Data
Experiments

We begin with two publicly available pretraining
datasets: C4 (Raffel et al., 2020) and the Pile (Gao
et al., 2020). Both have received basic initial heuris-
tic filtering for English language and content qual-
ity. We further deduplicate both datasets using
the approximate deduplication method described
in Lee et al. (2022).

C4 (Raffel et al., 2020) The English Colossal
Clean Crawled Corpus (C4) is a snapshot of Com-
mon Crawl from 2019, which includes a mix of

news, legal, wikipedia, and generic web documents
(Dodge et al., 2021), filtered for well-formed En-
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CATEGORY | COMPONENTS SIZE DESCRIPTION
CcC Pile-CC 227 GB A filtered set of Common Crawl websites, scraped with
JusText (Endrédy and Novdk, 2013).
OPENWEB OpenWebText2 63GB  Scraped OpenWebTextCorpus using upvoted Reddit out-
going links.
WIKIPEDIA Wikipedia (en) 6 GB The English scrape of Wikipedia.
BOOKS Books3, BookCorpus2, Gutenberg 118 GB The Bibliotik general literature collection, PG-19’s pre-
(PG-19) 1919 western classics, and BookCorpus’s set of yet unpub-
lished works.
PUBMED PubMed Central, PubMed Abstracts 109 GB  Biomedical articles from 1946 to present
ACADEMIC ArXiv, PhilPapers, NIH ExPorter 60 GB Preprint academic papers in Math, Computer Science,
Physics, and Philosophy.
CODE & MATH | Github, StackExchange, DM Mathe- 135 GB Code repositories, documentation, coding questions and
matics answers, and mathematical problems.
LEGAL FreeLaw, USPTO Backgrounds 74 GB Court filings, judicial opinions, and patents
SocCIiAL Ubuntu IRC, EuroParl, Enron Emails, 33 GB Movie and video subtitles, chat logs, emails, and text from
HackerNews, OpenSubtitles, Youtube- social news websites.
Subtitles
BASE All 825 GB A wide mix of online text from the web, wikipedia, books,
academic articles, code, legal, and social sources.

Table 5: Partitions of the Pile’s Data Sources into Domains The Pile contains 22 distinct sources of data, which
we manually partition into 9 thematically similar domain clusters.

glish text.> While the original version of C4 fil-
tered out any documents containing words from a
“bad words list”, our version does not. C4 remains
one of the most widely adopted fully open source
datasets for textual training, given its permissive
license. It is a key component of many LMs, as
shown in Table 4.

The Pile (Gao et al., 2020) is an 800GB dataset
consisting of data from 22 sources. These include a
Common Crawl web scrape as well as more diverse
collections of academic, books, coding, medical,
legal and social sources (see Table 5), which more
closely resemble the reported data sources in larger
non-open source models like PalLM (Chowdhery
et al., 2022), Chinchilla (Hoffmann et al., 2022),
and the GPT-3 series (Brown et al., 2020). Note
that the Pile’s corpora composition was manually
selected, and some options were excluded on the
grounds of being too toxic or explicit.

B.1 Data Curation Choices

We evaluate variations in the pretraining data based
on three categories of interventions.

Dataset Age We create new versions of C4 by
regenerating snapshots of the Common Crawl from
different years. Multiple time-based collections are
not available for the Pile.

Domain Filtering Both C4 and the Pile draw
from multiple distinct data sources, but the Pile

Shttps://commoncrawl.org/

explicitly delineates 22 distinct sources from web
pages, wikipedia articles, code repositories, online
forums, legal texts, and research paper archives. To
control for the topical content of the pretraining
collection, we selectively remove documents from
different domains (see Table 5).

Content Filtering Datasets derived from the
Common Crawl and other weakly curated inter-
net sources tend to contain large amounts of low-
quality, toxic, or offensive content. As a result, cu-
rators often apply content-based filters. Deciding
what to include and what not to include is a chal-
lenging and context-dependent problem: A “high-
quality” Reddit post does not look like a “high-
quality* academic paper; and even with academic
papers, quality measured by peer review has high
variance (Cortes and Lawrence, 2021).

There are several approaches to determining doc-
ument appropriateness. The simplest filters use
features such as sentence length, presence of stop-
words and punctuation, and repetitiousness to iden-
tify pages that do not contain usable text (Rae et al.,
2021; Yang et al., 2019; Laurencon et al., 2022;
Zhang et al., 2022). Negatively-defined filters iden-
tify a category of text to be removed, and assume
that everything else is usable. For example, Raffel
et al. (2020) remove documents that contain words
from a list of “bad words”. Positively-defined fil-
ters identify a category of text to keep, and remove
everything else (Du et al., 2022; Touvron et al.,
2023; Brown et al., 2020).
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In this work, we evaluate the impact of two
document-level, classifier-based filters that have
been used widely in the development of state-of-
the-art language models. These include negatively-
defined, toxic content (text that is profane, explicit,
insulting, or threatening) and postively-defined
quality content (text similar to known “high-quality”
sources). It is important to emphasize that we do
not have ground truth: for the purposes of this pa-
per we will use the description foxic or quality to
refer to a document that triggers one of these auto-
mated classifiers, not to indicate a document that
achieves those characteristics for a human reader.

Quality Filters Most recent language models
create quality classifiers to distinguish between
“high-quality” corpora and other documents (Ta-
ble 4). These are usually then applied to crawled
web pages. Examples of high-quality reference
corpora are (1) Wikipedia, WebText and books for
GPT-3 (Brown et al., 2020), (2) Wikipedia, books
and a few selected websites for PALM (Chowdhery
et al., 2022) and GLaM (Du et al., 2022), and (3)
pages used as references in Wikipedia for LLaMA
(Touvron et al., 2023). In our work, we use the
classifier employed by PaLM and GLaM, which as-
signs each document a score from O (high quality)
to 1 (low quality). We experiment with removing
documents that fall above four quality thresholds:
0.975, 0.95, 0.9, 0.7, along with an inverse filter
that instead removes the highest quality documents
below a threshold.

Toxicity Filters To identify toxic content, we use
Jigsaw’s Perspective API #, which was trained on
comments from online forums and assigns toxicity
scores based on whether annotators found the com-
ment to contain profanity/obscenity, identity-based
negativity, insults, or threats. While the Perspec-
tive API, as with any classifier, has been shown to
be imperfect—it falsely labels some neutral text
as toxic and its training data reflects the norma-
tive values of its annotators—it has been shown to
be far more accurate than heuristic and rule-based
classifiers (Friedl, 2023; Gargee et al., 2022; Lees
et al., 2022).

The Perspective API outputs a score from 0 (un-
likely to be toxic) to 1 (very likely to be toxic). The
documentation recommends using a score thresh-
old of anywhere from 0.3 to 0.9 to filter documents,

4https://www.perspectiveapi.com

CURATION BASE DATASET \ VARIANT TOKENS
Age C4 2013 246B
2016 206B
2019 226B
2022 360B
Quality filtering C4 Full 226B
T =0.975 205B
T =0.950 190B
T = 0.900 166B
T = 0.700 103B
Toxicity filtering C4 Full 226B
T =0.95 221B
T =0.90 215B
T =0.70 194B
T =0.50 171B
T =0.30 137B
Domain ablations The Pile Full 157B
No Social 155B
No Wiki 153B
No Books 146B
No OpenWeb 146B
No Legal 143B
No Academic 136B
No PubMed 133B
No Code 127B
No Common Crawl 114B

Table 6: Pretraining dataset sizes in tokens.

depending on the practitioner’s goals.> We experi-
ment with removing documents with scores above
five different toxicity threshold values 0.95, 0.9,
0.7, 0.5, and 0.3. Documents above a given thresh-
old are filtered out, along with an inverse filter that
removes documents with the /east predicted toxic-
ity below a threshold.

In addition to the classifier-based filter, we also
experiment with the n-gram based filter used by
Raffel et al. (2020) in the original version of the C4
dataset. This filter removes all documents that con-
tain any word present in the “List of Dirty, Naughty,
Obscene, or Otherwise Bad Words”.

B.2 Final pretraining dataset sizes

Table 6 shows the final size of each curated dataset
variant in billions of tokens.

C Training details

This section provides further details on the method-
ology and hyperparameter settings used for pre-
training, finetuning, and evaluation.

We use standard T5 SentencePiece tokenizers
with a subword vocabulary of 32,128 (Kudo and
Richardson, 2018). To allow for a model that can
generate without finetuning but also perform well

SSee https://developers.perspectiveapi.com/s/
about-the-api-score
https://github.com/LDNOOBW/List-of-Dirty-

Naughty-Obscene-and-Otherwise-Bad-Words
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PARAMETER | LM-XL | LM-SMALL
TPUs 8x8x8 8x8
Batch Size 4096 4096
Sequence Length 512 512
Training Steps 88,064 88,064
Dropout 0.0 0.0
Base Learning Rate 0.5

Decay Factor 0.5

Warmup Steps 1000

Steps per Decay 20000

Table 7: Pretraining hyperparameters We adopt de-
fault pretraining hyperparameters from Wang et al.
(2022), who select their parameters to fairly compare
across a wide range of T5-based pretraining and archi-
tecture experiments.

after finetuning, we rely on the extensive experi-
ments of Wang et al. (2022). Their empirical results
suggest these criteria are met with a Causal Decod-
ing architecture with a Full Language Modeling
pretraining objective (“CD-FLM”), which permits
generation without finetuning, followed by a Prefix
Language Modeling objective (PLM) for finetun-
ing, where the causal attention mask is removed
from the original prompt.

C.1 Pretraining Details

Our two pretraining datasets are C4 (Raffel et al.,
2020) and the Pile (Gao et al., 2021). We use the
same vocabulary for both as used in the original T5
from Raffel et al. (2020). All training is conducted
using T5X (Roberts et al., 2022) and Tensorflow
(Abadi et al., 2016) on TPUs. Specific hyperparam-
eters for LM-XL and LM-SMALL pretraining are
detailed in Table 7.

C.2 Finetuning Details

Unless otherwise noted, evaluation was performed
by finetuning on the train set for each benchmark
task, and then evaluating on either the validation
or test set (specified in each section). We used the
standard prompts accompanying each downstream
training dataset and performed standard finetuning
without any adapters. Finetuning hyperparameters
are given in Table 8.

D Evaluation Details

We compare the general utility of the different mod-
els, as well as their performance on tasks we ex-
pect to be influenced by the dataset characteristics
being ablated. Since we are comparing the perfor-
mance of different pretrained models, we evalu-
ate the performance of each pretrained model on

PARAMETER TOX-IDENTIFY NATURAL QS SUPERGLUE TIME

LM-XL
TPUs 8x8 8x8 8x8 8x8
Sequence Length 128 512 512 128
Batch Size 128 128 128 128
Dropout 0.1 0.1 0.1 0.1
Training Steps 10k 50k 100k See Table 10
Learning Rate le-3 le-3 le-3 See Table 10
Eval Metric AUC-ROC Acc (By Dataset) See Table 10
LM-SMALL (where different)
Training Steps ‘ 30k 50k 100k See Table 10

Table 8: Finetuning and Evaluation Parameters for
each set of Downstream Tasks. We report the finetun-
ing hyperparameter settings and evaluation metric used
for finetunting and evaluating the pretrained models.
We conduct finetuning for four sets of tasks: toxicity
identification tasks (Toxigen, Social Bias Frames, and
DynaHate), Natural Questions (for pretraining domain
transfer analysis), general NLU performance (Super-
GLUE), and the Time tasks (including PubCLS, New-
Sum, PoliAff, TWiERC, and AIC). For T5 Small mod-
els, we modify the number of training steps accord-
ingly, as shown in the last row.

downstream tasks by finetuning the model on the
relevant dataset for each task and evaluated on the
same testing data (using the default splits for each
task unless otherwise noted). As a result, any sys-
tematic differences between finetuned results can
only be attributable to differences in pretraining.
For all tasks we report mean performance relative
to a baseline, usually the performance of models
trained on an unfiltered dataset.

Evaluating Domain Generalization We evalu-
ate on the union of two question-answering bench-
marks: Machine Reading for Question Answer-
ing (MRQA) (Fisch et al., 2019) and UnifiedQA
(Khashabi et al., 2020), which together consist of
30 unique QA datasets. These QA datasets span
a range of domains, allowing us to measure the
impact of topic alignment (see Table 9).

Evaluating Temporal Misalignment Prior
work has shown that a dataset’s collection time can
affect the downstream model’s abilities (Lazaridou
et al., 2021; Agarwal and Nenkova, 2022). Luu
et al. (2022) release several datasets in which
increasing temporal distance between finetuning
and evaluation time decreases test performance.
We choose 5 of these datasets from varying
domains to evaluate whether a similar phenomenon
exists between pretraining and evaluation time:
PubCLS, NewSum, PoliAffs, TwiERC, and AIC.

Evaluating Toxic Generation Generateing pro-
fane, sexually explicit, insulting, or obscene text or
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CATEGORY DATASETS

DESCRIPTION

AmbigQA, DROP, HotpotQA, NaturalQuestions, Datasets with Wikipedia text.

AmbigQA, CommonsenseQA, DuoRC, Natu- Datasets partially sourced or collected from the web,

including user logs and news.

A dataset sourced from books.

Datasets with high-school or graduate level scien-
tific or medical content.

WIKI
Quoref, RelationExtraction, ROPES, SearchQA,
SQuAD-1, SQuAD-2, TriviaQA
WEB
ralQuestions, NewsQA, SearchQA, TriviaQA
BoOOKS NarrativeQA
BIOMED ARC-Easy, ARC-Hard, BioASQ, TextbookQA
ACADEMIC

RACE, ROPES, TextbookQA

Al2-Elementary-Science, ARC-Easy, ARC-Hard, General academic data and exams.

COMMON SENSE
CONTRAST SETS
Set-ROPES

CommonsenseQA, PhysicallQA, SociallQA
Contrast-Set-DROP, Contrast-Set-Quoref, Contrast- Datasets re-configured as Contrast Sets (Gardner

Datasets which test common sense reasoning.

et al., 2020), which are manual perturbations to
make examples more challenging.

Table 9: Partitions of Question Answering evaluation datasets from the UnifiedQA (Khashabi et al., 2020)
and MRQA (Fisch et al., 2019) collections. To evaluate the performance of pretraining strategies on different
text domains, we assign datasets into categories corresponding to their source material:web-based, wikipedia, aca-
demic, biomedical, or and/books). Certain datasets are also designed specifically to test advanced common sense
reasoning, or decision boundaries using contrast sets (Gardner et al., 2020). Datasets can belong to multiple cate-

gories.

text that attacks identity groups or targets protected
human attributes limits the applications LMs may
be used for (Gehman et al., 2020). We evaluate this
behavior with language model prompts designed to
elicit biased or toxic outputs related to gender, race,
and religion (Chowdhery et al., 2022), and then
measuring the fraction of generated continuations
which are assigned a high toxicity score by the Per-
spective API (see Appendix D.1 for details). We
also use the RealToxicityPrompts dataset (Gehman
et al., 2020), which consists of text excerpts from
the OpenWebText dataset (Gokaslan* et al., 2019)
that were labeled as toxic by the Perspective APL

Evaluating Toxicity Identification While some
applications require LMs not to generate toxic text,
in other applications it is important for LMs to rec-
ognize such language. Toxicity Identification has
become particularly critical as a step in content
moderation for major communication platforms
(NYT, 2020; Singh, 2019). Definitions vary by set-
ting, targeting hate speech, stereotypes, social bias,
or some definition of toxicity. We evaluate this abil-
ity with a variety of toxicity interpretations, using
train and test sets from Social Bias Frames (SBF,
Sap et al., 2020), DynaHate (DH, Vidgen et al.,
2021), and Toxigen (Hartvigsen et al., 2022).”

"We use the offensiveness detection task from Social Bias
Frames. DynaHate releases 4 rounds of adversarial datasets,
for which we use the test sets for Round 3 (R3) and Round 4
(R4).

D.1 Toxicity Evaluation Details

In this section we describe the evaluation details
for the results presented in Section 5.

Toxicity Identification For toxicity identifica-
tion evaluation, we finetune separately on each of
the following datasets: Social Bias Frames (SBF,
Sap et al., 2020), DynaHate (DH, Vidgen et al.,
2021), and Toxigen (Hartvigsen et al., 2022). We
then evaluate on their respective test sets, using
AUC-ROC, which computes the error rates over
different classification thresholds. Note that each
of these datasets has a slightly different version
of toxicity they are evaluating for: biases and of-
fensive stereotypes implied in language for Social
Bias Frames, types of hateful speech like animos-
ity, dehumanization, and derogation for DynaHate,
and adversarial, subtle and implicit forms of tox-
icity towards minority groups (e.g., stereotyping,
microaggressions), for Toxigen. We average over
them to understand a model’s capabilities in identi-
fying toxicity broadly.

Toxic Generation For toxic generation, we do
not do any finetuning. Instead, we evaluate how
often each model generates toxic continuations. To
measure a model’s propensity to generate sexual,
profane, or toxic responses to a mix of benign and
malicious inputs, we use prompts from the Real-
ToxicityPrompts (Gehman et al., 2020) dataset, as
well as the prompt set developed to explore repre-
sentational bias in PaLM (Chowdhery et al., 2022).
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For each model, we generate 25 responses per
prompt, using top-k sampling (k = 40), with a tem-
perature of 1.0. Following Chowdhery et al. (2022),
we use the Perspective API to score responses, la-
beling those with a toxicity score >= 0.5 as toxic.
We compute the probability one of these genera-
tions per prompt is toxic, for two evaluation splits,
one with non-toxic inputs, and one with toxic in-
puts. The resulting evaluation metrics are denoted
RPT-T (for Toxic inputs) and RPT-NT (for Non-
Toxic inputs).

The Representational Bias benchmark was con-
structed from the identity terms in (Rae et al., 2021)
and is described in more detail in Chowdhery et al.
(2022). It uses templates constructed for several
identity markers, for which we use the subset re-
lated to gender, race, and religion. Following
the practice with RealToxicityPrompts, we sam-
ple 50 responses per prompt, use top-k sampling
(k = 40, temperature = 1.0), and then classify
a response as toxic if Perspective API evaluates
its toxicity score >= 0.5. We average the toxic-
ity rates per identity marker and per example to
compute the overall RepBias score, where higher
indicates more toxic responses were produced on
average. We also compute the 95% confidence
interval to show where changes in mean are signifi-
cant.

D.2 Time Evaluation Details

This section describes the evaluation details for the
results presented in Section 4. In applied settings,
the available training data (either for pretraining
or finetuning) may be from different years than
the test-time data. To mimic these situations, Luu
et al. (2022) construct several datasets segmented
by the year they are collected from in order to
measure the performance impact of differences in
the time of collection of finetuning and evaluation
splits. As described in Appendix D, we select 5
of the datasets that are shown to be quite sensitive
to these temporal misalignments, and that cover
different tasks and data sources. These tasks are
summarization, named entity recognition, classify-
ing political affiliation, classifying academic topic,
and classifying the news source.

Due to the unique nature of each of these tasks in
the temporal degradation experiments, we simply
finetune on each task individually, before evaluat-
ing on their respective test sets. For each dataset,
we finetune using 4x4 TPUs with a batch size of
64, a maximum sequence length of 128, and we

\ | LM-XL  LM-SMALL

METRIC | LR STEPS | LR STEPS

DOMAIN | TASK

NEWS PUBCLS Acc le-4 30k | 1e-3 30k
NEWSUM Rouge-L|5e-4 40k |le-3 40k
Twirteg | FOLIAFF  Acc le-4 15k |le-4 15k
TWIERC Acc le-4 30k |le-3 30k
SCIENCE | AIC Acc  [le4  30k[le3 60k

Table 10: Time Dataset & Training Details: For each
of the five datasets used to evaluate the model’s abil-
ity over different temporal periods, we report the learn-
ing rate and number of steps used in each model size.
These hyperparameters were chosen to ensure consis-
tent convergence and stability within our infrastructure
settings.

validate every 500 training steps. We select the
test set score with the highest validation accuracy
across training. The best learning rate and the to-
tal number of steps required to reach convergence
varied by model and model size, and are reported
in Table 10. These hyperparameters are chosen
based on initial experiments attempting to produce
stable learning curves which peak near the values
observed in Luu et al. (2022).

We follow Luu et al. (2022)’s exact prescription
in calculating Temporal Degradation (TD), as well
as their reported Pearson correlation measurements
(r). Temporal degradation can be interpreted as the
average rate of deterioration in performance for a
time period, measured in years. Since a temporal
deterioration score is calculated per evaluation year,
we average over all evaluation years to compute
a final TD score for a dataset. Furthermore, each
dataset has a different span of available training
and evaluation years. To account for this, we fol-
low Luu et al. (2022) in presenting the Pearson
correlation coefficient, which presents the strenght
of the relationship between time differences and
performance deterioration. We also replicate the
Wald test with null hypothesis that the slope is zero.

For evaluating the temporal degradation of pre-
training, TD,,, we modify Luu et al. (2022)’s orig-
inal formula to measure the different D(¢' — t)
where t’ is now the pretraining year. However, in
this setting, performance samples are represented
with different finetuning years. To account for this,
we only compare the relative performance changes
of the pretraining year ¢, against models with the
same finetuning ¢y and evaluation years .. In other
words, given Stp_ng fotes WE will only compare its
performance to St; _tf e Where £, 7 t,, but tf
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and t° are fixed to their respective values.

D(t, = te) =
- (St;—n}’—ne - Stp—>t’f’—>te) ) sign(t;, —te)

In some edge cases, there is no evaluation year
equivalent to a pretraining year, Vt € T,t, # t.,
and so the term Stp%t}/_)te does not exist. In this
case, we set this term to be the one where ¢, and
te are closest. And, as before, the precise term
used will depend on which version of ¢ is being
calculated for.

D.3 Evaluating Domains with Question
Answering Datasets

This section describes the evaluation details for the
results presented in Section 6. These experiments
involve pretraining models with different subsets
of the corpora from the Pile (Gao et al., 2020) and
seeing the effects on a variety of downstream eval-
uation domains, represented by question answering
datasets. As such, we are able to map the effects of
pretraining domains to evaluation domains.

First, we discuss the construction of the pretrain-
ing domains. We partition the Pile’s source datasets
into categories representing thematically similar
sources of data, as seen in Table 5. We refer to these
categories as Domains. These domain partitions
are subjective and cannot perfectly separate out
text into these categories. For instance, Wikipedia,
Books, and Common Crawl data inevitably con-
tain some Academic information, but overall these
partitions represent distinct features (see Section 3)
that we have attempted to delineate by areas of in-
terest to practitioners and researchers. Prior work
has attempted to measure, emphasize, or target
(either for inclusion or exclusion) the particular cat-
egories of data we’ve used in our partitions, such
as more books and structured data (Brown et al.,
2020; Chowdhery et al., 2022), code data (Chen
et al., 2021), and legal data (Dodge et al., 2021),
among others.

The Domains of the Pile were then each sepa-
rately ablated from pretraining to understand the
effect of their absence. To evaluate their absence on
the performance of downstream domains, we chose
to use the question answering task expressly be-
cause there is a wide variety of similarly formatted
evaluation datasets available. For these question
answering datasets we train only on Natural Ques-
tions (Kwiatkowski et al., 2019), a popular QA
dataset, to teach the model the general task. For

evaluation, as described in Section 2.3, we use Uni-
fiedQA (Khashabi et al., 2020) and MRQA (Fisch
et al., 2019)’s collection of datasets to evaluate
how each pretrained model performs on a given
“domain”, or set of datasets with similar source
characteristics. We partition the question answer-
ing datasets from UnifiedQA and MRQA into five
categories. Datasets with Wikipedia documents
represented in their collection are assigned to the
WIKI category, datasets with scraped web docu-
ments or news are assigned to the WEB category,
and so on. Datasets may belong to multiple cate-
gories, depending on how they were constructed.
The question answering evaluation partitions are
shown in Table 9. Finally, we evaluate on each
question answering dataset and report the average
F1 score for each category.

E Impact of Data Curation on Data
Composition: Further Analysis

Feature Definitions As discussed in Section 3,
we calculated a set of features across all datapoints
to better understand the distribution shifts for each
ablation. The full list of features is as follows:

* Profanity, Toxicity, and Sexually Explicit
The Perspective API classifies text as violat-
ing or passing each of these categories, as
described in Appendix B.1.

* Text Quality The same bag-of-words-based
linear classifier as used in PaLM (Chowdhery
et al., 2022) and GLaM (Du et al., 2022), is
used to distinguish between text that looks
like Wikipedia and books from other text, as
described in Appendix B.1.

* Personally Identifiable Information (PII)
A basic classifier, similar to Google Cloud
NLP (2023b), detects the presence of four
categories of personally identifiable informa-
tion: names, phone numbers, addresses,
and emails.

* Readability The Flesch—Kincaid readability
test (Kincaid et al., 1975) is applied to each
document, assigning documents a grade level
based on the number of words per sentence
and number of syllables per word.

* Average Word Length Measured in charac-
ters.

* Document Length Measured in characters.
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Figure 6: Time snapshots of C4 (left) and feature dif-
ferences across C4 and the Pile (right). Bar height
indicates average feature value of each dataset, except
for the PII categories which show the fraction of dat-
apoints containing that PII type. The numbers are the
fraction difference between the dataset and the baseline,
which in this case is C4. The gray dashed line and gray
number show the actual value for the baseline.

Non-ASCII Characters Measured as a per-
centage of all characters in the document.

* All-caps Words Measured as a percentage of
all words in the document.

* Type-Token Ratio A measure of the lexical
diversity, or the ratio of unique tokens to total
tokens (Bender, 2013).

* Sentiment The score assigned by a classifier
similar to Google Cloud NLP (2023a), evalu-
ating the overall sentiment of the text along a
spectrum from positive to negative.

C4 vs the Pile Figure 6 shows the differences
between the two source datasets. Documents in the
Pile are on average longer (2.4x), have more non-
ASCII characters (1.9x) indicating greater linguis-
tic range, and are also measured as higher quality
(1.2x) and more readable (1.8x). Pile documents
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Figure 7: Feature differences across domains of the
Pile. Bars show the ratio between the mean feature
value for the domain and the mean value for the Pile,
which is indicated by a horizontal gray line. For exam-
ple, Wiki text has half the profanity and three times the
quality values as the average for the Pile.

also contain more PII, in particular personal names,
addresses, and emails.

PII However, Pile documents with high toxicity
are 1.4-1.9 times more likely to have PII of various
kinds, while in C4 this is not true. Documents
classified as high quality in C4 were longer (1.3x
and 1.2x), and had more names (1.6x and 1.8x), but
fewer emails, addresses, and phone numbers.

Time in C4 Figure 6 shows that the percentage of
non-ASCII characters increased steadily in more re-
cent years while the measured text quality declines.
This growth may be due to increasing non-English
content, but could also correspond to rising use
of emojis and non-ASCII punctuation. Toxicity
scores also decrease slightly in later years, while
sentiment increases.

Domains in the Pile Figure 7 compares domains
in the Pile, as discussed in Section 3.
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F Experimental Results

In this section, we lay out the raw results for our
toxicity, quality, and temporal degradation evalua-
tions, spanning several evaluation datasets.

F.1 Extended Temporal Degradation Results

Luu et al. (2022) measure the temporal degrada-
tion due to finetuning and evaluation misalignment.
First we replicate the findings of Luu et al. (2022),
which demonstrate a finetuning and evaluation mis-
alignment causes temporal degradation in perfor-
mance (Figure 8). Next, we extend this framework
to measure the effect specifically of pretraining and
evaluation misalignment, and find a similar though
slightly less prominent pattern (Figure 9).

Next we share the original evaluation results
from which we computed the temporal degradation
values for both finetuning and pretraining. These
contain a cross-section of the scores produced us-
ing a given pretraining year (y-axis), finetuning
year(s) (y-axis), for an evaluation year (x-axis).
These results, Tables 11 to 14, are provided for
both LM-XL and LM-SMALL, for comparison.

F.2 Extended Toxicity & Quality Filtering
Results

We also provide full results for our experiments
with toxicity and quality filters, presented in Sec-
tion 5. The evaluation results of the models with
toxicity filters applied to their data are visualized
in Figure 4 (top), with full details in Appendix F.2.
The evaluation results of the models with quality fil-
ters applied to their data are visualized in Figure 4
(bottom) and detailed in Table 16.

We also show full results for the effects of quality
and toxicity filters on the QA domains that we
evaluate on. See Figure 10 for the effects of quality
filters, and Figure 11 for the effects of toxicity
filters.
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Figure 8: A replication of how temporal misalignment in finetuning affects task performance (Luu et al.,, 2022). In
contrast to Figure 9, which shows the effects of pretraining misalignment, this figure focuses on the more well established

effect of finetuning misalignment.

NewSum TwiERC
2013 32.1 277 2013 84.9 82.7 83.1 83.5
4
E 2016 76.8 78.7 79.0 76.3 2016 233 32.0 279 2016 W 84.8 85.9 83.1 83.4 83.4
£
g
° 2019 75.0 76.3 771 73.2 2019 228 31.2 27.4 18.1 2019 | RE 84.4 84.6 83.8 84.6
[
2022 74.0 75.7 76.8 734 2022 227 31.2 27.4 17.8 2022 827 83.7 84.4 829 82.7 83.6
2010 2012 2014 2016 2010 2012 2014 2016 2014 2015 2016 2017 2018 2019
AlC PoliAff
2013 QLW 98.0 95.0 3 X 88.7 2013
4
3 2016 [ 98.2 95 b 88.5 2016
£
[
® 2019 97.8 98.7 93.9 93.4 2019
[
2022 976 . 94.4 91.4 . 89.0 2022
2014 2015 2016 2017 2018 2019 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Eval Years Eval Years

Figure 9: Temporal Misalignment between Pretraining and Evaluation causes performance degradation.
Four LM-XL'’s, each pretained on a different C4 time split, are evaluated on each time split across five datasets.
Heatmap colors are normalized by column, following Luu et al. (2022) to show the best pretraining year for each

evaluation year.
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PRETRAIN  FINETUNE EvVAL TIME PRETRAIN  FINETUNE EvAL TIME

TIME TIME 2010 2012 2014 2016 TIME TIME 2010 2012 2014 2016
LM-XL LM-XL
2010 93.7 51.9 58.4 52.5 2010 333 32.8 24.6 16.8
2013 2012 60.2 94.6 78.4 75.6 2013 2012 214 39.5 30.0 14.1
2014 83.1 85.6 90.8 84.8 2014 19.9 35.0 35.1 14.9
2016 78.7 84.7 86.2 87.6 2016 19.9 21.2 21.1 25.7
2010 93.8 51.6 59.2 53.2 2010 31.9 333 27.1 17.8
2016 2012 55.2 93.9 79.5 77.0 2016 2012 214 39.0 30.1 15.3
2014 81.5 86.2 92.8 85.6 2014 20.2 35.0 34.5 17.2
2016 76.9 82.9 84.3 89.6 2016 19.6 20.8 20.0 26.1
2010 92.9 50.6 58.6 52.2 2010 31.8 31.6 24.8 16.7
2019 2012 53.4 90.5 75.9 72.9 2019 2012 21.4 39.1 29.3 13.6
2014 81.3 83.2 90.6 82.8 2014 18.6 33.8 34.0 15.7
2016 72.3 81.1 834 84.8 2016 19.5 20.1 21.4 26.2
2010 90.5 49.9 58.4 524 2010 30.7 30.8 244 17.2
2022 2012 52.4 90.4 76.4 73.9 2022 2012 21.6 38.2 30.1 14.3
2014 80.9 80.7 89.3 81.1 2014 19.5 355 35.0 14.7
2016 72.3 81.7 83.0 86.1 2016 19.1 20.4 19.9 25.2
LM-SMALL LM-SMALL
2010 92.9 51.9 60.2 54.1 2010 22.7 25.0 20.1 13.5
2012 55.4 93.3 75.7 75.9 2012 14.0 24.5 19.5 9.9
2013 2014 78.2 81.9 89.9 82.5 2013 2014 13.1 21.8 21.3 9.6
2016 70.5 80.0 80.7 87.4 2016 14.1 17.8 17.5 18.4
2010 93.0 51.8 58.8 53.2 2010 22.1 25.5 20.7 14.0
2012 56.7 92.9 71.7 75.5 2012 14.0 23.8 19.7 9.6
2016 2014 77.3 80.2 89.6 81.4 2016 2014 13.5 22.8 21.5 10.0
2016 69.9 80.1 82.1 87.7 2016 14.1 19.5 19.1 18.5
2010 92.9 51.3 59.2 53.0 2010 23.5 26.4 214 14.3
2012 58.9 93.3 76.4 75.6 2012 14.5 25.4 20.6 10.1
2019 2014 78.4 82.1 90.2 82.7 2019 2014 14.0 23.6 22.5 10.5
2016 69.8 814 80.8 87.7 2016 15.1 20.1 19.2 18.5
2010 93.3 51.6 59.1 53.2 2010 234 26.2 21.1 14.1
2012 56.2 93.2 75.6 75.1 2012 13.9 24.4 19.4 9.5
2022 2014 76.4 81.0 90.1 81.7 2022 2014 13.6 23.2 21.7 9.7
2016 67.8 80.4 80.1 86.8 2016 14.3 19.3 18.3 18.2

Table 11: Left: Full results on the PubCLS temporal task splits from (Luu et al., 2022). This task evaluates news
article source classification, measured with Accuracy. Right: Full results on the NewSum summarization task
temporal splits from (Luu et al., 2022), evaluated in Rouge-L.

Common  Contrast

Wiki Web Biomed Academic  Sense Sets Average
Inverse T=0.5 (73%) [ el n 2.2 2.7 12 6.4 I'6
Full Dataset (100%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 N
T=0.975(91%) 12 07 - 27 -
T=0.95 (84%)  -1.2 1.0 03 32 1.1 a
-2
T=0.9 (73%) -03 0.8 1.8 1.0 1.4

- -4
roréew a2 o8 a7 o8 a0 N B
Figure 10: Quality filtering C4 increases LM-XL’s downstream performance on all QA task domains, except
for Books. The quality filter threshold is on the x-axis, with percentage of training data remaining in parenthesis.
Each column represents a set of QA evaluations from a domain. The ‘Full Dataset’ is unfiltered, and the ‘Inverse’
filter removes the highest quality data instead.
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PRETRAIN FINETUNE EvAL TIME

TIME TIME 2014 2015 2016 2017 2018 2019|2014 2015 2016 2017 2018 2019
LM-XL LM-SMALL

2014-2015| 98.0 977 946 880 93.1 834|861 855 857 832 805 819

2013 2016-2017 | 98.2 96.6 944 91.6 940 88.2 | 8.1 84.0 84.7 839 840 83.7

2018-2019 | 974 976 940 915 954 879|829 852 842 812 84.6 850
2014-2015 | 984 983 95.1 875 925 827|862 857 862 827 815 81.7
2016 2016-2017 | 97.8 975 946 919 933 86.7 | 8.7 841 860 851 832 834
2018-2019 | 96.7 98.0 94.1 913 957 876 | 827 846 855 8l5 855 850
2014-2015 | 98.3 977 944 884 937 821 |86 854 853 831 822 832
2019 2016-2017 | 97.7 975 935 89.6 943 88.6 | 8.7 838 838 854 835 848
2018-2019 | 964 979 935 903 959 881 | 824 839 847 835 856 86.0
2014-2015 | 984 98.1 95.1 88.1 94.1 84.6 | 844 848 856 83.0 82.0 81.7
2022 2016-2017 | 97.9 972 938 894 946 883|832 831 845 831 822 83.6
2018-2019 | 96.5 97.6 939 90.7 963 879 | 805 83.1 832 826 84.0 857

Table 12: Full results on the TWiERC temporal task splits from Luu et al. (2022). This task evaluates Twitter
Named Entity Classification with Accuracy.

PRETRAIN FINETUNE EvAL TIME
TIME TIME 2014 2015 2016 2017 2018 2019|2014 2015 2016 2017 2018 2019
LM-XL LM-SMALL
2014-2015 | 98.7 97.5 956 89.0 940 86.0 | 745 753 804 740 719 695
2013 2016-2017 | 98.2 98.0 950 93.1 952 902 | 743 740 77.0 754 747 70.9

2018-2019 | 97.7 985 944 918 940 899 |68.1 702 762 712 754 750
2014-2015 | 985 984 956 92.0 943 863 | 749 759 81.7 744 71.0 70.7
2016 2016-2017 | 98.0 98.1 954 940 951 897|741 729 789 740 741 70.0
2018-2019 | 97.6 982 946 934 958 894 | 695 703 767 721 753 753
2014-2015 | 98.2 985 950 936 948 880|749 759 794 768 703 69.7
2019 2016-2017 | 97.9 98.8 940 940 964 914 | 739 745 784 7150 749 69.7
2018-2019 | 97.3 989 927 925 96.7 92.0 | 67.8 698 775 739 754 76.2
2014-2015 | 98.2 974 953 906 942 873|728 786 783 726 70.7 69.5
2022 2016-2017 | 97.5 989 947 917 958 909 | 719 734 776 744 726 69.0
2018-2019 | 97.0 98.8 93.1 919 951 887|668 71.6 746 739 747 727

Table 13: Full results on the AIC temporal task splits from (Luu et al., 2022). This task evaluates the classification
of science articles from Semantic Scholar into those published at ICML or AAAI, measured with Accuracy.
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PRETRAIN FINETUNE EVAL TIME
TIME TIME 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

LM-XL

2009-2013 | 100.0 100.0 955 735 654 565 51.1 701 742 672
2014-2015 | 95.1 979 100.0 974 819 652 567 726 73.0 664
2013 2016-2017 | 882 92.8 950 872 923 928 804 826 790 693
2018-2019 | 76.8 86.0 884 589 662 870 913 945 902 799
2020-2021 | 53.6 684 77.0 392 481 720 779 902 947 919
2009-2013 | 100.0 100.0 949 729 678 558 537 703 737 675
2014-2015 | 949 982 100.0 973 825 684 587 73.0 734 679
2016 2016-2017 | 85.0 92,6 946 878 91.8 93.1 80.7 830 799 692
2018-2019 | 73.1 852 879 583 685 881 913 944 904 815
2020-2021 | 49.0 643 755 380 508 734 786 905 946 937
2009-2013 | 100.0 100.0 955 733 680 579 552 718 743 684
2014-2015 | 93.8 974 100.0 97.7 825 69.7 59.1 746 739 679
2019 2016-2017 | 85.0 927 946 87.1 920 93.1 820 834 804 683
2018-2019 | 73.8 84.8 87.6 584 689 867 919 948 903 814
2020-2021 | 484 642 756 357 486 717 786 90.7 950 93.7
2009-2013 | 100.0 100.0 949 726 675 556 523 720 767 69.0
2014-2015 | 944 979 1000 979 &81.0 68.0 56.1 743 739 6838
2022 2016-2017 | 84.1 915 932 852 909 922 787 809 79.7 69.6
2018-2019 | 71.1 839 860 589 666 858 903 945 91.1 83.0
2020-2021 | 472 624 730 396 508 736 775 906 949 938

LM-SMALL

2009-2013 | 89.1 875 802 485 423 389 424 570 629 564
2014-2015 | 77.8 885 895 647 504 463 420 603 633 557
2013 2016-2017 | 409 434 582 36.1 400 547 474 612 612 544
2018-2019 | 412 393 440 21.7 23.0 423 498 63.1 672 569
2020-2021 | 40.8 379 426 205 225 372 454 646 719 65.6
2009-2013 | 899 89.2 805 51.7 457 399 426 577 626 554
2014-2015 | 782 87.8 874 639 496 456 418 597 619 543
2016 2016-2017 | 51.3 493 579 374 381 51.1 463 602 602 53.6
2018-2019 | 49.8 43.1 465 244 268 426 483 629 663 562
2020-2021 | 51.7 43.0 425 227 248 363 408 615 70.1 633
2009-2013 | 89.2 87.0 779 485 398 387 41.7 578 64.6 55.6
2014-2015 | 733 877 879 638 487 428 395 574 618 538
2019 2016-2017 | 34.8 457 556 36.6 362 50.1 445 598 604 53.1
2018-2019 | 32.6 364 436 21.6 21.7 412 487 628 66.6 557
2020-2021 | 348 37.6 437 213 213 360 424 627 709 62.0
2009-2013 | 90.3 88.8 79.0 479 410 376 409 579 647 56.6
2014-2015 | 769 89.7 903 672 546 452 410 605 634 565
2022 2016-2017 | 41.5 488 569 37.0 38.6 537 477 620 60.7 532
2018-2019 | 33.0 343 392 199 205 432 509 655 688 564
2020-2021 | 39.5 37.0 385 194 19.6 336 418 652 728 66.1

Table 14: Full results on the PoliAff temporal task splits from Luu et al. (2022). This task evaluates classification
of political affiliation from tweets, measured in Accuracy.
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FILTER % DATA TOXICITY IDENTIFICATION (1) ToXICITY GENERATION ({)
SBF Toxigen DHR3 DHR4 | Score || RTP-T RPT-NT RepBias | Score
THE PILE
FULL DATASET 100.0 | 90.7  90.8 88.7 84.1 0.0 88.9 444  4.64+0.7 0.0
T=0.95 99.1 190.6 90.9 87.8 83.5 -0.5 || 85.6 439  46+08 | -1.9
T=0.9 97.4190.2 90.8 86.4 83.7 09| 804 419  4.04+0.6| -9.2
T=0.7 90.8 1 89.9 909 87.4 82.7 -1.0 || 833 39.9 2.940.5 | -18.1
T=0.5 80.7 | 89.4 904 86.0 82.8 -1.6|| 833 35 22404 | -26.7
T=0.3 60.1 | 884  89.9 85.3 81.3 271 78.5 314 2.240.5 | -31.1
NGRAMS 70.7 | 89.7  90.4 86.3 82.4 -1.6 || 76.1 33.6 2.54+0.6 | -28.0
C4
INVERSE T=0.06 9221932 914 90.0 85.7 14| 87.8 496 481408 | 15.6
FULL DATASET 100.0 | 91.2  91.1 89.0 84.2 0.0 || 84.6 41.8 3.9+0.7 0.0
T=0.95 97.7190.7 91.3 87.7 83.4 -0.7 || 843 41.9 3.940.7 0.0
T=0.9 9491904 90.6 87.5 83.9 -09 || 81.1 40.3 3.1£06 | -9.0
T=0.7 85.8190.5 90.5 86.1 82.8 -1.6 (| 71.3 34.8 24405 | -23.8
T=0.5 75.8 1 89.8  90.5 86.9 81.9 -1.8 || 652 30.0 1.8+£0.4
T=0.3 60.8 | 89.4 90.2 82.1 75.6 -5.2 || 55.0 19.8 1.2+0.3
NGRAMS 78.6 | 89.8  90.7 87.0 81.8 -1.8 || 74.7 31.8 2.340.5 | -25.6

Table 15: Toxicity filtering the pretraining dataset decreases the ability of LM-XLto identify toxicity and to
generate toxic text. These results are visualized in Figure 4.

FILTER % DATA TOXICITY IDENTIFICATION (1) TOXICITY GENERATION ({)
SBF Toxigen DHR3 DHR4 | Score || RTP-T RPT-NT RepBias | Score
C4
INVERSE T=0.5 733 191.8  90.1 86.8 82.9 -09 || 86.3 44.3 4.11+0.6
FULL DATASET 100.0 | 93.1 91.0 87.4 83.5 0.0 84.1 41.8 3.4+0.6
T=0.975 90.6 | 93.1 91.3 87.8 82.7 -0.1 85.4 46.0 3.84+0.7
T=0.95 8391932 913 89.4 85.0 +1.1 86.3 44.0 4.240.6
T=0.9 7331933 912 88.6 85.9 +1.2 || 852 44.8 4.31+0.7

T=0.7 4561933 914 89.9 86.6 +1.8 || 86.5 447  4.0+0.8

Table 16: Quality filtering the pretraining dataset decreases the ability of LM-XLto identify toxicity but
surprisingly increases toxicity generation. These results are visualized in Figure 4.

Common  Contrast

Wiki Web Biomed Academic  Sense Sets Average
Inverse T=0.06 (92%) 0.4 14 07 16 I“
Full Dataset (100%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 z
T=0.95 (98%) -1.0 0.4 0.5 0.6 1.7 1.3 0.2 y
T=0.9 (95%) A1 3.0 0.2 0.2 0.7 L,
T=0.7 (86%) 2.1 1.4 2.9 0.1 -0.9 0.2 1.3 -

T=0.5 (76%) 44 03 -0.1 2.1
-3
103 61 PETRRET s [EE I

Figure 11: Toxicity filtering C4 reduces LM-XL’s downstream performance on most QA task domains. The
toxicity filter threshold is on the x-axis, with percentage of training data remaining in parentheses. Each column
represents a set of QA evaluations from a domain. The ‘Full Dataset’ is unfiltered, and the ‘Inverse’ filter removes
the lowest toxicity data instead.
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FILTER % DATA TOXICITY IDENTIFICATION (1) ToXIC GENERATION ()

SBF Toxigen DHR3 DHR4 | Score | RTP-T RTP-NT RepBias | Score
FULL DATASET 100.0 | 90.7 90.8 88.7 84.1 0.0 88.9 454 4.61+0.7 0.0
NoO SocCIAL 98.8190.9 91.0 87.8 84.9 +0.1 85.4 47.2 4.74+0.8 | +04
No WIKI 97.9190.6 90.8 88.1 83.6 -0.41| 89.0 49.4 48406 | +4.2
No BOOKsS 93.1189.9 903 87.1 82.6 -1.3 87.4 435 4.0+0.8 | -6.2
No OPENWEB 93.189.9 903 86.4 82.5 -1.5 88.0 42.1 4340.6 | -5.2
NoO LEGAL 91.0 1 90.9  90.8 88.1 83.0 -0.4 || 88.2 46.1 4.74+0.8 | +0.8
NO ACADEMIC 87.1190.7 91.0 88.2 84.5 +0.0 || 86.5 46.4 45407 | -1.2
NO PUBMED 85.1190.6 90.8 88.0 84.3 -0.2 || 87.6 46.3 4.6+0.7 | -0.2
No CODE 809|910 912 88.5 84.5 +0.2 || 87.6 46.5 4.7+0.7 | +0.6
No CC 73.1189.9  90.0 85.3 82.4 -1.9 || 87.8 46.2 43406 | -2.1

Table 17: Effect of the Pile’s domain composition on toxicity identification and generation. Removing Books,
CommonCrawl and OpenWeb lead to the greatest decrease in toxicity metrics. Removing Wikipedia had a
strong increase in toxicity generation.
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