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Abstract

Large-scale multilingual Pretrained Language
Models (mPLMs) yield impressive perfor-
mance on cross-language tasks, yet significant
performance disparities exist across different
languages within the same mPLM. Previous
studies endeavored to narrow these disparities
by supervise fine-tuning the mPLMs with multi-
lingual data. However, obtaining labeled multi-
lingual data is time-consuming, and fine-tuning
mPLM with limited labeled multilingual data
merely encapsulates the knowledge specific to
the labeled data. Therefore, we introduce AL-
SACE to leverage the learned knowledge from
the well-performing languages to guide under-
performing ones within the same mPLM, elim-
inating the need for additional labeled multilin-
gual data. Experiments show that ALSACE ef-
fectively mitigates language-level performance
disparity across various mPLMs while showing
the competitive performance on different multi-
lingual NLU tasks, ranging from full resource
to limited resource settings. The code for our
approach is available at https://github.
com/pkunlp-icler/ALSACE.

1 Introduction

Recently, Multilingual Pre-trained Language Mod-
els (mPLMs) have attracted significant attention
(Doddapaneni et al., 2021). These mPLMs, such as
mBERT (Devlin et al., 2018) and mT5 (Xue et al.,
2020), are pre-trained on extensive amounts of cor-
pus across hundreds of different languages, which
enables them to handle multiple languages within a
single model and effectively perform cross-lingual
tasks (Lewis et al., 2019; Zhang et al., 2020; Stick-
land et al., 2020; Mutuvi et al., 2020; Brown et al.,
2020; Choudhury and Deshpande, 2021).

However, all mPLMs share a key limitation. Due
to discrepancies in the quality and quantity of pre-
training corpus available for different languages,
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there is a noticeable performance disparity among
different languages for the same mPLM, especially
when comparing the performance of high-resource
languages to that of low-resource languages. For
example, in Cross-lingual Natural Language In-
ference (XNLI) task (Conneau et al., 2018), high-
resource languages such as English can achieve a
performance advantage of approximately 15 points
compared to low-resource languages like Swahili,
even within the same mPLM.

Several works have been proposed to investigate
the reason for the performance disparity. Kassner
and Schütze (2019); Wallat et al. (2021); Kass-
ner et al. (2021) demonstrate that mPLMs could
learn language-specific knowledge from different
languages’ pre-training corpus, but the imbalance
of the corpus for different languages leads to the
knowledge disparity for different languages. There-
fore, Kassner et al. (2021) suggests the observed
language-level performance disparity can be at-
tributed to the disparity of learned different lan-
guages knowledge during the pre-training stage.
Therefore, Dong et al. (2021); Hu et al. (2021)
attempts to narrow the knowledge disparity by in-
volving additional supervised data in different lan-
guages to fine-tune the mPLM. However, obtaining
such labeled multilingual data is time-consuming
and expensive. Moreover, these labeled data mostly
come from limited tasks and domains, which makes
it hard to compensate for the large knowledge dis-
parity during the pre-training stage, restricting the
generalization performance of the low-resource lan-
guages on downstream tasks.

To utilize the different knowledge across differ-
ent languages within the same mPLM and miti-
gate the need for the labeled data, we introduce
teAcher Language Selection And Cross-lingual
sElf-distillation (ALSACE), which leverages the
knowledge from the selected teacher languages to
reduce the performance disparity among the lan-
guages. Specifically, ALSACE mainly consists of
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Figure 1: ALSACE can reduce language-level performance disparity via mitigating knowledge disparity across
languages on GeoMLAMA benchmark (Yin et al., 2022).

two stages: Teacher Language Selection and Cross-
Lingual Self-Distillation. For teacher language se-
lection, the motivation is that high-resource lan-
guages may not be ideal for probing knowledge
to supervise the other languages. For instance,
although Persian is a relatively low-resource lan-
guage, it may provide more precise answers for
Kenya’s cultural queries than English due to the
closer linguistic proximity (Yin et al., 2022) be-
tween Persian and Swahili. Different from sim-
ply using the knowledge from high-resource lan-
guages (e.g., English) to improve the performance
of low-resource languages (e.g., Swahili), we in-
troduce Teacher Language Selection to choose re-
liable teacher languages for a specific task to su-
pervise the student languages. Specifically, we em-
ploy a majority voting strategy to generate pseudo-
labels derived from the consensus of the mPLMs’
predictions across different languages in the given
multilingual corpus. Then, we utilize the average
confidence score of the different languages on the
generated pseudo labels as the indicator to select
the teacher languages automatically. As a result,
we can select adaptive teachers for different tasks
using the unlabeled sentences in the corpus. We
further propose Cross-Lingual Self-Distillation to
leverage the knowledge from each selected teacher
language to supervise other languages, reducing the
performance disparity. We further propose cross-
lingual self-distillation to leverage the knowledge
from each selected teachers languages to supervise
other languages, reducing the performance dispar-
ity. It employs a consistency loss that encourages
closer alignment between the model output distri-
butions of each reliable teacher language and other
languages. In this way, mPLMs can effectively
mitigate the language-level performance disparity
without relying on the supervised multilingual data.

Experiments show ALSACE consistently miti-
gates language-level performance disparity in vari-
ous mPLMs and show the competitive performance
on different multilingual benchmarks, including
XNLI (Conneau et al., 2018), PAWS-X (Yang et al.,
2019) and XCOPA (Ponti et al., 2020). We also
conduct knowledge probing experiments on the Ge-
oMLAMA (Yin et al., 2022) as shown in Figure 1,
demonstrating that ALSACE effectively mitigates
language-level performance disparity by address-
ing knowledge disparity. Moreover, our experi-
ments show that ALSACE improves performance
not only in low-resource languages but also in high-
resource languages. This finding illustrates that
ALSACE enables effective knowledge transfer be-
tween different languages instead of only transfer-
ring knowledge from high-resource to low-resource
languages. Further analysis shows that ALSACE
can transfer both general knowledge across dif-
ferent languages and language-specific knowledge,
i.e., some specific knowledge locally shared by peo-
ple speaking the specific language, which is only
present in the corpus of some specific languages.

2 Related Work

Knowledge Disparity Leads to Language-Level
Performance Disparity in mPLMs. The mPLMs
have shown strong capabilities in many NLP tasks
including Natural Language Generation (NLG) (Si
et al., 2022a, 2024; Zhao et al., 2023; Cai et al.,
2023; Li et al., 2024; Liu et al., 2023b) and natural
language understanding (NLU) (Si et al., 2022b,
2023; Liu et al., 2023a; An et al., 2023; Hu et al.,
2023). However, there is a noticeable performance
disparity across different languages in the same
mPLM. Several works are proposed to investigate
the reason of language-level performance dispar-
ity in mPLMs. Wallat et al. (2021); Kassner et al.
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(2021) demonstrate that mPLMs could learn differ-
ent knowledge from different languages data in the
pre-training corpus, but imbalanced corpus might
lead to knowledge disparity for different languages.
Kassner et al. (2021) suggests that the performance
disparities across different languages could be at-
tributed to the imbalanced knowledge distribution
of these languages acquired during the pre-training
phase. Yin et al. (2022) further observe that dif-
ferent languages within a single mPLM can retain
distinct knowledge that is locally shared by the
people speaking the specific language. Therefore,
we attempt to address language-level performance
disparity from the knowledge disparity perspective.

Mitigating Language-Level Performance Dis-
parity in mPLMs. Previous studies have utilized
cross-lingual knowledge to mitigate the language-
level performance disparity. He et al. (2021) em-
ploy lightweight adapters on the mPLMs to miti-
gate forgetting issues. InfoXLM (Chi et al., 2021a)
designs a new pre-training task with 42GB parallel
data to align the representation of multiple lan-
guages. XLE (Chi et al., 2022) pre-trains mPLMs
with a generator and discriminator structure on
142B tokens. These methods attempt to incorpo-
rate multilingual resources to mitigate performance
disparity. However, obtaining multilingual data
can be time-consuming and restricts model perfor-
mance on low-resource languages. Thus, Yang
et al. (2022); Nguyen and Tuan (2021) attempt
to enhance mPLMs by distilling knowledge from
well-learned monolingual teachers. Qi et al. (2022)
learn from different cross-lingual templates using
consistency loss to enforce correspondence repre-
sentation among languages. Different from dis-
tilling knowledge from other monolingual models,
we aim to reduce the language-level performance
disparity within mPLMs.

3 Method

3.1 Teacher Language Selection

To mitigate the language-level performance dispar-
ity within mPLMs, we utilize knowledge from the
appropriate teacher language to supervise other lan-
guages. An intuitive idea is to transfer the knowl-
edge from high-resourced to low-resourced lan-
guages to mitigate the disparity. However, due to
the different linguistic proximity between differ-
ent languages, the high-resource languages may
not be ideal teachers for transferring knowledge

to other languages in the specific task. For ex-
ample, low-resourced Persian may provide more
accurate responses to Kenya’s cultural queries com-
pared to high-resource English, which makes it a
better teacher language for Swahili than English.
Therefore, the proposed Teacher Language Selec-
tion aims to choose reliable teacher languages for
a specific task to guide the student languages.

Considering the given corpus D for the specific
multilingual task (e.g., Cross-lingual Natural Lan-
guage Inference) that spans over T languages, we
aim to utilize the proposed Teacher Language Se-
lection to identify the teacher languages to mitigate
language-level performance disparity efficiently.
Precisely, we first fine-tune the mPLMs with an
English training set Den of the given task to ob-
tain a better initialization. We secondly utilize
the mPLMs to generate the prediction ŷt,i of the
given instance xi from corpus D in language t ∈ T .
Then, we employ a majority vote strategy on the
predictions of different languages to generate the
pseudo label yi of the instance xi ∈ X , as follows:

ŷt,i = argmax
y∈Y

P (y |xt,i)

yi = argmax
k

∑

t∈T
I(ŷt,i = k)

(1)

where P (y |xt,i) denotes the predicted probability
of the given mPLM on instance xt,i in language
t. I is the indicator function, while k signifies the
set of all possible results for the given task. The
generated pseudo-labels reflect the collective un-
derstanding of the provided instance across various
languages. Thus, it reduces the risk of incorrect
pseudo-labeling compared to relying solely on the
prediction from a single language (even a high-
resource language like English).

We further employ the pseudo-labels to com-
pute the average confidence score st for each lan-
guage, which allows us to assess the capabilities
of different languages in the mPLM. The average
confidence score st indicates the level of agree-
ment between each language and the common un-
derstanding of the mPLMs, i.e., languages with a
higher average confidence score are more likely
to make accurate predictions for a given instance.
Ultimately, we normalize the confidence score and
use the normalized score ŝt to evaluate which lan-
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guages demonstrate superior performance:

st =
1

|X|
X∑

xt,i

P (yt,i|xt,i)

ŝt =
est

∑T
j esj

, t ∈ T

(2)

where the T refers to the collection of all languages
involved in the given multilingual task. We set the
threshold θ to be the average value of the normal-
ized score ŝt to select the teacher languages Tteacher

and student languages Sstudent, as follows:

Tteacher = {t|t ∈ T, ŝt ≥ θ}
Tstudent = {t|t ∈ T, ŝt < θ} (3)

In this way, we can automatically select appropri-
ate teacher languages for the different multilingual
tasks to mitigate language-level performance dis-
parity efficiently. Moreover, we do not need any la-
beled multilingual data to improve the cross-lingual
transfer ability of mPLMs (Chi et al., 2022, 2021a).

3.2 Cross-Lingual Self-Distillation

Having selected the appropriate teacher languages
for the given multilingual task, we further intro-
duce Cross-Lingual Self-Distillation to leverage
the knowledge from each selected teacher language
to supervise other languages. Specifically, we con-
struct a parallel multilingual pair set X̂ that con-
sists of parallel sentence pairs between each two
languages. To reduce the disturbance caused by
student languages, we exclusively employ parallel
pairs of teacher-student and teacher-teacher lan-
guages as potential candidates for self-distillation.
Therefore, the instance pair X̂ can be defined as:

X̂ = { (xt1,i, xt2,i) | t1 ∈ T, t2 ∈ Tteacher, xi ∈ X }
(4)

where Tteacher is the selected teacher languages. We
filter out student-student language pairs to prevent
student languages from learning from each other.

For the selected candidate instance pairs, we use
Kullback-Leibler divergence as a consistency loss
to encourage closer alignment between the predic-
tion distributions of the reliable teacher language
and the target language. In this way, mPLMs can
effectively transfer and distill the knowledge from
the teacher language to the target language, mit-
igating the language-level performance disparity.
The final consistency loss L can be formulated as

follows:

L =
1

|X̂|

X̂∑

x̂1,x̂2

KL(P(x̂1)||P(x̂2)) (5)

where KL(P||Q) is the Kullback-Leibler diver-
gence function. P (x̂1) and P (x̂2) are the predic-
tion distributions of the given mPLM for the inputs
x̂1 and x̂2 in different languages, respectively.

4 Experiment

4.1 Experimental Details

Datasets. As shown in Table 1, our experiments

Task Dataset Lang. Metric

Natural Language Inference XNLI 15 Acc.
Commonsense Reasoning XCOPA 10 Acc.
Paraphrase Identification PAWS-X 7 Acc.
Commonsense Probing GeoMLAMA 5 Acc.

Table 1: The tasks involved in experiments.
are conducted on various multilingual benchmarks:
XNLI (Conneau et al., 2018), PAWS-X (Yang et al.,
2019), XCOPA (Ponti et al., 2020) and GeoM-
LAMA (Yin et al., 2022).
Experimental Settings. We follow the cross-
lingual transfer setting as Lauscher et al. (2020),
first fine-tuning the model with an English train-
ing set and directly evaluating the model on mul-
tilingual test sets. We apply ALSACE to the fine-
tuned model using unlabeled multilingual inputs X
from T languages in order to address the language-
level performance disparity across those languages.
Specifically, We firstly use data generation meth-
ods, Supergen (Meng et al., 2022), which em-
ploy a language model to automatically generate
text based on label-descriptive prompts, producing
monolingual unlabeled data. Next, we use ma-
chine translation1 to translate generated monolin-
gual data and create unlabeled parallel multilingual
pairs. By combining the data generation method
and machine translation system, we establish an au-
tomated pipeline for generating unlabeled parallel
corpora with minimal cost.
Baselines. We take the XLM-Align (Chi et al.,
2021b), XLMR-adapter256 (He et al., 2021), In-
foXLM (Chi et al., 2021a), VECO (Luo et al.,
2021), ERNIE-M (Ouyang et al., 2021) and
XLE (Chi et al., 2022) as baselines.

Details can be found in Appendix A.1 and A.2.
1The translation API from http://api.fanyi.baidu.com/ is

utilized for generating multilingual parallel data.
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Method Params Perf. en fr es de el bg ru tr ar vi th zh hi sw ur avg

XLM-R-base 225M 84.23 77.39 78.20 76.45 75.97 77.80 75.35 73.27 71.84 74.93 71.88 74.23 69.22 64.55 65.77 74.07
∆ ↓ \ 6.84 6.03 7.78 8.26 6.43 8.88 10.96 12.39 9.30 12.35 10.00 15.01 19.68 18.46 10.88 (-)

XLM-Align 225M 86.70 80.60 81.00 78.80 77.40 78.80 77.40 75.20 73.90 76.90 73.80 77.00 71.90 67.10 66.60 76.30
∆ ↓ \ 6.10 5.70 7.90 9.30 7.90 9.30 11.50 12.80 9.80 12.90 9.70 14.80 19.60 20.10 11.24 (+0.36)

ALSACE -base 225M 84.11 77.80 78.30 77.50 76.51 78.28 76.01 74.19 72.12 75.50 72.81 74.90 70.12 65.55 66.37 74.67
∆ ↓ \ 6.31 5.81 6.61 7.60 5.83 8.10 9.92 11.99 8.61 11.30 9.21 13.99 18.56 17.74 10.11 (-0.77)

XLM-R-large 550M 86.45 80.90 81.84 81.22 79.36 80.74 78.78 77.23 77.03 77.82 75.53 77.82 74.55 69.62 70.86 77.98
∆ ↓ \ 5.45 4.51 5.13 6.99 5.61 7.57 9.12 9.32 8.53 10.82 8.53 11.80 16.73 15.49 8.97 (-)

XLM-R-adapter 567M 89.22 83.27 84.69 83.47 82.39 83.59 79.74 78.80 78.62 79.32 77.84 79.34 76.42 72.21 72.27 80.08
∆ ↓ \ 5.95 4.53 5.75 6.83 5.63 9.48 10.42 10.60 9.90 11.38 9.88 12.80 17.01 16.95 9.79(+0.82)

Info-XLM-large 550M 89.70 84.50 85.50 84.10 83.40 84.20 81.30 80.90 80.40 80.80 78.90 80.90 77.90 74.80 73.70 81.40
∆ ↓ \ 5.20 4.20 5.60 6.30 5.50 8.40 8.80 9.30 8.90 10.80 8.80 11.80 14.90 16.00 8.89 (-0.08)

VECO-large 550M 88.20 82.80 84.20 82.90 81.20 83.10 80.30 78.40 79.20 80.40 77.00 79.10 76.20 74.30 71.30 79.90
∆ ↓ \ 5.40 4.00 5.30 7.00 5.10 7.90 9.80 9.00 7.80 11.20 9.10 12.00 13.90 16.90 8.88(-0.09)

ERNIE-M-large 550M 89.30 85.10 85.70 84.40 83.70 84.50 82.00 81.20 81.20 81.90 79.20 81.00 78.60 76.20 75.40 82.00
∆ ↓ \ 4.20 3.60 4.90 5.60 4.80 7.30 8.10 8.10 7.40 10.10 8.30 10.70 13.10 13.90 7.86 (-1.11)

ALSACE -large 550M 86.65 82.61 83.21 82.16 81.34 83.09 80.98 79.50 79.60 79.98 78.18 79.74 77.13 72.71 73.58 80.03
∆ ↓ \ 4.04 3.44 4.49 5.31 3.56 5.67 7.15 7.05 6.67 8.47 6.91 9.52 13.94 13.07 7.09 (-1.88)

mT5-large 1.2B 88.42 82.44 83.49 81.68 81.14 81.96 79.90 77.33 76.87 78.52 75.31 77.74 75.31 72.63 70.88 78.91
∆ ↓ \ 5.98 4.93 6.74 7.28 6.46 8.52 11.09 11.55 9.90 13.11 10.68 13.11 15.79 17.54 10.19 (-)

XLE-large 840M 89.40 84.70 85.50 84.40 83.50 84.10 81.90 81.30 80.70 81.20 79.20 81.50 76.50 74.10 72.40 81.30
∆ ↓ \ 4.70 3.90 5.00 5.90 5.30 7.50 8.10 8.70 8.20 10.20 7.90 12.90 15.30 17.00 8.61 (-1.58)

ALSACE -mT5 1.2B 88.60 83.69 84.79 83.17 82.91 83.91 81.80 79.54 78.84 80.20 77.90 80.92 77.25 75.17 73.13 80.79
∆ ↓ \ 4.91 3.81 5.43 5.69 4.69 6.80 9.06 9.76 8.40 10.70 7.68 11.35 13.43 15.47 8.37 (-1.82)

Table 2: Main result of XLM-R-base, XLM-R-large, and mT5-large on XNLI dataset evaluated in accuracy. ∆
represents the cross-lingual transfer gaps (Chi et al., 2021a), i.e., performance drop between English and other
languages in zero-shot transfer. A smaller gap indicates better cross-lingual transferability. ALSACE achieves
competitive results compared to the state-of-the-art methods and enhances the performance of most languages across
all three mPLMs, simultaneously reducing the language-level performance disparity amongst all the languages.

4.2 Main Results

Overall Performance. The results presented in
Table 2 demonstrate that ALSACE achieves the
lowest cross-lingual transfer gaps across differ-
ent baselines on XNLI for various mPLMs. AL-
SACE yields an improvement of up to 0.6 points,
2.05 points, and 1.88 points, respectively, in aver-
age accuracy compared with XLM-R-base, XLM-
R-large, and mT5-large baselines. Importantly,
we achieve competitive performance with state-of-
the-art methods across different mPLMs while im-
proving the cross-lingual transferability of mPLMs
without introducing any extra information.

For example, InfoXLM (Chi et al., 2021a),
which is also based on XLM-R, uses 42GB of mul-
tilingual parallel data for pretraining. In contrast,
ALSACE depends solely on a small volume of
unlabeled parallel data (500-shot), which can be
automatically generated with minimal effort and
and exhibits superior cross-lingual transferability
compared to other baselines. While we also utilize
parallel data to enhance cross-lingual transferabil-
ity, our motivation diverges: Instead of aligning
multilingual representations through parallel data,
our goal is to leverage the knowledge from teacher
languages within mPLMs to supervise others. The
500-shot unlabeled parallel data in ALSACE are
exclusively used to distill the knowledge of other
languages in mPLMs. As a result, Table 2 shows

performance enhancement and cross-lingual
transfer gap reduction for most languages across
different models. In comparison to state-of-the-art
methods, ALSACE does not mandate an extensive
pre-training process or a large number of parallel
corpora while achieving competitive performance
and minimizing the cross-lingual transfer gaps.

Mitigating Languages-Level Performance
Disparity. ALSACE effectively mitigates the
language-level performance disparity of mPLMs
and shows consistent improvements across differ-
ent mPLMs in both high-resource and low-resource
languages. Specifically, not only do the student
languages achieve higher-than-average improve-
ments, but teacher languages also benefit from the
guidance of their peers. Through self-distillation,
ALSACE facilitates cross-language knowledge
transferring among both teacher and student lan-
guages. It also enables teacher languages to learn
from each other. Even high-resource languages
like French and Spanish have shown improvement
across various mPLMs, which further supports
this claim. Notably, low-resource languages
such as Swahili and Urdu experience substantial
gains with ALSACE , achieving improvements
of 2.7 points and 2.4 points, respectively. These
gains are particularly significant considering the
relatively limited knowledge stored in multilingual
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Method avg(S) ↑ ∆(S) ↓ avg(T)↑ ∆(T) ↓ avg(A)↑ ∆(A) ↓
Excluding Weak in Stu. 76.70 10.08 82.56 4.93 79.44 7.35
Excluding Weak in Tea. 76.92 9.73 82.50 4.84 79.52 7.13
Random selection 76.93 9.87 82.67 4.83 79.61 7.20
No Selection 77.05 9.83 82.69 4.90 79.69 7.20
Scale-Based Selection 77.13 9.80 82.73 4.89 79.75 7.18
ALSACE 77.55 9.10 82.86 4.42 80.03 6.62

Table 3: Ablation Study of the Teacher Language Selection. ∆ represents the cross-lingual transfer gaps, i.e.,
performance drop between English and other languages in zero-shot transfer. A smaller gap indicates better
cross-lingual transferability. We report the average performance and cross-lingual transfer gaps of the student
languages(S), teacher languages(T), and all languages(A), respectively.

Method avg(S) ↑ ∆(S) ↓ avg(T)↑ ∆(T) ↓ avg(A)↑ ∆(A) ↓
XLM-R-base 70.71 13.52 77.91 7.37 74.07 10.88
E. Self-Train. 70.94 13.15 78.16 6.92 74.31 10.48
F. Self-Train. 71.10 13.03 78.27 6.84 74.45 10.37
ALSACE 71.44 12.67 78.35 6.72 74.67 10.12

XLM-R-large 75.06 11.39 81.33 5.98 77.98 9.07
E. Self-Train. 75.82 10.95 81.74 5.87 78.58 8.77
F. Self-Train. 75.89 10.92 82.10 5.50 78.79 8.60
ALSACE 77.55 9.10 82.86 4.42 80.03 7.09

mT5-large 75.57 12.85 82.72 6.65 78.91 10.19
E. Self-Train. 76.55 11.95 83.21 6.18 79.66 9.48
F. Self-Train. 76.81 11.83 83.32 6.21 79.85 9.42
ALSACE 77.87 10.73 84.12 5.22 80.79 8.37

Table 4: Comparison of self-distillation baselines with ALSACE . ∆ represents the cross-lingual transfer gaps.
S, T, and A stand for the set of student languages, teacher languages, and all languages, respectively.

pretrained language models (mPLMs) for these
languages compared to other languages.

Compared with other baselines, ALSACE ef-
fectively reduces language-level performance dis-
parities in mPLMs across various languages and
minimizes the cross-lingual transfer gap. While
some methods have enhanced overall performance,
they have exacerbated the performance discrepan-
cies between languages. They incorporated addi-
tional knowledge from the extensive parallel multi-
lingual corpora into mPLMs. However, knowledge
disparities persist and may even worsen, leading
to increased cross-lingual transfer gaps. We also
perform ALSACE across different tasks, such as
PAWS-X and XCOPA. The result in Table 6 and
Table 9 shows that ALSACE reduces the languages-
level performance disparity of mPLMs.

4.3 Ablation Study

Ablation Study on Teacher Language Selection
To evaluate the effectiveness of Teacher Lan-

guage Selection, we conduct an ablation study us-
ing XLM-R-large as backbone. We reported aver-
age performance and cross-lingual transfer gaps of
different language groups in Table 3. It provides

strong evidence for the effectiveness of our method.
Generally, the implementation of Teacher Lan-

guage Selection in ALSACE significantly reduces
the cross-lingual transfer gaps while improving per-
formance across all languages, particularly for the
student languages. It validates that, despite the effi-
cacy of self-distillation, selecting adaptive teacher
languages is crucial for boosting overall perfor-
mance. With Teacher Language Selection, student
languages achieve above-average improvements in
both performance and cross-lingual transferability.

Specifically, when comparing ALSACE with
other baselines, besides a performance improve-
ment, there is a substantial reduction in the cross-
lingual transfer gaps for all languages, particularly
for student languages. ALSACE reduces the cross-
lingual transfer gaps for student languages, ranging
from 0.70 to 0.98 points and between 0.47 to 0.51
points for teacher languages.

Furthermore, excluding the teacher language se-
lection diminishes the performance of student lan-
guages, limiting their ability to benefit from self-
distillation. This results in an average performance
decrease of 0.34 points and an increase of 0.73
points in cross-lingual transfer gaps for student lan-
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Method de fr ar ru zh sw en vi el tr bg th hi ur es avg.

XLM-R-large. 69.84 69.52 65.18 69.00 66.43 61.65 71.81 67.75 68.76 66.27 70.28 63.17 63.94 61.85 69.24 66.98
E. Self-Train. 69.06 68.48 65.67 68.32 65.85 60.10 71.86 67.96 68.40 65.39 69.40 62.46 64.35 61.96 69.02 66.55
F. Self-Train. 69.04 68.46 65.69 68.30 65.83 60.10 71.82 67.98 68.38 65.37 69.40 62.50 64.33 61.94 69.00 66.54
ALSACE 70.56 69.88 67.63 70.00 67.99 63.73 72.17 68.96 69.60 68.03 70.68 64.06 64.86 63.53 71.04 68.18

Table 5: ALSACE performance on XLM-R-large in XNLI dataset under Limited-Resource Scenario. The metric in
this table is accuracy. For each setting, we report the median scores among 5 runs.

Method de fr zh en ko ja es avg.

XLM-R-large. 82.35 82.75 77.05 85.60 73.24 72.70 83.40 79.58
E. Self-Train. 82.35 82.50 78.05 85.95 72.44 72.80 83.70 79.68
F. Self-Train. 82.35 82.85 77.20 86.15 73.74 72.85 83.40 79.79
ALSACE 82.40 82.75 77.70 86.25 73.29 72.95 83.55 79.84

Table 6: ALSACE performance on XLM-R-large in PAWS-X dataset under Limited-Resource Scenario. The metric
in this table is accuracy. For each setting, we report the median scores among 5 runs.

guages. ALSACE still outperforms the random se-
lection by 0.42 points in performance and reduces
cross-lingual transfer gaps for student languages
by 0.77 points. These comparisons underscore the
importance of selecting adaptive teacher languages.

Additionally, we remove some languages
from distillation. First, we removed languages
that exhibited weak performance from student
languages. As expected, without the guidance
of teacher languages, the performance of student
languages remained poorly, with an observed
increase in cross-lingual transfer gaps by 0.98
points. Subsequently, excluding languages with
weak performance from teachers also led to a
decrease in performance for both teachers and
students by 0.34 and 0.63 points, respectively.
It underscores our hypothesis that the underper-
forming languages can serve as effective guidance
for other languages due to closer linguistic
proximity between languages. Further details
of the ablation study can be found in Appendix A.6.

Ablation Study on Cross-lingual Self-Distillation
To further investigate the source of performance
increase and validate the effectiveness of the self-
distillation, we conducted additional experiments
with self-distillation methods as baselines with the
following two settings:

English-Only Self-Training (Schick and
Schütze, 2020): We utilize the model fine-tuned on
an English training set to produce pseudo-labels
for the unlabeled English data used in cross-lingual
self-distillation. Then, we choose the top 50% of
data with high confidence to fine-tune the model.

Full-Language Self-Training: We generate

pseudo-labels for translated multilingual data in all
languages and select the top 50% of multilingual
data with high confidence to fine-tune the model.

We apply these two methods on mT5 (Xue et al.,
2020) and XLM-R (Conneau et al., 2019) as base-
lines. As shown in Table 4, ALSACE outperforms
all the self-distillation baselines on XNLI while im-
proving the cross-lingual transferability of mPLMs,
especially for the student languages. It validates
our method and indicates that ALSACE’s improved
performance stems from our self-distillation rather
than from the incorporation of multilingual data.
We also compared our method with other state-of-
the-art self-distillation methods in Appendix A.3.2.

4.4 Limited Resource Evaluation
In scenarios with limited resources, where acquir-
ing training data is extremely difficult (even for
English), mitigating language-level performance
disparities in mPLMs can be more challenging and
crucial. Therefore, to further evaluate the effective-
ness of ALSACE , we performed experiments on
both XNLI and PAWS-X datasets in such scenarios.
Specifically, to simulate a limited resource scenario
for XNLI, we fine-tune the mPLMs on 128-shot
English labeled examples as the baseline. Similarly,
for PAWS-X, we fine-tune the mPLMs on 512-shot
English labeled examples. Further details can be
found in Appendix A.1.

To minimize the impact of the unlabeled multi-
lingual parallel data used in ALSACE , and thor-
oughly investigate the efficacy of self-distillation
in ALSACE in limited resource situations, we also
introduce two additional baselines: English-Only
Self-Training(E. Self-Train) and Full-Language
Self-Training(F. Self-Train). The results in Table 5

2899



Figure 2: Result of ALSACE on XLM-R-large in GeoMLAMA dataset. The result shows that ALSACE utilizes
the teacher languages to guide other languages and generally improves their languages-specific knowledge.
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Figure 3: Accurately Answered Questions across All
Languages in XNLI Baseline.

and Table 6 despite that ALSACE consistently im-
prove the performance of all languages even when
the training data is minimal. It underscores that AL-
SACE improves model performance not by relying
on the parallel corpora but by leveraging the knowl-
edge of teacher languages gained from the mPLM
pre-training stage, hence proving its robustness and
efficiency in limited-resource settings.

4.5 Analysis
The knowledge stored within mPLMs can be cate-
gorized into language-agnostic knowledge related
to general tasks such as XNLI, which are based on
logic and conceptual understanding, and language-
specific knowledge related to specific linguistic and
cultural factors. In order to evaluate the ALSACE ’s
ability to alleviate performance disparity by re-
ducing knowledge disparity and thereby improv-
ing overall performance, we conducted knowledge
probing in GeoMLAMA to evaluate the changes
in language-specific knowledge of mPLMs. We
use the accuracy of question answers grouped ac-
cording to countries and languages to measure the
knowledge of mPLMs.

We examined the changes in language-specific
knowledge gains before and after applying AL-
SACE as shown in Figure 2. Results show that
ALSACE improves the performance of mPLM on
knowledge probing tasks over various languages.
More details can be found in Table 12 in Appendix.

Notably, as shown in Figure 1, after applying
Cross-lingual Self-Distillation, the specific knowl-
edge of teacher languages can be transferred to
other languages. It can be found out that under
the guidance of teacher languages, other languages
answer the geo-specific question correctly. For
instance, as shown in the first sub-figure in Fig-
ure 2, English leverages its US-specific knowledge
for other languages, leading to overall improve-
ments for those respective languages. Similar re-
sults are observed in other sub-figures. This result
strongly suggests that mPLMs capture far more
knowledge than people previously believed, and
language-specific knowledge remains a treasure for
better alignment.

Furthermore, we explore whether ALSACE suc-
cessfully enhances language-agnostic knowledge
over languages. Therefore, as demonstrated in
Figure 3, we evaluate the numbers of the accu-
rately answered questions on the XNLI benchmark.
This improvement demonstrates that the language-
agnostic knowledge across different languages in
mPLMs can mutually learn from each other. Our
method reinforces the shared knowledge among
the languages by bridging the knowledge dispar-
ity. As a result, we ensure that the efficacy of our
method relies on alleviating the knowledge dispari-
ties across languages, including language-agnostic
and language-special knowledge.

5 Conclusion

In this paper, we present ALSACE , a simple yet
effective method to address the language-level per-
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formance disparity in mPLMs. ALSACE mainly
consists of two stages: Teacher Language Se-
lection and Cross-Lingual Self-Distillation. AL-
SACE leverages the knowledge learned from the
teacher languages to guide other languages and fur-
ther improves the overall performance and cross-
lingual transferability of mPLMs. Experiments
show that ALSACE effectively mitigates language-
level performance disparity and shows competi-
tive performance on various multilingual datasets.
In addition, we further analyze each part of the
ALSACE to show the strengths of our proposed
model. Overall, ALSACE is a promising approach
to mitigating language-level performance disparity
of mPLMs by utilizing self-distillation to reduce
the performance disparity.

Limitation

Our work has three limitations:
1) We conduct experiments on a limited number

of languages compared to the total number sup-
ported by mPLMs. Additionally, we only test other
methods on the base and large model sizes of mT5
and XLM-R models. Therefore, in future work, we
plan to extend our research to more languages and
different mPLMs in different model sizes.

2) In the grand scheme of things, the languages
we evaluate are relatively high-resource compared
to some extremely low-resource languages such as
Kaixana and Ainu. Improving our method on these
extremely low-resource languages will be more
exciting and meaningful. We plan to explore even
more data-scarce settings in future work.

3) We use the cross-lingual transfer gap to mea-
sure mPLMs’ cross-lingual transferability, align-
ing with prevailing research. However,if we re-
servedly enhances the performance of non-English
languages while improving English greatly, the
model’s transfer gap could still be high despite
the improvement in all languages. Hence, we ad-
vocate for the development of the metric that can
better reflect the performance equity and utility in
multilingual models.
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A Appendix

A.1 Experiment Details

Implement Details. The unlabeled data used in
ALSACE is constructed by Supergen (Meng et al.,
2022), which uses PLM to generate text guided by
label-descriptive prompts. We use machine trans-
lation2 to generate unlabeled parallel multilingual
text pairs based on the generated text. We lever-
age data generation methods(Supergen) and ma-
chine translation systems to construct an automatic
pipeline for generating this valuable unlabeled par-
allel corpus at the lowest cost. We perform AL-
SACE on mPLMs using 500-shot unlabeled multi-
lingual data with batch size 32 on each language
corresponding to the tasks of XNLI, PAWS-X, and
XCOPA. We set the learning rate to 3e− 8, and a
dropout rate of 0.1. The thresholds θ in Equation
3 are used to select the teacher languages are 0.06,
0.2, and 0.2 for XNLI, PAWS-X, and XCOPA, re-
spectively. We set the threshold θ to be the average
value of the language score ŝt across all languages.

To evaluate the effectiveness of ALSACE in lim-
ited resource scenarios, we fine-tune the mPLMs
for 100 epochs with learning-rate of 1e − 6 on
128-shot English labeled examples as the baseline.
Similarly, for PAWS-X, we fine-tune the mPLMs
for 150 epochs with learning-rate of 1e − 6 on
512-shot English labeled examples.

A.2 Baselines

XLM-Align (Chi et al., 2021b) presents denoising
word alignment as a new cross-lingual pre-training
task with 310M instances. It self-labels word align-
ments for parallel sentences and haphazardly masks
tokens in a bitext pair for mPLMs to predict.

2The translation API from http://api.fanyi.baidu.com/ is
used to generate the multilingual parallel data.
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Method en fr es de el bg ru tr ar vi th zh hi sw ur avg

InfoXLM 0.80 0.90 0.70 1.00 1.00 0.50 0.60 1.70 1.40 0.40 1.10 1.10 1.10 2.10 0.40 1.00
ERNIE-M 0.20 1.00 0.60 0.50 0.80 0.50 0.80 1.60 1.40 1.10 1.10 0.80 1.70 2.30 1.60 1.10
ALSACE 0.20 1.71 1.37 .94 1.98 2.35 2.20 2.27 2.57 2.16 2.65 1.92 2.58 3.09 2.72 2.05

Table 7: Performance gain of each language compared with the initial XLM-R-large model.

Model en fr es de el bg ru tr ar vi th zh hi sw ur avg

PCT-XLM-R-large 88.30 84.20 85.10 83.70 83.10 84.40 81.90 81.20 80.90 80.70 78.80 80.30 78.40 73.60 75.60 81.30
∆ ↓ \ 4.10 3.20 4.60 5.20 3.90 6.40 7.10 7.40 7.60 9.50 8.00 9.90 14.70 12.70 7.45

ALSACE 88.30 84.37 85.59 83.71 83.33 84.67 82.16 80.28 80.84 81.80 79.24 81.94 79.12 73.29 75.11 81.58
∆ ↓ \ 3.93 2.71 4.59 4.97 3.63 6.15 8.02 7.46 6.51 9.06 6.37 9.18 15.01 13.19 7.20

Table 8: Comparison of PCT-XLM-R-large and ALSACE on XNLI benchmark across different languages. For a fair
comparison, we report the performance of ALSACE under the same setting of PCT. ∆ represents the cross-lingual
transfer gaps. A smaller gap indicates better cross-lingual transferability.

InfoXLM (Chi et al., 2021a) implements on the
basis of mPLMs and tries to align the representa-
tion of multiple languages by introducing parallel
corpora with a new pre-training task. Initializes its
parameters with XLM-R and employs contrastive
learning using 42GB parallel corpora to encourage
encoded representations of bilingual sentence pairs
to be more similar than negative examples.
XLMR-adapter256 (He et al., 2021) employs
lightweight adapter modules on the XLM-R-large
and achieves significant performances on low-
resource and cross-lingual tasks.
ERNIE-M (Ouyang et al., 2021) is similar to In-
foXLM and XLM-Align, which is implemented on
the basis of XLM-R. It integrates back-translation
into the pre-training process to encourage the
model to align the representation of multiple lan-
guages with parallel corpora of about 68.8GB.
VECO (Luo et al., 2021) plug a cross-attention
module into the transformer encoder to explicitly
build the interdependence between languages to
pretrain a variable cross-lingual language model
for both NLU and NLG.
XLE (Chi et al., 2022) use ELECTRA-style tasks
for pre-training mPLMs with a generator and dis-
criminator structure using 142B tokens.

A.3 Compared with other state-of-art
methods

A.3.1 Compared with pre-train based
methods

InfoXLM (Chi et al., 2021a) initializes its parame-
ters with XLM-R and employs contrastive learning
using 42GB parallel corpora to encourage encoded
representations of bilingual sentence pairs to be
more similar than negative examples.

ERNIE-M (Ouyang et al., 2021) is implemented
on the basis of XLM-R, and it integrates back-
translation into the pre-training process to encour-
age the model to align the representation of mul-
tiple languages with parallel corpora of about
68.8GB.

While InfoXLM and ERNIE-M are built upon
the basis of XLM-R by utilizing 42GB and 68.8GB
data, respectively, our method only relies on a
small amount of unlabeled parallel corpora (500-
shot), which can be easily constructed with mini-
mal effort. Despite this minimal requirement, our
approach achieves substantial enhancements com-
pared to the baseline XLM-R model. Table 7 illus-
trates the improvement of different methods across
all languages on the XNLIdataset in comparison
with the initial XLM-R-large baseline.

A.3.2 Compared with self-distillation-based
methods

Qi et al. (2022) introduced PCT, a method that
learns from various cross-lingual templates through
a consistency loss, ensuring corresponding repre-
sentations are aligned across languages. As in-
dicated in Table 8, our ALSACE surpasses PCT-
XLM-R-large in performance and demonstrates
superior cross-lingual transferabilities. Thanks to
the teacher language selection, ALSACE not only
minimizes the performance disparities among the
student languages but also enables the teacher lan-
guages to benefit from self-distillation. This ap-
proach yields improved overall performance and
narrows the cross-lingual transfer gaps more effec-
tively than PCT-XLM-R-large.
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Method Setup et ht id it qu sw ta th tr vi zh avg

XLM-R-base CO-ZS 54.40 49.80 56.00 54.80 49.00 53.40 51.40 57.40 55.00 54.20 57.40 53.89
ALSACE CO-ZS 55.60 49.40 56.00 54.80 53.80 54.40 53.00 59.00 56.80 55.00 57.40 55.02

XLM-R-base SI-CO-ZS 61.40 51.60 66.60 64.40 49.60 55.80 62.00 61.60 60.20 64.80 68.20 60.56
ALSACE SI-CO-ZS 58.40 53.40 66.40 65.80 49.00 57.40 62.60 62.60 62.40 64.60 69.60 61.11

XLM-R-large CO-ZS 56.80 (50) 57.60 58.60 (50) 52.20 55.80 55.80 51.60 55.80 57.40 55.73
ALSACE CO-ZS 58.40 (50) 59.40 57.60 (50) 51.80 57.40 56.60 52.80 60.60 58.20 56.98

XLM-R-large SI-CO-ZS 72.00 (50) 77.00 77.20 (50) 61.60 67.20 76.40 74.40 76.60 77.40 73.31
ALSACE SI-CO-ZS 72.00 (50) 77.20 77.40 (50) 61.80 68.20 76.80 74.80 76.80 77.60 73.62

Table 9: Accuracy scores of different models on the XCOPA test set when transferring from English. Models
are either only fine-tuned on the COPA (Roemmele et al., 2011) training set and evaluated on different languages
(CO-ZS) or fine-tuned first on SIQA (Sap et al., 2019) and then on COPA training set(SI-CO-ZS). Due to the
inability of the XLM-R-large model to generate valid responses in Haitian Creole and Quechua, the scores for these
languages are marked as (50) in the table.
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Figure 4: Performance of different Ensemble Methods.

A.4 Evaluation on XCOPA Benchmark

We evaluate ALSACE on the XCOPA benchmark,
which is the causal commonsense reasoning bench-
mark across a range of typologically diverse lan-
guages, including both high and low-resource
languages. Following the setting of Ponti et al.
(2020), models are either fine-tuned solely on the
COPA Roemmele et al. (2011) training set and
then evaluated on XCOPA’s multilingual test sets
or sequentially fine-tuned—initially on the SIQA
dataset Sap et al. (2019) followed by the COPA
training set. Results in Table 9 show that our
method achieves substantial performance gains in
most languages under various settings across dif-
ferent model sizes. These outcomes underscore the
robustness and overall effectiveness of our method.

A.5 Analysis

Why We Need to Select the Teacher Languages?
To explore whether we need to select the teacher
languages before transferring knowledge, we de-
sign an exploratory experiment on the XNLI
dataset to demonstrate that selecting teacher lan-

guage is necessary. We measure the contribution
of different ensemble strategies to model perfor-
mance. Specifically, language Weighted: For pre-
dicted labels and confidence scores from different
languages, we use the confidence score of each lan-
guage as weights and calculate the final ensemble
prediction.

Best Performing Language (en): We use the
results predicted by English as the final prediction.

Voted: We give the same weight to the predicted
labels for each language and get the final prediction
result based on the voting result.

Figure 4 compares different multilingual models
using different ensemble methods on the XNLI
benchmark. Voted does not perform well due
to noise from the under-performing student lan-
guages. On the other hand, by using the normal-
ized language score P (st) as weights for each
language output in ensembling, it surpasses the
performance of English, which is considered the
best-performing high-resource language. This note-
worthy discrepancy indicates that high-resource
languages may not be suitable teacher languages.
Besides high-resource languages, other languages
also contribute to enhancing model performance.
Figure 2 shows an experiment on GeomLAMA,
demonstrating that high-resource languages may
not be the most suitable for probing knowledge
about a specific language condition. For instance,
when addressing a query related to Chinese cul-
ture, Persian might yield a more accurate answer
compared to English.

A.6 Ablation Study

We conducted an ablation study to investigate the
impact of teacher language selection, with detailed
results provided in Figure 10. A comparison of
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Method en fr es de el bg ru tr ar vi th zh hi sw ur avg.

XLM-R-large Perf. 86.45 80.89 81.83 81.22 79.36 80.74 78.78 77.22 77.44 77.41 75.53 77.82 74.56 69.62 70.86 77.98
∆ ↓ \ 5.56 4.62 5.23 7.09 5.71 7.67 9.23 9.01 9.05 10.93 8.63 11.90 16.83 15.60 8.47

Excluding Weak Stu. Perf. 86.79 81.70 83.19 82.32 80.86 82.55 80.54 79.08 78.36 79.22 77.07 79.12 76.45 71.62 72.71 79.44
∆ ↓ \ 5.09 3.59 4.47 5.93 4.23 6.25 7.70 8.42 7.56 9.72 7.66 10.34 15.17 14.07 7.35

Excluding Weak Tea. Perf. 86.65 81.96 83.35 82.04 80.70 82.46 80.34 79.46 78.48 79.20 77.23 79.66 76.67 71.76 72.87 79.52
∆ ↓ \ 4.69 3.29 4.61 5.95 4.19 6.31 7.19 8.16 7.45 9.42 6.99 9.98 14.89 13.77 7.13

Random Selection Perf. 86.81 82.15 83.15 82.18 80.94 82.66 80.78 79.40 79.14 79.08 77.78 79.34 75.93 71.89 72.91 79.61
∆ ↓ \ 4.66 3.66 4.63 5.87 4.15 6.03 7.41 7.67 7.73 9.03 7.47 10.88 14.92 13.90 7.20

No Selection Perf. 86.89 82.29 83.13 82.22 80.96 82.66 80.70 79.24 79.06 79.02 77.50 79.62 76.81 72.09 73.09 79.69
∆ ↓ \ 4.60 3.76 4.67 5.93 4.23 6.19 7.65 7.83 7.87 9.39 7.27 10.08 14.80 13.80 7.20

Scale-Based Selection Perf. 86.93 82.38 83.01 82.24 81.02 82.73 80.84 79.32 78.80 79.46 77.62 79.70 76.97 71.94 73.23 79.75
∆ ↓ \ 4.55 3.91 4.69 5.91 4.19 6.09 7.60 8.12 7.47 9.30 7.23 9.96 14.99 13.69 7.18

ALSACE Perf. 86.65 82.61 83.21 82.16 81.34 83.10 80.98 79.50 79.60 79.98 78.18 79.74 77.13 72.71 73.57 80.03
∆ ↓ \ 4.04 3.44 4.49 5.31 3.55 5.67 7.15 7.05 6.67 8.47 6.91 9.52 13.94 13.08 6.62

Table 10: Ablation Study of the Teacher Language Selection. ∆ represents the cross-lingual transfer gaps, i.e.,
performance drop between English and other languages in zero-shot transfer. A smaller gap indicates better
cross-lingual transferability. We report the average performance and cross-lingual transfer gaps of all languages.

Method Params Perf. en fr es de el bg ru tr ar vi th zh hi sw ur avg(∆ ↓)

XLM-R-base 225M 84.23 77.39 78.20 76.45 75.97 77.80 75.35 73.27 71.84 74.93 71.88 74.23 69.22 64.55 65.77 74.07
∆ ↓ \ 6.84 6.03 7.78 8.26 6.43 8.88 10.96 12.39 9.30 12.35 10.00 15.01 19.68 18.46 10.88 (-)

E. Self-Train. 225M 84.09 77.96 78.28 76.73 76.25 78.14 75.65 73.33 72.12 75.27 71.78 74.35 69.54 64.85 66.27 74.31
∆ ↓ \ 6.13 5.81 7.36 7.84 5.95 8.44 10.76 11.97 8.82 12.31 9.74 14.55 19.24 17.82 10.48 (-0.40))

F. Self-Train. 225M 84.13 78.18 78.40 76.85 76.51 78.16 75.67 73.81 72.04 75.33 71.84 74.57 69.74 64.91 66.57 74.45
∆ ↓ \ 5.95 5.73 7.28 7.62 5.97 8.46 10.32 12.09 8.80 12.29 9.56 14.39 19.22 17.56 10.37 (-0.51))

ALSACE -base 225M 84.11 77.80 78.30 77.50 76.51 78.28 76.01 74.19 72.12 75.50 72.81 74.90 70.12 65.55 66.37 74.67
∆ ↓ \ 6.31 5.81 6.61 7.60 5.83 8.10 9.92 11.99 8.61 11.30 9.21 13.99 18.56 17.74 10.11 (-0.77)

XLM-R-large 550M 86.45 80.90 81.84 81.22 79.36 80.74 78.78 77.23 77.03 77.82 75.53 77.82 74.55 69.62 70.86 77.98
∆ ↓ \ 5.45 4.51 5.13 6.99 5.61 7.57 9.12 9.32 8.53 10.82 8.53 11.80 16.73 15.49 8.97 (-)

E. Self-Train. 550M 86.77 81.44 82.32 81.40 79.92 81.16 79.18 78.10 77.54 78.42 76.19 78.46 75.31 70.48 72.04 78.58
∆ ↓ \ 5.33 4.45 5.37 6.85 5.61 7.59 8.67 9.23 8.35 10.58 8.31 11.46 16.29 14.73 8.77 (-0.30))

F. Self-Train. 550M 86.81 81.54 82.69 81.68 80.30 81.96 79.70 78.40 78.12 78.90 76.45 78.06 74.93 70.34 71.90 78.79
∆ ↓ \ 5.27 4.12 5.13 6.51 4.85 7.11 8.41 8.69 7.91 10.36 8.75 11.88 16.47 14.91 8.60 (-0.47))

ALSACE -large 550M 86.65 82.61 83.21 82.16 81.34 83.09 80.98 79.50 79.60 79.98 78.18 79.74 77.13 72.71 73.58 80.03
∆ ↓ \ 4.04 3.44 4.49 5.31 3.56 5.67 7.15 7.05 6.67 8.47 6.91 9.52 13.94 13.07 7.09 (-1.88)

mT5-large 1.2B 88.42 82.44 83.49 81.68 81.14 81.96 79.90 77.33 76.87 78.52 75.31 77.74 75.31 72.63 70.88 78.91
∆ ↓ \ 5.98 4.93 6.74 7.28 6.46 8.52 11.09 11.55 9.90 13.11 10.68 13.11 15.79 17.54 10.19 (-)

E. Self-Train. 1.2B 88.50 82.46 84.33 82.02 81.84 82.34 80.96 78.04 78.06 79.70 76.81 78.44 75.73 73.57 72.04 79.66
∆ ↓ \ 6.04 4.17 6.48 6.66 6.16 7.54 10.46 10.44 8.80 11.69 10.06 12.77 14.93 16.46 9.48 (-0.72)

F. Self-Train. 1.2B 88.64 82.44 84.37 82.22 81.98 82.42 81.16 78.22 78.30 80.00 76.81 78.80 76.09 73.97 72.26 79.85
∆ ↓ \ 6.20 4.27 6.42 6.66 6.22 7.48 10.42 10.34 8.64 11.83 9.84 12.55 14.67 16.38 9.42 (-0.77)

ALSACE -mT5 1.2B 88.60 83.69 84.79 83.17 82.91 83.91 81.80 79.54 78.84 80.20 77.90 80.92 77.25 75.17 73.13 80.79
∆ ↓ \ 4.91 3.81 5.43 5.69 4.69 6.80 9.06 9.76 8.40 10.70 7.68 11.35 13.43 15.47 8.37 (-1.82)

Table 11: Comparison of self-distillation baselines with ALSACE . ∆ represents the cross-lingual transfer gaps,
i.e., performance drop between English and other languages in zero-shot transfer. A smaller gap indicates better
cross-lingual transferability. We report the average performance and cross-lingual transfer gaps for all languages.

ALSACE’s performance with and without includ-
ing student-student pairs indicates that even though
there is a performance improvement when student-
student pairs are excluded, a significant perfor-
mance gap remains compared to the complete AL-
SACE model. This is particularly evident for stu-
dent languages, as detailed in Table 13. Addi-
tionally, when focusing on the student languages,
such as Swahili and Urdu, the exclusion of student-
student pairs results in comparatively diminished
benefits from self-distillation.

The results clearly demonstrate that while the
improvements persist, the performance of the AL-
SACE model employing randomly selected teacher
languages still needs to catch up to the full AL-
SACE model across nearly all languages. This
finding further underscores the efficacy of the

teacher language selection strategy. ALSACE
demonstrates competitive performance across vari-
ous baselines, achieving notable results even with
a limited amount of unlabeled parallel data. We
successfully alleviated the performance disparities
among different languages. As for the performance
disparities, while there might still exist some gaps
among different languages, ALSACE effectively
mitigates these disparities, especially evident in
languages like Swahili (sw), Urdu (ur), and Thai
(th), as showcased in the performance comparison
with English (en) in Table 2. This aligns with our
motivation to enhance cross-lingual transferability.
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Country US CN IN IR KE Avg.

Method XLM-R ALSACE XLM-R ALSACE XLM-R ALSACE XLM-R ALSACE XLM-R ALSACE XLM-R ALSACE

en 0.4414 0.4414 0.2143 0.2571 0.2970 0.2970 0.4483 0.4207 0.4125 0.3875 0.3627 0.3607
zh 0.3862 0.3931 0.3786 0.3714 0.3091 0.3333 0.3103 0.3310 0.3375 0.3375 0.3443 0.3533
hi 0.3517 0.3931 0.3071 0.3000 0.3515 0.3576 0.3931 0.3448 0.3625 0.3688 0.3532 0.3529
fa 0.4828 0.5034 0.3143 0.3429 0.3697 0.3818 0.3517 0.3655 0.4250 0.4375 0.3887 0.4062
sw 0.2966 0.3310 0.2214 0.2357 0.3152 0.3394 0.2828 0.3103 0.3313 0.3313 0.2894 0.3095

Table 12: Detailed results of ALSACE on XLM-R-large in GeoMLAMA dataset. The result shows that ALSACE
utilizes teacher languages to guide others and generally improves their language-specific knowledge.
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Figure 5: The Comparison of ALSACE Performance with and without Language Selection on XNLI dataset set. All
results are based on XLM-R-large.

Lang. Exc. Stu.(%) ALSACE (%) Change(∆)(%)

en 0.44 0.20 -0.24
fr 1.40 1.72 0.32
es 1.30 1.38 0.08
de 1.00 0.94 -0.06
el 1.60 1.98 0.38
bg 1.92 2.36 0.44
ru 1.92 2.20 0.28
tr 2.02 2.28 0.26
zh 1.80 1.92 0.12
hi 2.26 2.57 0.32
vi 1.62 2.16 0.54
ar 1.62 2.57 0.96
th 1.98 2.65 0.68
sw 2.48 3.09 0.62
ur 2.24 2.71 0.48

avg 1.70 2.05 0.35

Table 13: Ablation Study Comparison

A.7 Geo-Diverse Commonsense across
Countries

Figure 2 shows the detailed experiment results on
GeomLAMA‘ (Yin et al., 2022), which demon-
strates that ALSACE improves the performance of
mPLM on knowledge probing tasks over various
languages.
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