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Abstract

While large language models (LLMs) excel
in various natural language processing tasks,
their huge size and the inaccessibility of pa-
rameters present challenges for practical de-
ployment. Previous studies try to distill task-
specific ability from LLMs to smaller mod-
els, using data synthesis and chain-of-thought
(CoT) fine-tuning. However, synthetic CoT
data often contains faulty reasoning, which de-
teriorates the quality of distillation, especially
in reasoning capabilities. In this work, we pro-
pose Program-aided Distillation (PaD), which
introduces reasoning programs to suppress the
errors in distilled data, and thus achieves bet-
ter distillation quality for reasoning tasks. In
PaD, we utilize the reasoning program to substi-
tute the CoT, allowing automated error check-
ing of synthetic data. Further, through error
injecting and further training, the small dis-
tilling model could iteratively self-refine the
reasoning. Moreover, we conduct a step-wise
beam search by step-by-step verifying to ac-
quire more exact reasoning chains. We evaluate
PaD on arithmetic reasoning, symbolic reason-
ing, and general ability. Experimental results
demonstrate that smaller models using PaD
can not only outperform certain LLMs (e.g.,
LLaMA-1 13B) but also achieve strong im-
provement over baselines with a significantly
smaller scale of parameters and data. The
source code is publicly available at https:
//github.com/Xuekai-Zhu/pad.

1 Introduction

In recent years, LLMs have revolutionized the
landscape of natural language processing, show-
casing remarkable capabilities across various
tasks (Brown et al., 2020; Chowdhery et al., 2022;
Zhang et al., 2022; Touvron et al., 2023). These
models require vast quantities of data and extensive
pre-training. However, scaling up the size of the
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Question: Ken created a care package to send to his brother, who was
away at boarding school. Ken placed a box on a scale, and then he poured into
the box enough jelly beans to bring the weight to 2 pounds. Then, he added
enough brownies to cause the weight to triple. Next, he added another 2 pounds
of jelly beans. And finally, he added enough gummy worms to double the weight
once again. What was the final weight of the box of goodies, in pounds?

@ Chain-of-Thought "B Program-aided

This means the weight of the def solution():
brownies is 3 times the weight weight = 2

before. The total weight at this weight = 3
point is 2 + (2 x 3) = 8 pounds. Ken
then added another 2 pounds of
jelly beans. The current weight is

8 +2 =10 pounds. ....... x
The answer is 8%2=16 pounds.

weight += 2

weight *= 2

return weight,
>>> 16

Figure 1: Comparing CoT with program-aided. CoT
from LLMs contains faulty reasoning but correct an-
swers. Program-aided reasoning can easily check inter-
mediate steps by an additional Python interpreter and
reach the correct answer.

model and data incurs a resource cost (Kaplan et al.,
2020; Sorscher et al., 2022), and brings challenges
for deployment in real-world applications. Few or-
ganizations have sufficient computational devices
to fine-tune or re-train LLLMs for specific domains.

Distilling LLMs to specific domains may pro-
vide a resource-friendly and effective research path-
way. This approach allows us to reduce the size of
LLMs, yielding smaller, domain-specific models
with comparable performance.

In this paper, we focus on how to distill the rea-
soning ability of LLMs into smaller models while
maintaining good performance. Prior works uti-
lized LLMs to synthesize data and then fine-tune
smaller models, or aligned predicted distribution to
distill LLMs (Ho et al., 2022; Fu et al., 2023; Hsieh
et al., 2023; Wang et al., 2023; Kang et al., 2024).
The data synthesis paradigm is inspired by chain-
of-thought (CoT, Wei et al. (2022)) prompting in
LLMs. CoT prompting elicits LLMs to generate
intermediate steps, which significantly improves
reasoning performance. Then, data synthesis en-
tails LLMs generating CoT that are collated into
downstream fine-tuning datasets. These CoT data
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are used to fine-tune smaller models, thereby trans-
ferring the reasoning ability. However, as illus-
trated in Figure 1, LLMs frequently produce faulty
reasoning, i.e., they may provide the correct fi-
nal answer but incorrect intermediate reasoning
steps (d’Avila Garcez and Lamb, 2020; Frieder
et al., 2023). Such faulty reasoning in datasets con-
fuses the small models in fine-tuning and hinders
the learning of reasoning abilities. Additionally,
off-the-shelf powerful LL.Ms are black-box (e.g.,
ChatGPT) and inaccessible for prediction distri-
bution. This feature obstructs direct aligning the
distribution between LLMs and smaller models.
To alleviate the above issues, we propose
program-aided distillation (PaD), a method that
leverages synthetic reasoning programs generated
by LLMs for fine-tuning smaller models. Inspired
by works of program-of-thoughts (Chen et al.,
2022) and self-debug (Ni et al., 2023; Chen et al.,
2023; Suris et al., 2023; Paranjape et al., 2023;
Bi et al., 2023), we further enhance small models
with two key advancements: self-refinement and
step-by-step verification. As shown in Figure 1, an
additional Python compiler can automatically iden-
tify samples with incorrect reasoning steps, which
produces executing errors or wrong return results.
Small models with self-refinement use error mes-
sages to iteratively improve reasoning. Further-
more, in the decoding process, we employ step-
wise beam search to score the candidate steps and
guide the rest of the generation with top-k steps.
We conduct extensive experiments across arith-
metic reasoning, symbolic reasoning, and general
ability evaluation. As shown in Figure 2, compar-
ing with LLMs, PaD enables a 770M small model
to surpass certain larger models, such as LLaMA-
1(13B) and Vicuna-1(33B) on GSM8K. Compared
with prior small model baselines, PaD achieves
a least 19% improvement in arithmetic reasoning
with fewer parameters and data. As for symbolic
reasoning, PaD also outperforms LL.Ms and small
model baselines. The general ability evaluation
demonstrates that, while the smaller model gains
the specialized skill of reasoning, its generic abili-
ties may recede. Ablation studies further prove PaD
has better learning efficiency and is more suitable
for small models. Analysis in discussion reveals
that PaD can effectively narrow the output space
than CoT, enabling the small models to achieve
lower training and validation set losses. We sum-
marize the key contributions as follows:
I. We propose Program-aided Distillation (PaD),

Small Model_(<1B)+PaD | Pre-trained Large Model_(>10B)  92.0

Solve Rate (%)
s
£
©

Figure 2: A comparative analysis of pre-trained large
models and small models on the GSM8K bench-
mark (Cobbe et al., 2021) of math word problems. Small
models employing PaD can surpass some larger mod-
els (e.g., LLaMA-1 13B), achieving nearly 50% of GPT-
4’s performance.

a novel approach that distills the reasoning capa-
bility of LLMs into smaller models, by synthesiz-
ing the reasoning program and automatically filter-
ing faulty reasoning. PaD employs self-refinement
and step-by-step verification to further learning and
guide the reasoning generation, respectively.

II. Empirical results show that distilled specialized
models via PaD outperform previous baselines and
surpass certain LLMs (e.g., LLaMA), with a signif-
icantly smaller model and data size.

III. We further discovered that PaD narrows the
model’s output space, enabling it to avoid sampling
across the entire natural language space, and con-
sequently achieves lower losses compared to CoT
fine-tuning.

2 Related Work

Knowledge Distillation from Large Models
Knowledge distillation has proven to be an effec-
tive method for transferring valuable abilities from
a large model to a smaller one (Bucilua et al., 2006;
Hinton et al., 2015; Sanh et al., 2019; Zeng et al.,
2022). The majority of distillation methods utilized
intermediate features or predictions of the teacher
model to improve the behavior of student networks
(Wang and Yoon, 2021; Liu et al., 2021).

In terms of predictions of the teacher model,
this line of work used teachers to synthesize task-
specific data, representing the specific ability of
teachers. This approach is closely related to data-
free distillation (Liu et al., 2021). Ho et al. (2022)
used multi-step reasoning outputs from the teacher
to fine-tune a smaller model. Hsieh et al. (2023);
Chan et al. extracted rationales and integrated these
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I. Synthesizing Data from LLMs

Q: A pet store had 56 puppies. In one day they sold 24 of them and put
the rest into cages with 4 in each cage. How many cages did they use?

def solution():
total_puppies = 56
puppies_sold = 24

puppies_per_cage = 4

cages_used = (total_puppies - puppies_sold) // puppies_per_cage
return cages_used

Q: Natalia sold clips to 48 of her friends in April, and then she sold half
as many clips in May. How many clips did Natalia sell altogether in April
and May?

v
G »

LLMs

def solution():
clips_april = 48
clips_may = clips_april / 2

total_clips = clips_april + clips_may
result = total_clips
print(result)
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Figure 3: The overview of program-aided distillation. I. synthesizing data from LLMs: We provide context
examples and a question sample to LLMs, which induced reasoning programs from LLMs. Then, the additional
Python interpreter automatically filters data. II. Fine-tuning small models: Utilizing the synthetic data, we fine-tune
smaller models. III. Self-Refinement: Incorrect reasoning programs are reprocessed through the smaller models
for iterative refinement. I'V. Step-by-step verification: We adopt step-wise beam search to generate more faithful
intermediate steps. r! indicates intermediate steps at time step .

data in the instruction tuning framework. Fu et al.
(2023) employed chain-of-thought data and predic-
tion distribution to specialize the small model. Fur-
thermore, Petroni et al. (2019); Wang et al. (2020)
treated teachers as databases to complete knowl-
edge graphs, which extracted knowledge in LLMs.
And Self-Instruct (Wang et al., 2022) leveraged
itself as a teacher to instruct LLMs.

Loosely speaking, synthetic data from the
teacher model can effectively transfer specialized
abilities to the student model. We extend the ideas
above to generate reasoning programs.

In terms of intermediate features, statistical in-
formation from the teacher model can accelerate
the convergence and regularize the learning process.
Nayak et al. (2019); Chen et al. (2021a) aligned
student softmax space to teacher model by KL di-
vergence. Lopes et al. (2017) proposed to min-
imize the distance of activation records between
teacher and student. Dream Distillation (Bhardwaj
et al., 2019) used activation vectors as meta-data
to recover pseudo data. Shared gradients from pub-
lic learning systems also benefited in emulating
the learning process (Zhu et al., 2019; Geiping
et al., 2020; Yin et al., 2021). However, all the
above methods relied on accessing the parameters
of teacher models. Powerful LLMs are black-box

services (e.g., ChatGPT). Self-distillation (Mobahi
et al., 2020) uses the student model itself as a
teacher for iterative refinement.

Chain-of-Thought Reasoning Prior works have
demonstrated that CoT prompting can enhance
reasoning ability across various tasks (Wei et al.,
2022). This line of works confirmed that a series of
intermediate reasoning steps significantly improved
reasoning ability. Based on CoT prompting, Ko-
jima et al. (2022) proposed zero-shot CoT by gen-
erating and predicting the final answer. And self-
consistency (Wang et al., 2022) sampled multiple
CoT and selected the most consistent one. Least-
to-most prompting (Zhou et al., 2023b) decom-
posed a complex problem into smaller subproblems
and fixed small problems iteratively. Furthermore,
PAL (Gao et al., 2022) simplified chain-of-thought
by formalizing the reasoning into mathematical for-
mulas and code. Li et al. (2022); Xie et al. (2023);
Ling et al. (2023) decomposed the reasoning steps
and applied evaluation on each reasoning step to
guide decoding.

The methods previously discussed improved the
efficacy of CoT prompting by simplifying reason-
ing problems or evaluating intermediate steps. In-
spired by these approaches, we propose a step-wise
beam search to verify reasoning step-by-step. We
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chose the program as reasoning format, which is
more suitable and concise for small models.

3 Methodology

We propose a novel approach called program-aided
distillation, which induces program-aided reason-
ing data from LLMs and fine-tuning small mod-
els. During the decoding process, PaD can it-
eratively refine reasoning programs and employ
step-wise beam search to generate more reliable
reasoning steps. As shown in Figure 3, PaD in-
cludes the following main parts: (1) synthesizing
Data from LLMs, (2) fine-tuning small models, (3)
self-refining the error reasoning programs, and (4)
reasoning with step-by-step verification.

3.1 Synthesizing Data From LLMs

Data Synthesis Our data synthesis method build
on in-context learning (Brown et al., 2020; Min
et al., 2022; Dong et al., 2022), an emerging ca-
pability of LLMs. In-context learning indicates
that LLMs make predictions only based on context
augmented with a few examples without parameter
updating. We can induce the desired answers from
the large model by constructing the context in a
specific form. As illustrated in Figure 3, we man-
ually construct a question-answer pair of reason-
ing programs, then combine them with the desired
question to derive reasoning programs from LLMs.

We formulate the data synthesis process as fol-
lows: given a reasoning dataset D and its question-
answer pair sample (x;,y;) € D, we first con-
struct context examples. Each example is a triplet
(&, 7i,9;), where # indicates the reasoning pro-
gram. Assuming that a few context examples
C = {(§317 71, 'gl)v (§327 T2, ’!32), ) (ina T, gn)}
is multiple triplets, the LLM M should generate
corresponding reasoning program r; conditioned
on context examples C' and input question ;.
Specifically, « represents the question, y denotes
the answer, 7 refers to the reasoning program, and
C signifies the context examples. In summary, we
derive the data synthesis as follows:

ri = fu(xi, C). ey

As illustrated in Figure 3, we prepend context C' as
prefixes to the input question x;. Then, the LLM
mimics form in context to provide the correspond-
ing reasoning program ;. Moreover, we prepend
multiple examples to get a more exact reasoning
program (Wei et al., 2022; Ho et al., 2022). In

data synthesis, it’s unnecessary to require LLMs
to output answer y;, which can easily be obtained
by executing a reasoning program. Through this
approach, we can obtain a preliminary fine-tuning
dataset S.

Data Filtering As previously discussed, previous
research (Ho et al., 2022; Hsieh et al., 2023) em-
ploys CoT prompting to generate rationales. This
approach results in a fine-tuning dataset containing
numerous flawed samples, characterized by incor-
rect reasoning steps (Lanham et al., 2023; Turpin
et al., 2024). Moreover, we cannot automatically
filter these data out. These inaccurate data restrict
subsequently fine-tuning the performance of small
models.

Our reasoning program can utilize an additional
Python interpreter to achieve flawed samples identi-
fied and eliminated automatically. Specifically, the
incorrect reasoning steps can be classified into two
categories: incorrect answers and ungrammatical
code. Given that any existing incorrect reasoning
step would not yield the correct answer, all faulty
reasoning programs can be identified by the wrong
answer returned when executing the code. And
program with ungrammatical code can be easily
labeled through execution errors. As exemplified
in Figure 3, we can filter out incorrect samples
to refine our fine-tune dataset. We regard this
as a crucial step in our distillation process. In-
tuitively, higher quality data can improve perfor-
mance while incorrect reasoning steps may con-
found models (Zhou et al., 2023a).

Augmentation Since one question can correspond
to multiple solutions and diverse reasoning data
could improve performance (Wang et al., 2022;
Ho et al., 2022), we use different contexts for the
same question to synthesize different reasoning pro-
grams. This augmentation enhanced the diversity
of data. After augmentation and data filtering, we
acquire a high-quality dataset S.

3.2 Fine-tuning Small Models

The most common practice setting in NLP is ini-
tializing the parameters from a pre-trained model,
which benefits the downstream tasks. Based on
the refined dataset S, we adopt standard seq2seq
to fine-tune the small model. We use the standard
cross-entropy loss to fine-tune:

T
Linewne = — »_10gP(ri|ri <, i), (2)
t=1
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where ¢ is the time step corresponding to token
index, and ¢ is sample index in the dataset S.

3.3 Self-Refinement

Previous studies (Madaan et al., 2023; Peng et al.,
2023) demonstrate LLMs can learn from error feed-
back to refine or correct the error answer, called
self-refinement. Inspired by this idea, we try to em-
bed this self-refinement capability in small models,
further improving small models’ reasoning ability.

To achieve this, we introduce a multi-task learn-
ing approach that enables small models to engage
in reasoning and self-refinement simultaneously.
For the refining task, the error code and question
are fed into the model, with each sample prefixed
by a special token (ErrorCode) followed by the
error code. In contrast, for reasoning tasks, the con-
tent associated with (ErrorCode) remains empty.
Note that reasoning and refining tasks are aligned
with the same learning objective: to produce accu-
rate reasoning programs. The input and output of
both tasks can be simplified as follows:

* Reasoning task: input question () — rea-
soning program (7)

* Refining task: input question (x) + error
code (r’) — reasoning program (r)

So, we can put these two datasets together.
Loosely Speaking, we augment the original syn-
thetic dataset with an error dataset.

To construct the error datasets, we inject er-
rors into the reasoning program and then collect
the Python compiler feedback (e.g., NameError).
Firstly, we employ Python tools to extract the Ab-
stract Syntax Tree (AST) from the source code.
Subsequently, we traversed various nodes of the
AST, such as variable names and function defi-
nitions. Next, we injected errors by performing
specific operations on selected AST nodes. For in-
stance, we induced NameError by altering variable
names, caused UnboundLocalError by referencing
variables before their assignment, or led to Syntax-
Error by improperly inserting ‘return‘ statements
in function definitions. Once errors are injected,
we revert the altered AST back into the source
code format and execute this modified code. This
process enables us to collect comprehensive data
on the error messages of the injected errors, the
original problem’s solution, and the accurate code.
Consequently, we obtain a detailed dataset encom-
passing code samples with specific types of errors,
and their corresponding error messages.

3.4 Step-by-Step Verification

As we discussed before, the intermediate step is
critical to reasoning tasks. Incorrect reasoning
steps can indeed rapidly accumulate, leading to
errors. OpenAl proposed rewarding step-by-step
in reinforcement learning (Lightman et al., 2023).
However, in the generation process, we couldn’t
directly judge whether a particular step is correct
or incorrect. It is very hard to classify the single
steps into correct or incorrect.

We can generate multiple candidate steps, score
them, and extract the most faithful steps to com-
plete the rest of the reasoning. Here, we regard
reasoning as a sequence of chains r = [ry, ..., 7.
Then the reasoning generation process P(r|x) can
be factorized in an auto-regressive manner. This
decomposition of reasoning allows us to conduct
step-by-step verification of intermediate steps, akin
to beam search decoding. Subsequently, we need
to establish a score function to rank the candi-
date steps. Unlike traditional token-level beam
search using token probability, a step-level evalu-
ation must be applied to assess the faithfulness of
different steps. Following Golovneva et al. (2023),
we use a pre-trained reasoning scorer to estimate
the semantic alignment by matching source text
and the candidate reasoning steps on the embed-
dings of tokens and individual steps. The score
function is derived as follows:

Y(ri|lx) = align(r; — x). 3)

In implementation, we use cosine similarity as
align function. The discussion and case study of
align function are presented in Appendix A. As
shown in Figure 3, we will score the candidate steps
when the individual step generated. Following re-
cent works about scoring reasoning steps (Wang
etal., 2022; Li et al., 2022; Xie et al., 2023; Ling
et al., 2023; Khalifa et al., 2023), we extend the tra-
ditional token-level beam search by incorporating
a constraint score function. This function guides
the generation process towards more faithful steps.
We derive this step-wise beam search as follows:

E(rtT = HPM(rt]w,T1:t—1)w(7"t‘w)7 S

where Pys(r|@, r1.4—1) represent the joint proba-
bility of tokens in individual steps. In implementa-
tion, this method can be viewed as an enhancement
of the traditional beam search, where a step-level
score is added to the sum of the token-level loga-
rithm of the softmax probabilities.
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Models \ #Params. \ GSMSK ASDiv SVAMP  MultiArith \ BBH
Pre-Trained Large Language Models

gpt-4-0613 ? 92.0 86.7 90.5 97.8 67.4
gpt-3.5-turbo | ? 72.9 80.8 57.8 59.8 70.1
Codex >175B 71.9 74.0 69.9 44.0 56.6
LLaMA-2 70B 56.8 67.1 69.2 90.2 51.2
PaLM 60B 29.9 61.9 46.7 75.0 374
LLaMA-1 13B 17.8 38.2 42.2 40.0 57.5
Small Model Baselines

Ho et al. (2022) | 0.3B 3.11 N/A 5.0 6.11 N/A

Fu et al. (2023) | 0.76B 20.2 23.8 20.4 38.5 6.5

Fu et al. (2023) | 0.25B 13.4 20.9 14.2 29.7 3.1

Our Distilled Small Models

CodeT5smait 0.06B 1.1 0.3 0.2 0.6 12.0
(+) Fine-tune 3.8 127 4.113.8 3.012.8 4.513.9 3.2 188
(+) PaD 32.2 31,1 45.8 1455 38.6 1364 74.8 174.2 1.7 1103
CodeT5pase 0.22B 0.8 0.2 0.0 0.0 10.2
(+) Fine-tune 6.3 155 5.5153 5.815.8 11.6111.6 3.8164
(+) PaD 39.4 1386 51.2 1510 45.7 1457 83.3 183.3 2.0 182
CodeT5arge 0.77B 2.9 3.6 0.0 0.0 28.1
(+) Fine-tune 7.514.6 10.1165  7.2172 22.8122.8 1.1127.0
(+) PaD 449 1420 52.51489 51.0 v51.0 81.7 181.7 1.9 1262

Table 1: Overall performance of arithmetic reasoning and generic ability evaluation. The green and red small boxes
refer to the increase and decrease comparing with base model. PaD achieves comparable performance to LLMs
across arithmetric tasks, while more efficient than baselines. Comparing with stand fine-tune, PaD achieves average

40% increase.

Method Base Models

| #Params. | CoinFilp Last Letter

Zero-shot PaLM 60B 91.4 6.8
Few-Shot gpt-3.5-turbo | ? 100 100
Few-Shot PaLM 60B 96.8 85.0
Fine-Tune-CoT | GPT-3a4a 0.3B 99.3 50.67
Fine-Tune-CoT | GPT-3papbage 1.3B 100 50.67
Fine-Tune CodeT5smant 0.06B 100 7.58
CodeT5pase 0.22B 100 13.1
CodeT5arge 0.77B 47.6 2.8
PaD (Ours) CodeTS5smau 0.06B 100 100
CodeT5pase 0.22B 100 100
CodeT5arge 0.77B 100 100

Table 2: Results on symbolic reasoning tasks. Com-
pared to the baselines, PaD’s advantage lies in its strong
performance not only in the Coin Flip task but also in
the Last Letter Concatenation task, while most baselines
can’t achieve.

4 [Experiments

4.1 Datasets

Source data We evaluate our small model from
three aspects: arithmetic reasoning, symbolic rea-
soning and general ability. As for arithmetic rea-
soning, we consider the following five math word
problem datasets: the GSMS8K of diverse grade
school math word problems (Cobbe et al., 2021),
the ASDiv of diverse math word problems (Miao
et al., 2020), the SVAMP of math word problems
with varying structures (Patel et al., 2021), and Mul-
tiArith of arithmetic word problems (Roy and Roth,

2016). We report the solving rate of math prob-
lems for each test set. As for symbolic reasoning,
we include Coin Filp and Last Letter Concatena-
tion tasks. As for generic ability, we report the
average performance on Big Bench Hard (BBH)
test suit (Suzgun et al., 2022), which includes 23
diverse tasks to fully evaluate the model ability.
Dataset statistics are in Appendix D and Table 6.

Synthetic Data We synthesize data on GSMS8K,
Coin Flip and Last Letter Concatenation datasets.
We use gpt-3.5-turbo API from OpeanAl to syn-
thesize data. As for context examples, we manu-
ally constructed four examples and prepend them
before the input. As for augmentation, we only
augment data on train set of GSM8K, which con-
ducted 8 rounds of data synthesis. Manual context
examples are presented in Appendix D and E.

Note that we synthesize data only on the GSM8K
train set but evaluate on all test sets for arithmetic
reasoning ; we evaluate our model on Big Bench
Hard and don’t train or synthesize data on it.

4.2 Implementation

Since we need to generate a program, CodeT?5 is
used as our base model (Wang et al., 2021) for
fine-tuning. And we run experiments on CodeT5
small, base, and large , which size of the parame-
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| Method Base Model #Params. #Data Augmentation | Solving Rate
Standard | Fine-Tuning CodeT5smau 0.06B 74K X | 38
Menick et al. (2022) | CoT Fine-Tuning TSsmait 0.06B 7.4K X 7.05
Ho et al. (2022) CoT Fine-Tuning GPT-3,40 0.3B 7.4K X 3.1
Fu et al. (2023) CoT Fine-Tuning FlanT5p4se 0.25B 130K v 13.4
Fu et al. (2023) CoT Fine-Tuning FlanT5;4rgc 0.76B 130K v 20.2
Ours PaD CodeT5smau 0.06B 5.9K X 13.0
Ours PaD CodeT5:man 0.06B 459K 4 30.6

Table 3: Detailed comparison between PaD and previous works on GSM8K. "Standard" refers regular of fine-tuning
process. "Augmentation" indicates whether to generate diverse samples to augment dataset. In summary, our PaD

outperforms the best baseline by 10% despite using only approximately % data and
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Figure 4: Ablation results in arithmetic reasoning and generic ability tasks. Compared with the base model and fine-
tuning, PaD has achieved a significant improvement in mathematical reasoning ability. Employing self-refinement
and step-by-step verification can bring further improvement. As the model specializes in mathematical reasoning,

its general capabilities tend to decline.

Student Model | Method | #Data | GSMSK | SVAMP  MultiArith
Teacher Model: gpt-3.5-turbo

CodeT5small CoT Fine-tuning | 7.4K 9.7 14.1 123
PaD 59K 13.0 21.3 26.5
CodeT5pqse CoT Fine-tuning | 7.4K 10.95 14.9 14.8
PaD 59K 15.7 332 25.0
CodeT5arge CoT Fine-tuning | 7.4K 13.46 18.6 17.3
PaD 5.9K 21.7 36.7 343
Teacher Model: text-davinci-002
GPT-34da | CoT Fine-tuning | 7.4K | 3.1 | 50 6.11
CodeT5smalr PaD 4.2K 11.71 213 212
CodeT5pase PaD 42K 13.61 243 29.7
CodeT5arge PaD 4.2K 16.04 27.3 39.7

Table 4: Detailed comparison of specific teacher models.
Results reveal that under identical conditions, the PaD
consistently outperforms CoT fine-tuning.

ter is 60M, 220M, and 770M. The small models are
100-2000x smaller than the LLMs, thus consider-
ably more feasible for real-world deployment. We
set the learning rate of fine-tuning to 6e-5, the max-
imum sequence length of the encoder and decoder
to 128 and 256, respectively. We set the beam size
as 5 in the deocding stage. We conduct experiments
on NVIDIA 3090 GPU.

4.3 Baselines

Our baselines can be mainly categorized into two
types: one consists of existing LLMs, while the
other consists of small models in prior works. In
terms of LLMs, we compared with gpt-4-0613,
gpt-3.5-turbo, CodeX (Chen et al., 2021b),
PalLM (Chowdhery et al., 2022) and LLaMA-
1/2 (Touvron et al., 2023). These are powerful
and popular LLMs. And we evaluate the zero-shot
performance. In terms of small models, we com-
pared with prior teaching small model reasoning
works (Menick et al., 2022; Ho et al., 2022; Fu
et al., 2023). These works used chain-of-thought
augmented data to fine-tune small models. The vari-
ation among these works lies in the choice of base
model, teacher model, and the size of augmented
data. Fu et al. (2023) take 130K samples in dataset
and FlanT5 (Chung et al., 2022) as base model.
Baseline comparison is presented in Table 3.

4.4 Main Results

The overall results of PaD are summarized in Ta-
ble 1 and 2. Table 3 provided a detailed comparison
with prior studies on the base model, model size,
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Small

Base Large

Figure 5: Training vanilla Transformer models on the same size (7K) of PaD and CoT datasets, using an early
stopping approach. The PaD demonstrates consistently lower training and evaluation losses across small/base/large

models than the CoT fine-tuning.

PaD
CoT Fine-tunin 9

Figure 6: Visualization of the output in PaD and CoT
Fine-Tuning models using t-SNE (Hinton and Roweis,
2002). The outputs from PaD are notably concentrated,
clustering closely. The PaD contracts the output space
compared to the CoT fine-tuning.

and data. Table 4 shows different teacher models
comparison of PaD and CoT fine-tuning. The intu-
itive comparison with the large models is presented
in Figure 2. The ablation is described in Figure 4.

PaD can achieve reasoning capabilities compa-
rable to LLMs. As shown in Figure 2 and Table 1,
0.77B model with PaD outperforms 13B LLaMA-
1, 33B Vicuna-1, and 60B PaLM in GSM8K. As
for other math datasets, PaD also achieved com-
parable performance with LLaMA-1 and PalLM.
However, we should admit that larger models
are stronger than specialized smaller models (e.g.,
gpt-3.5-turbo), outperforming small models on
generic ability. In summary, PaD reaches nearly
50% of GPT-4’s, 60% of GPT-3.5’s, and 80% of
LLaMA-2 70B’s performance in mathematical rea-
soning. As demonstrated in Table 2, results on
symbolic reasoning also confirm that PaD enables
small models to reason like LLMs.

Comparing with small model baselines, PaD uti-
lizes the smallest model and data size to achieve
superior reasoning ability. As demonstrated in
Table 3, when compared to the same level of pa-

rameters, PaD demonstrates remarkable efficiency.
Specifically, PaD achieves a 10% improvement
while utilizing just 35% of the baseline model’s
data size. And it accomplishes comparable per-
formance utilizing merely 4.5% of the baseline
model’s data size. In summary, PaD achieves a
new state-of-the-art in teaching small reasoning.

While improving the reasoning capability of
smaller models, it leads to a decline in general
abilities. As shown in Table 1 and Figure 4, we
observe a significant drop in BBH alongside an in-
crease in reasoning performance. We speculate that
with restricted parameters, a small model can only
precisely master certain abilities. Therefore, when
one ability is enhanced, the capability in other tasks
may decline (Fu et al., 2023).

4.5 Ablation

As shown in Figure 4, when the small model is
equipped with PaD, we observe a significant rise
across all four arithmetic reasoning tasks. And PaD
presents a considerable advantage over standard
fine-tuning. However, specialization of reasoning
often entails sacrificing other general capabilities.
The performance of BBH experienced a dramatic
decline. Table 4 shows PaD consistently outper-
forms CoT fine-tuning, even with a smaller dataset,
when compared to the same teacher model.

5 Discussion

Why PaD is better than fine-tune CoT ? As illus-
trated in Figures 6 and 10, PaD effectively narrows
the prediction space, focusing on specific central
points. The primary distinction between PaD and
baseline models is the format of their reasoning
methodologies. Reasoning programs in Python
exhibit clearer and simpler syntax compared to nat-
ural language in CoT. This implies that PaD primar-
ily adheres to Python syntax, instead of extensive
sampling across the entire language representation
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space. This, in essence, reduces the complexity
of the task. As depicted in Figure 5, PaD consis-
tently achieves lower training and evaluation losses.
More discussion is presented in Appendix C.

6 Conclusion

In this paper, we propose PaD, which distills LLMs
through synthesizing program-aid reasoning data.
In the fine-tuning and decoding stage, we conduct
self-refinement and step-by-step verification to fur-
ther enhance the PaD. Experiments demonstrate
PaD assign small model reasoning ability even
surpassing certain LLMs. Compared to prior re-
lated works, PaD achieves comprehensive superi-
ority while utilizing less data and smaller models.
Further analysis reveals that PaD possesses higher
training efficiency and is suited for smaller models.

Limitations

PaD is a distillation method that focuses on small
models. Due to the limitations of the model’s size,
the capabilities of small models are indeed lim-
ited. While our PaD can enable small models to
reason, they cannot perform well across multiple
tasks. Especially some tasks even involve utiliz-
ing additional knowledge. However, there are also
some efforts to address this issue, such as using
additional tools, and in the future, we will continue
to enrich usage of PaD (Bai et al., 2023).

PaD simplifies the form of reasoning and focus
on reasoning in a programmatic form. While this
simplification allows for more efficient learning,
it could also limit the versatility and diversity in
handling complex reasoning tasks. Reasoning is a
complex task, and requires additional assistance in
some other tasks. There are some practical tasks
that do not neatly fit into the programmatic form.
The generalization of PaD is also an issue that we
need to consider.

On the other hand, limited generalizability
comes from small models specializing and the data
format of reasoning programs. During the learn-
ing process, small models concentrate on a single
task, while their general capabilities tend to de-
cline. And code-form data is a simplified language
with a smaller output space and structured syntax
(Figure 6), making it more suitable for formalized
reasoning. Reasoning programs represent a more
direct logical relationship, yet lack the knowledge
embedded in language. Therefore, compared to
CoT, PaD is more fitting for mathematical and sym-

bolic reasoning. However, for broader reasoning
tasks like Big-bench Hard and common sense rea-
soning, the breadth of the model’s internal knowl-
edge is more important. For example, as shown
in the below example of CommenseQA, “locate a
choker” is a daily knowledge question rather than
formalized reasoning. On the other hand, due to the
limited parameters, knowledge-based reasoning is
still a challenging task for smaller models. In the
future, we will continue to focus on this direction
and try to solve it.

An example in CommenseQA (Talmor et al.,
2018):

* Q: To locate a choker not located in a jewelry
box or boutique where would you go?

* A: jewelry store

Although PaD has the potential limitations men-
tioned above, it is still a good distillation method
that can enable small models to have good rea-
soning ability. We believe this will be one of the
directions for the development of small models in
the future.
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A Align Function in Step-by-Step
Verification

In align function, we refer to each sentence in CoT
or each row in Python code as a reasoning step.
So, we just need to split the original reasoning
process into sentences or rows accordingly. We ob-
tain the semantic alignment degree by calculating
the cosine similarity of the source text and indi-
vidual reasoning step embedding representations.
Firstly, we input the source text and the candidate
reasoning step into a sentence model to obtain the
sentence embedding. Then, we calculate the co-
sine similarity between the source text and the in-
dividual reasoning step. All pre-trained models
and eval metrics are provided in (Golovneva et al.,
2023). The reason we use cosine similarity is to
obtain more faithful reasoning steps of the original
problem. From a reasoning perspective, each step
always corresponds to a part of the original prob-
lem. Therefore, selecting the most faithful steps
is indeed a simple and straightforward method to
achieve better reasoning. As shown in Table 5, We
show the two generated samples of direct genera-
tion and step-by-step verification based on T'5,,,411
with PaD.

Is there any better methods ? From the perspec-
tive of reasoning errors, we know that reasoning
contains the following error aspects: (1) Grammar,
(2) Factuality, (3) Hallucination, (4) Redundancy,
(5) Repetition, (6) Missing step, (7) Coherency, (8)
Commonsense (9) Arithmetic. If we can improve
any aspect, we can obtain better reasoning steps.

Intuitively, besides faithfulness, we think logic
coherence is the second important aspect of rea-
soning. In other words, whether it is an ’if-else’
statement or a “for’ loop in a code function, logical
coherence between the preceding and following
parts can ensure the correctness of this reasoning
chain. However, we have no reference to estimate
the logic coherence between two consecutive rea-
soning steps in the prediction process. Thus, evalu-
ating logical coherence is a more challenging task
than assessing faithfulness. It is also a challenge
for large language models.

In future work, we propose to improve the logi-
cal coherence of reasoning from two aspects:

1. Reasoning path sampling with a backtrack-
ing mechanism. Like tree-of-thoughts (Yao
et al., 2024) or graph-of-thoughts (Besta et al.,
2023), we can construct multiple reason-
ing paths and employ either a depth-first or
breadth-first search to obtain the optimal rea-
soning path.

2. More powerful estimator. If we can utilize
more powerful language models, we can se-
lect stronger logical steps. In our paper, we
used a small model, so its capabilities are still
limited.

B Self-Distillation

In this section, we present a partially effective
method. Based on our experimental results, self-
distillation is only effective for some models, which
is why we did not include this method in the main
body of our text. We discuss the application of
self-distillation on small models in detail in this
section in the appendix.

Since we have no access to parameters
and distribution of LLMs, we employ self-
distillation (Mobahi et al., 2020; Allen-Zhu and Li,
2023) to further enhance our small model based on
themselves, in which the teacher and student model
are identical. Self-distillation enables the model
to acquire better performance on held-out data and
reduce over-fitting in the training process (Allen-
Zhu and Li, 2023), which is useful in small model
fine-tuning. We iteratively update our small model.
Firstly, we fine-tune a small model on the training
set. Then in the next training process, the previ-
ously trained small model serves as the teacher
model, and we align the prediction distributions
of the teacher and student models. Finally, the
new small model is self-evolved. We formulate
self-distillation as an additional regularization term
during the fine-tuning:

T
ﬁself-distillation - ﬁﬁne-tune + A § KL(ﬁi,<t| |pi,<t)a

=1
)

where the p; «; and p; < derived from teacher and
student predicted distribution. The core idea of
self-distillation is enabling the model to accurately
discern the probabilities of the correct label and in-
correct labels, while standard cross-entropy only in-
volves the probability of the correct label (Mobahi
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Figure 7: The performance tendency of ablation on PaD. Compared with standard fine-tuning and the base model,
PaD achieves significant mathematical reasoning improvement. However, PaD brings a noted trade-off in general
capabilities. Based on PaD, self-distillation can also provide a minor boost.

Question: The Adams family is busy making cookies. So far, they’ve made 7995 cookies. They have 2595 rainbow cookies,
3075 oatmeal cookies, and some chocolate chip cookies. How many chocolate chip cookies have they made?

Direct Generation: X

def solution():
total_cookies = 7995 # Total number of cookies
rainbow_cookies = 2595 # Number of rainbow cookies
oatmeal_cookies = 3075 # Number of oatmeal cookies
# Calculate the number of chocolate chip cookies
chocolate_chip_cookies = total_cookies - (rainbow_cookies + oatmeal_cookies)
result = chocolate_chip_cookies
return result -->> 0

Step-by-step Verification: v

def solution():
total_cookies = 7995
rainbow_cookies = 2595
oatmeal_cookies = 3075
chocolate_chip_cookies = total_cookies - rainbow_cookies - oatmeal_cookies
result = chocolate_chip_cookies
return result -->> 2325

Table 5: A case study of comparison between direct generation and step-by-step verification(ours).

et al., 2020). In implementation, we set \ of self- l -
distillation as 1 and iterate only once. % ’9‘6{—375356?50’/‘&.7”7/ 777777777
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Program Generation The previous discussion has
shown that PaD narrows down the output space,
thereby reducing the difficulty of the reasoning.
As illustrated in Figure 8, small models can read- —e— CodeT5_base 220M

ily learn to generate grammatically correct texts, JodelPspelTpom
indicating that program-aided reasoning is a more e e
learnable form for small models. Additionally, Gao

et al. (2022) has verified that program-aided rea- Figure 8: Comparing grammatically correct rate trained

soning is more efficient than CoT on LLMs. by different fraction of data. These data was re-
ordered by GraNd (Paul et al., 2021). Under 50% data

Data Efficiency We try to analyze the effective-  pruning, CodeT5_base achieves comparable accuracy
ness of synthetic data by discerning the importance ~ With gpt-3.5-turbo.

of data through data pruning methods. We fol-

lowed (Sorscher et al., 2022; Fayyaz et al., 2022)
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Figure 9: The evaluation of data synthesis on train and
test set of GSM8K. Success refers to correct compilation
and answer. Miscalculation indicates incorrect answers.

Miscalculation

Compilation Error

Success
Success

to reorder the samples.

As demonstrated in Figure 14, in the early stage
of data pruning (i.e., retaining more than 50%),
the more faithful samples can maintain better per-
formance. This conclusion further supports our
idea of step-step verification that more faithful
steps can lead to better results. Moreover, based
on the Code_T5p,s¢, using only 90% of the data
can achieve the same performance as the full
dataset. As illustrated in Figure 8, small models
can also generate code that complies. Using 50%
of the training data, CodeT5;,s. achieve compa-
rable accuracy to gpt-3.5-turbo. The above re-
sults demonstrate that program generation is more
suitable for small models, contributing to the high
efficiency of PaD.

As mentioned above, we used three importance
metric for data reordering: faithful, GraNd and en-
tropy. First, faithful aims to evaluate the alignment
from the hypothesis steps to the source sentences,
and is calculated as the mean reasoning alignment
score over the steps. And we used official code
from Golovneva et al. (2023). Secondly, GraNd
is computed as the mean loss gradient on the final
model layer for each sample. This assumes that
the impact of a sample on the weights signifies
the importance of that sample. Thirdly, we employ
entropy to represent the amount of information con-
tained in each sample, which is computed using a
pre-trained 13B LLaMA model'.

Synthetic Data Analysis We analysis the syn-
thetic data. As shown in Figure 9, gpt-3.5-turbo
contributed high-quality synthetic data. The
gpt-3.5-turbo achieves an average accuracy of
75% on both the testing and training datasets. And
with less than 10% of the samples deviating from
Python syntax. And as demonstrated in Figure 11,
generated samples by gpt-3.5-turbo also exhibit
highly faithful.

lhttps://huggingface.co/decapoda—research/
1lama-13b-hf

PaD
== CoT Fine-tuning

. I I IIIIIIIII|II|I|||I‘II
_I I I _ | | ‘ Ill
-30 -20 -10 0 10 20 30

Value

Figure 10: Density projections based on t-SNE findings.
The CoT fine-tuning model displays a more evenly dis-
tributed density along the x-axis than the PaD.

Context-1 Context-2
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informativeness_step
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Context-3
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Context-4

faithfulness

informativeness_step

informativeness_chain

repetition_step |
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Figure 11: The evaluation of semantic consistency, logi-
cality, and informativeness of synthetic data. Here, four
different contexts are used for data synthesis. We uti-
lize the metric suite from (Golovneva et al., 2023). The
results illustrated gpt-3.5-turbo can synthesize high-
quality data with rare repetition and high faithfulness
in reasoning steps. The detailed contexts are shown in
Appendix E.

D Datasets

Data Source We provide more detailed descrip-
tions on the datasets used in our experiments. As
mentioned above, we evaluate PaD on math word
problems, symbolic reasoning tasks and generic
ability. We include the source data and usage as
following.

As for math word problems, we only use the
training set of GSM8K to synthesize data and train
models.

e GSMSK: The dataset was first introduced
in Cobbe et al. (2021), and made publicly
accessible via the following link, https://
github.com/openai/grade-school-math.
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tion in GSMS8K.

And we use the official split of train and test
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Figure 12: The statistics of the length of the input ques-  Figure 13: The statistics of the output code length from

ChatGPT to GSMSK training datatset.

CodeT5_small 60M CodeT5_base 220M

sets. . // % Fen
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ASDiv: The dataset was first introduced 4 0 <
in Miao et al. (2020), and made publicly acces- " / / o e

sible via the following link, https://github.
com/chaochun/nlu-asdiv-dataset. And
we used all data as the test set while no sample
was used for training.

SVAMP: The dataset was first introduced
in Patel et al. (2021), and made pub-
licly accessible via the following link,
https://github.com/arkilpatel/SVAMP/
blob/main/SVAMP.json. And we used all
data as the test set while no sample was used
for training.

MultiArith: The dataset was first intro-
duced in Roy and Roth (2016), and made
publicly accessible via the following
link, https://github.com/wangxri4/
Algebraic-Word-Problem-Solver/blob/
master/data/MultiArith.json. And we
used all data as the test set while no sample
was used for training.

As for symbolic reasoning, we synthesize the

01 02 0.3 04 05 06 0.7 0.8 09 1.0
Frac. data kept

01 02 03 0.4 05 06 0.7 0.8 09 1.0
Frac. data kept

Figure 14: The performance under different data prun-

ing

metrics.

accessible via the following link, https:
//drive.google.com/drive/folders/
1C6kah3WV36N8omlUl-TeU9tsJADZNaJV.
And its split index is https://github.com/
itsnamgyu/reasoning-teacher/blob/
main/data/split/coin_flip__default.
json.

e Last Letter Concatenation: The dataset was
first introduced in Kojima et al. (2022),
and made publicly accessible in the same
repository with Coin Filp. Its split index
is via the following link, https://github.
com/itsnamgyu/reasoning-teacher/
blob/main/data/split/last_letter_
concatenation__default. json.

reasoning program for training sets of Coin Flip
and Last Letter Concatenation tasks. And we use
the spilt scheme of Ho et al. (2022).

As for generic ability, we employ Big Bench
Hard (BBH) to test variations of general ability
when specializing in specific tasks.

e BBH: The dataset was first introduced in Suz-
gun et al. (2022), and made publicly accessi-

* Coin Flip: The dataset was first introduced
in Kojima et al. (2022), and made publicly
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ble via the following link, https://github.
com/suzgunmirac/BIG-Bench-Hard. And
we used all data as the test set while no sample
was used for training. This datasets include 23
tasks, and we report the average performance
on these tasks.

Synthesis Data Statistics As demonstrated in Ta-
ble 6, we synthesize data on train set of GSMS8K,
Coin Flip and Last Letter Concatenation. Due to
limited resources, we only augment data in train
set of GSM8K. As described in Figure 12 and 13,
We calculated the input and output lengths of the
synthetic dataset.

E Context Examples

As above mentioned, we constructed manually four
examples for context to prompt LLMs. As men-
tion above, we write the reasoning program for
math word problems, symbolic reasoning and com-
monsense reasoning. Specifically, we construct 8
sets of samples to generate diverse program, which
achieve augmentation. And we run 8 times data
synthesis experiments on gpt-3.5-turbo. We pre-
sented context examples for math word problems
in Table 8,9, 10 11, 12,13, 14 and 15. The context
examples for symbolic reasoning are in Table 16.
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Tasks | Datasets | Train Test | Augmentation | Data Synthesis

GSMSK 45981 1315 v v
Arithmetic Reasoning | ASDIV - 2097 X X

SVAMP - 1000 X X

MultiArith - 600 X X
Symbolic Reasoning Coin Flip . 288 124 X

Last Letter Concatenation | 336 145 X v
Generic Ability Big Bench Hard - 6511 | X | X

Table 6: Statistics of the datasets used in our experiments. Augmentation refers to whether we construct diverse
contexts to augment the original train set. Data Synthesis indicates whether synthesizing data on this dataset. "-"
indicates that there is no training set.

GSMSK

Question: Janet, a third grade teacher, is picking up the sack lunch order from a local deli for the field trip she is taking her class
on. There are 35 children in her class, 5 volunteer chaperones, and herself. She she also ordered three additional sack lunches,
just in case there was a problem. Each sack lunch costs $7. How much do all the lunches cost in total?

Answer: 308

ASDIv

Question: There are 43 students and 1720 apples. Each student has 9 Skittles. If the apples are divided equally among the
students,how many does each student get?

Answer: 40

SVAMP

Question: There were some birds sitting on the fence. 4 more birds came to join them. If there are a total of 5 birds on the fence
now How many birds had been sitting on the fence at the start ?

Answer: 1.0

MULTIARITH

Question: The school cafeteria ordered 42 red apples and 7 green apples for students lunches. But, if only 9 students wanted
fruit, how many extra did the cafeteria end up with ?

Answer: 40.0

CoiN FLIP

Question: A coin is heads up. Denny flips the coin. Carlo flips the coin. Reinaldo flips the coin. Jessi flips the coin. Is the coin
still heads up? Note that "flip" here means "reverse" ?

Answer: Yes

LAST LETTER CONCATENATION
Question: Take the last letters of each words in "Ashish Tracey Varun Emil" and concatenate them.
Answer: hynl

Table 7: Samples of different datasets. The source and usage of all datasets are described in Appendix D
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IN-CONTEXT EXAMPLES FOR MATH WORD PROBLEMS

Question: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every
day with four. She sells the remainder at the farmers’ market daily for $2 per fresh duck egg. How much in dollars does she
make every day at the farmers’ market?

Solution:

def solution():
eggs_per_day =
eggs_eaten = 3
eggs_baked =
eggs_sold = eggs_per_day - eggs_eaten - eggs_baked
price_per_egg = 2
money_made = eggs_sold * price_per_egg
result = money_made
return result

16

N

Question: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it take?
Solution:

def solution():
blue_fiber = 2
white_fiber = blue_fiber / 2
total_fiber = blue_fiber + white_fiber
result = total_fiber
return result

Question: Josh decides to try flipping a house. He buys a house for $80,000 and then puts in $50,000 in repairs. This increased
the value of the house by 150%. How much profit did he make?
Solution:

def solution():
initial_cost = 80000
repair_cost = 50000
percent_increase = 150
increase_amount = initial_cost * (percent_increase / 100)
sale_price = increase_amount + initial_cost
profit = sale_price - (initial_cost + repair_cost)
result = profit

Question: James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint. How many total meters does he run a
week?
Solution:

def solution():
sprints_per_day = 3
days_per_week = 3
meters_per_sprint = 60
total_meters = sprints_per_day * days_per_week * meters_per_sprint
result = total_meters
return result

Table 8: Manually constructed context examples of math word problems utilized for data synthesis, specifically
pertaining to Run 1.
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IN-CONTEXT EXAMPLES FOR MATH WORD PROBLEMS

Question: Every day, Wendi feeds each of her chickens three cups of mixed chicken feed, containing seeds, mealworms and
vegetables to help keep them healthy. She gives the chickens their feed in three separate meals. In the morning, she gives her
flock of chickens 15 cups of feed. In the afternoon, she gives her chickens another 25 cups of feed. How many cups of feed does
she need to give her chickens in the final meal of the day if the size of Wendi’s flock is 20 chickens?

Solution:

def solution():
cups_per_chicken = 3
total_chickens = 20
morning_cups = 15
afternoon_cups = 25
total_cups_per_day = cups_per_chicken * total_chickens
evening_cups = total_cups_per_day - morning_cups - afternoon_cups
result = evening_cups
return result

Question: Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but every second glass costs only
60% of the price. Kylar wants to buy 16 glasses. How much does he need to pay for them ?
Solution:

def solution():
glass_price = 5
every_second_price = 0.6 x glass_price
total_price = 0
for i in range(1, 17):
if i %2==0:
total_price += every_second_price
else:
total_price += glass_price

result = total_price
return result

Question: Toulouse has twice as many sheep as Charleston. Charleston has 4 times as many sheep as Seattle. How many sheep
do Toulouse, Charleston, and Seattle have together if Seattle has 20 sheep ?
Solution:

def solution():
seattle_sheep = 20
charleston_sheep = 4 x seattle_sheep
toulouse_sheep = 2 * charleston_sheep
total_sheep = seattle_sheep + charleston_sheep + toulouse_sheep
result = total_sheep
return result

Question: Carla is downloading a 200 GB file. Normally she can download 2 GB/minute, but 40% of the way through the
download, Windows forces a restart to install updates, which takes 20 minutes. Then Carla has to restart the download from the
beginning. How load does it take to download the file ?

Solution:

def solution():
file_size = 200
download_speed = 2
partial_download_time = (file_size * ©0.4) / download_speed
restart_time = 20
remaining_download_time = file_size / download_speed
total_times = partial_download_time + restart_time + remaining_download_time
result = total_times
return result

Table 9: Manually constructed context examples of math word problems utilized for data synthesis, specifically
pertaining to Run 2.
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IN-CONTEXT EXAMPLES FOR MATH WORD PROBLEMS

Question: John drives for 3 hours at a speed of 60 mph and then turns around because he realizes he forgot something very
important at home. He tries to get home in 4 hours but spends the first 2 hours in standstill traffic. He spends the next half-hour
driving at a speed of 30mph, before being able to drive the remaining time of the 4 hours going at 80 mph. How far is he from
home at the end of those 4 hours ?

Solution:

def solution():
distancel = 60 * 3
distance2 = 0
distance2 += 0
distance2 += 30 * 0.5
distance2 += 80 * (4 - 2.5)
total_distance = distancel - distance2
result = total_distance
return result

Question: Eliza’s rate per hour for the first 40 hours she works each week is $10. She also receives an overtime pay of 1.2 times
her regular hourly rate. If Eliza worked for 45 hours this week, how much are her earnings for this week ?
Solution:

def solution():

REGULAR_RATE = 10

OVERTIME_MULTIPLIER = 1.2

hours_worked = 45

if hours_worked <= 40:
earnings = hours_worked * REGULAR_RATE

else:
regular_hours = 40
overtime_hours = hours_worked - 40
regular_earnings = regular_hours * REGULAR_RATE
overtime_earnings = overtime_hours * REGULAR_RATE * OVERTIME_MULTIPLIER
earnings = regular_earnings + overtime_earnings

result = earnings

return result

Question: A new program had 60 downloads in the first month. The number of downloads in the second month was three times
as many as the downloads in the first month, but then reduced by 30% in the third month. How many downloads did the program
have total over the three months ?

Solution:

def solution():
downloads_1 60
downloads_2 = downloads_1 * 3
downloads_3 = downloads_2 * 0.7
total_downloads = downloads_1 + downloads_2 + downloads_3
result = Display
return result

Question: Toula went to the bakery and bought various types of pastries. She bought 3 dozen donuts which cost $68 per dozen, 2
dozen mini cupcakes which cost $80 per dozen, and 6 dozen mini cheesecakes for $55 per dozen. How much was the total cost ?
Solution:

def solution():
DONUT_PRICE = 68
CUPCAKE_PRICE = 80
CHEESECAKE_PRICE = 55
donut_dozens = 3
cupcake_dozens = 2
cheesecake_dozens = 6
donut_cost = donut_dozens * DONUT_PRICE
cupcake_cost = cupcake_dozens * CUPCAKE_PRICE
cheesecake_cost = cheesecake_dozens * CHEESECAKE_PRICE
total_cost = donut_cost + cupcake_cost + cheesecake_cost
result = total_cost
return result

Table 10: Manually constructed context examples of math word problems utilized for data synthesis, specifically
pertaining to Run 3.
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IN-CONTEXT EXAMPLES FOR MATH WORD PROBLEMS

Question: The tree will cost $90 to plant. Each year it will grow 7 lemons, which he can sell for $1.5 each. It costs $3 a year to
water and feed the tree. How many years will it take before he starts earning money on the lemon tree?

Solution:

def solution():

INITIAL_COST = 90

ANNUAL_MAINTENANCE_COST = 3

LEMON_PRICE = 1.5

LEMONS_PER_YEAR = 7

years = 0

total_earnings = 0

annual_cost = ANNUAL_MAINTENANCE_COST

while total_earnings < INITIAL_COST:
years += 1
lemon_earnings = LEMON_PRICE * LEMONS_PER_YEAR
total_earnings += lemon_earnings
total_earnings -= ANNUAL_MAINTENANCE_COST

result = years + 1

return result

Question: Melanie is a door-to-door saleswoman. She sold a third of her vacuum cleaners at the green house, 2 more to the red
house, and half of what was left at the orange house. If Melanie has 5 vacuum cleaners left, how many did she start with ?
Solution:

def solution():
vacuum_cleaners = None
vacuum_cleaners_final = 5
vacuum_cleaners_orange = vacuum_cleaners_final
vacuum_cleaners_red = 2

vacuum_cleaners = (vacuum_cleaners_final + vacuum_cleaners_orange + vacuum_cleaners_red) / (1-1/3)
result = round(vacuum_cleaners)
return result

Question: In a dance class of 20 students, 20% enrolled in contemporary dance, 25% of the remaining enrolled in jazz dance,
and the rest enrolled in hip-hop dance. What percentage of the entire students enrolled in hip-hop dance?
Solution:

def solution():
total_students = 20
contemporary_students = total_students * 0.2
remaining_students = total_students - contemporary_students
jazz_students = remaining_students * 0.25
hiphop_students = total_students - contemporary_students - jazz_students
hiphop_percentage = (hiphop_students / total_students) * 100
result = hiphop_percentage
return result

Question: A merchant wants to make a choice of purchase between 2 purchase plans: jewelry worth $5,000 or electronic gadgets
worth $8,000. His financial advisor speculates that the jewelry market will go up 2.5% while the electronic gadgets market will
rise 1.2% within the same month. If the merchant is looking to maximize profit at the end of this month by making a choice, how
much profit would this be ?

Solution:

def solution():
jewelry_price = 5000
gadgets_price = 8000
jewelry_profit = jewelry_price * 0.025
gadgets_profit = gadgets_price * 0.012
if jewelry_profit > gadgets_profit:

purchase = "jewelry”
profit = jewelry_profit
else:
purchase = "electronic gadgets”

profit = gadgets_profit
result = profit
return result

Table 11: Manually constructed context examples of math word problems utilized for data synthesis, specifically
pertaining to Run 4. 2592



IN-CONTEXT EXAMPLES FOR MATH WORD PROBLEMS

Question: Two trains leave San Rafael at the same time. They begin traveling westward, both traveling for 80 miles. The next
day, they travel northwards, covering 150 miles. What'’s the distance covered by each train in the two days ?

Solution:

def solution():
# Distance covered in the first day
distance_first_day = 2 * 80 # Two trains each travel 80 miles westward
# Distance covered in the second day
distance_second_day = 2 * 150 # Two trains each travel 150 miles northwards
# Total distance covered by each train in two days
distance_total = distance_first_day + distance_second_day
result = distance_total
return result

Question: Jill gets paid $20 per hour to teach and $30 to be a cheerleading coach. If she works 50 weeks a year, 35 hours a week
as a teacher and 15 hours a week as a coach, what’s her annual salary ?
Solution:

def solution():
# Calculate the salary as a teacher
salary_teacher = 20 * 35 * 50 # $20 per hour, 35 hours per week, 50 weeks per year
# Calculate the salary as a cheerleading coach
salary_coach = 30 x 15 * 50 # $30 per hour, 15 hours per week, 50 weeks per year
# Calculate the total annual salary
total_salary = salary_teacher + salary_coach
result = total_salary
return result

Question: Claire makes a 3 egg omelet every morning for breakfast. How many dozens of eggs will she eat in 4 weeks?
Solution:

def solution():
eggs_per_omelet = 3 # Claire uses 3 eggs per omelet
omelets_per_day = 1 # Claire makes 1 omelet per day
days_per_week = 7 # There are 7 days in a week
weeks = 4 # Claire wants to know how many dozens of eggs she will eat in 4 weeks
# Calculate the total number of eggs Claire will eat in 4 weeks
total_eggs = eggs_per_omelet * omelets_per_day * days_per_week * weeks
# Convert the total number of eggs to dozens of eggs
dozens_of_eggs = total_eggs / 12
result = dozens_of_eggs
return result

Question: Marissa is hiking a 12-mile trail. She took 1 hour to walk the first 4 miles, then another hour to walk the next two
miles. If she wants her average speed to be 4 miles per hour, what speed (in miles per hour) does she need to walk the remaining
distance ?
Solution:

def solution():
total_distance = 12 # Marissa is hiking a 12-mile trail
distance_walked = 4 + 2 # Marissa has already walked 4 miles in 1 hour and 2 miles in another hour
remaining_distance = total_distance - distance_walked # Marissa has to walk the remaining distance
remaining_time = (total_distance / 4) - 2 # Marissa has 4 hours to complete the hike, and she has
— already used 2 hours
# Calculate the speed Marissa needs to walk the remaining distance
required_speed = remaining_distance / remaining_time
result = required_speed
return result

Table 12: Manually constructed context examples of math word problems utilized for data synthesis, specifically
pertaining to Run 5.
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IN-CONTEXT EXAMPLES FOR MATH WORD PROBLEMS

Question: I have 10 liters of orange drink that are two-thirds water and I wish to add it to 15 liters of pineapple drink that is
three-fifths water. But as I pour it, I spill one liter of the orange drink. How much water is in the remaining 24 liters ?
Solution:

def solution():
orange_drink = 10 # liters of orange drink
orange_drink_water = (2/3) * orange_drink # liters of water in orange drink
pineapple_drink = 15 # liters of pineapple drink
pineapple_drink_water = (3/5) * pineapple_drink # liters of water in pineapple drink
remaining_drink = orange_drink - 1 # liters of orange drink remaining after spilling 1 liter
remaining_drink_water = (2/3) * remaining_drink # liters of water in remaining orange drink
total_drink = remaining_drink + pineapple_drink # total liters of drink
total_drink_water = remaining_drink_water + pineapple_drink_water # total liters of water in the
— drink
# Calculate the amount of water in the remaining 24 liters of drink
water_in_24_liters = (total_drink_water / total_drink) = 24
result = water_in_24_liters
return result

Question: Raymond and Samantha are cousins. Raymond was born 6 years before Samantha. Raymond had a son at the age of
23. If Samantha is now 31, how many years ago was Raymond’s son born ?
Solution:

def solution():
# Find the Raymond age
age_Raymond = 31 + 6
# Find the number of years ago Raymond's son was born
years_ago = age_Raymond - 23
result = years_ago
return result

Question: Billy sells DVDs. He has 8 customers on Tuesday. His first 3 customers buy one DVD each. His next 2 customers
buy 2 DVDs each. His last 3 customers don’t buy any DVDs. How many DVDs did Billy sell on Tuesday ?
Solution:

def solution():
# Calculate the total number of DVDs sold by Billy on Tuesday
total_DVDs = 3 + 2x2 + 0%3 # first 3 customers buy 1 DVD each, next 2 customers buy 2 DVDs each,
— last 3 customers don't buy any DVDs
result = total_DVDs
return result

Question: A candle melts by 2 centimeters every hour that it burns. How many centimeters shorter will a candle be after burning
from 1:00 PM to 5:00 PM ?
Solution:

def solution():
# Calculate the length of the candle burnt in 4 hours
burnt_length = 2 * 4 # the candle melts by 2 centimeters every hour
result = burnt_length
return result

Table 13: Manually constructed context examples of math word problems utilized for data synthesis, specifically
pertaining to Run 6.
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IN-CONTEXT EXAMPLES FOR MATH WORD PROBLEMS

Question: Kyle bought last year’s best-selling book for $19.50. This is with a 25% discount from the original price. What was
the original price of the book ?

Solution:

def solution():
discounted_price = 19.50
discount = 0.25 # 25% discount
original_price = discounted_price / (1 - discount)
result = original_price
return result

Question: Gloria is shoe shopping when she comes across a pair of boots that fit her shoe budget. However, she has to choose
between the boots and two pairs of high heels that together cost five dollars less than the boots. If one pair of heels costs $33 and
the other costs twice as much, how many dollars are the boots ?

Solution:

def solution():
heell_cost = 33
heel2_cost = heell_cost * 2
heel_total_cost = heell_cost + heel2_cost
boot_cost = heel_total_cost + 5
result = boot_cost
return result

Question: Mishka bought 3 pairs of shorts, 3 pairs of pants, and 3 pairs of shoes. One pair of shorts costs $16.50. One pair of
pants costs $22.50 and one pair of shoes costs $42. How many dollars did Mishka spend on all the clothing items ?
Solution:

def solution():
num_shorts = 3

shorts_price = 16.5
num_pants = 3
pants_price = 22.5
num_shoes = 3
shoes_price = 42

# Calculate the total cost of all shorts

total_shorts_cost = num_shorts * shorts_price

# Calculate the total cost of all pants

total_pants_cost = num_pants * pants_price

# Calculate the total cost of all shoes

total_shoes_cost = num_shoes * shoes_price

# Calculate the total cost of all clothing items

total_cost = total_shorts_cost + total_pants_cost + total_shoes_cost
result = total_cost

return result

Question: Cynthia eats one serving of ice cream every night. She buys cartons of ice cream with 15 servings of ice cream per
carton at a cost of $4.00 per carton. After 60 days, how much will she spend on ice cream ?
Solution:

def solution():
num_servings_per_carton = 15
cost_per_carton = 4.0
num_days = 60
# Calculate the total number of servings of ice cream that Cynthia will eat
total_servings = num_days
# Calculate the total number of cartons of ice cream that Cynthia will buy
total_cartons = total_servings / num_servings_per_carton
# Calculate the total cost of all cartons of ice cream that Cynthia will buy
total_cost = total_cartons * cost_per_carton
result = total_cost
return result

Table 14: Manually constructed context examples of math word problems utilized for data synthesis, specifically
pertaining to Run 7.
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IN-CONTEXT EXAMPLES FOR MATH WORD PROBLEMS

Question: Henry made two stops during his 60-mile bike trip. He first stopped after 20 miles. His second stop was 15 miles
before the end of the trip. How many miles did he travel between his first and second stops ?

Solution:

def solution():
total_distance = 60
first_stop = 20
second_stop = total_distance - 15
distance_between_stops = second_stop - first_stop
result = distance_between_stops
return result

Question: Gloria is shoe shopping when she comes across a pair of boots that fit her shoe budget. However, she has to choose
between the boots and two pairs of high heels that together cost five dollars less than the boots. If one pair of heels costs $33 and
the other costs twice as much, how many dollars are the boots ?

Solution:

def solution():
# Define the ratio of Darrell's age to Allen's age
darrell_to_allen_ratio = 7/11
# Calculate the total age of Darrell and Allen
total_age = 162
# Calculate the sum of the ratios in order to find the value of one ratio
total_ratio = 7 + 11
# Calculate the value of one ratio
one_ratio = total_age / total_ratio
# Calculate Allen's current age
allen_age = 11 * one_ratio
# Calculate Allen's age in 10 years
allen_age_in_10_years = allen_age + 10
result = allen_age_in_10_years
return result

Question: Gunter is trying to count the jelly beans in a jar. He asks his friends how many they think are in the jar. One says 80.
Another says 20 more than half the first one. A third says 25% more than the first one. What is their average guess ?
Solution:

def solution():
# Define the three guesses
guess| 80
guess2 = 20 + 0.5 * guessl
guess3 = 1.25 * guessl
# Calculate the average guess
average_guess = (guessl + guess2 + guess3) / 3
result = average_guess
return result

Question: Marie ordered one chicken meal that costs $12, 5 packs of milk that costs $3 each, 4 apples that cost $1.50 each, and
some boxes of pizza. Marie paid a total of $50. How many boxes of pizza did Marie order if each box costs $8.50 ?
Solution:

def solution():
chicken_meal
milk_packs =
milk_price
apples = 4
apple_price = 1.5
total_paid = 50
pizza_price = 8.5
# Calculate the total cost of all items except pizza
total_without_pizza = chicken_meal + (milk_packs * milk_price) + (apples * apple_price)
# Calculate the cost of pizza
pizza_cost = total_paid - total_without_pizza
# Calculate the number of boxes of pizza
num_pizza_boxes = pizza_cost / pizza_price
result = num_pizza_boxes
return result

w ol

Table 15: Manually constructed context examples of math word problems for data synthesis. Here examples are
used for Run 8. 2596



IN-CONTEXT EXAMPLES FOR SYMBOLIC REASONING

Question: A coin is heads up. Whitney flips the coin. Erika does not flip the coin. Tj does not flip the coin. Benito flips the coin.
Is the coin still heads up? Note that "flip" here means "reverse".

Solution:

def solution():
coin = True
people = {
"Whitney": True,
"Erika": False,
"Tj": False,
"Benito”: True

3
for person, flips in people.items():
if flips:
coin = not coin
if coin:
result = "yes"
else:
result = "no”

return result

Question: A coin is heads up. Lucky does not flip the coin. Mireya flips the coin. Jj flips the coin. Kc flips the coin. Is the coin
still heads up? Note that "flip" here means "reverse"
Solution:

def solution():

coin = True

people = {
"Lucky": False,
"Mireya”: True,

"Jj": True,
"Kc": True
3
for person, flips in people.items():
if flips:
coin = not coin
if coin:
result = "yes”
else:
result = "no”

return result

Table 16: Manually constructed context examples of symbolic reasoning for data synthesis. Here examples are used
for Coin Flip task.
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