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Abstract

Consistency regularization methods, such as
R-Drop (Liang et al., 2021) and CrossConST
(Gao et al., 2023), have achieved impressive
supervised and zero-shot performance in the
neural machine translation (NMT) field. Can
we also boost end-to-end (E2E) speech-to-text
translation (ST) by leveraging consistency regu-
larization? In this paper, we conduct empirical
studies on intra-modal and cross-modal consis-
tency and propose two training strategies, Sim-
RegCR and SimZeroCR, for E2E ST in regular
and zero-shot scenarios. Experiments on the
MuST-C benchmark show that our approaches
achieve state-of-the-art (SOTA) performance in
most translation directions. The analyses prove
that regularization brought by the intra-modal
consistency, instead of the modality gap, is cru-
cial for the regular E2E ST, and the cross-modal
consistency could close the modality gap and
boost the zero-shot E2E ST performance.

1 Introduction

Speech-to-text translation takes acoustic speech
signals as input and outputs text translations in the
target language. The conventional cascaded ST
system consists of an automatic speech recognition
(ASR) system and a machine translation (MT) mod-
ule in a pipeline manner (Sperber et al., 2017, 2019;
Zhang et al., 2019). Recent works on ST have fo-
cused on the end-to-end system, which learns a
unified model that directly generates text transla-
tions from speech without any intermediate outputs
(Duong et al., 2016; Berard et al., 2016). E2E ST
is a cross-modal task, where the major challenges
include parallel ST data scarcity and representation
discrepancy between speech and text modalities.
In order to boost E2E ST training, the techniques
utilized by existing approaches include pretraining
(Wang et al., 2020b; Xu et al., 2021), multi-task
learning (Ye et al., 2021; Tang et al., 2021a), knowl-
edge distillation (Liu et al., 2019; Inaguma et al.,
2021), and cross-modal representation learning (Ye

et al., 2022; Wang et al., 2022; Fang and Feng,
2023b). However, most methods are far from being
widely used due to the sophisticated model architec-
ture, complicated algorithm implementation, and
tedious hyperparameter search.

Consistency regularization has been widely
adopted and shown great promise to improve NMT
performance (Sato et al., 2019; Chen et al., 2021;
Liang et al., 2021; Gao et al., 2022, 2023). Specifi-
cally, Liang et al. (2021) introduce an intra-lingual
consistency, R-Drop, to regularize dropout and im-
prove the supervised NMT performance, and Gao
et al. (2023) propose a cross-lingual consistency,
CrossConST, to learn universal representations and
boost the zero-shot NMT performance. Given the
similar problem formulations between NMT and
E2E ST, a natural question arises: Can we signifi-
cantly improve E2E ST performance by leveraging
simple consistency regularization?

In this paper, our primary goal is to provide a
simple, easy-to-reproduce, but tough-to-beat strat-
egy for learning E2E ST models. Inspired by Liang
et al. (2021) and Gao et al. (2023), we propose two
strategies, SimRegCR and SimZeroCR, for training
E2E ST models in regular and zero-shot scenarios.
We show that intra-modal consistency is crucial for
the regular setting, and cross-modal consistency is
the key to closing the modality gap and boosting
the zero-shot performance. The contributions of
this paper can be summarized as follows:

* We conduct empirical studies on consistency
regularization and propose two simple but ef-
fective strategies for learning E2E ST models
in regular and zero-shot scenarios.

* Experimental results show that our ap-
proaches achieve significant improvements
on the MuST-C benchmark and outperform
the current SOTA methods CRESS (Fang and
Feng, 2023b) and DCMA (Wang et al., 2022).
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2 Background
2.1 End-to-End Speech-to-Text Translation

Speech translation corpora usually contain speech-
transcription-translation triples, which can be de-
noted as S = {si,xi,yi}gl. s denotes the
sequence of the audio wave, x is the transcrip-
tion in the source language, and y represents
the translation in the target language. S could
be pairwise combined into three parallel corpora,
Sasr = {Sivxi}ﬁll’ Smt = {Xi7yi}ﬁ|1v and
Sy = {si,yi}L‘i‘l, for ASR, MT, and ST tasks
respectively. The goal of E2E ST is to generate
translation y directly from the speech s without
generating transcription x, and the standard train-
ing objective is to minimize the empirical risk:

L3(0) = (f(s,y;0),¥), (1)

where ¢ denotes the cross-entropy loss, 6 is a set of
model parameters, f(s,y;#) is a sequence of prob-
ability predictions, and y is a sequence of one-hot
label vectors for y. Directly modeling the speech-
to-text mapping is nontrivial due to the representa-
tion discrepancy between speech and text modali-
ties. To alleviate ST data sparsity, people usually
include ASR and MT supervisions from S, and
St as well as external corpora for E2E ST tasks.

2.2 Consistency Regularization for Neural
Machine Translation

Liang et al. (2021) propose an intra-lingual consis-
tency regularization, R-Drop, for boosting NMT
performance by forcing the output distributions of
different sub-models generated by dropout to be
consistent with each other. For each sentence pair
(x,y), the training objective is defined as:

‘CR*DTOP(Q) = [’zgt(e) + a‘c%i'ra(e)v (2)
where

LIN0) = L(f(x,y3:0),¥), 3)

Lita(0) =IS(fi(x,y:0), fo(x,y:0)), (4

f1(+) and fa(-) denote the two forward passes of the
same model f(-) with the dropout operation, JS(-, -)
is the Jeffreys (JS) divergence' of two distributions,

IS(a,b) = (KL(al[b) + KL(bl|a))/2,  (5)

KL(-||-) denotes the Kullback-Leibler (KL) diver-
gence, and « is a scalar hyperparameter.

"Note that definitions of Jeffreys divergence often omit the
factor of 3.

Gao et al. (2023) introduce a cross-lingual con-
sistency regularization, CrossConST, for bridging
the representation gap among different languages
and improving zero-shot translation in multilingual
NMT. For each sentence pair (x,y), the training
objective is defined as:

ECTOSSCO?’LST(G) = E?;t(e) + 552255(9), (6)

where

Liess(0) = KL(f(x.y:0)[1 f(y,¥:0)). (D

and f is a scalar hyperparameter.

3 Datasets and Baseline Settings

3.1 Dataset Description

We initially consider en—de translation for empir-
ical study on consistency regularization in Section
4 and then show further experiments for other trans-
lation directions in Section 5. The detailed statistics
of all datasets are summarized in Table 9.

3.1.1 ST Datasets

We conduct experiments on MuST-C (Di Gangi
et al., 2019), which is a multilingual speech trans-
lation dataset containing audio recordings with
the corresponding transcriptions and translations
from English (en) to 8 languages: German (de),
Spanish (es), French (fr), Italian (it), Dutch
(nl), Portuguese (pt), Romanian (ro), and Rus-
sian (ru). We use dev and t st —COMMON as the
validation and test sets respectively.

3.1.2 MT Datasets

We utilize external M T datasets to boost the E2E ST
performance. Specifically, we incorporate WMT13
(Bojar et al., 2013) dataset for en—es, WMT14
(Bojar et al., 2014) dataset for en—fr, WMT16
(Bojar et al., 2016) datasets for en—de/ro/ru,
and OPUS100 (Zhang et al., 2020) datasets for
en—it/nl/pt. Note that we also use dev and
t st—COMMON in the MuST-C dataset as the vali-
dation and test sets for the MT tasks.

3.2 Baseline Settings

We adopt a widely used baseline model, W2V2-
Transformer (Ye et al., 2021) in our empirical study
(Figure 1), which consists of a learnable acoustic
feature extractor before two 1-dimensional convo-
lutional layers and the standard Transformer archi-
tecture (Vaswani et al., 2017). We use different
language tags at the decoder input to distinguish
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Das Wetter heute ist gut <eos> ‘4> f(s5,7;0) <*—> f(s,7;6)

[ Transformer Encoder ]

l CNN |
Acoustic Feature l Text Embedding l
Extractor

Aot~ | The weather is good today

Figure 1: Illustration of the intra-modal and cross-modal consistency regularization. For £5!

<de> Das Wetter heute ist gut

L;;Efrll Lgﬁgss
f(s,%6) <> [f(x,x;0)

l softmax l

[ Transformer Decoder ]

<en> The weather is good today

(0), the Speech-

ntra

German pair (Speech, "Das Wetter heute ist gut") goes through the E2E ST model twice and obtains two output

distributions f(s,y;#). For £%5"

Cross

(9), the original Speech-English pair (Speech, "The weather is good today") and

the copied English-English pair ("The weather is good today", "The weather is good today") go through the E2E ST
model and the NMT model respectively and obtain two output distributions f (s, x; ) and f(x, x;0).

the target languages. During inference, the lan-
guage tag serves as the initial token to predict the
output text. For example, if the speech input for the
sentence “The weather is good today” is in English,
to perform ASR, we use <en> as the initial token
and decode “The weather is good today”, while to
translate into German, we use <de> as the initial
token and decode “Das Wetter heute ist gut”.

Pre-processing For speech input, we utilize the
raw 16-bit 16kHz mono-channel audio wave. Fol-
lowing common practice, utterances with less than
1000 frames are removed, and utterances with more
than 480000 frames are removed in the training set
for GPU efficiency. For each translation direction,
we jointly learn a unigram SentencePiece (Kudo
and Richardson, 2018) model with size 10K on
both the source and target sentences and use it to
segment sentences into subwords for MT and ST
tasks. For the external MT datasets, we filter out
parallel sentences which length ratio exceeds 1.5.

Model Configuration We use wav2vec2.0?
(Baevski et al., 2020) as the acoustic feature ex-
tractor, which is pretrained on the audio data from
LibriSpeech (Panayotov et al., 2015). Two 1-
dimensional convolutional layers are added follow-
ing the acoustic feature extractor, with kernel size
5, stride size 2, padding 2, and hidden dimension
1024. We utilize 6-layer transformer encoder and
6-layer transformer decoder. Each of the trans-
former layers comprises 512 hidden units, 8 atten-
tion heads, and 2048 feed-forward hidden units.

Training Configuration We apply cross-entropy
loss with label smoothing rate 0.1 and set max to-

https://dl.fbaipublicfiles.com/
fairseq/wav2vec/wav2vec_small.pt

kens per batch to be 4096 for the MT task and
2000000 for the ASR and ST tasks. We use the
Adam optimizer with Beta (0.9, 0.98), 4000, 8000,
and 4000 warmup updates, and inverse square root
learning rate scheduler with initial learning rate
le=%, 1e73, and 1le—* for the ASR, MT, and ST
tasks respectively. We apply the same configura-
tion in each stage of the training procedure. During
inference, we use beam search decoding with a
beam size of 8 with length penalty 1.2, 0.6, 1.8,
1.0,1.0,1.4,1.4, and 0.8 for en—de, es, fr, it,
nl, pt, ro, and ru, respectively. We evaluate
the MT and ST tasks by case-sensitive sacreBLEU
(Post, 2018). We train all models until convergence
on 8 NVIDIA Tesla V100 GPUs. For all the exper-
iments below, we select the saved model state with
the best validation performance.

4 Methodology

In this section, we formally propose SimRegCR
and SimZeroCR, the consistency-based strategies
for learning E2E ST models in regular (Section 4.1)
and zero-shot (Section 4.2) scenarios respectively.
We introduce the details of each part below.

4.1 Consistency Regularization for Regular
End-to-End Speech Translation

We here investigate the performance of consistency
regularization for the regular scenario, where we
learn the E2E ST model by utilizing MT and ST
datasets. For each training sample, the loss func-
tions include: £74(0), LM (), L5L(0),

wntra
£z$fzt'r’a(0) = JS(fl(S,y; 9),f2(S,y;0)), (8)

and

LIsH9) = KL(f(x,y;0)[ f(s,y50)),  (9)
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Training Stage

Loss Function

[ MTBLEU | STBLEU

ID
0 MT train from scratch Lmt 29.33 -
® MT train from scratch Ll +alLm 32.76 -
® ST train from scratch cet - 23.49
ST train from scratch L5+ aLls! - 26.77
@ ce nitra
©) ST finetune on (1) et - 24.38
® ST finetune on (1) £t +aclst, . - 27.35
@ ST finetune on (2) LE+alsl, . - 2791
MT & ST train from scratch Lot + 5t 28.54 23.75
MT & ST finetune on L£mt 4 st 29.73 23.82
®
MT & ST finetune on (1) Lmt st 4 gemist 30.66 26.87
MT & ST finetune on Ll o™+ L3+ ol 32.70 27.48
@
MT & ST finetune on L7+ olf™ L3+l + pLmisst 31.00 27.57
@ ce intra ce intra cross
[® MT train from scratch’ Lmt 29.61 -
MT train from scratch? L7+ alm 30.02 -
® MT finetune on ({3 Lot 33.59 -
MT finetune on LN+ aLmt 34.11 -
(@) ST finetune on (3 Lt - 27.33
ST finetune on (19 L+ aLlsh, . - 28.96
ST finetune on L4+ alsh,,. - 29.23

Table 1: Case-sensitive detokenized BLEU scores on the MuST-C en—de t st —COMMON set. T denotes the MT
training is performed on the WMT 16 dataset, and other MT training is performed on the MuST-C dataset. We mark
the best ST BLEU scores in two experimental setups in bold. The choices for o and 3 are summarized in Table 10.
Experimental results on more languages are summarized in Table 12.

where (1) and (3) are the cross-entropy loss for the
ST and MT tasks respectively, (4) and (8) are the
intra-modal consistency regularization for the MT
and ST tasks respectively, and (9) denotes the cross-
modal consistency regularization between the MT
and ST tasks, which could also be regarded as the
sequence-level knowledge distillation from the MT
model to the ST model (Liu et al., 2019).

4.1.1 Experimental Results

We consider two experimental setups: without ex-
ternal MT data ( (1) - (12) ) and with external MT
data ( (13 - (19) ), and summarize the experimental
results in Table 1. For each experiment in Table
1, we conduct a careful grid search to select the
best hyperparameters, « and 3, for the model per-
formance. Note that (5) and (17) correspond to
the W2V2-Transformer baselines in the settings
of without and with external MT data respectively.
By checking model performance under different
combinations of loss function and training strat-
egy, we have the following observations: 1) The

: : mt st
intra-modal consistency, £7. and L), ., could

boost the MT ( (1) vs (2); (13 vs (19)) and ST
((3) vs (1)) performance. 2) The paradigm of

pretraining-finetuning could further improve the
ST performance ((3) vs (5); (4) vs (7)). 3) The
multi-task learning achieves similar performance
compared with the pretraining-finetuning strategy

(3) vs 3); (5 vs (9)). 4) The cross-modal

consistency, L7t -8t could improve the ST perfor-

mance ( (9) vs (10); (1) vs (12) ) but still achieve
the sub-optimal performance ( (7) vs (12)).

4.1.2 Does Intra-modal Consistency Implicitly
Bridge the Modality Gap?

19
29 18

~N
&
~

N
S

10

N
>

Speech Translation BLEU Score
N
b

8

90 91 95 96

Multimozzal Similarit;3Search Accgudracy (%)
Figure 2: The ST BLEU score and similarity search
accuracy of each model in Table 1 on the MuST-C
en—de tst-COMMON set. The blue circles denote
the pretraining-finetuning experiments without external
MT data. The green circles denote the multi-task learn-

ing experiments without external MT data. The orange
circles denote the experiments with external MT data.

One interesting finding from the empirical study
is that the strategies ((7) and (19)) only utiliz-
ing the intra-modal consistency achieve the best
ST performance instead of explicitly leveraging
the cross-modal consistency. We here investigate
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the impact of the consistency regularization on the
modality gap and the E2E ST performance. We
conduct a multimodal similarity search experiment
and use the averaged bidirectional similarity search
accuracy as the metric to evaluate the modality
gap. Given parallel speech-transcription pairs, we
find the nearest neighbor for each one in the other
modality according to the representation cosine
similarity and compute the corresponding accuracy,
where the speech and transcription representations
are calculated by max-pooling the encoder outputs.
The evaluation results are reported in Figure 2. By
checking the relationship between ST BLEU score
and multimodal similarity search accuracy, we have
the following observations: 1) The intra-modal con-

sistency, £ and L5, . implicitly closes the

modality gap () vs (6) vs (7); (7)) vs

vs (19 ). 2) The cross-modal consistency, L7 5t
explicitly bridges the modality gap ( (9) vs ;
1) vs (12)). 3) A closer modality gap does not
guarantee a better ST performance ( () vs (10) ;
(7) vs (12)), and the regularization effect intro-
duced by the intra-modal consistency seems to be
more crucial for the regular E2E ST task. This em-
pirical evidence aligns with the insight from Han
et al. (2023) which posits that modality adaptation
efforts do not significantly boost the performance
of fully trained models. Overfitting emerges as a
more pressing concern, and effective regularization
techniques become paramount for regular E2E ST.

4.1.3 Training Strategy

1. Pretrain MT with £7¥ and
LM on external (x,y)

2. Finetune MT with £7 and
Lt on MuST-C (x,y)

3. Initialize acoustic feature
extractor with wav2vec2.0
4. Finetune ST with £ and
L?ritra on MuST-C (s! y)

[ Transformer Decoder

[ Transformer Encoder

Acoustic Feature
Extractor

Figure 3: The training steps of SimRegCR by utiliz-
ing the intra-modal consistency regularization. In each
step, the modules that contribute to the final E2E ST
model are pointed out by arrow lines. We also consider
SimRegCR™ ( in Table 1) in this paper, which trains
MT model only with £ in the first two steps.

We here summarize the multi-stage training strat-
egy, SimRegCR ( in Table 1), consisting of MT
pretraining and ST finetuning with the intra-modal
consistency regularization in Figure 3. The setting
without external MT data only differs by removing
the first step of external MT pretraining.

Method BLEU
wlo WMT16 w/ WMT16
XSTNet 25.2 27.1
STEMM ' 25.6 28.7
ConST?* 25.7 28.3
CMOT' 27.0 29.0/28.5*
CRESS' 27.2 29.4/28.9*
W2V2-Transformer 24.4 27.3
+ SimRegCR™~ 27.4 29.0
+ SimRegCR 27.9 29.2

Table 2: Our method achieves the superior or compara-
ble performance over the existing methods on the MuST-
C en—de benchmark. * denotes the performance of
CMOT and CRESS using wav2vec2.0 instead of Hu-
BERT as the acoustic feature extractor. T denotes the
numbers are reported from the corresponding papers,
others are based on our runs.

Comparison with Existing Methods We sum-
marize the recent results of several existing works
on the MuST-C en—de benchmark in Table 2.
The existing methods vary from different aspects,
including cross-modal progressive training (XST-
Net) (Ye et al., 2021), cross-modal manifold mixup
(STEMM) (Fang et al., 2022), cross-modal con-
trastive learning (ConST) (Ye et al., 2022), cross-
modal mixup via optimal transport (CMOT) (Zhou
et al., 2023), and cross-modal regularization with
scheduled sampling (CRESS) (Fang and Feng,
2023b). Note that XSTNet, STEMM, and ConST
adopt wav2vec2.0 as the acoustic feature extrac-
tor, while CMOT and CRESS use HuBERT (Hsu
et al., 2021) which could achieve slightly stronger
baseline. We can see that SimRegCR™ achieves
an improvement of 2.35 BLEU score on average
over W2V2-Transformer, and SimRegCR achieves
the superior or comparable performance over the
current SOTA method CRESS that incorporates
cross-modal regularization, scheduled sampling,
token-level adaptive training, and a stronger acous-
tic feature extractor.

4.2 Consistency Regularization for Zero-shot
End-to-End Speech Translation

We here investigate the performance of consistency
regularization for the zero-shot scenario, where
we learn the E2E ST model by utilizing ASR and
MT datasets. For each training sample, the loss
functions include: £7(6), £ (6),

Lo (0) = £(f(s,x;0),%), (10)

?5;"(1(9) :JS(fl(S,X; (9),f2(S,X; 9))5 (11)
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D | Training Stage [ Loss Function | MT BLEU | ST BLEU
©) MT train from scratch’ £mt 29.61 -

@ MT train from scratch’ Ll aLmt 30.02 -

® MT Finetune on (1) Lt 33.59 -

@ MT Finetune on (2) L7+ alm 34.11 -

(3) | ASR & MT finetune on (3) Le7 + Lmt 33.99 0.46
(® | ASR & MT finetune on (3) L7 + LI+ BLIST 32.82 25.10
(D | ASR & MT finetune on (3) LE7 + oLl + LT 4 qLmt 34.35 0.56
(® | ASR & MT finetune on (7) | L&" + alLlh o + L0 + ol o + BLISE 33.25 24.86

Table 3: Case-sensitive detokenized BLEU scores on the MuST-C en—de t st -COMMON set. { denotes the MT
training is performed on the WMT 16 dataset, and other MT training is performed on the MuST-C dataset. We mark
the best ST BLEU score in bold. The choices for o and 8 are summarized in Table 11.

and

L0ss(0) = KL(f(s, x:0)[| f(x,%x;0)), (12)
where (3) and (10) are the cross-entropy loss for the
MT and ASR tasks respectively, (4) and (11) are the
intra-modal consistency regularization for the MT
and ASR tasks respectively, and (12) denotes the
cross-modal consistency regularization for the ASR
task, which could be regarded as the multimodal
version of CrossConST (Gao et al., 2023).

4.2.1 Experimental Results

We consider the experimental setup with external
MT data and summarize the experimental results
in Table 3. For each experiment in Table 3, we
conduct a careful grid search to select the best
hyperparameters, o and (3, for the model perfor-
mance. Note that (5) corresponds to the W2V2-
Transformer baseline. By checking model perfor-
mance under different combinations of loss func-
tion and training strategy, we have the following ob-
servations: 1) The cross-modal consistency, L7

Cross?

could boost the zero-shot ST performance ( (5) vs

(6); (1) vs (3)).2) Leveraging the intra-modal
consistency, £357 and £ . could improve the
corresponding MT performance ( (5) vs (7); (6)

vs (8) ), but could not achieve the superior perfor-

mance in the zero-shot ST direction ( (6) vs (8) ).

4.2.2 Does the Cross-modal Consistency
Really Close the Modality Gap?

To verify whether the cross-modal consistency reg-
ularization can better align the modality represen-
tation space, we visualize the speech and tran-
scription representations of the MuST-C en—de
tst—-COMMON set. We apply dimension reduc-
tion on the 512-dimensional representations with
T-SNE (Hinton and Roweis, 2002) and then depict
the bivariate kernel density estimation based on

(a) w/o Cross-modal Consistency (b) w/ Cross-modal Consistency

-100 —— transcription

-60 -40 -20 0 20 40 60 -100 =50 0 50 100

Figure 4: Bivariate kernel density estimation plots of
the speech and transcription representations after using
T-SNE dimensionality reduction, where the max-pooled
outputs of the W2V2-Transformer encoder are applied
as the speech and transcription representations.

the 2-dimensional representations in Figure 4. Fig-
ure 4 shows that the W2V2-Transformer baseline
((5) ) cannot align speech and transcription well
in the representation space, while the cross-modal
consistency ( (6) ) draws the representations across
different modalities much closer.

4.2.3 Training Strategy

1. Pretrain MT with £7% on

external (x,y)

2. Finetune MT with £ on

MuST-C (x,y)

3. [Initialize acoustic feature
extractor with wav2vec2.0

4. Finetune ASR and MT with

LET, LET ., and LT on

MuST-C (s, x) and (x,y)

[ Transformer Decoder

[ Transformer Encoder

Acoustic Feature
Extractor

Figure 5: The training steps of SimZeroCR by utilizing
the cross-modal consistency regularization. In each step,
the modules that contribute to the final E2E ST model
are pointed out by arrow lines.

We here summarize the multi-stage training strat-
egy, SimZeroCR ( (6) in Table 3), consisting of
MT pretraining and ASR & MT finetuning with the
cross-modal consistency regularization in Figure 5.

247



Method External BLEU
Speech de es fr it nl pt ro ru

Fairseq ST (Wang et al., 2020a) - 22.7 27.2 329 22.7 27.3 28.1 21.9 15.3
Dual Decoder (Le et al., 2020) - 23.6 28.1 335 24.2 27.6 30.0 229 15.2
Speechformer (Papi et al., 2021) - 23.6 28.5 - - 27.7 - - -
SATE (Xu et al., 2021) - 25.2 - - - - - - -
BiKD (Inaguma et al., 2021) - 253 - 353 - - - - -
XSTNet (Ye et al., 2021) v 25.5 29.6 36.0 25.5 30.0 31.3 25.1 16.9
STEMM (Fang et al., 2022) v 25.6 30.3 36.1 25.6 30.1 31.0 24.3 17.1
ConST (Ye et al., 2022) v 25.7 30.4 36.8 26.3 30.6 32.0 24.8 17.3
FCCL™ (Zhang et al., 2023) v 259 30.7 36.8 26.4 30.5 31.8 25.0 17.6
M3ST (Cheng et al., 2023) v 26.4 31.0 37.2 26.6 30.9 32.8 25.4 18.3
CMOT (Zhou et al., 2023) v 27.0 31.1 37.3 26.9 31.2 32.7 25.3 17.9
CRESS (Fang and Feng, 2023b) v 27.2 31.9 37.8 27.3 31.6 33.0 259 18.7
W2V2-Transformer v 244 29.9 34.7 25.1 29.3 30.3 23.4 16.5

+ SimRegCR™ v 274 31.5 38.1 27.2 32.0 333 25.9 18.8

+ SimRegCR v 279 32.1* 39.00 27.7" 324" 34.0© 263 19.0"

Table 4: Case-sensitive detokenized BLEU scores on MuST-C t st —~COMMON set without external MT datasets.
"External speech" denotes unlabeled speech data. * indicates the improvements over W2V2-Transformer are
statistically significant with p < 0.01. The highest BLEU scores are marked in bold for all methods in each column.

Method Training Data BLEU
Speech ASR MT
MultiSLTT - v v 6.8
Chimera' v v v 13.5
DCMA'T v v v 24.0
W2V2-Transformer v v v 0.5
+ SimZeroCR v v v 25.1

Table 5: Our method achieves superior performance
over the existing methods on the MuST-C en—de
benchmark. T denotes the numbers are reported from
Wang et al. (2022), others are based on our runs.

Comparison with Existing Methods We sum-
marize the recent results of several existing works
on MuST-C en—de benchmark in Table 5. The
existing methods vary from different aspects, in-
cluding language-specific encoders-decoders archi-
tecture (MultiSLT) (Escolano et al., 2021), con-
tinuous cross-modal alignment (Chimera) (Han
et al., 2021), and discrete cross-modal alignment
(DCMA) (Wang et al., 2022). SimZeroCR achieves
an improvement of 24.6 BLEU score over W2V2-
Transformer and outperforms the current SOTA
method DCMA? that incorporates shared memory
and vector quantization modules.

5 Experiments on More Languages

5.1 Regular End-to-End Speech Translation

We consider two experimental setups: without ex-
ternal MT data and with external MT data. The

3Note that the external MT dataset and the inference con-
figurations used in this section are slightly different from those
used in Wang et al. (2022). Please check the experimental
results in Section 5.2 for more fair comparisons.

detailed information on the baseline methods is
summarized in Appendix D, and the BLEU scores
of the baseline methods are reported from the corre-
sponding papers. The choice for hyperparameters
and the corresponding model performance in each
training step of our approaches are summarized in
Tables 13, 14, 15, and 16.

When there is no external MT data (Table 4),
SimRegCR™ gains an average improvement of
2.6 BLEU scores over the W2V2-Transformer
baseline and can achieve comparable performance
to the current SOTA method CRESS. It is also
worth mentioning that SimRegCR gains an aver-
age improvement of 3.1 BLEU scores over the
W2V2-Transformer baseline and achieves an aver-
age improvement of 0.6 BLEU scores over CRESS
that incorporates cross-modal regularization, sched-
uled sampling, token-level adaptive training, and a
stronger acoustic feature extractor, which clearly
shows the effectiveness of our methods. When ex-
ternal MT data is included (Table 6), SimRegCR™
and SimRegCR gain average improvement of 1.7
and 2.2 BLEU scores over the W2V2-Transformer
baseline respectively, and SimRegCR achieves an
average improvement of 0.2 BLEU scores over
CRESS, which implies that we could easily achieve
SOTA performance for E2E ST task by leveraging
simple intra-modal consistency regularization.

5.2 Zero-shot End-to-End Speech Translation

The experimental results with external MT data
are summarized in Table 7. For fair comparisons,
we keep our experimental settings consistent with
Wang et al. (2022) to use WMT14 dataset for
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Method External BLEU
Speech de es fr it nl pt ro ru

MTL (Tang et al., 2021b) - 23.9 28.6 33.1 - - - - -
JT-S-MT (Tang et al., 2021a) - 26.8 31.0 374 - - - - -
Chimera (Han et al., 2021) v 27.1 30.6 35.6 25.0 29.2 30.2 24.0 17.4
XSTNet (Ye et al., 2021) v 27.1 30.8 38.0 26.4 31.2 324 25.7 18.5
STEMM (Fang et al., 2022) v 28.7 31.0 374 25.8 30.5 31.7 24.5 17.8
ConST (Ye et al., 2022) v 28.3 32.0 38.3 272 31.7 33.1 25.6 18.9
SpeechUT (Zhang et al., 2022)" v 30.1 33.6 414 - - - - -
WACO (Ouyang et al., 2023) v 28.1 32.0 38.1 - - - - -
M3ST (Cheng et al., 2023) v 29.3 324 38.5 27.5 325 334 25.9 19.3
FCCL™ (Zhang et al., 2023) v 29.0 31.9 38.3 27.3 31.6 32.7 26.8 19.7
CMOT (Zhou et al., 2023) v 29.0 32.8 39.5 27.5 32.1 335 26.0 19.2
CRESS (Fang and Feng, 2023b) v 294 332 40.1 27.6 323 33.6 26.4 19.7
W2V2-Transformer v 27.3 31.7 38.0 26.3 29.8 31.7 234 18.2

+ SimRegCR™ v 29.0 33.0 394 27.3 322 335 26.0 19.4

+ SimRegCR v 29.2* 33.0" 40.0" 28.2* 32.7" 34.2* 26.7°7 20.1"

Table 6: Case-sensitive detokenized BLEU scores on MuST-C tst-COMMON set with external MT datasets.
"External speech" denotes unlabeled speech data. { is a speech-unit-text pretraining model whose training costs
are much higher than ours. * indicates the improvements over W2V2-Transformer are statistically significant with
p < 0.01. The highest BLEU scores are marked in bold for all methods in each column.

en—de/es/fr/ru as the external MT data*. Dur-
ing inference, we use beam search decoding with
a beam size of 5 with length penalty 1.0. The
detailed information on the baseline methods is
summarized in Appendix E, and the correspond-
ing BLEU scores are reported from Wang et al.
(2022). The choice for hyperparameters and the
corresponding model performance in each training
step of our approach are summarized in Table 17.

Method BLEU
de es fr ru
MultiSLT 6.8 6.8 10.9 -
Chimera 135 153 222 83
DCMA 240 262 331 16.0
W2V2-Transformer | 0.5 04 0.4 0.1
+ SimZeroCR 251 270 34.6 156

Table 7: Case-sensitive detokenized BLEU scores on
MuST-C t st -COMMON set with external MT datasets
in zero-shot E2E ST setting. The highest BLEU scores
are marked in bold for all methods in each column.

Despite the language tag is properly set during in-
ference, W2V2-Transformer is still not capable of
translating into specific language and only generat-
ing English text. We can see that SimZeroCR gains
an average improvement of 25.2 BLEU scores over
the W2V2-Transformer baseline and achieves an
average improvement of 0.8 BLEU scores over the
current SOTA method DCMA that incorporates
shared memory and vector quantization modules,
clearly showing the effectiveness of our method.

*We only use europarl v7, commoncrawl, and news com-
mentary subsets of WMT14 dataset for en—fr.

Method BLEU
de fr ru

Cascaded System
Ye et al. (2021) 252 349 17.0
Wang et al. (2022) 26.7 - -
Fang et al. (2022) 27.5 - -
Zero-Shot End-to-End Model
W2V2-Transformer 0.5 0.4 0.1

+ SimZeroCR 25.1 346 156

Table 8: Case-sensitive detokenized BLEU scores on
MuST-C t st —COMMON set.

We then compare our approach with several
strong cascaded systems in Table 8. The cascaded
system transforms the speech into the source lan-
guage text and then translates the transcription into
the target language. We can see that our zero-shot
approach achieves comparable or slightly worse
performance to those cascaded systems which how-
ever suffer from high inference latency.

6 Related Work

E2E ST is a cross-modal task, and one major chal-
lenge is direct ST data scarcity. To address such
problem, people usually adopt MT data by lever-
aging the techniques such as pretraining (Bansal
et al., 2019; Alinejad and Sarkar, 2020; Le et al.,
2021; Tang et al., 2022), multi-task learning (Le
et al., 2020; Dong et al., 2021; Indurthi et al., 2021),
knowledge distillation (Liu et al., 2019; Gaido et al.,
2020; Inaguma et al., 2021), and data augmenta-
tion (Lam et al., 2022; Fang and Feng, 2023a). Due
to the representation discrepancy between speech
and text modalities, people also utilize cross-modal
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alignment (Han et al., 2021; Fang et al., 2022; Ye
et al., 2022; Ouyang et al., 2023) to fully exploit
MT data. Specifically, Wang et al. (2022) employ
a shared discrete vocabulary space to accommo-
date both modalities of speech and text and achieve
SOTA performance in the zero-shot setting. We
show that the zero-shot E2E ST performance could
be boosted by leveraging simple cross-modal con-
sistency regularization. Fang and Feng (2023b)
propose the cross-modal regularization with sched-
uled sampling method to bridge the modality gap
and achieve the SOTA performance in the regular
setting. We find that the regularization is more cru-
cial than modality adaption, which is in line with
Han et al. (2023), and achieve the SOTA perfor-
mance in the regular setting by leveraging simple
intra-modal consistency regularization.

7 Conclusion

In this paper, we propose two simple but effec-
tive consistency regularization based strategies for
learning E2E ST models. We analyze the regular-
ization effect of SimRegCR on the regular E2E ST
performance and show that SimZeroCR could ef-
fectively close the modality gap. Experiments on
the MuST-C benchmark demonstrate the capabili-
ties of our approaches to improve translation perfor-
mance in both regular and zero-shot settings. Given
the universality and simplicity of SimRegCR and
SimZeroCR, we believe they can serve as strong
baselines for future E2E ST research. For future
work, we will explore the effectiveness of consis-
tency regularization on more speech related tasks,
such as speech-to-speech translation, speech lan-
guage modeling, etc.

Limitations

While our approach achieves promising perfor-
mance by leveraging simple consistency regular-
ization, it still has some limitations: 1) The perfor-
mance of our approach still lags behind SpeechUT,
although the training cost of our approach is much
lower. 2) We mainly focus on evaluating our ap-
proach on the MuST-C benchmark in this paper.
Future research could consider more speech trans-
lation benchmarks with more diverse languages,
larger ST datasets, and larger models.
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Appendix

A Statistics of All Datasets

MuST-C External MT
en— | hours #sents name #sents
de 408 234K | WMT16 4.6M
es 504 270K | WMTI13 152M
fr 492 292K | WMTI14 40.8M
it 465 258K | OPUS100 1.0M
nl 442 253K | OPUS100 1.0M
pt 385 211K | OPUS100 1.0M
ro 432 240K | WMTI16 0.6M
ru 489 270K | WMTI16 2.5M

Table 9: Statistics of all datasets. #sents refers to the
number of parallel sentence pairs.

B The Choice for Hyperparameters in
Tables 1 and 3

C Experimental Results on More
Languages

D Regular E2E ST Methods

We compare our approach with the following meth-
ods on the MuST-C benchmark:
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Table 10: The choice for hyperparameters in Table 1.
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Table 11: The choice for hyperparameters in Table 3.

* Fairseq ST (Wang et al., 2020a): Fairseq ST is
a fairseq extension® for speech-to-text modeling
tasks such as speech translation, which includes
end-to-end workflows and SOTA models with
scalability and extensibility design.

Dual Decoder (Le et al., 2020): This paper intro-

duces a dual-decoder Transformer architecture

for synchronous speech recognition and multilin-

gual speech translation.

* Speechformer (Papi et al., 2021): This paper
introduces a Transformer-based ST model that
is able to encode the whole raw audio features
without any sub-optimal initial sub-sampling.

* SATE (Xu et al., 2021): This paper proposes a
stacked acoustic-and-textual encoding method,

which is straightforward to incorporate the pre-

trained models into ST.

* BiKD (Inaguma et al., 2021): To fully leverage

knowledge in both source and target language di-

rections for bilingual E2E ST models, this paper
proposes bidirectional sequence-level knowledge
distillation, in which both forward sequence-level
knowledge distillation from a source-to-target

Shttps://github.com/facebookresearch/
fairseq/tree/main/examples/speech_to_
text

NMT model and backward sequence-level knowl-
edge distillation from a target-to-source NMT
model are combined.

XSTNet (Ye et al., 2021): This paper proposes
cross speech-text network, an extremely concise
model that can accept bi-modal inputs and jointly
train ST, ASR, and MT tasks.

MTL (Tang et al., 2021b): This paper proposes
a general multi-task learning framework to lever-
age text data for ASR and ST tasks.

JT-S-MT (Tang et al., 2021a): This paper pro-
poses three techniques to increase knowledge
transfer from the MT task to the ST task, which
include parameter sharing and initialization strat-
egy to improve the information sharing between
tasks, cross-attentive regularization and online
knowledge distillation to encourage the ST sys-
tem to learn more from the auxiliary MT task and
then generate similar model representations from
different modalities.

STEMM (Fang et al., 2022): This paper pro-
poses a speech-text manifold mixup method to
mix up the speech representation sequences and
word embedding sequences.

ConST (Ye et al., 2022): This paper proposes a
simple yet effective contrastive learning frame-
work bridging the speech-text representation gap
and facilitating the ST with limited data.

SpeechUT (Zhang et al., 2022): This paper pro-
poses a unified-modal speech-unit-text pretrain-
ing model, which bridges the modality gap be-
tween speech and text representations with hid-
den units.

WACO (Ouyang et al., 2023): This paper pro-
poses a simple and effective method for ex-
tremely low-resource speech-to-text translation,
where the key idea is bridging word-level repre-
sentations for both speech and text modalities via
contrastive learning.

M?3ST (Cheng et al., 2023): This paper proposes
a method to mix the training corpus at three
levels, including word level, sentence level and
frame level.

FCCL™ (Zhang et al., 2023): This paper pro-
poses a cross-modal multi-grained contrast learn-
ing method for explicit knowledge transfer from
the MT to the ST model.
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ID | Training Stage \ Loss Function | de es fr it

O MT train from scratch £t 29.33  34.61 4147 31.25
(@ | MT & ST finetune on (1) | L7 + L5L + SLTE s | 26,87  31.05 3741  26.66
© ST finetune on (1) Lst+aclst, 27.35 31.53 38.10 27.24

Table 12: Case-sensitive detokenized BLEU scores on the MuST-C tst-COMMON set. The MT training is
performed on the MuST-C dataset. (1) denotes the MT performance. (2) and (3) denote the ST performance.

* CMOT (Zhou et al., 2023): This paper proposes
cross-modal mixup via optimal transport to adap-
tively find the alignment between speech and text
sequences, and to mix up the sequences of differ-
ent modalities at the token level.

* CRESS (Fang and Feng, 2023b): This paper pro-
poses a simple yet effective method to regular-
ize the model predictions of ST and MT, whose
target-side contexts contain both ground truth
words and self-generated words with scheduled
sampling.

E Zero-shot E2E ST Methods

We compare our approach with the following meth-
ods on the MuST-C benchmark:

* MultiSLT (Escolano et al., 2021): This paper
extends the multilingual NMT system to perform
spoken language translation and zero-shot multi-
lingual spoken language translation by coupling
language-specific encoder-decoders, even from
monolingual ASR data only.

* Chimera (Han et al., 2021): This paper proposes
a model capable of learning a text-speech shared
semantic memory network for bridging the gap
between speech and text representations.

* DCMA (Wang et al., 2022): This paper pro-
poses an alignment method to enable zero-shot
ST, where the key part is to discretize the contin-
uous vectors to a finite set of virtual tokens and
use ASR data to map the corresponding speech
and text to the same virtual token in the shared
codebook.

F The Choice for Hyperparameters in
Section 5
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Training Stage de es fr it nl pt ro ru

MT pretrain | Baseline | 29.33 34.61 41.47 3125 3441 3580 28.13 19.40
Baseline | 24.38 2992 3473 25.13 29.29 30.32 2339 1645
ST finetune BLEU | 2735 31.53 38.10 27.24 32.00 33.30 25.89 18.83
o 5 4 4 5 4 5 4 4

Table 13: The choice for hyperparameters and the corresponding MT & ST performance in the training steps of
SimRegCR™ without external MT datasets.

Training Stage ‘ ‘ de es fr it nl pt ro ru
MT pretrain BLEU | 32.76 37.10 45.68 3331 37.89 39.12 31.60 21.60
o 5 5 5 5 5 5 5 5
ST finetune BLEU | 2791 32.12 39.04 27.69 3239 3396 2630 19.02
o 4 4 5 4 4 4 4 3

Table 14: The choice for hyperparameters and the corresponding MT & ST performance in the training steps of
SimRegCR without external MT datasets.

Training Stage de es fr it nl pt ro ru

MT pretrain’ | Baseline | 29.61 31.98 40.59 26.30 30.58 31.83 23.48 18.65
MT finetune | Baseline | 33.59 37.78 4593 3274 37.06 3881 29.05 22.11
Baseline | 27.33 31.70 38.04 2629 29.77 31.73 2343 18.23
ST finetune BLEU | 28.96 33.04 39.37 2730 3222 3351 26.00 1941
o 3 3 2 3 3 4 4 3

Table 15: The choice for hyperparameters and the corresponding MT & ST performance in the training steps of
SimRegCR ™ with external MT datasets. { denotes the training procedure is performed on the external MT dataset.

Training Stage ‘ ‘ de es fr it nl pt ro ru
MT pretraint BLEU | 30.02 32.10 40.62 28.24 33.08 34.02 2499 19.28
o 0.5 025 0.125 3 3 2 2 05
MT finetune BLEU | 34.11 3797 4695 33.86 38.67 40.09 3223 2245
«Q 1 0.25 3 5 5 3 3 3
ST finetune BLEU | 29.23 3297 3998 28.16 32.68 3424 26.66 20.09
o} 3 3 3 3 3 4 3 4

Table 16: The choice for hyperparameters and the corresponding MT & ST performance in the training steps of
SimRegCR with external MT datasets. T denotes the training procedure is performed on the external MT dataset.

Training Stage ‘ de es fr ru
MT pretrain’ Baseline | 29.37 3291 41.33 18.07
MT finetune Baseline | 33.78 37.53 45.99 21.67

Baseline | 0.47 0.43 0.43 0.07
ASR & MT finetune | BLEU | 25.10 26.99 34.59 15.56
I5} 30 45 20 35

Table 17: The choice for hyperparameters and the corresponding MT & ST performance in the training steps of
SimZeroCR with external MT datasets. 1 denotes the training procedure is performed on the external MT dataset.
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