
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 227–241

June 16-21, 2024 ©2024 Association for Computational Linguistics

Adaptive Rank Selections for Low-Rank Approximation of Language
Models

Shangqian Gao, Ting Hua, Yen-Chang Hsu, Yilin Shen, Hongxia Jin
Samsung Research America

{s.gao1,ting.hua,yenchang.hsu,yilin.shen,hongxia.jin}@samsung.com

Abstract

Singular Value Decomposition (SVD) or its
weighted variants has significantly progressed
in compressing language models. Previous
works assume the same importance for all oper-
ations and assign the same number of ranks for
different layers in a language model. However,
such a uniform rank selection is sub-optimal
since different operations (layers) have non-
uniform demand in capacity. In other words,
a desired SVD strategy should allocate more
ranks for important operations and vice versa.
However, a globally-optimized selection of
ranks for neural networks is still an open prob-
lem, and this is a non-trivial challenge since the
selection is discrete. In this work, we propose
a novel binary masking mechanism for opti-
mizing the number of ranks in a differentiable
framework. Our strategy uses a novel regular-
ization to enable the masking to comply with
the SVD property where the ranks have sorted
singular values. The experiments examined
both types of language models, encoder-only
and decoder-only models, including large lan-
guage models like LLaMA. Our compressed
model achieves much better accuracy than pre-
vious SVD and their SOTA variants. More
interestingly, our method retains significantly
better accuracy with zero or limited fine-tuning,
proving the substantial advantage of adaptive
rank selection.

1 Introduction

Transformer-based models (Vaswani et al., 2017)
have been very popular across different Natural
Language Processing tasks, such as text classifica-
tion (Wang et al., 2019a), question answering (Ra-
jpurkar et al., 2016), and summarization (Liu,
2019). Despite its success on these tasks, the size
of these models often scales up to millions or bil-
lions of parameters, especially for recently pro-
posed large language models (Touvron et al., 2023;
Biderman et al., 2023). Such a huge number of

parameters makes these models very hard to be de-
ployed on resource-limited devices, such as mobile
phones or edge devices. As a result, the compres-
sion of Transformer-based language models has
drawn much attention.

Transformers-based models have two core oper-
ations: self-attention layers and feed-forward lay-
ers. These operations are built on linear layers,
making them straightforward to compression tech-
niques like low-rank weight factorization (Golub
and Reinsch, 1971; Noach and Goldberg, 2020)
with SVD or its variants. Low-rank weight factor-
ization decomposes a large linear layer into two
small linear layers without changing other model
parts, providing a friendly property for deployment.
In addition, it is orthogonal to other compression
techniques, such as structural pruning (Sanh et al.,
2020), quantization (Shen et al., 2020), and knowl-
edge distillation (Sun et al., 2019; Jiao et al., 2019).

Previous work (Hsu et al., 2021) shows that us-
ing vanilla SVD for compression can result in a sig-
nificant performance drop. They argue that low re-
construction error is not equivalent to high accuracy.
As a result, Hsu et al. (Hsu et al., 2021) proposed
to apply the Fisher Information (Pascanu and Ben-
gio, 2014) matrix to re-weight the weight matrix
so that the factorization results can capture infor-
mation from both the task and the reconstruction
error. Empirically, Fisher Information weighted
SVD performs much better than the original SVD.
Despite using the Fisher Information matrix, other
importance scores, like first-order Taylor expan-
sion (Molchanov et al., 2019; Hua et al., 2022), can
also be used to re-weight the weight matrix.

Although the mentioned weighted SVD meth-
ods above achieved promising results, they treat all
layers uniformly and use the same number of ranks
for all weight matrices. On the other hand, some
prior works suggest that the compression rate for
different layers should be different in the cases of
vision (Molchanov et al., 2019) and language (La-

227

gunas et al., 2021) models. These observations
provide clues to improve the performance of ex-
isting weight factorization by selecting the proper
number of ranks for each layer. Inspired by the
above observations, the target of our problem set-
ting is to find the optimal number of ranks for all
the layers in a neural network. However, this op-
timization is not trivial since it is a discrete, non-
smooth, and non-convex problem. Reinforcement
learning (Schulman et al., 2017) and evolutionary
algorithms (Real et al., 2019) may find a solution
for this problem, but they introduce substantial op-
timization costs that are not affordable for larger
models.

To address the above challenge, we propose to
use regularized differentiable binary masks to learn
the number of ranks for each operation. The entire
learning pipeline is built upon an end-to-end differ-
entiable learning framework. We use the sum of
a binary mask to capture the number of ranks for
each layer. The proposed binary mask is properly
regularized to be aligned with the sorted singular
values of SVD. Moreover, we use a hypernetwork
to improve the effectiveness of our method, which
further accelerates the learning process. With all
these designs, our method can efficiently find the
number of ranks of different operations. The con-
tribution of our work can be summarized as the
following points:

• We proposed to use the sum of regularized
binary masks to capture the number of ranks
for different operations. To further improve
efficiency, we introduce hypernetwork to gen-
erate the number of ranks.

• We proposed a novel regularization to make
binary masks comply with the property of
SVD where there are sorted singular values.
The regularized binary mask can retain the
important factors inherited from SVD or its
weighted version.

• Extensive experiments show that our method
can significantly improve the performance of
SVD and its SOTA variants on both encoder-
only and decoder-only language models.

2 Related Works

The benefit of Low-rank factorization is that it
can be applied to any linear layer. An early
work (Winata et al., 2019) applies SVD for the
LSTM cell and explores the effectiveness on differ-
ent NLP tasks (Zhang et al., 2021, 2022, 2023)

and model components. (Noach and Goldberg,
2020) propose a two-stage approach to compress
a pre-trained language model. The first stage
decomposes the weight matrix with SVD in the
pre-trained language model. Then, they fine-tune
weights with knowledge distillation to regain per-
formance. The standard SVD can not capture all
the information from tasks. The Fisher Information
is introduced to reweight the weight matrix, and
SVD is applied to the reweighted matrix (Hsu et al.,
2021). On top of (Hsu et al., 2021), several numeric
optimization methods are used to find the optimal
solution to the weighted SVD problem (Hua et al.,
2022) when the weighting matrix is not diagonal.

Besides model weights, SVD can also be applied
to embedding layers. The ALBERT model (Lan
et al., 2019) addresses the issue of redundant pa-
rameters in the embedding layer by employing fac-
torization. This layer tends to have high input and
output dimensions, leading to inefficiencies. In
their work, Reid et al. (Reid et al., 2021) introduce
a novel approach called Self-Attentive Factorized
Embeddings (SAFE). This method enhances per-
formance by incorporating a small self-attention
layer built upon linear projection.

A crucial point omitted by previous works is
that not all operations are created equally. Some
operations require more capacity than others. Our
method tackles this problem by automatically learn-
ing the number of ranks for each operation.

Our method is also related to network pruning
methods, especially structural pruning. Block Prun-
ing (Lagunas et al., 2021) integrates structures of
any size into the movement pruning paradigm for
fine-tuning, and it prunes the model globally. In ad-
dition to NLP tasks, deciding the width of a convo-
lution layer has also been studied extensively using
reinforcement learning (He et al., 2018), evolution-
ary algorithm (Liu et al., 2019), etc. Differentiable
pruning (Guo et al., 2020; Herrmann et al., 2020;
Wang et al., 2019b; Gao et al., 2022, 2023a,b) is
also a popular direction since the cost is often not
high. However, they can not be directly applied
to select the number of ranks due to the cost or
difficulty of fine-tuning resulting from using binary
masks.

3 Method

3.1 Background

Transformers have many linear layers, which
makes them very suitable for compression methods

228

like Singular Value Decomposition (SVD). Sup-
pose we have a matrix W ∈ ℜM×N , SVD decom-
poses it into three matrices:

W = USV ≈ UrSrVr, (1)

where the orthogonal matrix U ∈ ℜM×M is
the left singular vectors, and the orthogonal ma-
trix V ∈ ℜN×N is the right singular vectors.
S is a diagonal matrix of non-zero singular val-
ues Diag(s) = Diag(σ1, σ2, · · · , σN) (assuming
M ≥ N), where σ1 ≥ σ2 ≥ · · ·σN . Ur, Sr, Vr

represent the truncated matrices with rank r and
approximate the original matrix.

With the SVD, the computation of a linear layer
in a neural network can be rewritten as below
with input data X ∈ ℜB×M , weight matrix
W ∈ ℜM×N , bias b ∈ ℜ1×N :

Y = XW + b = X(US)VT + b. (2)

The standard SVD can be further improved
by multiplying a weighting matrix with W, and
this weighting matrix can be computed in many
different ways, such as using Fisher Informa-
tion (Pascanu and Bengio), Importance Estima-
tion (Molchanov et al., 2019), etc. Weighted SVD
often performs better than vanilla SVD when com-
pressing language models. Denote the weighting
matrix as Iw, and Iw is a diagonal matrix where the
importance of each weight is summed within each
column or row. Then, after applying Iw, we have:

Y = XW+ b = X[Iw
−1(U′S′)V′T] + b. (3)

where U ′, S′, and V ′ come from the weighted SVD
decomposition of IwW = U′S′V′. Note that by
using SVD or its weighted variants, we can easily
compress pre-trained models, which is vital since
the training costs of the typical large language mod-
els are very high, and training them from scratch is
usually prohibitively expensive.

3.2 Overview
In the following contents, we will first introduce
how we parameterize the number of ranks. Then
we will introduce the hypernetwork used to gen-
erate the number of ranks. After that, we will
talk about how we overcome the difficulty of fine-
tuning caused by directly using indices from binary
masks and how to produce top-k-like masks. The
overall optimization problem will be introduced
last. Fig. 1 illustrates our method given one self-
attention layer.

𝒍𝒍th layer

Query Weights Key Weights Value Weights

US

V

m

SV
D

or
 W

SV
D

Hypernetwok
(HN)

Generate the number of ranks

Figure 1: An overview of our method. In the figure, we
use the self-attention layer as an example. The hypernet-
work produces the number of ranks for each operation,
which are then applied to the query, key, and value
weights. Since m is differentiable w.r.t to the hyper-
network, we can optimize the number of ranks in an
end-to-end differentiable way.

3.3 Control the Number of Ranks
In Equation. 2, the diagonal matrix S contains sin-
gular values of SVD. If singular values are equal
to zeros, then the corresponding vectors from U
and V can be safely removed. Usually, the singular
values of model weights are non-zero. As a result,
we can apply a binary mask m ∈ {0, 1} on top of
the diagonal matrix S:

ŝ = m⊙ s, (4)

where s is the singular vector, and S = Diag(s).
After applying m, it changes Eq. 2 into:

Y = X(UDiag(ŝ))VT + b, (5)

which inserts the mask m into the for-
ward/backward calculation of a linear layer
under SVD decomposition. By doing so, we can
calculate the gradients w.r.t m during regular
backpropagation. As a result, the mask can be
learned in a loss-aware fashion if it is parame-
terized properly. Note that, unlike the uniform
rank selection in previous works (Noach and
Goldberg, 2020; Hsu et al., 2021; Hua et al., 2022),
our method enables adaptive rank selections for
individual operations for the model, which creates
flexibility to allocate different ranks for different
operations, and we can allocate more parameters
for more important operations. Thus, the overall
performance can be largely improved over the
uniform rank selection setting.

3.4 Hypernetwork
The binary mask m is not differentiable in its
plain form; therefore, we incorporate the straight-
through Gumbel-Sigmoid (Jang et al., 2016) op-
eration to make it differentiable. In addition, in-
stead of using element-wise mask parameterization,

229

we employ a hypernetwork (HN) to accelerate the
learning of masks m. Specifically, m is generated
by:

m = HN(z; θ), (6)

where θ is the parameters of the hypernetwork, and
z (randomly sampled before training the hypernet-
work) is the input to the hypernetwork. Basically,
the HN is composed of GRUs (Chung et al., 2014)
and linear layers. The intuition is that the GRU
can be used to learn interactions between different
operations, and linear layers are used to map GRU
outputs to individual operations of different sizes.
More details of the hypernetwork will be presented
in the Appendix.

3.5 Singular Value-aware Masking

The hypernetwork gives the number of ranks and
the exact positions of selected ranks for each layer.
On the other hand, SVD, or its weighted version,
provides sorted singular values in the diagonal ma-
trix S (from Eq. 2). So far, the hypernetwork com-
putes the mask completely independent from the
structure of S, which has sorted singular values.
This independency can produce a mask that skips
some ranks with a high singular value, resulting in
a less generalizable selection of ranks. This behav-
ior significantly deteriorated the compressed model,
impeding the following fine-tuning process from
recovering the accuracy. In the later section, Fig. 3
shows this phenomenon with the exact positions
of selected ranks from the hypernetwork (the plot
named ‘Element-Wise’).

To address the issue, we choose to use the sum of
the binary mask 1Tml (ml is the mask for lth layer)
to represent the number of ranks for the current
operation and use this sum to force selecting the
top-k ranks. Although this strategy resolves the
above issue, it introduces a gap between the learned
and actual masks for compressing the model. The
gap can be formulated by:

∥ml ⊙ s−m′
l ⊙ s∥22, (7)

where m′
l is a binary mask with the first 1Tml

elements equals to 1 (m′
l[:1Tml]

= 1), and the
rest elements of m′

l equals 0. The smaller the
gap, the closer the binary mask ml to follow the
structure of sorted singular values from SVD. The
above insight inspired our novel regularization
term: Ralign(ml) = ∥ml ⊙ s − m′

l ⊙ s∥22. This
regularization can be seamlessly inserted into the

Algorithm 1: Adaptive Rank Selection
Input: a sub-dataset for training the HN:
DHN; remained rate of parameters: p;
hyper-parameter: λ, γ; HN training
iterations: Niter; a pre-trained model: f ;
the hypernetwork HN parameterized by θ

for i := 1 to Niter do
for a mini-batch (x, y) in DHN do

1. generate m from HN with Eq. 6.
2. calculate the parameter

regularization term
R(pT (m), Ttotal).

3. calculate the alignment
regularization term Ralign.

4. calculate gradients w.r.t θ by
minimizing Obj. 8 and update θ.

end
end
Compress the model based on the number
of ranks:
US = (US)[:,:1Tm], V = V[:,:1Tm].
Return the resulting model for fine-tuning.

optimization of the HN without introducing ex-
tra parameters. Our ablation study will verify the
mentioned insight and prove the effectiveness of
Ralign.

3.6 The Proposed Algorithm
For a specific task, to maximally preserve the per-
formance given a parameter budget, we minimize
the task loss together with the regularization of the
number of parameters and the regularization for
aligning the SVD property. The overall objective
function is defined by:

min
θ

L(f(x;m), y) + λR(T (m), pTtotal)

+ γ
1

L

N∑

l=1

Ralign(ml),
(8)

where x, y are input and its label, L is the task-
specific loss, f(·;m) is the model parameterized
by the mask m, λ controls the regularization
weights for the parameter regularization R and
R(a, b) = log(max(a, b)/b), γ controls the reg-
ularization weights of Ralign, Ttotal is the total
number of the parameters, and p is the persevered
ratio of parameters which is given by users. T (m)
is the number of parameters decided by the number
of ranks for each operation. Take lth weight ma-
trix as an example; the number of parameters for

230

Task MRPC STSB COLA SST-2 MNLI QNLI QQP Avg ∆-Avg # Params
BERT-base 87.29 88.47 57.78 92.90 84.95 91.25 87.92 84.36 - 109.5M

SVD 55.88 23.99 2.15 78.10 35.73 37.78 59.70 41.90 −42.36 66.5M
+ fine-tuning 83.60 85.67 29.02 91.28 83.02 89.35 87.05 78.42 −5.94 66.5M

SVD+ARS (ours) 81.22 73.78 0.00 81.08 62.75 57.86 66.71 60.48 −23.88 65.1M
+ fine-tuning (ours) 85.57 86.30 47.08 91.97 83.55 89.44 87.39 81.61 −2.75 65.1M

IWSVD 5.52 58.97 13.14 81.31 46.96 52.50 63.30 45.96 −38.40 66.5M
+ fine-tuning 86.87 87.45 43.83 89.91 82.56 89.35 86.55 80.93 −3.43 66.5M

IWSVD+ARS (ours) 81.58 76.93 23.97 83.94 51.88 77.58 75.05 67.28 −17.08 65.1M
+ fine-tuning (ours) 88.13 88.23 52.88 91.40 83.86 89.91 87.59 83.14 −1.22 65.1M

FWSVD 68.00 68.77 15.69 79.93 48.10 52.65 66.07 57.03 −27.33 66.5M
+ fine-tuning 88.36 86.90 45.80 89.60 82.54 89.18 86.97 81.34 −3.02 66.5M

FWSVD+ARS (ours) 81.22 84.24 27.22 83.37 71.12 64.10 75.18 69.49 −14.87 65.1M
+ fine-tuning (ours) 89.40 88.47 55.01 91.06 83.68 89.68 87.41 83.53 −0.83 65.1M

Table 1: Results of GLUE benchmark when p = 0.48. ‘Avg’ means the average score of the GLUE tasks. The
‘∆-Avg’ is the difference of ‘Avg’ between the full model and different baselines. Given a similar number of
parameters, a smaller ‘∆-Avg’ represents better performance.

it is decided by: T (ml) = (Ml + Nl) × (1Tml),
T (m) =

∑L
l=1 T (ml), where Ml and Nl is the

number of inputs and outputs dimensions for lth
weight matrix. Note that the model weights are
frozen during the optimization of Obj. 8; there-
fore, the learnable parameter is small and can be
optimized efficiently.

We present the algorithm for learning the num-
ber of ranks in Alg. 1. It requires only a small
subset of the original training data; therefore, the
computation overhead to optimize the number of
ranks is negligible (details are in the experiment
section). Note that all ml are learned jointly in one
pass, and rank selection competes across all layers.
In other words, important operations can receive
more ranks than the less important ones. Finally,
we select top 1Tml ranks for each operation to
compress a model, as described in Section 3.5.

4 Experiments

4.1 Settings

We assess our proposed method and baselines using
the General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2019a) and the
large language model pre-training task on Pile (Gao
et al., 2020). For GLUE tasks, we use BERT (De-
vlin et al., 2018), MobileBERT (Sun et al., 2020),
and DistllBERT (Sanh et al., 2019) to evaluate
our method. We use LLaMA-7B (Touvron et al.,
2023) to evaluate our method for large language
models. In the Appendix, we use models from
Pythia Suite (Biderman et al., 2023) to evaluate our
method for the language modeling task. Through-
out the experiment section, our method is abbrevi-
ated as ARS (Adaptive Rankd Selection).

To build fair comparison baselines, we compress

all linear layers from the model, including self-
attention layers and feed-forward networks. In ad-
dition, we do not compress the embedding layer,
and the compression rate of our method can be
further improved by incorporating previous works
focusing on compressing the embedding layer (Lan
et al., 2019; Reid et al., 2021).

Our method aims to find the best number of
ranks for each operation. As a result, we will show
our method is effective across different choices of
weighting matrices (Eq. 3) or no weighing matrix
(Eq. 2). For weighted SVD, we choose two kinds
of weighting matrix: Fisher information Weighted
SVD (FWSVD) (Hsu et al., 2021) and Importance
Weighted SVD (IWSVD). For IWSVD, the impor-
tance is calculated by directly following the defini-
tion from (Molchanov et al., 2019), which is based
on the first-order Taylor expansion.

For all tasks, we use pre-trained language models
as a start, then the model is fine-tuned on down-
stream tasks, like GLUE or language modeling
tasks. After that, we freeze the model weights, and
we train the HN based on Obj. 8. The model is
then compressed based on the number of ranks pro-
duced by the HN. Finally, the model is fine-tuned
again on downstream tasks or pre-training tasks.

When training the HN, we choose 4000 sam-
ples for GLUE tasks (Wang et al., 2019a). If the
dataset is smaller than 4000 samples, we use the
whole dataset to train the HN. For the language
modeling task, we train the HN for 2000 iterations.
ADAM (Kingma and Ba, 2015) is used to train
the HN with a constant learning rate 1× 10−3. λ
and γ in Obj. 8 is set to 16 and 10 for all experi-
ments. For all GLUE tasks, the other settings are
the default configuration from the HuggingFace

231

Task MRPC STSB COLA SST-2 MNLI QNLI QQP Avg ∆-Avg # Params
BERT-base 87.29 88.47 57.78 92.90 84.95 91.25 87.92 84.36 - 109.5M

SVD 0.00 17.68 2.05 63.88 36.60 49.46 46.56 30.89 −53.47 52.4M
+ fine-tuning 81.06 79.35 9.83 89.11 81.61 86.99 86.35 73.47 −10.89 52.4M

SVD+ARS (ours) 81.22 64.23 0.00 79.47 35.73 52.41 51.50 52.08 −31.38 52.6M
+ fine-tuning (ours) 81.42 82.85 27.62 89.22 83.07 87.50 86.68 76.91 −7.45 52.6M

IWSVD 1.42 23.54 0.00 72.48 41.59 49.51 57.54 35.15 −49.21 52.4M
+ fine-tuning 80.79 82.29 24.49 88.76 81.63 87.46 86.35 75.97 −8.39 52.4M

IWSVD+ARS (ours) 81.22 68.94 0.00 82.57 60.70 67.75 64.30 60.78 −23.58 52.6M
+ fine-tuning (ours) 84.87 86.09 45.25 90.02 82.97 88.78 87.13 80.73 −3.63 52.6M

FWSVD 0.00 36.95 15.69 72.02 40.62 49.46 52.81 36.59 −47.77 52.4M
+ fine-tuning 81.96 83.41 45.80 88.42 80.67 87.66 86.76 78.34 −6.02 52.4M

FWSVD+ARS (ours) 81.22 67.25 23.55 81.42 58.94 70.49 63.56 63.77 −20.59 52.6M
+ fine-tuning (ours) 85.48 86.19 48.79 90.94 82.84 88.45 87.04 81.39 −2.97 52.6M

Table 2: Results of GLUE benchmark when p = 0.33. The definition of ‘Avg’ and ’∆-Avg’ is same as Tab. 1.

(a) MRPC (b) STSB (c) COLA

Figure 2: The number of parameters vs. the performance after fine-tuning for FWSVD and FWSVD+ARS.

Transformer library. We defer other training details
of the language modeling task to the Appendix. All
of our implementations are based on the Hugging-
face Transformer library (Wolf et al., 2020) and
PyTorch (Paszke et al., 2019).

4.2 GLUE Results for BERT

The GLUE results are shown in Tab. 1. As intro-
duced previously, our method ARS is applied to
three baselines: FWSVD, IWSVD, and SVD. For
all methods, the uniform baseline from previous
works has 66.5M parameters, and it is achieved by
removing 67% ranks from the original model. For
ARS, the model has 65.1M parameters, which is
achieved by setting p in Obj. 8 to p = 0.48.

We present results before and after fine-tuning in
the table. It is clear that ARS can boost the perfor-
mance of the uniform SVD, IWSVD, and FWSVD.
In particular, before fine-tuning, SVD+ARS per-
forms better than SVD by 18.48 regarding aver-
age task performance (‘Avg’ in the table). After
fine-tuning, this gap is 3.19 between SVD and
SVD+ARS. By using Fisher Information or other
importance scores, the compressed model has a
much better performance across different tasks
since task related information is injected. With
these stronger baselines, our method continuously
improves their performance. For IWSVD, our

method is 21.32/2.21 (with/without fine-tuning),
better than the baseline on average task perfor-
mance. For FWSVD, our method again is better
than the baseline by 12.46 and 2.19 before and
after fine-tuning. In summary, ARS can still pro-
vide substantial improvements even with stronger
baselines.

Besides the comparison under the same weight-
ing mechanism, SVD+ARS has a similar or
even better performance than weighted SVD like
IWSVD and FWSVD. In particular, by finding
the proper number of ranks given each operation,
SVD+ARS has 60.48/81.61 average task perfor-
mance. At the same time, IWSVD has 45.96/80.93
average task performance, and the number for
FWSVD is 57.03/81.34. SVD+ARS is better
than IWSVD, and it has a similar performance as
FWSVD. From this perspective, we can say that
properly choosing the number of ranks is as im-
portant as building a good importance metric for
weighted SVD.

We further increase the compression rate, and
results are shown in Tab. 2. In this set-
ting, we remove 78% of ranks for the baseline
model, and we set p = 0.33 for the proposed
ARS. ARS improves the performance of SVD,
IWSVD, and FWSVD across different GLUE
tasks. More specifically, SVD+ARS is better

232

Task MRPC STSB COLA SST-2 MNLI QNLI QQP Avg ∆-Avg # Params
DistllBERT 88.73 86.13 49.75 90.37 82.07 89.2 86.74 81.86 - 66.9M

FWSVD 44.50 36.23 15.06 81.65 41.58 72.12 71.03 51.74 −30.12 45.5M
+ fine-tuning 88.12 84.37 32.44 88.07 79.71 87.35 85.65 77.96 −3.90 45.5M

FWSVD+ARS (ours) 81.22 79.10 21.85 86.01 68.64 79.77 77.10 70.53 −11.33 44.9M
+ fine-tuning (ours) 88.04 86.43 43.84 90.02 81.49 87.94 86.62 80.63 −1.23 44.9M

MobileBERT 89.69 87.24 51.16 90.94 83.41 90.54 86.70 82.81 - 24.6M
FWSVD 50.99 57.16 2.59 54.59 46.10 49.46 63.58 46.35 −36.46 19.5M

+ fine-tuning 87.50 86.37 34.42 88.07 81.16 86.67 86.23 78.63 −4.18 19.5M
FWSVD+ARS (ours) 81.22 81.71 3.60 76.83 73.65 64.62 75.74 65.34 −17.47 19.5M
+ fine-tuning (ours) 89.60 87.03 39.99 88.19 83.43 86.95 87.23 80.35 −2.46 19.5M

Table 3: Results of GLUE benchmark with compact models. The definition of ‘Avg’ and ’∆-Avg’ is same as Tab. 1.

(a) MRPC (b) STSB (c) COLA

Figure 3: The fine-tuning loss averaging from three different random seeds given p = 0.48 with BERT.

than SVD by 20.09/3.44 before and after fine-
tuning. IWSVD+ARS is 25.63/4.76 better than
IWSVD, and FWSVD+ARS is 27.18/3.05 better
than FWSVD. In general, with a more aggressive
compression rate, the advantage of ARS is more
obvious. In Fig. 2, we visualize the number of pa-
rameters vs. the performance for MRPC, STSB,
and COLA between FWSVD and FWSVD+ARS.
FWSVD+ARS outperforms FWSVD across nearly
all settings, which again demonstrates that select-
ing the proper number of ranks is important across
different compression rates.

With both compression rates (Tab. 1 and Tab. 2),
ARS is much more effective in retaining perfor-
mance before fine-tuning than SVD, suggesting
that adaptive selection of the number of ranks has
the potential for fine-tuning less/free compression.

4.3 GLUE Results for Compact Models

ARS already shows promising results when com-
pressing BERT, and a follow-up question is
whether it can improve the results on compact
models. To verify this, we apply FWSVD and
FWSVD+ARS on DistillBERT (Sanh et al., 2019)
and MobileBERT (Sun et al., 2020). We choose
FWSVD and FWSVD+ARS since they achieve
the best ∆-Avg on BERT. The overall results are
shown in Tab. 3.

For DistillBERT, we still uniformly remove
67% of ranks for FWSVD, and we let p =

Settings #Samples QQP SST-2 QNLI

FWSVD+ARS
4000 69.75 83.37 64.10
6000 76.91 84.63 77.76
8000 77.42 85.21 77.87

+fine-tuning
4000 86.97 91.06 89.68
6000 87.37 91.06 90.04
8000 87.57 91.28 90.48

Table 4: The effect of the number of samples.

Settings MRPC STSB COLA
w/o Rank Selection 81.66 (-7.74) 87.02 (-1.50) 44.84 (-10.17)
w/o hypernetwork 88.12 (-1.28) 88.31 (-0.22) 49.92 (-5.09)

w/o Ralign 88.90 (-0.50) 88.03 (-0.49) 53.50 (-1.51)
ARS 89.40 88.52 55.01

Table 5: Ablation study on BERT when p = 0.48.

0.48 for FWSVD+ARS. Clearly, FWSVD+ARS
performs better than FWSVD for DistillBERT,
and the gap is 18.79/2.67 regarding average
task performance before and after fine-tuning.
For MobileBERT, we uniformly remove 40% of
the ranks for FWSVD, and we set p = 0.75
for FWSVD+ARS. FWSVD+ARS outperforms
FWSVD by 18.99/1.71 with or without fine-
tuning. In short, ARS continuously improves low-
rank factorization for compact models like Mobile-
BERT or DistillBERT.

4.4 Compression on LLaMA-7B

In this section, we applied our method to LLaMA-
7B. We removed around 75% of parameters for
this setting. We compared our method with three

233

(a) MRPC (b) STSB (c) COLA

Figure 4: The task loss averaging from three different random seeds given p = 0.48 with BERT when learning the
number of ranks.

Tasks BoolQ HellaSwag OBQA WinoGrande ARC-e ARC-c Average #Params
LLaMA-7B 74.98 76.18 42.6 70.01 72.85 44.71 63.56 6.7B
LLM-Pruner 61.47 47.56 35.2 55.09 46.46 28.24 45.67 3.4B

Scratch 57.13 39.16 29.4 49.64 41.96 24.57 40.31 1.8B
WSVD 60.46 46.62 31.4 55.25 47.81 26.45 44.67 1.8B

WSVD+ARS 63.27 50.97 32.0 56.67 51.89 26.71 46.92 1.7B

Table 6: Comparison results with LLaMA-7B.

baselines: (1) training from scratch with a similar
number of parameters, (2) WSVD with uniform
rank selections, and (3) LLM-pruner (Ma et al.,
2023). For WSVD, ARS, and Scratch settings, the
compressed models are fine-tuned for 576 A-100
GPU hours, which is less than 1% of the cost for
training LLaMA-7B. More training and evaluation
details are presented in the appendix. The results
are shown in Tab. 6. From the table, we can see that
our proposed ARS achieves the best average per-
formance on these 6 tasks. LLM-Pruner performs
better on OBQA and ARC-c, but the number of pa-
rameters doubles compared to ARS. LLM-Pruner
and our method use two different ways to fine-tune
model weights, where LLM-Pruner is fine-tuned
with LoRA (Hu et al., 2021) on Alpaca (Taori et al.,
2023). Our results suggest that fine-tuning with
the pre-training setting is more promising than
LoRA+Alpaca for a larger compression rate. Train-
ing from scratch shows a much worse performance
suggesting that compression techniques could be
an alternative way to create models with different
sizes given limited training budgets.

4.5 Further Analysis
To better understand our method, we present further
analysis regarding different perspectives of ARS.
(1) The Number of Samples. In Tab. 4, we show
the impact of the number of samples when training
the HN. For some datasets, increasing the number
of samples for the HN is very helpful such as QQP
and QNLI. For SST-2, the impact is not obvious.
Increasing the number of samples may have some

benefits, but the benefit of using too many sam-
ples is marginal. The reason is that, unlike model
weights, the search space for the number of ranks is
much smaller, and the performance gain becomes
less obvious when there are enough samples.

(2) Ablation Study. In Tab. 5, we present the ab-
lation study results on MRPC, STSB, and COLA.
‘w/o Rank Selection’ means we ignore the property
of SVD and use the index to perform element-wise
selections. Under this setting, we find a significant
performance drop. We also plot the training loss
in Fig. 3. Clearly, the element-wise rank selection
hurts the structure of low-rank factorization, mak-
ing it much more difficult to regain performance
by fine-tuning. This suggests that we should follow
the property of SVD instead of ignoring it. ‘w/o
hypernetwork’ means that we use a simple base-
line with element-wise binary gates and keep other
settings intact. In this setting, the performance has
an obvious drop, and we found it harder to reach
the pre-defined compression rate p, and it is gen-
erally more difficult to optimize (takes more steps,
oscillating of training losses). Without Ralign, our
method suffers from an obvious performance de-
crease, which verifies the benefit of encouraging
masks to follow the sorted singular values from
SVD.

(3) Effectiveness of HN. We plot the task loss
when learning the number of ranks with or without
using HN in Fig. 4, which is also the setting of
‘w/o hypernetwork’ in Tab. 5. It is clear that our
method can find a better solution and achieve a

234

Device Name Quantization Model Model Size Per Token Time Tokens Per Sec

S23 Ultra 12GB
8-bit

Llama-7B 7.6 GB 301.3ms 3.3
ARS-1.7B 1.9 GB 55.7 ms 17.9

4-bit
Llama-7B 4.0 GB 221.8 ms 4.5
ARS-1.7B 1.1 GB 47.1 ms 21.3

Table 7: Generation speed comparison with our method
and the original Llama-7B model

Settings #Params WikiText PTB C4

ARS

4.1B 115.62 183.12 117.76
3.3B 404.49 581.23 389.44
2.5B 1177.74 522.99 1100.35
1.7B 3893.10 4286.49 3621.82

+fine-tuning

4.1B 15.98 20.65 19.07
3.3B 17.07 21.99 19.93
2.5B 18.53 23.75 21.35
1.7B 20.54 26.82 23.53

Table 8: The effect of different pruning rates. We report
the perplexity on WikiText, PTB, and C4.

much faster convergence rate with HN on MRPC,
STSB, and COLA. No doubt, HN largely improves
the efficiency when learning the number of ranks.
The plots of the R loss are shown in the Appendix.
(4) Generation Speed Comparison. In Tab. 7, we
further show the generation speed comparison be-
tween ARS 1.7B and Llama-7B. Both models are
deployed on the mobile device: S23 Ultra 12GB.
In short, the generation speed increases as the num-
ber of parameters decreases. If both models are
quantized to 8 bits, then the generation speed of
the ARS 1.7B model is around 4.7× faster than
the original model. If both models are quantized
to 4 bits, then the generation speed of our model is
around 5.4× faster than the original model.
(5) The Effect of Different Pruning Rates for
Llama-7B. We present the result before and after
fine-tuning in Tab. 8. The fine-tuning setting for
this experiment is quite short, the model is only
fine-tuned on around 0.16B tokens. After a short
fine-tuning, the perplexity of the model can be
quickly recovered. To recover the general abil-
ity of the original model, it still requires a longer
fine-tuning period.

5 Conclusion

In this paper, we proposed a new algorithm that
adaptively selects the number of ranks for low-rank
approximation of language models. We proposed
to use a hypernetwork to predict the number of
ranks for each operation. The predicted number of
ranks is regularized using the SVD property and
is encouraged to produce top-k-like binary masks.
Our method resolved the issue with the ordinary
masking that resulted in element-wise rank selec-

tions, delivering stable performance gain in a com-
prehensive collection of experiments. The exten-
sive results also show our advantage over previous
low-rank methods with uniform rank selections.

References
Stella Biderman, Hailey Schoelkopf, Quentin Anthony,

Herbie Bradley, Kyle O’Brien, Eric Hallahan, Mo-
hammad Aflah Khan, Shivanshu Purohit, USVSN Sai
Prashanth, Edward Raff, et al. 2023. Pythia: A suite
for analyzing large language models across training
and scaling. arXiv preprint arXiv:2304.01373.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The Pile: An
800gb dataset of diverse text for language modeling.
arXiv preprint arXiv:2101.00027.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black,
Anthony DiPofi, Charles Foster, Laurence Golding,
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff,
Jason Phang, Laria Reynolds, Eric Tang, Anish Thite,
Ben Wang, Kevin Wang, and Andy Zou. 2021. A
framework for few-shot language model evaluation.

Shangqian Gao, Feihu Huang, Yanfu Zhang, and Heng
Huang. 2022. Disentangled differentiable network
pruning. In European Conference on Computer Vi-
sion, pages 328–345. Springer.

Shangqian Gao, Burak Uzkent, Yilin Shen, Heng Huang,
and Hongxia Jin. 2023a. Learning to jointly share
and prune weights for grounding based vision and
language models. In The Eleventh International Con-
ference on Learning Representations.

Shangqian Gao, Zeyu Zhang, Yanfu Zhang, Feihu
Huang, and Heng Huang. 2023b. Structural align-
ment for network pruning through partial regular-
ization. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 17402–
17412.

Gene H Golub and Christian Reinsch. 1971. Singular
value decomposition and least squares solutions. In
Linear algebra, pages 134–151. Springer.

Shaopeng Guo, Yujie Wang, Quanquan Li, and Junjie
Yan. 2020. Dmcp: Differentiable markov channel
pruning for neural networks. In Proceedings of the
IEEE/CVF conference on computer vision and pat-
tern recognition, pages 1539–1547.

235

https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li,
and Song Han. 2018. Amc: Automl for model com-
pression and acceleration on mobile devices. In Pro-
ceedings of the European conference on computer
vision (ECCV), pages 784–800.

Charles Herrmann, Richard Strong Bowen, and Ramin
Zabih. 2020. Channel selection using gumbel soft-
max. In Computer Vision–ECCV 2020: 16th Euro-
pean Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XXVII, pages 241–257. Springer.

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou,
Yilin Shen, and Hongxia Jin. 2021. Language model
compression with weighted low-rank factorization.
In International Conference on Learning Representa-
tions.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Ting Hua, Yen-Chang Hsu, Felicity Wang, Qian Lou,
Yilin Shen, and Hongxia Jin. 2022. Numerical opti-
mizations for weighted low-rank estimation on lan-
guage models. In Proceedings of the 2022 Confer-
ence on Empirical Methods in Natural Language
Processing, EMNLP 2022, Abu Dhabi, United Arab
Emirates, December 7-11, 2022, pages 1404–1416.
Association for Computational Linguistics.

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categori-
cal reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2019.
Tinybert: Distilling bert for natural language under-
standing. arXiv preprint arXiv:1909.10351.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR (Poster).

François Lagunas, Ella Charlaix, Victor Sanh, and
Alexander M Rush. 2021. Block pruning for faster
transformers. arXiv preprint arXiv:2109.04838.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Yang Liu. 2019. Fine-tune bert for extractive summa-
rization. arXiv preprint arXiv:1903.10318.

Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo,
Xin Yang, Kwang-Ting Cheng, and Jian Sun. 2019.
Metapruning: Meta learning for automatic neural
network channel pruning. In Proceedings of the
IEEE/CVF international conference on computer vi-
sion, pages 3296–3305.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.
Llm-pruner: On the structural pruning of large lan-
guage models. arXiv preprint arXiv:2305.11627.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri
Frosio, and Jan Kautz. 2019. Importance estima-
tion for neural network pruning. In Proceedings of
the IEEE/CVF conference on computer vision and
pattern recognition, pages 11264–11272.

Matan Ben Noach and Yoav Goldberg. 2020. Compress-
ing pre-trained language models by matrix decompo-
sition. In Proceedings of the 1st Conference of the
Asia-Pacific Chapter of the Association for Compu-
tational Linguistics and the 10th International Joint
Conference on Natural Language Processing, pages
884–889.

Razvan Pascanu and Yoshua Bengio. Revisiting nat-
ural gradient for deep networks. arXiv preprint
arXiv:1301.3584.

Razvan Pascanu and Yoshua Bengio. 2014. Revisit-
ing natural gradient for deep networks. In In Inter-
national Conference on Learning Representations
(ICLR).

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning
library. In Advances in Neural Information Process-
ing Systems 32, pages 8024–8035. Curran Associates,
Inc.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392.

Esteban Real, Alok Aggarwal, Yanping Huang, and
Quoc V Le. 2019. Regularized evolution for image
classifier architecture search. In Proceedings of the
aaai conference on artificial intelligence, volume 33,
pages 4780–4789.

Machel Reid, Edison Marrese-Taylor, and Yutaka Mat-
suo. 2021. Subformer: Exploring weight sharing for
parameter efficiency in generative transformers. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 4081–4090.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

236

https://aclanthology.org/2022.emnlp-main.91
https://aclanthology.org/2022.emnlp-main.91
https://aclanthology.org/2022.emnlp-main.91
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Victor Sanh, Thomas Wolf, and Alexander Rush. 2020.
Movement pruning: Adaptive sparsity by fine-tuning.
Advances in Neural Information Processing Systems,
33:20378–20389.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W Mahoney, and Kurt
Keutzer. 2020. Q-bert: Hessian based ultra low
precision quantization of bert. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 8815–8821.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for bert model com-
pression. arXiv preprint arXiv:1908.09355.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. Mobilebert: a
compact task-agnostic bert for resource-limited de-
vices. arXiv preprint arXiv:2004.02984.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2019a.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. In 7th Inter-
national Conference on Learning Representations,
ICLR 2019.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. 2019b.
Structured pruning of large language models. arXiv
preprint arXiv:1910.04732.

Genta Indra Winata, Andrea Madotto, Jamin Shin,
Elham J Barezi, and Pascale Fung. 2019. On
the effectiveness of low-rank matrix factorization
for lstm model compression. arXiv preprint
arXiv:1908.09982.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,

Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. 2022.
Structured pruning learns compact and accurate mod-
els. In Association for Computational Linguistics
(ACL).

Zeyu Zhang, Thuy Vu, Sunil Gandhi, Ankit Chadha, and
Alessandro Moschitti. 2022. Wdrass: A web-scale
dataset for document retrieval and answer sentence
selection. CIKM ’22, page 4707–4711, New York,
NY, USA. Association for Computing Machinery.

Zeyu Zhang, Thuy Vu, and Alessandro Moschitti. 2021.
Joint models for answer verification in question an-
swering systems. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 3252–3262, Online. Association for
Computational Linguistics.

Zeyu Zhang, Thuy Vu, and Alessandro Moschitti. 2023.
Double retrieval and ranking for accurate question
answering. In Findings of the Association for Compu-
tational Linguistics: EACL 2023, pages 1751–1762,
Dubrovnik, Croatia. Association for Computational
Linguistics.

237

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.1145/3511808.3557678
https://doi.org/10.1145/3511808.3557678
https://doi.org/10.1145/3511808.3557678
https://doi.org/10.18653/v1/2021.acl-long.252
https://doi.org/10.18653/v1/2021.acl-long.252
https://doi.org/10.18653/v1/2023.findings-eacl.130
https://doi.org/10.18653/v1/2023.findings-eacl.130

A Limitations

Our work adaptively learns the number of ranks for
each layer for individual tasks. As a result, the limi-
tation of our method is that we always need to find a
new configuration of the number of ranks for a new
task, where the learned number of ranks for pre-
vious tasks can not be re-used on new tasks. This
limitation brings additional computational costs for
each new task. Fortunately, this additional cost is
trivial on large datasets. For example, it takes 2.2
V100 GPU hours to train BERT on MNLI. Training
HN on 4000 samples costs around 0.1 V100 GPU
hours on this task.

Alternatively, if we can use some statistics to
capture the dataset distribution and incorporate it
to learn the number of ranks, we may be able to pre-
dict the proper configuration of the number of ranks
based on some statistics about the data distribution
of the new task. However, this may substantially
increase the training time for HN since the problem
becomes much more complex.

B The Architecture of Hypernetwork

Table A1: The architecture of hypernetwork.

Input z

Bi-GRU(32,64)→ LayerNorm→ GeLU

Linearl(128, Nl)→Outputs ol, l = 1, · · · , L

As we discussed in the paper, the Hypernetwork
is composed of linear layers and Bi-GRUs, and now
we present the architecture of the HN in Tab. A1.
z is initially sampled from a normal distribution,
and it is then fixed during training. Outputs ol are
continuous values. We use the following equation
to covert it into ml:

ml = round(sigmoid((ol + g + b)/τ)), (9)

where sigmoid(·) is the sigmoid function, round(·)
is the rounding function, g is sampled from Gumbel
distribution (g ∼ Gumbel(0, 1)), b is a constant
value to make sure HN starts from the full rank, and
τ is the temperature hyper-parameter. As shown
in Eq. 9, straight-through Gumbel-Sigmoid (Jang
et al., 2016) are used to produce the final binary
vector m. For all experiments, we set τ = 0.4 and
b = 3.0.

Dataset Tables Models p r

GLUE

Tab. 1 BERT-base 0.48 0.33
Tab. 2 BERT-base 0.33 0.22
Tab. 3 DistllBERT 0.48 0.33
Tab. 3 MobileBERT 0.75 0.60

Pile Tab. 6 LLaMA-7B 0.24 0.15
WikiText-103 Tab. A4 Pythia-160m 0.48 0.36

Table A2: Choice of p for different models. p is the
remained number of parameters divided by the total
parameters. ‘r’ represents the ratio of ranks uniformly
preserved by SVD, IWSVD, and FWSVD.

C Implementation and Training Details

For BERT based models on GLUE tasks (Wang
et al., 2019a), we use Huggingface (Wolf et al.,
2020) codes for experiments, which is under
Apache 2.0 license. We use the lit-llama https:
//github.com/Lightning-AI/lit-llama, also
with Apache 2.0 license, codes for fine-tuning
the Pythia (Biderman et al., 2023) model on the
WikiText (Merity et al., 2016) dataset. The lit-
llama code is also used to fine-tune the compressed
LLaMA-7B models on Pile (Gao et al., 2020).

GLUE (Wang et al., 2019a) contains nine En-
glish sentence understanding tasks, which cover a
broad range of domains, data quantities, and dif-
ficulties. Pile (Gao et al., 2020) is an 825 GiB
English text corpus targeted at training large-scale
language models. The Pile is constructed from
22 diverse high-quality subsets—both existing and
newly constructed—many of which derive from
academic or professional sources. The WikiText
language modeling dataset (Merity et al., 2016) is
a collection of over 100 million tokens extracted
from the set of verified Good and Featured arti-
cles on Wikipedia. The dataset is available under
the Creative Commons Attribution-ShareAlike Li-
cense. We follow all intended usage of licenses of
the datasets and codebase we used.

For all GLUE tasks, we train the HN on 4000
samples (randomly sampled) for 8 epochs. If the
dataset has less than 4000 samples, we train the HN
on the whole dataset for 8 epochs. For both HN
training and BERT training, we set the mini-batch
size to 32, and it is trained on 1 Nvidia-V100 GPU.

For the language modeling task, we directly use
the pre-trained Pythia-160m model and fine-tune it
on the WikiText-103 dataset. We set the sequence
length to 512, and the mini-batch size is 64. The
initial learning rate is 2 × 10−5, and the learning
rate is linearly decayed. We also list choices of p
for different tasks and choices of the preserved ratio

238

https://github.com/Lightning-AI/lit-llama
https://github.com/Lightning-AI/lit-llama

(a) MRPC (b) STSB (c) COLA

(d) MRPC (e) STSB (f) COLA

Figure A1: The number of parameters vs. the performance after fine-tuning for SVD/IWSVD and with our ARS
variants.

(a) MRPC (b) STSB (c) COLA

Figure A2: The parameter regularization loss R averaging from three different random seeds given p = 0.48 with
BERT when learning the number of ranks.

Figure A3: Perplexity for different compression rates
before fine-tuning on the WikiText-103 dataset.

of ranks by SVD, IWSVD, and FWSVD in Tab. A2.
The model is trained for 24,000 iterations in total.
We use 2 Nvidia-A100 GPUs for this experiment.

For LLaMA-7B, we set p = 0.24 and we train
HN on the Pile validation dataset on 2 Nvidia-A100
GPUs for 4000 iterations. We use the constant
learning rate 1 × 10−3 for this stage. After com-
pression, the model is trained on Pile (Gao et al.,
2020) training set with 8 Nvidia-A100 GPUs, mini-

batch size 48, block size 2048, and a start learn-
ing rate of 5 × 10−5. We use the cosine sched-
uler for learning rate decay, and the final learn-
ing rate is 5 × 10−6. The model is trained for
210,000 steps and the training can be completed
within 3 days. The total training tokens are around
20B. Our training code is built on lit-llama: https:
//github.com/Lightning-AI/lit-llama. We
use llm-eval-harness (Gao et al., 2021) to evalu-
ate the compressed model.

D Importance Calculation

In this section, we will briefly review the Fisher
Information and the other importance scores used
in our paper. The Fisher Information measures the
amount of information that an observable dataset
D carries about a model parameter w. More specif-

239

https://github.com/Lightning-AI/lit-llama
https://github.com/Lightning-AI/lit-llama

(a) MRPC - BERT (b) WikiText - Pythia-160m

Figure A4: The number of ranks selected by FWSVD+ARS for different tasks.

ically,

IFI
w =E[

∂

∂w
(log p(D|w))2]

≈ 1

|D|

|D|∑

i=1

(
∂

∂w
L(f(xi;w), yi))2.

For IWSVD, the importance score follows the
definition from (Molchanov et al., 2019):

IImp
w = (

∂L
∂w

w)
2

.

E Additional Results

We further provide the result of #Params vs. per-
formance for SVD/IWSVD and our ARS variants
in Fig. A1. SVD+ARS and IWSVD+ARS clearly
outperform SVD/IWSVD for almost all compres-
sion rates. We also visualize the perplexity be-
fore fine-tuning for different compression rates in
Fig. A3. FWSVD+ARS outperforms FWSVD at
every compression rate for the number of ranks.
At a higher compression rate, the perplexity of
FWSVD+ARS is often a magnitude lower than
WSVD, which shows the advantage of adaptive
selections of the number of ranks.

In Fig. A4, we visualize the number of ranks se-
lected by ARS across each operation. In Fig. A4a,
ARS allocates more ranks for early to middle lay-
ers for MRPC. In Fig. A4b, ARS allocates more
ranks for both early and late layers for WikiText.
The difference between MPRC and WikiText is
probably because the language modeling task fo-
cuses on both input contexts and output predictions,
and MRPC only needs to measure whether input
sentences are equivalent and it is not complex. In
summary, ARS can produce different selections of
the number of ranks based on different tasks.

To provide a more detailed understanding on the
effectiveness of HN, we plot the parameter regular-
ization loss R with or without HN. The R loss is
normalized between 0 and 1 for better visualization.

Figure A5: Training loss on WikiText.

In Fig. A2, we can see that our method with HN
can quickly reduce the parameter loss R. Without
HN, the R loss keeps bumping and it seems hard
to reach the desired parameter budget without HN.

F Language Modeling Task with Pythia

We further apply our method to the language mod-
eling task on WikiText-103 (Merity et al., 2016)
dataset. Results are shown in Tab. A4. From the ta-
ble, we can see that FWSVD+ARS performs much
better than FWSVD. In particular, FWSVD+ARS
compresses 6% more parameters than FWSVD,
and the perplexity of it is 3.07 and 3.24 lower
than FWSVD on the test and validation splits.
FWSVD+ARS even performs better than the base-
line on the test split. These results again demon-
strate the importance of selecting the number of
ranks across different tasks. In Fig. A5, we visual-
ize the training loss of FWSVD and FWSVD+ARS
during fine-tuning on WikiText. FWSVD+ARS
always starts at a lower loss value, and the gap be-
tween FWSVD and ARS is maintained till the end
of training. By properly choosing the number of
ranks, we obtain a model more suitable for the task,
making it easier to regain performance.

G Comparison with Pruning Methods

We provide further comparison results against
structural pruning methods in Tab. A3. For
IE (Molchanov et al., 2019), we built this struc-
tural pruning baseline for compression language

240

Task MRPC STSB COLA SST-2 MNLI QNLI QQP Avg # Params
IE (Molchanov et al., 2019) 45.58 64.90 8.04 66.92 48.82 49.48 50.70 47.77 66.8M

+ fine-tuning 87.03 86.74 38.12 89.01 83.86 88.29 85.92 79.58 66.8M
IWSVD+ARS (ours) 81.58 76.93 23.97 83.94 51.88 77.58 75.05 67.28 65.1M
+ fine-tuning (ours) 88.13 88.23 52.88 91.40 83.86 89.91 87.59 83.14 65.1M

CoFiPruning (Xia et al., 2022) 87.70 86.90 43.16 89.50 82.94 87.73 86.35 80.61 66.7M
WSVD+ARS+fine-tuning (ours) 89.40 88.52 55.01 91.06 83.68 89.68 87.41 83.54 65.1M

Table A3: Comparison against structural pruning methods.

Settings Test (ppl) Val (ppl) #PT #PM ↓ #PM
Pythia-160m 25.09 24.97 162.3m 85.0M -

FWSVD 18331.07 20525.75 123.2M 46.0M 45.9%
+fine-tuning 28.05 29.07 123.2M 46.0M 45.9%

FWSVD+ARS 3020.17 3041.04 118.0M 40.8M 52.0%
+fine-tuning 24.98 25.83 118.0M 40.8M 52.0%

Table A4: Results of the language modeling task on
WikiText-103. ‘PT’ represents the total number of pa-
rameters. ‘PM’ represents the number of model param-
eters excluding the Embedding layer. ’ppl’ represents
perplexity.

models based on the original method. The train-
ing and fine-tuning settings are the same as our
method. We compared it with IWSVD+AES since
they use the same importance. Our method has a
better average task performance before and after
fine-tuning. For CoFipruning (Xia et al., 2022),
We use the GitHub repository of CoFipruning, and
modify some hyperparameters to build a fair com-
parison baseline. We set the fine-tuning epoch of
CoFipruning to 3 epochs which is the same as our
method. In addition, the first stage of CoFipruning
is reduced to 20 epochs for small datasets and 5
epochs for large datasets. Recall that our method
first trains the model for 3 epochs for each task and
the hypernetwork is trained at most for 1000 steps.
As a result, even though we reduced the training
time for CoFipruning, it still has a larger computa-
tional cost than our method. In addition, we turned
off the knowledge distillation of CoFipruning since
our method does not rely on any form of knowledge
distillation. Our method still has a clear advantage
in this setting.

241

