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Abstract

Supernet training of LLMs is of great interest in
industrial applications as it confers the ability
to produce a palette of smaller models at con-
stant cost, regardless of the number of models
(of different size / latency) produced. We pro-
pose a new method called Multistage Low-rank
Fine-tuning of Super-transformers (MLFS) for
parameter-efficient supernet training. We show
that it is possible to obtain high-quality encoder
models that are suitable for commercial edge
applications, and that while decoder-only mod-
els are resistant to a comparable degree of com-
pression, decoders can be effectively sliced for
a significant reduction in training time.

1 Introduction

Given their sizes up to billions of parameters, (Raf-
fel et al., 2020; Brown et al., 2020), it is challenging
for enterprises to fine-tune Large Language Models
(LLMs), and furthermore they are not suitable for
deployment on edge devices with limited memory
and computational power. We wish to enable LLMs
on edge environments for enterprise use cases. This
requires the following two capabilities. (1) Accom-
modating a variety of edge device hardware: A
single fine-tuned model is not optimal across the
spectrum of devices. For industrial applications, a
palette of fine-tuned LLMs is required for different
hardware. (2) Dynamically changing resource lev-
els: At run-time, the available resources on edge
devices evolve over time, and appropriate model
should be dynamically selected based on the avail-
able resources of each device.

A considerable amount of research has focused
on compressing LLMs (Zhu et al., 2023; Sanh et al.,
2019; Mukherjee and Awadallah, 2020; Mukherjee
et al., 2021; Jiao et al., 2020; Hsieh et al., 2023).
Methods that train a single small model guided by
a large teacher model such as DistilBERT (Sanh
et al., 2019) and BERT-PKD (Sun et al., 2019), ei-
ther achieve limited compression or do not scale to

a large number of deployment devices. Supernet
training methods (Hou et al., 2020; Xu et al., 2021;
Cai et al., 2019; Kundu et al., 2023; Lou et al.,
2021; Jawahar et al., 2023) were introduced to ad-
dress these limitations: multiple smaller subnets
within the supernet are trained simultaneously with
weight-sharing. This one-time training approach
produces a palette of smaller models, helping miti-
gate the computational cost of fine-tuning a model
for each deployment scenario. However, the full-
parameter supernet training approach is impractical
when fine-tuning of an LLM is required for mul-
tiple deployment scenarios, limiting its utility for
enterprises.

Parameter-efficient fine-tuning (PEFT) methods
such as Low-Rank Adaptation (LoRA) reduces
the number of trainable parameters by allowing
only rank-decomposition matrices to be trained
while freezing the pre-trained weights of the model.
PEFT methods, however, are not applicable to
supernet training due to the implications on the
weight-shared sub-networks. Our work bridges
this gap to enable efficient fine-tuning of LLMs for
edge devices. Our contributions are:

1. We propose a parameter-efficient, distillation-
based approach for supernet training of LLMs.

2. We devise a gradient scaling scheme to im-
prove convergence speed of any form of su-
pernet training.

3. We demonstrate significant compression of
encoder models for edge. We highlight the
limits of comparable compression for decoder
models, while demonstrating a huge reduction
in the steps needed for convergence.

2 Related Work

Classical compression methods have been used for
LLMs including pruning (McCarley et al., 2019;
Voita et al., 2019), low rank approximation (Ma
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et al., 2019; Lan et al., 2019), and quantization
(Shen et al., 2020; Zafrir et al., 2019; Bhandare
et al., 2019). Knowledge distillation (KD) is
adopted in BERT-PKD (Sun et al., 2019), tiny-
BERT (Jiao et al., 2020), and distilBERT (Sanh
et al., 2019) and (Gu et al., 2023) in MiniLLM to
distill knowledge from the layers of a large trans-
former model to a smaller one. See also the survey
(Zhu et al., 2023). All these existing methods pro-
duce a single compressed model, unsuitable for
edge scenarios with multiple deployment devices
having varying computational capability.

Neural architecture search (NAS) based on rein-
forcement learning (Zoph and Le, 2016) and evo-
lutionary algorithms (Real et al., 2019; Zhu et al.,
2019) trains every possible architecture and is very
slow. Weight-sharing NAS was thus developed: in
Guo et al. (2020); Cai et al. (2018), the building
blocks in the same layer are isolated as all architec-
tures are single paths. Weight-sharing NAS does
not scale well to large architecture search spaces,
hence, weight-entangled NAS, where subnets with
common parts share weights, was introduced.

For resource-constrained edge deployment, su-
pernet training (Cai et al., 2019; Kundu et al., 2023;
Chen et al., 2021b; Xu et al., 2021; Gao et al.,
2022; Dong et al., 2022) was developed as a mode
of jointly training multiple sub-networks (subnets)
with entangled weights: one trains the supernet
only once for all deployment scenarios. Cai et al.
(2019) introduced an elastic convolutional neural
network with "progressive shrinkage", where larger
subnets are trained first. Recent works have im-
proved sampling strategies, e.g. the sandwich rule
with in-place distillation (Yu et al., 2020), attentive
sampling (Wang et al., 2021), stochastic nature gra-
dient (Zhang et al., 2021), or post-training sampling
(Lou et al., 2021). Our work is related to supernet
training for transformer models (Hou et al., 2020;
Zhang et al., 2021; Wang et al., 2022, 2020; Chen
et al., 2021b). This gradient scaling technique can
be used with any of the above supernet methods.

Parameter-efficient fine-tuning (PEFT) has been
of great benefit in fine tuning LLMs. BitFit
(Ben Zaken et al., 2022) updates the bias terms
in pre-trained models while freezing the remain-
ing parameters. LoRA (Hu et al., 2022) decom-
poses attention weight gradients into low-rank ma-
trices to reduce the number of trainable parame-
ters. AdaLoRA (Zhang et al., 2023) and QLoRA
(Dettmers et al., 2023) further improve LoRA (Hu
et al., 2022). Note that PEFT allows fine-tuning a

base model on a single GPU but does not produce
smaller models. None of the PEFT methods can be
used for weight-sharing supernet training.

3 Solution Design

For use in enterprise settings, the solution must
allow fine-tuning of models on a small GPU foot-
print. In addition, inference cost in terms of storage
must be minimised. We therefore design a solution
which does not store the full size model check-
point for every downstream task but only the frozen
weights of the pre-trained base model and the low
rank matrices. For inference in commercial edge
use cases, we wish to enable storing the desired
models locally for a wide variety of edge device re-
source requirements. We thus develop an approach
where storage is minimised, storing only one base
model and as many low rank adapter matrices as
there are target model size variations, where low-
rank adapters are very small. If the model is stored
locally on an edge device, our proposed slicing op-
eration takes place where the supernet fine-tuning
is performed and the desired model is downloaded
for inference. The slicing operation takes place for
each model size-task combination and each result-
ing subnet can be cached for inference.

4 Problem Formulation

First, we provide notation. Given a transformer
model with architectural configuration Φ and
weights W, we denote its forward-pass mapping
by fΦ(·;W) : X → Y . We consider the output
space Y to be the set of all non-negative vectors in
Rν with elements summing to 1, where ν denotes
the number of classes / vocabulary size). With
slight abuse of notation, we write the forward-pass
mapping of an input x ∈ X through a transformer
model Φ as ŷ, z,h = fΦ(x;W), where ŷ ∈ Y de-
notes the predicted probability distribution over the
(class labels) vocabulary, z denotes the vector of
logits, and h represents a tuple of features such as
hidden state vectors and attention values from dif-
ferent transformer layers. Note that ŷ = σ(z),
where σ is the standard soft-max function that
maps a vector of logits into a probability vector.
Given a training data set Dtrain ⊂ X × Y , model
weights W are learnt by minimizing training loss:

argmin
W

[
LΦ(W) := E

[
ℓ[ fΦ(x;W) , y ]

] ]
, (1)

where E denotes expectation over training example
(x, y) drawn uniformly at random from Dtrain and
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ℓ denotes a loss function. Most commonly, ℓ is
chosen to be a task specific loss function, ℓtask,
such as cross-entropy (i.e., CE[·, ·]) for classification
or causal language modeling loss for generative
models.

Next, we introduce the super-transformer and
related terminologies. We define three types of net-
works - Teacher network, Super-transformer (su-
pernet) and Sub-transformer (subnet). The teacher
is a fixed network with the same configuration as
the pre-trained transformer. A super-transformer is
a dynamic model whose architectural dimensions
(embedding dimension, number of heads, number
of layers, etc.) are configurable at run time. The
maxnet (resp. minnet) is the largest (resp. small-
est) network in the super-transformer’s architecture
space. Weight entanglement (weight-sharing) al-
lows super-transformer weights to be used across
sub-transformers, which are subsets of the super-
transformer. Pre-trained transformer weights ini-
tialise the super-transformer.

The dynamic nature of a super-transformer is
explicitly specified via a setA, called configuration
space, consisting of architectural configurations
of all sub-transformer models under consideration.
The definition of a super-transformer also includes
how the configuration Φ ∈ A is to be mapped to
a unique transformer model fΦ. A weight-sharing
super-transformer uses a set of shared weights WSup

to define all sub-transformer models’ weights. This
is done through a weight projection operator Π
that slices (selects an appropriate subset of) the
super-transformer’s weights WSup into weights of a
sub-transformer model:

WΦ := ΠΦ(WSup) , ∀Φ ∈ A. (2)

The aim of a weight-sharing super-transformer is
to simultaneously train all the transformer models
{fΦ(·;ΠΦ(W)) : X → Y |Φ ∈ A} through the
shared weights WSup. A typical training objective
for super-transformers is the training loss averaged
over all model configurations in A:

argmin
WSup

[
LSup(WSup) := E

[
LΦ

(
ΠΦ(WSup)

)]]
, (3)

where E denotes expectation over model configu-
ration Φ drawn uniformly at random from A and
LΦ, as defined in (1), is averaged training loss for
configuration Φ. Super-transformer weights, WSup,
are learnt with stochastic gradient (denoted ∇̂) of

the super-transformer’s loss LSup estimated as

∇̂WLSup(WSup)=
1

K

K∑

j=1

∇̂WLΦj

(
ΠΦj(WSup)

)
, (4)

∇̂WLΦ(WΦ)=
1

|B|
∑

i∈B
∇Wℓ

[
fΦ
(
xi;WΦ

)
, yi

]
, (5)

where {Φ1, · · · ,ΦK} are K sub-transformer con-
figurations sampled from A to approximate the
expectation in (3) and B is a mini-batch of train-
ing examples sampled from Dtrain to approximate
the expectation in (1). Fine-tuning LLM super-
transformers is computationally challenging in en-
terprise use cases as it involves computing gradi-
ents of sub-transformers’ loss functions with re-
spect to a huge number of parameters.

5 MLFS

We therefore developed Multistage Low-rank Fine-
tuning of Super-transformers (MLFS). Given a
teacher model with configuration ΦTch and pre-
trained weights Wpretrain

Tch , we assume that its
weights (denoted WTch) can be fine-tuned on the
given task by learning low-rank matrices A0, B0

on top of pre-trained weights Wpretrain
Tch :

WTch := Wpretrain
Tch +A0 ∗B0, (7)

where A0, B0 are of (low) rank r. Note that
pre-trained weights Wpretrain

Tch remain unchanged
during super-transformer fine-tuning. The low-
rank matrices, A0 and B0, are learnt by minimiz-
ing the cross-entropy loss of the teacher model
fΦTch(·;WTch) : X → Y over the training data
set Dtrain. Specifically, we perform E0 epochs of
fine-tuning on the teacher to learn A0, B0. This
is stage-0 of the multistage fine-tuning algorithm.
We denote the teacher weights obtained at the
end of stage-0 by WTch. We now define a super-
transformer with maxnet configuration the same as
the teacher’s. Thus the super-transformer’s weights
WSup are of the same size as the teacher weights
WTch). To fine-tune the super-transformer weights
WSup, in each of the subsequent stages, we freeze
WTch and propose learning two stage-specific low-
rank matrices As, Bs, of the same rank, r, as
A0, B0, that are shared across all sub-transformer
models in that stage. To be precise, we impose
the following structure on the weights of the sub-
transformers at stage-s:

WSup := WTch +
∑2

s=1As ∗Bs,
WΦ = ΠΦ(WSup), ∀Φ ∈ A.

(8)
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Algorithm 1 Multistage Low-rank Fine-tuning of Super-transformers (MLFS)

Input: Transformer model (teacher) with configuration ΦTch & off-the-shelf pre-trained weights Wpretrain
Tch ,

model configuration spaceA consisting of smaller (than ΦTch) transformer architectures of interest,Dtrain:
fine-tuning data set for the target task, r: rank of the low-rank matrices and distillation factor α ∈ [0, 1].
Loss functions: Target task loss ℓtask, knowledge distillation loss ℓKD, feature distillation loss ℓFD.
Multistage Training:

1: for stage s = 0, 1, 2 do
2: Initialize the low-rank matrices {As, Bs} to be learned at stage s .
3: for iteration = 1, ... do
4: Get a mini-batch B of training examples from data set Dtrain: {(xi, yi) ∈ Dtrain | i ∈ B}.
5: Load the super-transformer model with weights WSup ←Wpretrain

Tch +
∑s

l=0Al ∗Bl.
6: As := {Φ1,Φ2, · · · } ← sample_sub-transformers(A, stage = s). [Φ1 is the maxnet].
7: for each Φj ∈ As do
8: Load the sub-transformer model Φj with weights WΦj := ΠΦj (WSup).
9: nj := # of fine-tuning weights in model configuration Φj .

10: Compute forward-pass on the sub-transformer Φj : ŷij , z
i
j ,h

i
Φj
← fΦj(x

i;WΦj ), ∀i ∈ B.
11: For the case of maxnet (Φ1) set the distillation factor α to 0.
12: Find the loss: lossij ← (1−α) ℓtask[ŷ

i
j , y

i] +α
(
ℓKD[z

i
j , z

i
1] + ℓFD[h

i
Φj
,hi

Φ1
]
)
, ∀i ∈ B.

13: Compute gradients (∇Asloss
i
j ,∇Bsloss

i
j) using backward-pass on sub-transformer Φj .

14: end for
15: Update As, Bs using the gradients (∇̂AsLSup, ∇̂BsLSup) of the super-transformer’s loss:

∇̂WLSup =
1

|As|
∑

Φj∈As

(
n1

nj

)γ

∇̂WLΦj , ∇̂WLΦj =
1

|B|
∑

i∈B
∇Wlossij , ∀W ∈ {As, Bs}. (6)

16: end for
17: end for
Output: {As, Bs}2s=0 and fine-tuned super-transformer weights: WSup = Wpretrain

Tch +
∑2

s=0As ∗Bs.

Stage-s of the fine-tuning process involves learning
only the low-rank matrices, As, Bs, by minimizing
the super-transform loss as in (3). In stage-1, we
sample sub-transformer models by sampling dif-
ferent widths from the super-transformer keeping
the depth (number of layers) same as the maxnet.
In stage-2, we sample sub-transformer models by
sampling different widths as well as depths. We
always sample the maxnet model from the super-
transformer as the 1st sub-transformer model, Φ1,
at every iteration. We call this Multistage Low-
rank Fine-tuning of Super-transformers (MLFS)
and present it in Algorithm 1.

Proposition 1 Let the individually fine-tuned
weights of a subnet, Φ, be expressed as WΦ =
ΠΦ(W

pretrain
Tch ) + ∆WΦ. Then, MLFS has the fol-

lowing structure on ∆WΦ:

∆WΦ = ΠΦ

(∑2
s=0As ∗Bs

)
, ∀Φ ∈ A, (9)

where {As, Bs}s=0,1,2 are low-rank matrices
shared across all sub-transformers Φ ∈ A.

To illustrate the computational savings, recall
Wpretrain

Tch ∈ Rd×d, where d is typically of the or-
der 104 − 106. For rank r (typically < 10) for the
low-rank matrices: As ∈ Rd×r, Bs ∈ Rr×d, s =
0, 1, 2, where r ≪ d. Then, the number of param-
eters to be learnt in the MLFS approach is 6rd.
In contrast, full fine-tuning requires updating d2

parameters at every iteration.

Gradient Scaling For faster convergence of the
smaller sub-transformers within a super- trans-
former, we propose a novel weighted-combination
of the gradients of the sampled sub-transformers.

Proposition 2 Let 1st sampled sub-transformer,
Φ1, be the maxnet be in every iteration. Then the
scaled gradient of the super-transformer training
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loss, LSup, in Algorithm 1 is given by
∑K

j=1(n1/nj)
γ ∇WLΦj , (10)

where ∇W denotes gradient w.r.t. only those
weights that are being fine-tuned (in this case only
the LoRA matrices), nj denotes the actual number
of trainable weights in model configuration Φj and
γ ≥ 1 is a hyper-parameter.

Proof: Each sub-transformer gradient in (10),
gradj , is scaled by (n1/nj), which is obtained
from the relative weighting of the loss functions.
Let Lj(W) denote the j-th sub-transformer’s loss.
Using first-order Taylor expansion, we get:

LΦj (W+ δ) ≈ LΦj (W) + ⟨∇WLΦj (W), δ⟩,

where ⟨·, ·⟩ denotes inner (dot) product operation.
Therefore, the steepest possible decrease in the loss
function LΦj can be approximated as:

∆LΦj ≈ ∥∇WLΦj (W)∥1 |δ|max ≈ O(nj)|δ|max,

where we approximate the ∥ · ∥1 norm using the
zero-th norm, i.e., number of non-zero elements
and nj stands for the actual number of trainable
parameters in sub-transformer configuration Φj .
Since the decrease in the loss of a sub-transformer
model Φj is approximately proportional to the num-
ber of trainable model parameters (nj), we scale
the losses using (n1/nj)

γ , γ ≥ 1 so that training
losses of smaller sub-transformer models converge
at a rate similar to that of larger sub-transformer
configurations. Recall that n1 is the maximum
number of trainable parameters as 1st sampled sub-
transformer Φ1 is always the maxnet. □

Distillation Loss for Super-transformers:
Knowledge distillation is straightforward in a
fixed-network fine-tuning setting. However, it is
less so when fine-tuning a supernet, and in par-
ticular, fine-tuning a supernet using the proposed
multistage LoRA based approach. Specifically, the
subnets receive two types of knowledge distillation
(KD) from the teacher: (a) the usual KD loss that
utilizes the output logits of the teacher and (b)
distillation of features from transformer layers
(Jiao et al., 2020) of the teacher.

To define the distillation based losses pre-
cisely, let the forward-pass mapping of an in-
put training sample xi through sub-transformer
Φj be ŷij , z

i
j ,h

i
Φj
← fΦj(x

i;WΦj ), where hi
j :=

(hi,1
j , . . . , hi,l

j , . . .) with hi,l
j denoting the feature

vector from l-th layer of sub-transformer Φj . In
super-transformers, the model (maxnet) having
the largest configuration, Φ1, acts as the teacher
and knowledge distillation loss for all other sub-
transformers w.r.t the teacher is defined as

ℓKD[z
i
Φj
, ziΦ1

] = KL[σ(ziΦj
/t), σ(ziΦ1

/t) ], ∀j > 1,

where KL[·, ·] denotes the standard KL divergence
between two probability vectors, and t ≥ 1 is a
hyper-parameter called the temperature. Let dj
denote the embedding dimension (hidden size) in
sub-transformer Φj . We compute feature based
distillation loss by projecting features hi,l

Φj
∈ Rdj

to a low-dimensional space Rdlow :

ℓFD[h
i
Φj
,hi

Φ1
] =

∑

l

βl
j ∥Ul

jh
i,l
Φj
−Ul

1h
i,gj(l)
Φ1

∥22,

where gj maps each layer index of the sub-
transformer configuration Φj to that of the super-
transformer ( / maxnet Φ1). In this paper, we pro-
pose to share the maxnet’s feature projection ma-
trices {Ul

1 ∈ Rdlow×d1} across all sub-transformer
models. We do so by slicing the matrices {Ul

1}:

Ul
j := [U

gj(l)
1 ]Φj ∈ Rdlow×dj , (11)

where the operation [ ]Φj selects appropriate
subset of columns depending on the configura-
tion Φj . To reduce the number of user-chosen
hyper-parameters, we propose the following hyper-
parameter sharing: βl

j := βgj(l), ∀j, l = 1, 2, . . ..
Thus, apart from setting fewer hyper-parameters,
one needs to learn only maxnet’s feature projec-
tion matrices {Ul

1 : l = 1, 2, . . .}, making feature
distillation in a super-transformer setting compu-
tationally efficient. Additionally, we save compu-
tation through use of features only from a fixed
subset of maxnet layers for distillation across all
sub-transformers: i.e., we use the following subset
of maxnet layers: { gmin(l) : l = 1, . . . , Lmin},
where Lmin denotes the number of transformer lay-
ers in the smallest sub-transformer Φmin and gmin

maps layer indices of Φmin to that of maxnet Φ1.

6 Results on Encoder and Decoder LLMs

We report performance on encoder tasks using
GLUE (Wang et al., 2018) with BERTbase as the
teacher model ΦTch. For decoder LLMs, we use
Santacoder (Allal et al., 2023) and Codellama7B
(Rozière et al., 2023) on a python coding task using
bigcode/the-stack data (Kocetkov et al., 2022). We

56



40 50 60 70 80 90
# Parameters (M)

60

70

80

90
Ac

cu
ra

cy
 (%

)
Data set: SST2

TinyBERT
DistilBERT
PD-BERT
BERT-PKD
DynaBERT
MLFS

40 50 60 70 80 90
# Parameters (M)

60

70

80

90

Ac
cu

ra
cy

 (%
)

Data set: RTE

40 50 60 70 80 90
# Parameters (M)

60

70

80

90

Ac
cu

ra
cy

 (%
)

Data set: MRPC

75 100 125 150 175 200
Latency (ms)

60

70

80

90

Ac
cu

ra
cy

 (%
)

Data set: SST2

TinyBERT
DistilBERT
DynaBERT
MLFS

75 100 125 150 175 200
Latency (ms)

60

70

80

90

Ac
cu

ra
cy

 (%
)

Data set: RTE

75 100 125 150 175 200
Latency (ms)

60

70

80

90

Ac
cu

ra
cy

 (%
)

Data set: MRPC

Figure 1: Performance of task-specific BERT models produced by MLFS vs. other methods on 3 GLUE data sets.

report performance of the sub-transformer models
at the end of stage s = 2. On GLUE, we use the
train set for fine-tuning and the dev set for accu-
racy evaluation. For santacoder, we evaluate per-
formance using HumanEval (Chen et al., 2021a)
and report pass@1 scores. All experiments were
conducted using PyTorch on a single Nvidia A100
(40GB) GPU. Additional details on the experiment
settings are provided in the Appendix.

6.1 Performance of Encoder Models

We compare performance of encoder models ob-
tained with the MLFS approach against a static,
fixed model (BERT base) from (Zhang et al., 2021;
Hou et al., 2020), two popular distilled variants
of the fixed model: TinyBERT (Jiao et al., 2020)
and DistilBERT (Sanh et al., 2019), and models
trained using existing super-transformer methods
(DynaBERT (Hou et al., 2020). Figure 1 shows
the performance of the palette of models, from
a 45M param. minnet to full-size 110M maxnet.
Encoder models produced by MLFS are at par or
better than much costlier methods. Results of PD-
BERT, BERT-PKD are from (Zhang et al., 2021),
static BERT from (Zhang et al., 2021) for all ex-
cept MRPC for which we use (Hou et al., 2020).
Note that TinyBERT performs data augmentation
leading to higher accuracy but much longer compu-
tation time. We do not perform data augmentation
for fairness of the comparison to the other meth-
ods. The main observation is that MLFS provides
accurate, smaller encoder models at 1/4 the size of
the teacher and 1/3 its runtime latency on a single
GPU.

Figure 2: Ablation study on gradient scaling: MLFS
minnet convergence is improved using gradient scaling.

Ablation Study on Gradient Scaling In super-
net training, the weights of maxnet and subnets
are shared and trained simultaneously. The maxnet
tends to converge and overfit earlier than smaller
subnets. The different convergence rates renders
selecting a single supernet checkpoint for all net-
works difficult. Gradient scaling solves this by
speeding up convergence of the smaller subnets
to match that of the larger subnets or the maxnet.
Fig. 2 shows that gradient scaling improves minnet
convergence, indicated by lower minnet loss.

Figure 3: Ablation study on MLFS rank of A,B.
Maxnet (top: blue), minnet (bottom: green), and av-
erage of two medium-sized subnets (middle: orange).
Rank r = 8 is optimal for small and medium subnets.

Ablation Study on Rank in MLFS Finally, in
Fig. 3, we examines the impact of rank r of the
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matrices A,B on performance. Note that the ac-
tual number of parameters fine-tuned vary as we
vary the rank r. The aim is to provide good results
for the smaller networks. Here, rank r = 8 works
well across the GLUE data sets. Therefore, we use
rank r = 8 for A,B for all other MLFS experi-
ments. From the scale of the y-axis in 3, observe
that MLFS is not overly sensitive to the chosen
rank.

6.2 Performance of Decoder Models
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Figure 4: Performance of MLFS on a custom Santacoder
0.7B model using 10K/400K/1.2M training examples.

Data set size
Model size

0.5B 0.7B 0.9B
10K 4.5 8.6 13.4
400K 4.7 9.5 13.5

Table 1: HumanEval pass@1 (%) performance of 3 small
models produced by MLFS from Santacoder 1.1B.

Data set size
Model size

4.5B 5.3B 6B
200K 11.0 19.5 23.2
400K 14.0 28.1 30.5

Table 2: HumanEval pass@1 (%) performance of 3
small models produced by MLFS from CodeLlama-
7B-Python

Turning now to decoder models, we consider two
code-pre-trained LLMs, Santacoder (Allal et al.,
2023) and Codellama7B (Rozière et al., 2023).
We evaluate a custom 0.7B parameter Santacoder
model obtained from the 1.1B teacher. Due to an
inability to fine-tune on the full 24M coding exam-
ples, we use up to 1.2M. Fig. 4 shows that MLFS
pass@1 improves rapidly as number of tokens in-
creases from a low 10k to 400k to 1.2M examples,
only 5% of the 24M examples. Table 1 shows anal-
ogous results with 3 small MLFS models. The
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Figure 5: Convergence comparison of validation loss
while fine-tuning a custom model from random vs using
MLFS. MLFS achieves low validation loss much faster.

improvement in pass@1 indicates that the smaller
models retain the ability to learn from the larger
teacher. Again, from Table 2, we see that smaller
models produced by MLFS from CodeLlama-7B-
Python retain their ability to learn and improve
quickly as the number of examples increases. Note
that the full data set includes 24M examples; MLFS
achieves nearly 75% of the performance of fullsize
CodeLlama after less than 2% of the examples.

Contrary to encoder models, the compression
levels that retain sufficient performance of the
teacher with decoders is less. While MLFS re-
tains accuracy performance of encoder models at
1/4 the size of the teacher, the decoder models are
reduced to at most 2/3 the teacher’s size.

MLFS slicing of the teacher model can, however,
benefit decoder models by reducing substantially
the training/fine-tuning time needed compared to
a randomly-initialised model, as shown in Fig. 5
on Santacoder sliced from 1.1B to 0.7B. In other
words, when a smaller model is required for edge
inference, one can train it from a random initiali-
sation, or slice from a teacher as does MLFS, and
train starting from the sliced weights. The latter
significantly reduces training time as seen in the
validation loss curves. See (Samragh et al., 2023)
for a similar observation.

7 Perspectives

Enterprise users require an efficient way to fine-
tune LLMs for inference on edge devices of many
sizes. We developed MLFS for such edge deploy-
ment scenarios. We demonstrate its benefits on en-
coder LLMs. We show the limitation of compress-
ing decoder LLMs to a comparable degree; how-
ever, MLFS offers significant gains for smaller de-
coder training/fine-tuning by slicing from a larger
pre-trained teacher.
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Appendix

A Details of Experimental Set-up

Following (Hu et al., 2022), we use the fine-tuned
MNLI checkpoint to initialize the model weights
for experiments on small data sets such as RTE
and MRPC. In MLFS, the Low rank matrices are
added on the QKV vectors and the intermediate
size of feed-forward network (FFN) layers. We set
βl = 0.1∀l in feature distillation loss and choose
distillation factor α = 0.9. For training, we use a
maximum sequence length of 128; effective batch
size of 128 for QQP, MNLI, QNLI, and 64 for the
other data sets. Training is done for a maximum
of 8 epochs for all GLUE data sets except SST-2
for which we allocate maximum 3 epochs. We
set an initial learning rate of 5e−4 for QNLI &
MNLI, and 1e−3 for other GLUE data sets. We use
rank r = 8 for the low rank matrices A,B unless
mentioned otherwise. We choose gradient scaling
hyper-parameter γ = 1 for SST-2 and γ = 2 for all
other data sets.

B Additional Experimental Results

First, we present additional results on distilling
Santacoder-1.1B model. In Fig. 6, we compare Hu-
manEval performance of a 0.7B Santacoder model
fine-tuned through full fine-tuning (FT) from ran-
dom initialisation vs. full-rank (non-LoRA) MLFS
with (α = 0.9) and without (α = 0) distillation.
The improvement in the evaluation numbers is re-
markable even after fine-tuning on up to only 5%
of the examples. In Fig. 7, we also show better
convergence of validation loss on the Santacoder
0.7B for MLFS with distillation loss (α > 0). This
demonstrates the benefit of MLFS distillation as
compared to full MLFS fine tuning of the sliced
model.
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Figure 6: Superior performance of supernet training
compared to other full fine-tuning based approaches on
three data sets with 10K/400K/1.2M examples.

0 10000 20000 30000 40000 50000
Iteration

1.2

1.3

1.4

1.5

Va
lid

at
io

n 
lo

ss

MLFS ( =0, r=8)
MLFS ( =0.9, r=8)

Figure 7: Convergence comparison of validation
loss while fine-tuning a custom model using MLFS
with/without distillation.

Finally, in Fig. 8, we show performance of a
spectrum of models distilled from BERTbase using
MLFS on 3 more GLUE data sets: QNLI, QQP,
and MNLI.
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Figure 8: Performance of task-specific BERT models produced by MLFS vs. other methods on 3 GLUE data sets.
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