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Abstract

Healthcare tasks such as predicting clinical
outcomes across medical and surgical popu-
lations, disease prediction, predicting patient
health journeys, are typically approached with
supervised learning on task-specific datasets.
We demonstrate that language models begin
to learn these tasks without any explicit super-
vision when trained on a new dataset of bil-
lions of administrative claims, which essen-
tially encapsulates the practice of medicine,
offering a unique perspective on patient care
and treatment patterns. Our model, Medi-
ClaimGPT, a 125M parameter Transformer
demonstrates strong zero-shot predictive capa-
bilities, accurately forecasting patient health
events across four evaluation datasets, with
its capabilities further demonstrated in various
downstream tasks. A significant application of
MediClaimGPT is in generating high-quality,
clinically plausible synthetic claims data, en-
hancing healthcare data utility while preserving
patient privacy. This research underscores the
potential of language models in handling com-
plex datasets and their strategic application in
healthcare and related fields.

1 Introduction

Administrative claims data, a crucial component
of the healthcare sector, adeptly captures the in-
tricacies of the practice of medicine. It provides
extensive coverage (Raghupathi and Raghupathi,
2014), capturing detailed patient histories through
insurance reimbursement records. These data, rich
in diagnostic and procedural information encoded
in medical codes like ICD-10-CM (Watzlaf et al.,
2007) and CPT (Chandola et al., 2013), are pivotal
in understanding healthcare delivery and patient
care patterns (see Appendix A for more details).
However, their complexity challenges traditional
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data processing, necessitating innovative AI ap-
proaches (Thesmar et al., 2019).

The emergence of Large Language Models
(LLMs) signifies a transformative phase in data
analytics, particularly within the healthcare sec-
tor, where their ability to process vast, un-
structured datasets has groundbreaking poten-
tial (Thirunavukarasu et al., 2023; Reddy, 2023).
While language models like BioBERT (Lee et al.,
2020), SCIBERT (Beltagy et al., 2019), Pub-
MedBERT (Gu et al., 2021), and ClinicalBERT
(Alsentzer et al., 2019) have excelled in bio-
medical NLP tasks, and conversational models
such as Med-PaLM (Singhal et al., 2023a), Med-
PaLM 2 (Singhal et al., 2023b), ChatDoctor (Yunx-
iang et al., 2023), and Baize-health (Xu et al., 2023)
have shown impressive results in medical question-
naires, they exhibit limitations in fully grasping the
practice of medicine and predicting clinical out-
comes. These models, despite their advancements,
often lack the depth of understanding needed to ac-
curately predict patient-specific clinical outcomes,
a key aspect in the realm of medical practice and
decision-making support.

Prompt: Z23 0001A
Response: Z23 0002A
Prompt: L0174 M4802 M50222 |eoc| 20930
22551 22552 L8699 M4802 |eop|
Response: 22551 22845 M4802 M50222 |eoc|

Table 1: Examples of MediClaimGPT interpreting medical
codes: The first row illustrates vaccine sequence prediction
(COVID-19 vaccine dosages) and the second demonstrates
surgical likelihood assessment for spinal conditions. These
examples highlight MediClaimGPT’s capacity in zero-shot
settings to generate clinically relevant predictions.

Our model, MediClaimGPT, aims to bridge this
gap, it is uniquely trained on a vast dataset of 70M
patients and 3B claims, focusing on the compre-
hensive healthcare journey of each patient. By
structuring this dataset to represent each patient as
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a sequence of medical claims, encoded as medi-
cal codes, MediClaimGPT is tailored for medical
practice intricacies. Its performance in zero-shot
scenarios and various downstream tasks highlights
its broad utility in healthcare data analytics. A
key breakthrough of MediClaimGPT is its applica-
tion in generating synthetic claims data that closely
mirrors real data’s statistical properties while ensur-
ing anonymity, addressing privacy concerns in line
with HIPAA guidelines (Kapushion, 2003; Ness
et al., 2007). This innovation not only aids in
balancing data disparities but also enhances the
scope of healthcare research within privacy compli-
ance frameworks (Giuffrè and Shung, 2023; Rankin
et al., 2020).

While each medical code has an associated En-
glish description, we opted to use only the codes
themselves. This decision was driven by the ob-
servation that converting codes in the claims to
descriptions often disrupts textual coherence, lead-
ing to disjointed sentences and a lack of semantic
flow. Moreover, using descriptions significantly in-
creases the context length. For instance, converting
a year of a patient’s health history into descrip-
tions resulted in an average sequence length of
32K tokens using the tiktoken library. Consider-
ing that clinical event prediction typically requires
more than two years of data, the sequence length
becomes impractically long. Additionally, in zero-
shot settings where the model predicts health out-
comes from a patient’s history (see Table 1), us-
ing descriptions complicates the process, as gener-
ated text would require mapping back to codes for
any operational use. This requirement could lead
to new challenges in automated medical coding
(Catling et al., 2018; Dong et al., 2022) if the de-
scriptions vary even slightly from standard codes.

In this paper, we present how LLMs like Medi-
ClaimGPT can effectively manage and process
complex healthcare data, setting a new benchmark
in healthcare analytics. Our contributions are as
follows:

• Developing a novel method to structure ad-
ministrative claims data into a format suitable
for LLMs.

• Utilizing zero-shot prompting with Medi-
ClaimGPT for forecasting patient health out-
comes.

• Setting new performance benchmarks in
healthcare analytics through downstream mod-
eling using MediClaimGPT.

• Demonstrating MediClaimGPT’s capability

to produce realistic synthetic data while pre-
serving patient privacy.

The rest of the paper is organized as follows. We
review related work in Section 2. Our approach
for training MediClaimGPT is described in Section
3. The experiments and evaluations are detailed
in Section 4. Finally, we conclude the paper in
Section 5, reflecting on the significant impact and
potential of our work in transforming healthcare
data analytics.

2 Related Work

The application of machine learning to adminis-
trative claims data have been explored in various
studies. (MacKay et al., 2021) demonstrated the
potential of claims data in predicting clinical out-
comes across medical and surgical populations,
while (Langenberger et al., 2023; Osawa et al.,
2020; Maisog et al., 2019) focused on identifying
high-cost patients. (Kural et al., 2023; Chowdhury
et al., 2021) leveraged this data for disease predic-
tion. (König et al., 2021) calculated in-hospital
mortality using claims data, highlighting the versa-
tility of machine learning in handling various facets
of healthcare.

Certain studies in (Choi et al., 2016a,b; Medsker
and Jain, 2001; Ma et al., 2017; Baytas et al., 2017),
utilized diagnosis codes from EHRs and employed
advanced neural network methods for clinical event
prediction. Representation learning methods have
also been explored (Huang et al., 2019; Miotto
et al., 2016), with techniques ranging from BERT
to stacked denoising encoders to model EHR data.
(Singh et al., 2020) proposed direct prediction of
diagnosis and procedure codes from EHR. How-
ever, these EHR-based approaches face limitations
due to data inconsistency and sparse availability
(Kohane et al., 2021). While (Sun et al., 2020)
attempted to harness external knowledge bases to
augment insufficient EHR data for disease predic-
tion, it still suffers from low coverage.

To the best of our knowledge, our work appears
to be the first to leverage administrative claims
data, specifically medical codes, for pre-training a
large language model to predict clinical outcomes.
This approach uniquely utilizes the extensive de-
tails available in claims data, filling a notable gap
in the current research landscape by applying gen-
erative language models in a novel context.
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3 The Proposed Framework

This section outlines our approach, starting with
task definition, followed by our structuring method-
ology, and concluded with our tokenization process
and training criterion.

3.1 Task Definition

Our task is centered on causal language modeling
within the framework of healthcare claims data.
This approach is pivotal in capturing the temporal
and sequential nature of medical events as reflected
in claims data.

D =
P⋃

p=1

{
C⋃

c=1

{e1, e2, . . . , e|E|}
}

(1)

The dataset D consists of P patients, each asso-
ciated with a collection of C claims. For each
patient pi, where i ∈ {1, . . . , P}, we have a series
of claims ci1, ci2, . . . , ciC . Each claim cij , with
j ∈ {1, . . . , C}, comprises a set of medical codes
{eij1, eij2, . . . , eijk}, where each code eijk is ei-
ther a diagnosis code (ICD-10-CM) or a procedural
code (CPT).

The task is to utilize a causal language model
M to predict the next code in the sequence given
the prior codes. For a given sequence of codes
eij = (eij1, eij2, . . . , eij(k−1)) for the jth claim
of the ith patient, the model aims to predict the
next code eijk. The prediction of the next code
is modeled as a probability distribution over the
possible codes, formulated as:

P (eijk|eij ; Θ) = M(eij) (2)

where Θ denotes the parameters of the language
model. The model’s task across the dataset D is
to sequentially predict the next event medical code
eijk, thereby generating the sequence of codes for
each claim in a causally coherent manner, reflec-
tive of the actual progression of medical events
documented in the claims data.

3.2 Data Processing

The preprocessing involves converting raw claims
into structured token sequences (See Appendix
B for more details). Each claim, a record of
patient-provider encounters, aggregates diagno-
sis and procedure codes in a non-sequential or-
der. To align these for language modeling, a
sorting algorithm σ organizes the codes within
each claim cij into a clinically logical sequence,
c′ij = σ(eij1, eij2, . . . , eijk). Furthermore, patient

claims C ′
i = c′i1, c

′
i2, . . . , c

′
iC are chronologically

ordered as

D′ =
P⋃

p=1

{sort(Cp, date)} (3)

forming a temporally sequenced dataset, enabling
the model to learn the chronological order of medi-
cal events.

3.2.1 Utilization of Special Tokens
Specialized delimiter tokens are employed at var-
ious levels within the claims data to enhance the
causal language model’s understanding of its struc-
ture. Intra-claim codes are concatenated with a
white space character in their sorted order, rep-
resented as c∗ij = e′ij1 e′ij2 . . . e′ijk. For inter-
claim concatenation, claims of a patient are com-
bined using a unique delimiter |eoc|, denoting
each claim as a distinct entity, expressed as p∗i =

c∗i1 |eoc| c∗i2 |eoc| . . . |eoc| c∗iC . Similarly, inter-
patient data is differentiated using |eop|, critical
for batched data processing, formalized as D∗ =

p∗1 |eop| p∗2 |eop| . . . |eop| p∗P .

N6320 G0378 |eoc| Z91048 M1710 O0903
K9289 |eoc| N6322 76642 |eop| Z09 76642
|eoc| Z1239 O9989 |eoc| Z03818 U0003 |eop|

Table 2: Example of structured claims data for two
patients

3.2.2 Tokenization & Training
We have developed a tokenizer uniquely designed
for our dataset. This tokenizer was trained on the
claims data D∗ with a vocabulary size of V . The
special tokens discussed in Section 3.2.1 remain
unchanged by the tokenizer, as these tokens serve
as crucial delimiters in the data and are preserved in
their original form to maintain context of the medi-
cal data. The tokenization utilizes Byte-Level Byte
Pair Encoding (BPE) (Sennrich et al., 2015), creat-
ing a fixed-size vocabulary and thereby, balancing
medical language specificity with the model’s ca-
pacity.

The learned tokenizer is applied to our dataset
D∗, resulting in a sequence of tokens. The causal
language model M is trained on these sequences to
predict the correct subsequent token in a sequence,
with a loss function, typically cross-entropy, mea-
suring the accuracy of predictions

Loss(Θ) = −
L∑

t=1

logP (t|t− 1, t− 2, . . . , 1;Θ) (4)
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where P (t|t − 1, t − 2, . . . , 1;Θ) represents the
model’s assigned probability to the true next token
t, given all previous tokens in the sequence.

4 Experiments

4.1 Pre-training
MediClaimGPT architecture closely aligns with the
OpenAI’s GPT-2 (Radford et al., 2019), features a
12-layer transformer with 768-dimensional states
across 12 attention heads, totaling about 125M pa-
rameters. It is trained on a 1024-token context size
to capture detailed patient histories, it uses a batch
size of 512. Its vocabulary size of 2048 optimizes
the handling of medical code hierarchies while
maintaining computational efficiency. The model
demonstrates a token-level perplexity of 1.02 on
the validation dataset, indicating high predictive
accuracy.

4.2 Evaluation Setup
We evaluate MediClaimGPT in the following key
areas:

• Zero-shot prediction: to assess zero-shot pre-
diction capabilities for clinical outcomes us-
ing patient health history, without modifying
the model’s weights.

• Downstream prediction: to assess the
model’s performance in downstream clinical
classification tasks.

• Synthetic data generation: to validate the
model’s ability in generating clinically plausi-
ble synthetic data while ensuring privacy.

Our study examines four clinical cohorts, each
focused on predicting a specific clinical event,
thereby forming our evaluation datasets Deval.
These datasets include: 1) Spinal fusion surgery
(11k patients) (Tarpada et al., 2017), 2) Knee re-
placement (54k patients) (Carr et al., 2012), 3) Hip
replacement (24k patients) (Ferguson et al., 2018),
and 4) Endoscopy (251k patients) (Berci and Forde,
2000). These datasets were curated with the help of
clinical experts and each dataset comprises patient
claims from a two-year observation window, with
a binary target indicating whether the clinical event
occurs in a subsequent six-month prediction win-
dow. These events were selected for their potential
for therapeutic prevention (Lopez et al., 2020) and
significant cost implications (Kaye et al., 2020). A
clinical event is identified by specific procedures
or diagnoses, such as codes (22532, 22533, etc.)

for spinal fusion surgery. In zero-shot settings, pa-
tient claims from the observation period serve as
input for MediClaimGPT, with its output analyzed
to assess the occurrence of clinical events. For
downstream prediction tasks, these claims train a
classifier using binary targets. The methodology
for synthetic data generation involves fine-tuning
on these claims as detailed in Section 4.5.

4.3 Zero-shot prediction
To evaluate MediClaimGPT in zero-shot settings,
the patient’s claim history from the observation pe-
riod (input) was provided to the model as ‘prompt‘,
the generated output was later analyzed for clinical
event occurence. For example, if the output con-
tained any of the code from (22532, 22533, etc.),
the patient is likely to have a spinal fusion surgery
in the future. This approach is particularly valu-
able as it leverages the model as-is, without chang-
ing the weights of the model or even downstream
modeling. See Appendix C.1 for more details on
experimental setup.

Dataset Qualitative Quantitative

CR Recall F1

Spinal Fusion 4.48 0.64 0.78
Knee Replacement 4.40 0.57 0.72
Hip Replacement 4.83 0.51 0.68

Endoscopy 4.04 0.62 0.76

Table 3: Evaluation of MediClaimGPT in Zero-Shot predic-
tion.

Qualitative Evaluation: The clinical relevance
of MediClaimGPT’s outputs was gauged by a panel
of medical experts. They rated the outputs on a 1-
5 scale, with 5 denoting high clinical relevance
and 1 signifying low relevance despite potential
accuracy. The Clinical Relevance (CR) (averaged
and shown in Table 3), suggest that the model’s
outputs were generally perceived as meaningful
and relevant from a clinical perspective across all
datasets.

Quantitative Evaluation: MediClaimGPT was
quantitatively evaluated for its ability to correctly
identify clinical events. As reported in Table 3,
it demonstrated varying degrees of recall and F1
scores across the datasets, with Spinal Fusion and
Endoscopy showing relatively higher performance.

The evaluation results underscore Medi-
ClaimGPT’s efficacy in zero-shot clinical event
prediction, with solid quantitative metrics and high
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qualitative ratings, especially in scenarios like
Hip Replacement. This showcases the model’s
proficiency in a domain traditionally reliant
on curated supervised datasets and significant
domain expertise for feature engineering. Medi-
ClaimGPT’s success in predicting clinical events
without such datasets is a notable advancement.
However, variability in performance across
different conditions suggests the need for further
refinement, particularly in enhancing recall in
specific areas.

4.4 Downstream prediction

MediClaimGPT’s performance was rigorously eval-
uated in downstream prediction tasks using the di-
verse datasets in Deval. Our approach encompassed
a range of representations and models, bench-
marked against various baselines.

4.4.1 Representations and Baselines

We established a baseline using a Bag-of-codes ap-
proach (Zhang et al., 2010), where each patient is
represented by the count of their medical codes.
Because each medical code has an English descrip-
tion associated to it, we explored the potential of
pre-trained transformer-based language models, in-
cluding BioBERT (Lee et al., 2020), Universal Sen-
tence Encoder (USE) (Cer et al., 2018), and ADA-
002 (Brown et al., 2020), to convert medical codes
into fixed-length representations. Additionally, a
custom skip-gram based word2vec model (Mikolov
et al., 2013) was also trained on the claims corpus
to represent medical codes.

MediClaimGPT’s embeddings were utilized in
two distinct manners: 1) representing individual
medical codes and 2) representing the entire patient
claim sequence as fixed-length vectors, denoted as
MediClaimGPT-C and MediClaimGPT-E respec-
tively in Table 4.

4.4.2 Model Training and Evaluation

Models using Logistic Regression (Kleinbaum
et al., 2002) and Bi-LSTM with Attention (Bi-
LSTM+Att) (Zhou et al., 2016) were trained with
these representations. MediClaimGPT-FT rep-
resents the direct fine-tuning of MediClaimGPT
for classification tasks. The Receiver Operating
Characteristic Area Under the Curve (ROC-AUC)
(Huang and Ling, 2005) was employed as the per-
formance metric. Additional details on experimen-
tal setup are provided in Appendix C.2.

4.4.3 Results
As illustrated in Table 4, MediClaimGPT’s
variants consistently surpassed other models
in performance across various datasets. No-
tably, MediClaimGPT-E and MediClaimGPT-FT
achieved the highest levels of classification accu-
racy. Although MediClaimGPT-C demonstrated
commendable performance, its reliance solely on
code-based embeddings limits its contextual un-
derstanding. These outcomes highlight the ef-
fectiveness of MediClaimGPT’s embeddings (in
MediClaimGPT-E) in capturing nuanced features
and the model’s enhanced capability through fine-
tuning (in MediClaimGPT-FT). The standout per-
formance of MediClaimGPT-FT particularly em-
phasizes the model’s proficiency in direct classifi-
cation tasks, confirming its potential as a versatile
tool in healthcare data analysis.

Representation Model Spinal
Fusion

Knee
Replace-

ment

Hip
Replace-

ment

Endos-
copy

Bag-of-codes Logistic 90.8 92.5 86.1 76.8
USE Bi-LSTM+Att 90.5 91.9 88.1 83.3

BioBert Bi-LSTM+Att 89.3 91.0 86.3 79.2
ADA-002 Bi-LSTM+Att 90.1 92.2 88.8 83.2
Skip-gram Bi-LSTM+Att 91.4 92.4 88.8 83.8

MediClaimGPT-C Bi-LSTM+Att 92.0 96.1 89.0 86.0
MediClaimGPT-E Logistic 93.1 97.6 95.3 93.2

MediClaimGPT-FT - 97.9 97.6 95.4 93.2

Table 4: Classification peformance (in ROC-AUC) across dif-
ferent representations and models for downstream prediction
tasks.

4.5 Synthetic data generation

Dataset Fidelity Utility Privacy

PR PS TSTR TRTR BLEU ROUGE2

Spinal Fusion 1.009 1.005 0.85 0.93 0.09 0.11
Knee Replacement 1.011 1.005 0.90 0.94 0.09 0.14
Hip Replacement 1.013 1.005 0.88 0.91 0.10 0.11

Endoscopy 1.012 1.005 0.79 0.84 0.08 0.12

Table 5: Fidelity, Utility and Privacy metrics for synthetic
data evaluation.

To evaluate the utility of synthetic data (specifi-
cally, synthetic patient claims) generated by Medi-
ClaimGPT, it was fine-tuned on the evaluation
datasets, Deval. Special tokens, |pos| and |neg|,
were introduced to enable the fine-tuned model to
generate synthetic claims corresponding to positive
and negative samples, respectively.

Mft = FineTune(M,Deval, |pos|, |neg|) (5)

where Mft denotes the model after fine-tuning,
utilizing |pos| or |neg| as prompts for generating
the synthetic dataset. Additional details on the

431



Figure 1: Topic diversity between real and synthetic claims
for Spinal Fusion dataset. The attributes of the real and syn-
thetic population show clinical similarity.

experimental setup for fine-tuning and generation
of are provided in Appendix C.3.

4.5.1 Evaluation
Our evaluation framework for synthetic datasets
prioritizes fidelity, privacy (Mendelevitch and Lesh,
2021) and utility —key pillars ensuring synthetic
data quality and applicability. The results are out-
lined in Table 5.

Fidelity: Fidelity assessment confirms the sta-
tistical resemblance of synthetic data to real data.
It was assessed using perplexity (Hofmann, 2001)
and topic diversity (Wang et al., 2019). Perplexity
(lower the better) is calculated on real and syn-
thetic datasets (PR and PS). Given that PR and PS
scores are close to each other and that PS scores are
around 1.004-1.005 across all synthetic datasets -
indicates a close alignment of the model’s predic-
tions with actual data distributions, implying high
fidelity. Topic diversity was further analyzed using
the Clinical Classification Software (CCS) (HCUP,
2017), mapping codes to higher-level categories.
As Figure 1 shows, the significant overlap in CCS
categories between real and synthetic datasets un-
derscores the synthetic data’s authentic representa-
tion of diverse clinical scenarios.

Utility: To evaluate utility, we employed the
Train-Synthetic-Test-Real (TSTR) and Train-Real-
Test-Real (TRTR) approach (Sivakumar et al.,
2023), calculating ROC-AUC (Huang and Ling,
2005) for both. The TSTR scores ranged from 0.79
to 0.90, while TRTR scores were slightly higher,
ranging from 0.84 to 0.94. These results demon-
strate that the synthetic data, although slightly less
effective than real data, still holds significant utility
for training models, particularly in scenarios where
access to large volumes of real data may be limited.

Privacy: Privacy assessment ensures anonymity,
by ensuring minimal overlap between real and syn-
thetic datasets to minimize re-identification risks.
BLEU (Brants et al., 2007) and ROUGE2 (Gane-
san, 2018) metrics were used to evaluate this;
BLEU measures the precision of the synthetic data
against the real data, whereas ROUGE2 assesses
recall. These metrics are crucial in this context
because claims data inherently emphasizes the se-
quence of medical visits and specific diagnoses.
Lower scores in these metrics indicate greater pri-
vacy, as they suggest less resemblance to real pa-
tient histories. The BLEU scores ranged from 0.08
to 0.10, and ROUGE2 scores from 0.11 to 0.14,
confirming that the synthetic data maintains patient
privacy by not closely mirroring any individual real
patient’s history.

To summarize, the synthetic data generated by
MediClaimGPT exhibits high fidelity and utility
while effectively preserving privacy. This balance
is crucial for creating synthetic datasets that are
both functional for research and development pur-
poses and preserve patient privacy.

5 Conclusions And Future Work

In this work, we have introduced MediClaimGPT, a
large language model which has effectively learned
the practice of medicine when trained on a mas-
sive administrative claims dataset. We showcase
its proficiency in the zero-shot prediction of clin-
ical events and downstream classification tasks
via various healthcare datasets. Its application in
creating synthetic claims data, holds tremendous
promise for augmenting research and development,
as demonstrated by strong evaluation results for
fidelity, utility, and privacy. The proficiency of
MediClaimGPT’s embeddings (discussed in Sec-
tion 4.4.3), suggests that these embeddings can
also be effectively utilized for analytical segmen-
tation of patient populations and driving popula-
tion health management strategy (Bradley, 2013;
López-Martínez et al., 2020). Additionally, the gen-
erative capability of MediClaimGPT in forecasting
medical events for patients could lead to new oppor-
tunities for digital twins (Ahmadi-Assalemi et al.,
2020).

For future work, we aim to enrich Medi-
ClaimGPT by incorporating a wider range of med-
ical codes, such as laboratory and drug codes, en-
hancing its medical understanding. Additionally,
we plan to investigate novel methods for integrat-
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ing temporal information, like intervals between
claims and episodic timeframes, to refine its predic-
tive capabilities. These enhancements will lead to
more personalized and efficient care, and expand
the strategic application of LLMs in healthcare.

References
Gabriela Ahmadi-Assalemi, Haider Al-Khateeb,

Carsten Maple, Gregory Epiphaniou, Zhraa A
Alhaboby, Sultan Alkaabi, and Doaa Alhaboby. 2020.
Digital twins for precision healthcare. Cyber defence
in the age of AI, Smart societies and augmented
humanity, pages 133–158.

Emily Alsentzer, John R Murphy, Willie Boag, Wei-
Hung Weng, Di Jin, Tristan Naumann, and Matthew
McDermott. 2019. Publicly available clinical bert
embeddings. arXiv preprint arXiv:1904.03323.

Inci M Baytas, Cao Xiao, Xi Zhang, Fei Wang, Anil K
Jain, and Jiayu Zhou. 2017. Patient subtyping via
time-aware lstm networks. In Proceedings of the
23rd ACM SIGKDD international conference on
knowledge discovery and data mining, pages 65–74.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. Scibert:
A pretrained language model for scientific text. arXiv
preprint arXiv:1903.10676.

George Berci and Kenneth A Forde. 2000. History of
endoscopy. Surgical endoscopy, 14(1):5–15.

Paul S Bradley. 2013. Implications of big data ana-
lytics on population health management. Big data,
1(3):152–159.

Thorsten Brants, Ashok C Popat, Peng Xu, Franz J Och,
and Jeffrey Dean. 2007. Large language models in
machine translation.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Andrew J Carr, Otto Robertsson, Stephen Graves, An-
drew J Price, Nigel K Arden, Andrew Judge, and
David J Beard. 2012. Knee replacement. The Lancet,
379(9823):1331–1340.

Finneas Catling, Georgios P Spithourakis, and Sebastian
Riedel. 2018. Towards automated clinical coding.
International journal of medical informatics, 120:50–
61.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
et al. 2018. Universal sentence encoder. arXiv
preprint arXiv:1803.11175.

Varun Chandola, Sreenivas R Sukumar, and Jack C
Schryver. 2013. Knowledge discovery from massive
healthcare claims data. In Proceedings of the 19th
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 1312–1320.

Edward Choi, Mohammad Taha Bahadori, Andy
Schuetz, Walter F Stewart, and Jimeng Sun. 2016a.
Doctor ai: Predicting clinical events via recurrent
neural networks. In Machine learning for healthcare
conference, pages 301–318. PMLR.

Edward Choi, Mohammad Taha Bahadori, Jimeng Sun,
Joshua Kulas, Andy Schuetz, and Walter Stewart.
2016b. Retain: An interpretable predictive model for
healthcare using reverse time attention mechanism.
Advances in neural information processing systems,
29.

Mohammad Chowdhury, Eddie Gasca Cervantes, Wai-
Yip Chan, and Dallas P Seitz. 2021. Use of ma-
chine learning and artificial intelligence methods in
geriatric mental health research involving electronic
health record or administrative claims data: a system-
atic review. Frontiers in psychiatry, 12:738466.

Hang Dong, Matúš Falis, William Whiteley, Beatrice
Alex, Joshua Matterson, Shaoxiong Ji, Jiaoyan Chen,
and Honghan Wu. 2022. Automated clinical coding:
what, why, and where we are? NPJ digital medicine,
5(1):159.

Rory J Ferguson, Antony JR Palmer, Adrian Tay-
lor, Martyn L Porter, Henrik Malchau, and Sion
Glyn-Jones. 2018. Hip replacement. The Lancet,
392(10158):1662–1671.

Kavita Ganesan. 2018. Rouge 2.0: Updated and im-
proved measures for evaluation of summarization
tasks. arXiv preprint arXiv:1803.01937.

Mauro Giuffrè and Dennis L Shung. 2023. Harnessing
the power of synthetic data in healthcare: innova-
tion, application, and privacy. NPJ Digital Medicine,
6(1):186.

Xavier Glorot and Yoshua Bengio. 2010. Understanding
the difficulty of training deep feedforward neural net-
works. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics,
pages 249–256.

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto
Usuyama, Xiaodong Liu, Tristan Naumann, Jianfeng
Gao, and Hoifung Poon. 2021. Domain-specific lan-
guage model pretraining for biomedical natural lan-
guage processing. ACM Transactions on Computing
for Healthcare (HEALTH), 3(1):1–23.

CCS HCUP. 2017. Agency for healthcare research and
quality, rockville, md.

Thomas Hofmann. 2001. Unsupervised learning by
probabilistic latent semantic analysis. Machine learn-
ing, 42:177–196.

433



Jin Huang and Charles X Ling. 2005. Using auc and
accuracy in evaluating learning algorithms. IEEE
Transactions on knowledge and Data Engineering,
17(3):299–310.

Kexin Huang, Jaan Altosaar, and Rajesh Ranganath.
2019. Clinicalbert: Modeling clinical notes and
predicting hospital readmission. arXiv preprint
arXiv:1904.05342.

Meredith Kapushion. 2003. Hungry, hungry hipaa:
When privacy regulations go too far. Fordham Urb.
LJ, 31:1483.

Deborah R Kaye, Amy N Luckenbaugh, Mary Oerline,
Brent K Hollenbeck, Lindsey A Herrel, Justin B Dim-
ick, and John M Hollingsworth. 2020. Understanding
the costs associated with surgical care delivery in the
medicare population. Annals of surgery, 271(1):23.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

David G Kleinbaum, K Dietz, M Gail, Mitchel Klein,
and Mitchell Klein. 2002. Logistic regression.
Springer.

Isaac S Kohane, Bruce J Aronow, Paul Avillach, Brett K
Beaulieu-Jones, Riccardo Bellazzi, Robert L Brad-
ford, Gabriel A Brat, Mario Cannataro, James J
Cimino, Noelia García-Barrio, et al. 2021. What
every reader should know about studies using elec-
tronic health record data but may be afraid to ask.
Journal of medical Internet research, 23(3):e22219.

Sebastian König, Vincent Pellissier, Sven Hohenstein,
Andres Bernal, Laura Ueberham, Andreas Meier-
Hellmann, Ralf Kuhlen, Gerhard Hindricks, and An-
dreas Bollmann. 2021. Machine learning algorithms
for claims data-based prediction of in-hospital mor-
tality in patients with heart failure. ESC heart failure,
8(4):3026–3036.

Kamil Can Kural, Ilya Mazo, Mark Walderhaug,
Luis Santana-Quintero, Konstantinos Karagiannis,
Elaine E Thompson, Jeffrey A Kelman, and Ravi
Goud. 2023. Using machine learning to improve ana-
phylaxis case identification in medical claims data.
JAMIA open, 6(4):ooad090.

Benedikt Langenberger, Timo Schulte, and Oliver
Groene. 2023. The application of machine learn-
ing to predict high-cost patients: A performance-
comparison of different models using healthcare
claims data. PloS one, 18(1):e0279540.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2020. Biobert: a pre-trained biomedical language
representation model for biomedical text mining.
Bioinformatics, 36(4):1234–1240.

Cesar D Lopez, Venkat Boddapati, Alexander L
Neuwirth, Roshan P Shah, H John Cooper, and Jef-
frey A Geller. 2020. Hospital and surgeon medi-
care reimbursement trends for total joint arthroplasty.
Arthroplasty today, 6(3):437–444.

Fernando López-Martínez, Edward Rolando Núñez-
Valdez, Vicente García-Díaz, and Zoran Bursac. 2020.
A case study for a big data and machine learning
platform to improve medical decision support in pop-
ulation health management. Algorithms, 13(4):102.

Fenglong Ma, Radha Chitta, Jing Zhou, Quanzeng You,
Tong Sun, and Jing Gao. 2017. Dipole: Diagnosis
prediction in healthcare via attention-based bidirec-
tional recurrent neural networks. In Proceedings of
the 23rd ACM SIGKDD international conference on
knowledge discovery and data mining, pages 1903–
1911.

Emily J MacKay, Michael D Stubna, Corey Chivers,
Michael E Draugelis, William J Hanson, Nimesh D
Desai, and Peter W Groeneveld. 2021. Application of
machine learning approaches to administrative claims
data to predict clinical outcomes in medical and surgi-
cal patient populations. PLoS One, 16(6):e0252585.

José M Maisog, Wenhong Li, Yanchun Xu, Brian
Hurley, Hetal Shah, Ryan Lemberg, Tina Borden,
Stephen Bandeian, Melissa Schline, Roxanna Cross,
et al. 2019. Using massive health insurance claims
data to predict very high-cost claimants: a machine
learning approach. arXiv preprint arXiv:1912.13032.

Larry R Medsker and LC Jain. 2001. Recurrent neural
networks. Design and Applications, 5:64–67.

Ofer Mendelevitch and Michael D Lesh. 2021. Fidelity
and privacy of synthetic medical data. arXiv preprint
arXiv:2101.08658.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Riccardo Miotto, Li Li, Brian A Kidd, and Joel T Dud-
ley. 2016. Deep patient: an unsupervised represen-
tation to predict the future of patients from the elec-
tronic health records. Scientific reports, 6(1):1–10.

Roberta B Ness, Joint Policy Committee, et al. 2007.
Influence of the hipaa privacy rule on health research.
Jama, 298(18):2164–2170.

Itsuki Osawa, Tadahiro Goto, Yuji Yamamoto, and
Yusuke Tsugawa. 2020. Machine-learning-based pre-
diction models for high-need high-cost patients using
nationwide clinical and claims data. NPJ digital
medicine, 3(1):148.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Wullianallur Raghupathi and Viju Raghupathi. 2014.
Big data analytics in healthcare: promise and poten-
tial. Health information science and systems, 2:1–10.

434



Debbie Rankin, Michaela Black, Raymond Bond,
Jonathan Wallace, Maurice Mulvenna, Gorka Epelde,
et al. 2020. Reliability of supervised machine learn-
ing using synthetic data in health care: Model to
preserve privacy for data sharing. JMIR medical
informatics, 8(7):e18910.

Sandeep Reddy. 2023. Evaluating large language mod-
els for use in healthcare: A framework for transla-
tional value assessment. Informatics in Medicine
Unlocked, page 101304.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

AK Singh, Mounika Guntu, Ananth Reddy Bhimireddy,
Judy W Gichoya, and Saptarshi Purkayastha. 2020.
Multi-label natural language processing to identify di-
agnosis and procedure codes from mimic-iii inpatient
notes. arXiv preprint arXiv:2003.07507.

Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mah-
davi, Jason Wei, Hyung Won Chung, Nathan Scales,
Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl,
et al. 2023a. Large language models encode clinical
knowledge. Nature, 620(7972):172–180.

Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres,
Ellery Wulczyn, Le Hou, Kevin Clark, Stephen
Pfohl, Heather Cole-Lewis, Darlene Neal, et al.
2023b. Towards expert-level medical question an-
swering with large language models. arXiv preprint
arXiv:2305.09617.

Jayanth Sivakumar, Karthik Ramamurthy, Menaka Rad-
hakrishnan, and Daehan Won. 2023. Generativemtd:
A deep synthetic data generation framework for small
datasets. Knowledge-Based Systems, 280:110956.

Zhenchao Sun, Hongzhi Yin, Hongxu Chen, Tong Chen,
Lizhen Cui, and Fan Yang. 2020. Disease predic-
tion via graph neural networks. IEEE Journal of
Biomedical and Health Informatics, 25(3):818–826.

Sandip P Tarpada, Matthew T Morris, and Denver A
Burton. 2017. Spinal fusion surgery: a historical per-
spective. Journal of orthopaedics, 14(1):134–136.

David Thesmar, David Sraer, Lisa Pinheiro, Nick Dad-
son, Razvan Veliche, and Paul Greenberg. 2019.
Combining the power of artificial intelligence with
the richness of healthcare claims data: opportunities
and challenges. PharmacoEconomics, 37:745–752.

Arun James Thirunavukarasu, Darren Shu Jeng Ting,
Kabilan Elangovan, Laura Gutierrez, Ting Fang Tan,
and Daniel Shu Wei Ting. 2023. Large language
models in medicine. Nature medicine, 29(8):1930–
1940.

Qi Wang, Junyu Gao, Wei Lin, and Yuan Yuan. 2019.
Learning from synthetic data for crowd counting in
the wild. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition,
pages 8198–8207.

Valerie JM Watzlaf, Jennifer Hornung Garvin, Sohrab
Moeini, and Patricia Anania-Firouzan. 2007. The
effectiveness of icd-10-cm in capturing public health
diseases. Perspectives in Health Information Man-
agement/AHIMA, American Health Information Man-
agement Association, 4.

Canwen Xu, Daya Guo, Nan Duan, and Julian McAuley.
2023. Baize: An open-source chat model with
parameter-efficient tuning on self-chat data. arXiv
preprint arXiv:2304.01196.

Li Yunxiang, Li Zihan, Zhang Kai, Dan Ruilong, and
Zhang You. 2023. Chatdoctor: A medical chat model
fine-tuned on llama model using medical domain
knowledge. arXiv preprint arXiv:2303.14070.

Yin Zhang, Rong Jin, and Zhi-Hua Zhou. 2010. Un-
derstanding bag-of-words model: a statistical frame-
work. International journal of machine learning and
cybernetics, 1(1):43–52.

Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen
Li, Hongwei Hao, and Bo Xu. 2016. Attention-based
bidirectional long short-term memory networks for
relation classification. In Proceedings of the 54th
annual meeting of the association for computational
linguistics (volume 2: Short papers), pages 207–212.

A Administrative Claims

A.1 Claim

A claim can be described as a bill submitted by the
healthcare providers to a patient’s health insurance
provider. Since by nature, claims are transactional
in nature, every patient encounter in a physician’s
office, hospital, or other healthcare facility, get cap-
tured in claims data with rich details about diag-
nosis made, medications prescribed, procedures
performed, and services availed in the form of pre-
established codes. Claims data follows a relatively
consistent format and use a standard set of rules for
medical coding. This creates an abundant source
of standardized patient information (see Figure 2).

A.2 Medical Codes

Medical codes often comprise of diagnosis and
procedure codes, they are contained within a claim.

1. Diagnosis codes: Diagnosis made to the pa-
tient are captured in the form of International
Classification of Diseases, Tenth Revision
(ICD-10-CM) codes. These codes are pre-
established and are used by all physicians and
other healthcare providers in United States to
classify and code all diagnoses. These are
three to seven characters long where 1) the
first three characters categorize the injury. 2)
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Figure 2: Overview of a claim

The fourth through sixth characters describe
in greater detail the cause, anatomical location
and severity of an injury or illness. 3) The sev-
enth character is an extension digit and used
to classify an initial, subsequent or sequela
(late effect) treatment encounter.

2. Procedure codes: The services rendered by
the patient are captured in the form of Cur-
rent Procedural Terminology (CPT) codes.
These codes are designed to communicate uni-
form information about medical procedures
among physicians, patients and other health-
care providers. CPT codes are broadly cate-
gorized into three main categories where each
category is further divided to various levels
typically defined by a range. For example,
(80000...89398) are a set of codes for pathol-
ogy and laboratory procedures.

B Data Processing

MediClaimGPT’s training dataset, D, originates
from an extensive administrative claims collection
of a major U.S. healthcare insurer. Spanning six
years, it covers diverse patient demographics and
medical conditions, including over 70 million pa-
tients and 3 billion claims from various healthcare
settings. The dataset comprises 92,000 unique diag-
nosis codes (ICD-10-CM) and 27,000 unique proce-
dure codes (CPT). However, only approved claims
are included, resulting in a final count of 3 billion
claims. Additionally, we refined the dataset by
excluding invalid codes, which often result from in-
take or ingestion errors, thereby narrowing it down
to 85,000 diagnosis and 20,000 unique procedure
codes.

C Experimental Setup

This section outlines the experimental setup for
various techniques used in the paper.

C.1 Zero shot prediction
The temperature was set to 0.7, balancing creativity
and precision in the generated outcomes. Maxi-
mum tokens of 500 and a top-k sampling with with
k = 100 are used.

C.2 Downstream prediction
All evaluation datasets were split in a
55%/25%/30% train/validation/test stratifica-
tion. Training was conducted over 100 epochs,
with the best-performing models on the validation
set saved after each epoch. The final performance
was evaluated on the test set. We used a batch
size of 64, a learning rate α = 10−5, and Adam
optimizer (Kingma and Ba, 2014) with β1 = 0.9
and β2 = 0.999. Network weights were initialized
using Xavier initialization (Glorot and Bengio,
2010), and L2 regularization of 0.05 was applied,
chosen based on grid search results from the
validation set.

C.3 Synthetic data
Fine-tuning details We largely retained the hy-
perparameter settings from the unsupervised pre-
training phase, with the addition of a dropout rate
of 0.5 and a learning rate of 6e-5. This configura-
tion was found to be optimal, allowing the model
to fine-tune effectively within just 5 epochs for all
datasets. A linear learning rate decay schedule with
a warmup over 0.5% of the training duration was
also implemented.

Generation details We have generated 10000
samples for both positive and negative classes from
each one of the fine tuned models to create syn-
thetic datasets. The generation parameters were
set to a temperature of 0.3 and a maximum token
limit of 500 per sample, optimizing for coherent
and contextually relevant synthetic claims.
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