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Abstract

Task-orientated conversational agents interact
with users and assist them via leveraging ex-
ternal APIs. A typical task-oriented conversa-
tional system can be broken down into three
phases: external API selection, argument fill-
ing, and response generation. The focus of our
work is the task of argument filling, which is
in charge of accurately providing arguments re-
quired by the selected API. Upon comprehend-
ing the dialogue history and the pre-defined
API schema, the argument filling task is ex-
pected to provide the external API with the
necessary information to generate a desirable
agent action. In this paper, we study the ap-
plication of Large Language Models (LLMs)
for the problem of API argument filling task.
Our initial investigation reveals that LLMs re-
quire an additional grounding process to suc-
cessfully perform argument filling, inspiring us
to design training and prompting frameworks
to ground their responses. Our experimental
results demonstrate that when paired with pro-
posed techniques, the argument filling perfor-
mance of LLMs noticeably improves, paving
a new way toward building an automated argu-
ment filling framework.

1 Introduction

Task-oriented conversational systems, illustrated
in Figure 1, largely consist of three processes: ex-
ternal API selection, argument filling, and response
generation (Hosseini-Asl et al., 2020). The API
selection phase selects which one from the pre-
defined pool of APIs must be called to complete
the user request. Once the appropriate external API
to carry out the user request has been selected, the
argument filling phase must reliably identify and
provide correct arguments to the API by faithfully
following the API schema and dialogue history. An
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API schema, an example of which is also demon-
strated in Figure 1, is typically assumed to be given
as a part of the API and includes required argu-
ments and their types. Therefore, the API schema
and dialogue history provide sufficient information
for the conversational agent to identify which ar-
guments are necessary to complete the API call.
Lastly, the response generation phase, as the name
suggests, returns an appropriate response to the
user based on the API output.

The user dissatisfaction in argument filling
mainly stems from the conversational agent be-
ing incapable of adhering to the API schema and
dialogue history. The erroneous arguments that di-
gress away from the API schema are considered
"Syntax Errors", and hallucinated responses that
deviate from the user utterances are considered
"Hallucinations." In Figure 2, we provide examples
of each error type that occurs when performing
argument filling for the "Hair Appointment" API.

Large Language Models (LLMs) trained with in-
structions have recently been garnering much atten-
tion as a promising model for enabling human-like
and safe user-agent interactions in open-domain
conversations (Ouyang et al., 2022; Wang et al.,
2022b). The aim of this paper is to explore whether
the strength of LLMs can be harnessed specifi-
cally for the purpose of argument filling in task-
oriented conversational systems. To construct an
LLM-backed framework for argument filling, their
outputs must strictly follow and stay faithful to
the pre-defined API schema and user utterances,
a process commonly known as “grounding.” Our
initial zero-shot performance evaluation of LLMs
of various sizes reveals that LLM-generated re-
sponses suffer severely from both syntax errors and
hallucinations, necessitating the development of
additional techniques to appropriately ground their
responses for the task of our interest.

We investigate two separate and unique avenues
to tackle the problem of grounding for open- and
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Hello, | would like to get a haircut this Friday at 3PM.
Please book an appointment at the nearest salon.

Example of APl Schema

{[Name: Date,
Type: ‘str’,

4
-
A )

- =

Args: {Monday,..., Sunday}],

v

[Name: Time,

1) API Selection 2) Argument Filling

Type: ‘str’,
) Args: {1AM, 2AM, ... 11PM}],
3) Response Generation

[Name: Location,

o {Date: Friday}

e {Time: 3PM}

¢ {Location: Nearest Salon}
* {RequestType: Book}

¢ Hair Appointment

¢ The nearest hair salon to

Type: ‘str’,
. Args: {Nearest Salon, Best Salon}],
your home is DryBar

Bellevue. Would you like
me to book your hair
appointment here?

[Name: RequestType,
Type='str’,
Args={'Check’, Book’}]}

Figure 1: An overview of how a task-oriented conversational agent might complete a user’s request to book a haircut.
To begin with, the agent selects the "Hair Appointment” API from the list of available APIs. An example of the
pre-defined API schema associated with the "Hair Appointment" API is given on the far right side. Following API
selection, the argument filling step utilizes the API schema and dialogue history to identify arguments to complete
the API call. Finally, the agent responds to the user with the utterances produced in the response generation step.

(a) Syntax Errors

+ {UserName: Salon}

« {Time: 3PM}

* {Location: Nearest Hair Salon}
M+ {RequestType: 3PM}

Groundtruth Arguments
{Date: Friday}

{Time: 3PM} e e
{Location: Nearest Hair Salon} (b) Hallucinations
{RequestType: Book} *- {Date: 04/15/2024}

« {Time: 3PM}
*- {Location: Hair Boutique}
* {RequestType: Book}

Figure 2: Examples of two potential errors that can
arise in argument filling. (a) Syntax errors refer to those
that digress away from the pre-defined API schema. (b)
Hallucinations correspond to those that deviate from the
user intention and utterances.

closed-sourced LLMs. On one hand, for open-
sourced LLMs, e.g., LLAMA-v1-7B, we propose
a two-step instruction-tuning framework that is
comprised of supervised fine-tuning (SFT) and re-
jection sampling (RS). Our experimental results
show that utilizing the proposed instruction-tuning
framework noticeably outperforms the naive SFT
baseline. On the other hand, in the case of closed-
sourced LLLMs whose weights are not directly ac-
cessible, we demonstrate that their performance
can be improved by replacing the plain prompt de-
sign with a "multi-step prompting" scheme. Our
contributions can be summarized as follows:

* This is the first work to explore the utiliza-
tion of LLMs for argument filling in task-
oriented conversational agents. Our results
demonstrate that when paired with a proper
grounding process, LLMs can offer a simpler
and more autonomous alternative to conven-
tional approaches in argument filling.

* For open-sourced LLMs, we propose a cohe-
sive training pipeline to ground their behav-
iors. The proposed training pipeline consists

of two phases: model bootstrapping via super-
vised fine-tuning and additional fine-tuning
with model-generated outputs, which have un-
dergone rejection sampling through a custom
reward function. For closed-sourced LLMs,
we explore an advanced prompting technique
that is more fine-grained and informative.

* We provide substantial experimental results
to demonstrate the effectiveness of the pro-
posed approaches. Notably, the LLAMA-
v1-7B model fine-tuned using the proposed
instruction-tuning pipeline outperforms strong
zero-shot baselines obtained by prompting sig-
nificantly larger LLMs.

2 Related Works

2.1 Language Models for Task-oriented
Dialogues

Utilization of pre-trained Language Models for
Task-oriented Dialogues (ToD) was pioneered
by Zhang et al. (2019) and Peng et al. (2021).
Kulhanek et al. (2021) and Lin et al. (2020) im-
proved the basic ToD modeling approaches by em-
ploying contrastive state training and belief state
differences, respectively. Other works (Pandey
et al., 2018; Cai et al., 2019; Nekvinda and Dusek,
2022) proposed to combine generative models with
retrieval-based approaches. While Hudecek and
Dusek (2023) perform zero-shot evaluation of var-
ious LLMs for ToD modeling, to the best of our
knowledge, this is the first work to exploit and
instruction-tune LLMs in the billion-parameter
regime for argument filling in ToD systems.
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You are a conversational Agent interacting with the API and dialog history:

### API:
{'Name': 'ride_book’,
'Description': 'ride_book',

'Args': [name=Price, type=int, min=5, max=50, is_required=True,

name=AllowsChanges, type=str, choices=['True', 'False'], is_required=True,

name=MinutesTillPickup, description=Minutes until pickup, type=int, min=5, max=30, is_required=True,

name=ServiceProvider, description=Service Provider, type=str, choices=['Uber', 'Lyft', 'Taxi'], is_required=True, ..]

### Dialog history:
[Past Dialogue]

I found a Uber ride for you from 'Craig and Center' to 'Airport' for 36 credits. Should I book that for you?

[USER] That sounds good.

[SYSTEM] ride_book() <- {'CustomerName': 'Alexis', ‘'DepartureLocation': 'Craig and Center', 'Arrivallocation': ‘'Airport',

'RequestType': 'Book', 'ServiceProvider': '["Uber","Lyft"]'}

[API] ride_book() -> {'APIName': 'ride_book', 'Message': 'Ride booked.'}

I have booked your ride.

[USER] I just remembered that last time Mark drove me he got lost and I missed an appointment. He isn't my driver, is her?

Your driver is Sirius.

[USER] I forgot my friend wanted to meet me at BrewLab cafe at Hospital not Airport. Can you change the destination to the hospital?

Generate the inputs to the API: ride_book() <-

Sample Ground-truth Argument: {Price: 15, AllowsChanges: True, MinutesTillPickup: 5, ServiceProvider: Lyft}

Figure 3: Abbreviated illustration of the default prompt template that includes API description and dialogue history.
We also provide an example of a ground-truth argument, which is pre-processed to follow a dictionary-like format.

2.2 Large Language Models and
Instruction-tuning

The introduction of Transformer-based architec-
tures heralded the beginning of large and incredi-
bly capable models for Natural Language Process-
ing (NLP) (Vaswani et al., 2017). Transformer-
based language models with several billions of
parameters, such as GPT-3 (Brown et al., 2020)
and OPT (Zhang et al., 2022), have shown un-
precedented zero- and few-shot performance across
diverse NLP tasks. The generalization capabil-
ity of these so-called Large Language Models
(LLMs) was further improved by training them via
instruction-tuning (Goldwasser and Roth, 2014)
with in-context instructions. The promising re-
sults obtained by instruction-tuning inspired the
development of large instruction-paired datasets,
such as Naturallnstructions-v1l (NI-v1) (Mishra
et al., 2022) and SuperNaturallnstructions (Wang
et al., 2022a). The remarkable performance of
general-purpose instruction-tuned models inspired
the development of more domain-specific mod-
els. Examples of such models include: Instruc-
tUIE (Wang et al., 2023) for information extraction,
CoEDIT (Raheja et al., 2023) for writing, ChatDoc-
tor (Yunxiang et al., 2023) for medical purposes,
and Goat (Liu and Low, 2023) for mathematics.

3 Proposed Methodology

3.1 Prompt Design

To guarantee experimental consistency across dif-
ferent models and datasets, we first design a com-
mon prompt template for argument filling. An
example of the default prompt template, which
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includes a short instruction, the pre-defined API
schema, and dialogue history up to the specified
API call, is provided in Figure 3. This prompt tem-
plate is used for both in-context instruction tuning
and evaluation processes and remains fixed across
all of our experiments unless stated otherwise.

3.2 Instruction-tuning Framework for
Open-sourced LLMs

Phase 1. Model Bootstrapping via Supervised

Fine-tuning We first bootstrap the LLM’s re-
sponses on argument filling prompts, so that its
generative behavior can be controlled to output
the arguments in a dictionary format, as illustrated
in Figure 3. Following the conventional fine-tuning
scheme, we fine-tune the LLM using the cross
entropy loss. Once the bootstrapping phase is
completed, we propose to augment the train
dataset using model-generated outputs. In the next
section, we define a custom reward function that is
employed to score and select generated samples to
be included in the additional fine-tuning phase.

Phase II. Rejection Sampling with Custom Re-
ward Function "Rejection Sampling" commonly
refers to the process of identifying desirable model-
generated outputs that are capable of further im-
proving the performance on the target task. There-
fore, the success of rejection sampling is heavily
contingent on the definition of the reward function
that can accurately reflect the usefulness of model-
generated outputs. To define the custom reward
function for argument filling, we first categorize po-
tential sources of error into: non-existent key (NK),
missing key (MK), schema-grounded but incorrect



value (SV), and hallucinated value (HV). The key
and value here refer to the corresponding compo-
nents of the key-value pairs of the model-generated
arguments, which have been bootstrapped to follow
a dictionary-like format. A detailed description of
each error type is provided below:

e Non-existent Key (NK): The generated key is
not provided as a part of the pre-defined schema.
e Missing Key (MK): The model-generated argu-
ments are missing an expected key that is required
by the pre-defined schema.

e Schema-grounded but Incorrect Value (SV):
The generated value follows the pre-defined
schema but deviates from the dialogue history, re-
sulting in an incorrectly identified argument.

e Hallucinated Value (HV): The generated value
does not follow the pre-defined schema, and hence,
it is incorrect by definition.

The total number of errors in a model-generated
output can be computed through a simple summa-
tion of all 4 error types: Nepror = NNK + NuK +
Ngsv + Npv. The error rate can then be defined
as: Ngrror/Notal, Where Nota1 denotes the total
number of keys and values in the ground-truth ar-
gument. This error rate is normalized between —1
and 1 to obtain the final reward value following the
equation: R =1 — 2 % Ngyror/Nrotal-

After the LLM has been bootstrapped on the ar-
gument filling datasets, we sample K number of
outputs from the model and score the generated
outputs using the above reward function. We only
select outputs that yield positive reward to augment
the train dataset. With the newly added instances
mixed in the train dataset, we perform one addi-
tional epoch of supervised fine-tuning.

There exist two expected advantages of incor-
porating rejection-sampled model outputs. First,
utilizing the model outputs filtered with the custom
reward function allows us to effectively augment
the train dataset with desirable instances without
the need to collect additional data points to avoid
overfitting. Second, we expect that incorporating
these outputs will improve the fine-tuned LLM’s
robustness to noisy data points it may encounter
at test-time. Even if the model-generated outputs
yield positive reward, they will inevitably be noisier
than the curated train dataset with ground-truth la-
bels. Therefore, the LLM that has been exposed to
noisier data points in the rejection sampling phase
will exhibit a higher degree of robustness and gen-
eralization performance.

3.3 Multi-step Prompting Scheme for
Closed-sourced LLMs

It is infeasible to fine-tune LLMs whose design and

weights are not released to the public. Therefore,
we additionally explore a more fine-grained and in-
formative prompting method to complement larger
LLMs. The default prompt design as described
in Figure 3 asks the model to identify required ar-
guments and extract appropriate information to fill
them all at the same time. For multi-step prompting
with hints, we instead prompt the model to identify
and fill one argument at a time. By using this more
targeted prompt design, we are providing the LLM
with additional information about required slots
and effectively restricting its generative behavior to
prevent its digression from the pre-defined schema
and dialogue history.

4 Experimental Set-up

4.1 Datasets and Models
4.1.1 Datasets

We primarily use STAR (Mosig et al., 2020) and
SGD (Rastogi et al., 2020) datasets as test beds to
validate our approach.

e STAR: is a collection of realistic, task-oriented
dialogues that includes 5,820 dialogues that span
24 tasks and 13 domains. The schemas in the STAR
dataset are similar to "task specifications,” which
contain information about the ideal dialogue flow
for each task.

e SGD: is a rich, fully-annotated dataset, which
contains more than 22,000 dialogues that encom-
pass 20 domains, ranging from banks to travels
and weather. The comprehensive annotation that
includes schema representation makes it a flexi-
ble and convenient dataset to investigate not only
argument filling but also other components of task-
oriented conversational systems.

We verify the competitiveness of proposed ap-
proaches under both in- and out-of-domain sce-
narios. Under the in-domain scenario, train and
test dialogues are sampled from the same set of
domains, while under the out-of-domain scenario,
the test dialogues contain domains that were not
observed during the training process. To create an
in-domain benchmark, we randomly split the en-
tire dataset into train and test datasets, such that
domains are evenly represented across the two. For
out-of-domain evaluation, we purposefully curate
the test dataset, such that no explicit or semantic
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(b) Error Analysis on SGD

(b) Error Analysis on SGD

(a) Error Analysis on STAR
030

- sFT - sFT
m—SFT+RS | 0.20 - SFT+RS

MK NK sv HV MK NK sv HV

Figure 4: Analyses of four different error rates on (a)
STAR and (b) SGD in-domain benchmarks.

overlap exist between tasks in the train dataset and
those in the test dataset.

4.1.2 Models

e LLAMA-7B (Touvron et al., 2023): is a state-
of-the-art foundational LLM released by Meta Al
While the LLAMA models of various sizes have
been open-sourced, we primarily utilize LLAMA-
v1-7B model for fine-tuning experiments.

e ChatGPT!: is widely regarded as one of the
most powerful LLMs; its release is perceived to be
a significant milestone in the evolution of conver-
sational Al systems. Because the model weights
have not been open-sourced, we rely on OpenAl’s
ChatGPT API for evaluation.

4.2 Libraries and Hyperparameters

We utilize the Huggingface (Wolf et al., 2019) li-
brary for implementation and training of models.
All experiments are executed on NVIDIA V100
GPU with 32GB RAM. The following set of hyper-
parameters is used for the supervised fine-tuning
phase: batch size of 8, Adam optimizer with ini-
tial learning rate of 0.00002, weight decay of 0.1,
and constant learning rate scheduling. We run
the supervised fine-tuning phase for 5 epochs be-
fore performing rejection sampling. As mentioned
in Section 3.2, we perform additional fine-tuning
with rejection-sampled data for only one additional
epoch. All hyperparameters remain unchanged
from the supervised fine-tuning phase.

4.3 Compared Approaches

e Zero-shot: is the most nave baseline obtained by
prompting the pre-trained LLMs with the prompt
design provided in Figure 3. The pre-trained LLMs
are used as is without undergoing additional fine-
tuning on task-oriented dialogue datasets.

e Multi-Step: replaces the nave prompting pro-
cess with the multi-step prompting scheme in Sec-

"https://openai.com/blog/chatgpt

(a) Error Analysis on STAR
30

= ST

MK NK sv HV MK NK sv HV

Figure 5: Analyses of four different error rates on (a)
STAR and (b) SGD out-of-domain benchmarks.

tion 3.3. Since multi-step prompting only improves
the model at inference time, the pre-trained LLM
is again used with no alterations.

e Supervised Fine-tuning (-sf7): is a baseline
obtained by instruction-tuning the LLM on fully-
labeled train set of task-oriented dialogue datasets
following the Phase I process in Section 3.2.

e Supervised Fine-tuning + Our Rejection Sam-
pling (-sft-rs): trains the fine-tuned LLLM on addi-
tional model-generated data that have been selected
according to the proposed reward for rejection sam-
pling (Phase II of Section 3.2).

4.4 Metrics

e BLEU: (Papineni et al., 2002) quantifies the
semantic similarity between model-generated and
reference sentence pairs. Its close alignment with
human perception of generation quality and low
computational cost make BLEU a particularly com-
pelling metric for automatic evaluation of Natural
Language Processing (NLP) systems.

o Fuzzy Matching: is adopted to quantify the
argument filling accuracy. We employ fuzzy match,
instead of exact match, such that minor typos and
capitalization, which should not determine the qual-
ity of the generated outputs, do not influence the
performance metric.

e F-1 Score: takes into account both the character-
level precision and recall of predicted arguments.
F-1 score is a preferred choice of metric over ac-
curacy when evaluating datasets with significant
class imbalances (i.e., the number of test samples
per API is unevenly distributed).

5 Results

5.1 In-Domain Results

The results obtained on STAR and SGD datasets
under the in-domain evaluation setting are reported
in Table 1. The suffixes -sft and -sft-rs are used
to denote models that have been trained only with
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SGD STAR
Methods Models BLEU | FM | F-1 |BLEU| FM | F-I
Jerorshot LLAMA-v1-7B 0.0104 | 5.2852 | 0.0472 —
ChatGPT 0.4578 | 44.5853 | 0.4802 | 0.2127 | 26.0679 | 0.2094

Multi-step ChatGPT 0.4578 | 44.5853 | 0.4802 | 0.2127 | 26.0679 | 0.2094
Prompting
Instruction-uned | LEAMA-VI-TB-gft | 0.7802 | 911299 | 0.7718 | 0.3418 | 58.19 | 0.3209

u u LLAMA-v1-7B-sft-rs | 0.8003 | 91.6462 | 0.7834 | 0.3734 | 62.7669 | 0.3605

Table 1: Comparison of different models and training/prompting methods under the in-domain evaluation setting.
LLAMA-v1-7B-sft-rs clearly outperforms all other baselines, showing the efficacy of the proposed training scheme.

SGD STAR

Methods Models BLEU| FM | F-1 |BLEU| FM | FI

Jeroshor LLAMA-v1-7B 0.0118 | 5.4612 | 0.0456 —
ChatGPT 0.2460 | 35.9156 | 0.3701 | 0.2045 | 33.5571 | 0.2357

Multi-step ChatGPT 0.3166 | 48.7200 | 0.4212 | 0.2281 | 33.7857 | 0.2672

Prompting

Itruction-uned | LAMA-VITB-gfi | 0.6972 | 863976 | 0.6642 | 02512 | 54.7000 | 0.2330
LLAMA-v1-7B-sfr-rs | 0.7705 | 90.6652 | 0.7608 | 0.3511 | 65.0714 | 0.3200

Table 2: Comparison of different models and training/prompting methods under the out-of-domain evaluation

setting. The results are generally consistent with those obtained under the in-domain setting.

supervised fine-tuning and with supervised fine-
tuning and rejection sampling, respectively. Multi-
step prompting that provides additional hints suc-
cessfully improves the performance of the Chat-
GPT models. More importantly, we observe that
the LLAMA-v1-7B model that has been trained
with the proposed instruction-tuning pipeline with
rejection sampling (LLAMA-v1-7B-sft-rs) obtains
the best performance across all metrics on both
datasets. This result clearly demonstrates that with
our training framework, relatively smaller and light-
weight LLMs can outperform larger ones. Fur-
thermore, the superiority of LLAMA-v1-7B-sft-rs
to LLAMA-v1-sft provides strong support for in-
corporating rejection-sampled data to effectively
improve the performance of fine-tuning with less
training budget. Lastly, we note that a larger de-
gree of performance improvement is observed on
the SGD dataset, which has a wider variety of tasks
and thus can be considered more difficult.

5.2 Out-of-Domain Results

To simulate an out-of-domain test scenario, we de-
liberately create a train-test split, such that there
is no explicit or implicit task domain overlap be-
tween the train and test set The results obtained

under the out-of-domain evaluation setting are re-
ported in Table 2. In general, the out-of-domain
evaluation results show similar tendencies to the
in-domain results. While the proposed instruction-
tuning framework and multi-step prompting suc-
cessfully improve the performance of open-sourced
and closed-sourced LLMs, respectively, they both
experience slight performance degradation when
compared to the in-domain evaluation results.

5.3 Error Analyses

We analyze sources of error in outputs generated by
LLAMA-v1-7B-sft-rs to identify room for improve-
ment. In Figures 4 and 5, we compare the four error
rates, as defined in Section 3.2, in LLAMA-v1-7B-
sft and LLAMA-v1-7B-sft-rs models. Training the
LLAMA-v1-7B model with SFT + RS reduces all
four error rates, and the rate of hallucinated value
errors is particularly low compared to other errors.
This analytical result implies that once grounded,
the LLM mostly ceases to hallucinate and remains
close to the API schema and dialogue history pro-
vided as a part of the prompt template.
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6 Conclusion

This paper explored and uncovered the powerful-
ness of leveraging LLMs to automate the argument
filling process, a core component in task-oriented
conversational systems. The strong experimental
results indicate that the proposed methods, used
in conjunction with open- or closed-source LLM:s,
are effective for restricting the LLM’s generative
behavior, specifically for argument filling.
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Limitations and Potential Risks

One limitation of our work is that proposed frame-
works are validated only on one open- or closed-
sourced model. In addition, while LLMs are quite
capable of completing the argument filling task, the
inference time for LLMs may still be longer than
many of smaller, more targeted language models.
Accelerating LLM inferencing, however, is outside
the scope of our work.

Reliance on closed-sourced LLMs could pose
unforeseen risks since the backbone model could be
altered without notice. Even if significant changes
are made to the design and weights of the closed-
sourced models, there is no way for us to know
what those alterations are. This complete black-
box nature of closed-sourced LLMs may make it an
undesirable choice of backbone model. Therefore,
we conjecture that utilizing a targeted decoding
scheme that can further enforce the LLM to follow
specific parts of the prompt template could assist
in reducing schema-related errors.

References

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot

learners. Advances in neural information processing
systems, 33:1877-1901.

Deng Cai, Yan Wang, Wei Bi, Zhaopeng Tu, Xi-
aojiang Liu, and Shuming Shi. 2019. Retrieval-
guided dialogue response generation via a matching-
to-generation framework. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 1866—-1875.

Dan Goldwasser and Dan Roth. 2014. Learning from
natural instructions. Machine learning, 94(2):205—
232.

Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu,
Semih Yavuz, and Richard Socher. 2020. A simple
language model for task-oriented dialogue. Advances
in Neural Information Processing Systems, 33:20179-
20191.

Vojtéch Hudecek and Ondfej DuSek. 2023. Are 1lms all
you need for task-oriented dialogue? arXiv preprint
arXiv:2304.06556.

Jonas Kulhanek, Vojtéch Hudecek, Tomas§ Nekvinda,
and Ondrej Dusek. 2021. Augpt: Auxiliary tasks
and data augmentation for end-to-end dialogue with
pre-trained language models. In Proceedings of the
3rd Workshop on Natural Language Processing for
Conversational Al, pages 198-210.

Zhaojiang Lin, Andrea Madotto, Genta Indra Winata,
and Pascale Fung. 2020. Mintl: Minimalist trans-
fer learning for task-oriented dialogue systems. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 3391-3405.

Tiedong Liu and Bryan Kian Hsiang Low. 2023. Goat:
Fine-tuned llama outperforms gpt-4 on arithmetic
tasks. arXiv preprint arXiv:2305.14201.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. 2022. Cross-task generaliza-
tion via natural language crowdsourcing instructions.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume

1: Long Papers), pages 3470-3487.

Johannes EM Mosig, Shikib Mehri, and Thomas Kober.
2020. Star: A schema-guided dialog dataset for trans-
fer learning. arXiv preprint arXiv:2010.11853.

Tomdas Nekvinda and Ondfej Dusek. 2022. Aargh! end-
to-end retrieval-generation for task-oriented dialog.
arXiv preprint arXiv:2209.03632.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730-27744.

425



Gaurav Pandey, Danish Contractor, Vineet Kumar, and
Sachindra Joshi. 2018. Exemplar encoder-decoder
for neural conversation generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1329-1338.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311-318.

Baolin Peng, Chunyuan Li, Jinchao Li, Shahin Shayan-
deh, Lars Liden, and Jianfeng Gao. 2021. Soloist:
Building task bots at scale with transfer learning and
machine teaching. Transactions of the Association
for Computational Linguistics, 9:807-824.

Vipul Raheja, Dhruv Kumar, Ryan Koo, and Dongyeop
Kang. 2023. Coedit: Text editing by task-specific
instruction tuning. arXiv preprint arXiv:2305.09857.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2020. Towards
scalable multi-domain conversational agents: The
schema-guided dialogue dataset. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 8689-8696.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Xiao Wang, Weikang Zhou, Can Zu, Han Xia, Tianze
Chen, Yuansen Zhang, Rui Zheng, Junjie Ye,
Qi Zhang, Tao Gui, et al. 2023. Instructuie: Multi-
task instruction tuning for unified information extrac-
tion. arXiv preprint arXiv:2304.08085.

Yizhong Wang, Swaroop Mishra, Pegah Alipoor-
molabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan
Dhanasekaran, Atharva Naik, David Stap, et al.
2022a. Benchmarking generalization via in-context
instructions on 1,600+ language tasks. arXiv preprint
arXiv:2204.07705.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormo-
labashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva
Naik, Arjun Ashok, Arut Selvan Dhanasekaran, An-
jana Arunkumar, David Stap, et al. 2022b. Super-
naturalinstructions: Generalization via declarative
instructions on 1600+ nlp tasks. In Proceedings of
the 2022 Conference on Empirical Methods in Natu-
ral Language Processing, pages 5085-5109.

426

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Li Yunxiang, Li Zihan, Zhang Kai, Dan Ruilong, and
Zhang You. 2023. Chatdoctor: A medical chat model
fine-tuned on llama model using medical domain
knowledge. arXiv preprint arXiv:2303.14070.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen,
Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing
Liu, and Bill Dolan. 2019. Dialogpt: Large-scale
generative pre-training for conversational response
generation. arXiv preprint arXiv:1911.00536.



