
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 6:
Industry Track), pages 395–405

June 16-21, 2024 ©2024 Association for Computational Linguistics

Shears: Unstructured Sparsity with Neural Low-rank Adapter Search

J. Pablo Muñoz*

Intel Labs
pablo.munoz@intel.com

Jinjie Yuan*

Intel Corporation
jinjie.yuan@intel.com

Nilesh Jain
Intel Labs

nilesh.jain@intel.com

Abstract

Recently, several approaches successfully demon-
strated that weight-sharing Neural Architecture
Search (NAS) can effectively explore a search
space of elastic low-rank adapters (LoRA), allow-
ing the parameter-efficient fine-tuning (PEFT) and
compression of large language models. In this pa-
per, we introduce a novel approach called Shears,
demonstrating how the integration of cost-effective
sparsity and a proposed Neural Low-rank adapter
Search (NLS) algorithm can further improve the ef-
ficiency of PEFT approaches. Results demonstrate
the benefits of Shears compared to other methods,
reaching high sparsity levels while improving or
with little drop in accuracy, utilizing a single GPU
for a pair of hours.

1 Introduction

Large language models (LLMs) exhibit impres-
sive capabilities in comprehensive language un-
derstanding, as evidenced by their remarkable zero-
shot generation across various tasks. However,
supervised fine-tuning is often employed to un-
lock their true potential in real-world applications.
Fine-tuning is essential for tailoring performance
to domain-specific or proprietary data, bridging
the gap between general language understanding
and task-specific precision. Recently, parameter-
efficient fine-tuning (PEFT) (Ding et al., 2022) has
emerged as a crucial strategy for efficiently boost-
ing the performance of LLMs in domain-specific
tasks.

In addition to fine-tuning, increasing model pa-
rameters is another critical strategy to improve
model performance. LLMs have produced impres-
sive achievements as they scale to significant sizes,
such as PaLM with 540 billion parameters (Chowd-
hery et al., 2022). The projection for future mod-
els suggests a continuous escalation in parameter

*Co-first authors.

count, anticipating improved performance. How-
ever, this trend also underscores the growing de-
mands on computing devices. As model parame-
ters increase, so does the computational complexity,
necessitating more powerful hardware and infras-
tructure. In this context, the importance of model
compression becomes particularly evident. Model
compression is a crucial strategy to mitigate these
challenges and make LLMs more accessible and
deployable across a broader spectrum of devices.

Motivated by the significance of PEFT and
model compression, this paper introduces a novel
approach called Shears, showing the effective in-
tegration of PEFT and model compression to op-
timize the LLM performance with a high sparsity
level. In the proposed methodology, we initiate
the process by employing a zeroth-order sparse
approach to induce sparsity in the LLM. Subse-
quently, we introduce elastic low-rank adapters into
the sparsified model and apply Neural Low-rank
adapter Search (NLS) to train a super-adapter net-
work. Finally, a search algorithm is employed to
identify the optimal adapter configuration. The
contributions of this work can be summarized as
follows:

1. We propose a practical solution combining
model compression and PEFT, manifested in
cost-effective sparsity and the proposed neural
low-rank adapter search.

2. Our approach features three well-designed
steps, i.e., unstructured sparsification, super-
adapter training, and sub-adapter search. The
proposed approach effectively obtains sparse
fine-tuned LLMs that reduce inference time.

3. Experiments and ablation studies to confirm
that our approach can produce models that
maintain high accuracy while significantly in-
creasing their sparsity levels.

395

The content of this paper uses the following out-
line: Section 2 discusses the algorithms Shears
uses. Section 3 describes the three stages and de-
tails of our practical solution. Section 4 presents
results with several models on a variety of tasks.
We offer concluding remarks in Section 5, and due
to space limitations, we provide more details and a
Related Work section in the Appendix.

2 Preliminaries

2.1 Sparsification

Our approach introduces sparsity into LLMs us-
ing a zeroth-order and cost-effective algorithm. In
our experiments, we utilized the Wanda algorithm
(Sun et al., 2023), which calculates weight impor-
tance based on weights, and activations and then
leverages this information for unstructured pruning.
Specifically, given a weight matrix W and input
feature activations X , Wanda computes the weight
importance S as the element-wise product of the
weight magnitude and the norm of input activations,
formulated as follows:

S = |W | · ∥X∥2. (1)

Wanda compares the weight importance scores
within each row in W . After obtaining the im-
portance information, the algorithm zeroes out the
less critical weights according to the specified spar-
sity level. The sparsification approach efficiently
obtains a model with any level of unstructured spar-
sity desired before training.

2.2 Low-Rank Adaptation

Recently, PEFT technology has emerged as a solu-
tion to address the challenges of fine-tuning large-
scale models. Among PEFT approaches, Low-
Rank Adaptation (LoRA) (Hu et al., 2022) has
shown notable efficacy in fine-tuning Transformer-
based models for downstream NLP tasks. LoRA
constraints the update for a pre-trained weight,
W 0 ∈ Rd×k, by a low-rank decomposition W 0 +
∆W = W 0+BA, where B ∈ Rd×r,A ∈ Rr×k,
and the rank r ≪ min(d, k). Throughout the train-
ing process, W 0 remains frozen and does not un-
dergo gradient updates, while only the parameters
of A and B are trained. For the linear projection,
H = W 0X , the forward pass with LoRA is for-
mulated as follows:

H = W 0X +∆WX = W 0X +BAX, (2)

where A is initialized with a random Gaussian
while B is initialized with zeros, ensuring ∆W =
BA is zero at the beginning of training. Inspired
by this approach, this paper integrates elastic LoRA
adapters into Neural Architecture Search.

3 Methodology

In this section, we delve into the proposed ap-
proach, Shears. Figure 1 illustrates the overview
of the Shears pipeline. As depicted in the figure,
the method comprises three key steps: i) Unstruc-
tured Sparsification, ii) Super-Adapter Training,
and iii) Sub-Adapter Search. Through these steps,
the model undergoes sparsification and neural low-
rank adapter search while preserving a performance
comparable to the fine-tuned model from the orig-
inal model. Next, we discuss the details of each
step.

3.1 Unstructured Sparsification

As illustrated in step 1 of Figure 1, Shears employs
a sparsification metric to zero out the less essential
weights of the given LLM. As mentioned in Section
2.1, we apply the Wanda algorithm (Equation 1) in
our main experiments. However, in theory, Shears
could utilize other algorithms, e.g., movement spar-
sity (Sanh et al., 2020) or SparseGPT (Frantar and
Alistarh, 2023). The pruned weights Wp are kept
frozen throughout the subsequent stages of the over-
all pipeline. In this step, we factor in the cost of
obtaining the weight importance structure. When
using Wanda, only a tiny subset of inputs needs
to forward pass to get the unstructured importance
measurements instead of more sophisticated ap-
proaches that require weight updates and training
iterations. The reader can find further details about
the Wanda algorithm in its paper (Sun et al., 2023).
Obtaining Wp for a model with seven billion pa-
rameters takes less than five minutes on a single
GPU, as utilized in our experiments.

3.2 Super-Adapter Training

Subsequently, a weight-sharing super-adapter net-
work is generated using the space of low-rank
adapters. Shears does not make the original model
weights W elastic as opposed to the elastic config-
urations of the adapters. The super-adapter network
is then fine-tuned for a particular task through Neu-
ral Low-Rank Adapter Search (NLS), which we
discuss next.

396

1 4 0 1

2 1 7 2

1 2 9 3

4 1 5 0

0 4 0 1

0 0 7 2

0 0 9 3

4 0 5 0

Pre-trained Weights
(Pruned and Frozen)

Elastic Adapter

Step 1. Unstructured Sparsification

Step 2. Super-Adapter Training

A

B

W
Pre-trained

Weights

Wp

Wp

Step 3. Sub-Adapter Search

High performing
Sub-Adapter Wp

B

A

Sparsification

Search Algorithms

Figure 1: Shears workflow. Initially, Shears employs a zeroth-order pruning algorithm to induce sparsity in the given
LLM. Subsequently, the framework generates a super-adapter network trained by activating subnetworks within the
search space of elastic adapters. Finally, Shears yields sub-adapter networks that exhibit high performance.

Neural Low-Rank Adapter Search (NLS) An
elastic low-rank adapter can have numerous possi-
ble configurations. NLS leverages the mechanisms
inherited from Neural Architecture Search (NAS)
to activate adapter configurations and proceed with
the forward and backward passes to fine-tune the
possible sub-adapters. After fine-tuning the super-
adapter network, which takes a pair of hours in a
single GPU (further details in Section 4), Shears
discovers a configuration that yields comparable
accuracy on the target task.

3.3 Sub-Adapter Search

Identifying an optimal sub-adapter configuration
can be an expensive endeavor. Although the search
space of elastic adapter configurations is signif-
icantly smaller than if we also include subnet-
works derived from the pre-trained weights of the
LLM, the number of possible configurations for the
adapters is still considerable. Sampling and evalu-
ating these configurations can demand a significant
amount of time. We can employ several approaches
to explore search spaces of neural network configu-
rations, such as evolutionary search using the Non-
Dominated Sorting Genetic Algorithm II (NSGA-
II) (Deb et al., 2002) or a variation like RNSGA-II
(Deb and Sundar, 2006). However, the cost of this
type of search in LLM is prohibitive. To address
this, we employ two alternatives. First, we extract
a sub-adapter configuration using a heuristic. Then,
suppose the performance of this configuration falls
short of the desired outcome, a well-designed hill-

climbing algorithm can be utilized to search for
better configurations. Concretely, Shears can initi-
ate a hill-climbing algorithm from the sub-adapter
configuration found with the heuristic to explore its
neighborhood and discover potentially improved
configurations. This search approach is signifi-
cantly less expensive than other search strategies,
e.g., evolutionary search. Formally, the heuristic
strategy, initially proposed in LoNAS (Muñoz et al.,
2024a), to obtain a reference subnetwork config-
uration approximately at the center of the search
space is as follows:

Shears-Heuristicli ← Shears-Maximalli [c], s.t. c =
⌊n
2

⌋
,

(3)

where c represents the index of the elastic width
(rank of the adapter) configuration for the adapter
li, chosen from a total of n possible elastic con-
figurations at that adapter. This heuristic provides
a (weak) indication of the performance of smaller
sub-adapter networks.

4 Experiments

Shears is implemented by extending BootstrapNAS
(Muñoz et al., 2022) and OpenVINO’s Neural Net-
work Compression Framework1. We explore the
benefits of Shears by generating and fine-tuning
super-adapter networks for various LLMs. The fol-
lowing sections detail our experimental setup and
the analysis of the results.

1https://github.com/openvinotoolkit/nncf

397

Table 1: Sparsity and test accuracy (%) comparison of Shears with other LLM-Adapter approaches. The baseline
results are those reported by Hu et al. (2023). Shears models have high accuracy while significantly increasing
model sparsity.

LLM Method Sparsity Datasets | Accuracy(%) Average
GSM8K AQuA MAWPS SVAMP

GPT-3.5 Zero-shot CoT - 56.4 38.9 87.4 69.9 70.4

LLaMA7B

Prefix - 24.4 14.2 63.4 38.1 35.0
Series - 33.3 15.0 77.7 52.3 44.6
Parallel - 35.3 18.1 82.4 49.6 46.4
LoRA - 37.5 18.9 79.0 52.1 46.9
Shears 40% 36.8 19.7 83.2 47.7 46.9
Shears 50% 36.1 22.0 78.6 44.5 45.3

LLaMA13B

Prefix - 31.1 15.7 66.8 41.4 38.8
Series - 44.0 22.0 78.6 50.8 48.9
Parallel - 43.3 20.5 81.1 55.7 50.2
LoRA - 47.5 18.5 83.6 54.6 51.1
Shears 40% 48.3 21.3 83.2 55.2 52.0
Shears 50% 45.1 22.0 83.2 53.3 50.9

4.1 Experimental Setup

Datasets. Following the work of LLM-Adapters
(Hu et al., 2023) 2, we assess the performance
of Shears across a diverse range of tasks, includ-
ing four math reasoning datasets (GSM8K (Cobbe
et al., 2021), AQUA (Ling et al., 2017), MAWPS
(Lan et al., 2022) and SVAMP (Patel et al., 2021))
and eight commonsense reasoning datasets (BoolQ
(Clark et al., 2019), PIQA (Bisk et al., 2020), SIQA
(Sap et al., 2019), HellaSwag (Zellers et al., 2019),
WinoGrande (Sakaguchi et al., 2021), ARC (Clark
et al., 2018) and OBQA (Mihaylov et al., 2018)).
Leveraging GPT-3.5, the LLM-Adapters team gen-
erated high-quality, unified datasets for training
while compiling several math or commonsense
datasets. Additionally, we conduct evaluations of
Shears on the original GSM8K training dataset for
comparison with the work of Kurtic et al. (2023).

Models. We validate our approach using the
LLaMA-series (Touvron et al., 2023) and MPT-
series (MosaicML, 2023) language models. Specif-
ically, we generate Shears super-adapter net-
works from LLaMA7B

3, LLaMA13B
4, and MPT7B

5.
LLaMA (Touvron et al., 2023) models are popu-
lar autoregressive text generation models that have
obtained outstanding results compared to larger
language models. MPT (MosaicML, 2023) is an

2https://github.com/AGI-Edgerunners/LLM-Adapters
3https://huggingface.co/yahma/llama-7b-hf
4https://huggingface.co/yahma/llama-13b-hf
5https://huggingface.co/mosaicml/mpt-7b

open-source model developed to get similar per-
formance as LLaMA but available for commercial
use.

Baselines. We compare Shears against PEFT ap-
proaches like Prefix (Li and Liang, 2021), Series
(Houlsby et al., 2019), Parallel (Pfeiffer et al.,
2020), and LoRA (Hu et al., 2022), using their
results reported by LLM Adapters (Hu et al., 2023).
In the case of the GSM8K dataset, we also compare
Shears against the results obtained by Kurtic et al.
(2023), which uses full fine-tuning.

More details about the experiment implementa-
tion are included in Appendix B.

4.2 Comparison to LLM-Adapters

4.2.1 Math Reasoning
Table 1 shows the comparison of Shears with var-
ious adapter approaches. We fine-tune the spar-
sified super-adapter network in this experimental
scenario utilizing the 10K unified math dataset.
Then, the test accuracy on four math reasoning
test datasets of the heuristic subnetwork is reported.
As shown in the table, Shears successfully gener-
ates subnetworks with higher sparsity levels while
demonstrating improvements or marginal drops
in accuracy. At a sparsity level of 40% 6 for
LLaMA7B, Shears shows performance comparable
to PEFT approaches without sparsity. Meanwhile,

6The actual sparsity is marginally lower than the value
in the table (approximately less than 0.5%), attributed to the
introduction of additional parameters for the adapter.

398

Table 2: Sparsity and test accuracy (%) comparison of Shears with other LLM-Adapter approaches on commonsense
reasoning datasets. The result of zero-shot1 is derived from Touvron et al. (2023), and the result of zero-shot2 is
from LLM-Pruner (Ma et al., 2023). LLM-Pruner employs prompts different from those used by Touvron et al.
(2023) for zero-shot evaluation since they do not provide the prompts they used. Almost all results of the PEFT
baselines are obtained from Hu et al. (2023), except for the LoRA baseline in the 15k train dataset, which we
experimented with the official implementation.

LLM
Train

Method Sparsity
Datasets | Accuracy(%)

Average
Set Size BoolQ PIQA SIQA HellaSwag WinoG ARC-e ARC-c OBQA

GPT-3.5 - - - 73.1 85.4 68.5 78.5 66.1 89.8 79.9 74.8 77.0

LLaMA7B

- Zero-shot1 - 76.5 79.8 48.9 76.1 70.1 72.8 47.6 57.2 66.1

- Zero-shot2 - 73.2 78.4 32.9 73.0 67.0 67.5 41.4 42.4 59.5

15k
LoRA* - 62.6 75.3 67.9 52.9 58.6 79.2 58.3 71.2 65.8

Shears 40% 65.5 76.0 71.2 56.8 65.6 79.0 62.6 76.4 69.1
Shears 50% 62.5 75.7 69.7 54.8 65.7 75.1 59.5 72.6 66.9

170k

Prefix - 64.3 76.8 73.9 42.1 72.1 72.9 54.0 60.6 64.6

Series - 63.0 79.2 76.3 67.9 75.7 74.5 57.1 72.4 70.8

Parallel - 67.9 76.4 78.8 69.8 78.9 73.7 57.3 75.2 72.3

LoRA - 68.9 80.7 77.4 78.1 78.8 77.8 61.3 74.8 74.7

Shears 40% 67.0 79.9 76.6 80.1 78.6 76.9 62.3 77.8 74.9
Shears 50% 67.3 79.1 77.5 73.3 77.7 74.4 57.9 72.8 72.5

for LLaMA13B, a higher sparsity level of 50% can
be attained while maintaining satisfactory perfor-
mance. It is noteworthy that with a sparsity of 40%,
Shears outperforms all PEFT approaches, even sur-
passing their performance in the absence of any
sparsity.

4.2.2 Commonsense Reasoning
To further understand Shears’ generalizability to
other tasks, we fine-tune LLaMA7B using the uni-
fied commonsense dataset from LLM-Adapters
(Hu et al., 2023) using subsets of 15k and 170k sam-
ples and evaluate Shears’ models at different levels
of sparsity on commonsense reasoning datasets. As
shown in Table 2, at 40% sparsity, Shears obtains
models that outperform the baselines, and at 50%
sparsity, it obtains competitive models, demonstrat-
ing the benefits and generalizability of the proposed
approach.

4.3 Comparison to Full Fine-Tuning: MPT
with GSM8K

In addition to comparing with other PEFT meth-
ods, we conducted experiments to compare Shears
and full fine-tuning. We conduct experiments on a
single math reasoning dataset, the GSM8K dataset
(Cobbe et al., 2021), generating the MPT7B super-
adapter network. GSM8K can be challenging to

0 10 20 30 40 50 60 70
Sparsity (%)

24

26

28

30

32

34

36

G
SM

8K
 A

cc
ur

ac
y

(%
)

28.2

32.9

30.6

28.8 28.0

36.1
35.7

33.4

30.4

22.8

Shears vs. SparseFT with MPT-7B on GSM8K

Shears
SparseFT

0

10

20

30

40

50

60

70

80 Few
er Trainable Param

. R
atio

83.1x 50.9x 42.9x 34.8x 26.8x

Trainable Param.
(SparseFT / Shears)

Figure 2: Comparison of Shears and Sparse Fine-tuning
(SparseFT) (Kurtic et al., 2023) on the GSM8K test
dataset.

LLMs that have not been fine-tuned for this particu-
lar task. Figure 2 shows a comparison of Shears and
recent work by Kurtic et al. (2023), Sparse Fine-
Tuning (SparseFT). This work employs SparseGPT
(Frantar and Alistarh, 2023) and full fine-tuning
using a novel knowledge distillation strategy. In
the case of Shears, we adopt a more efficient ap-
proach leveraging unstructured sparsity and only
fine-tuning the elastic adapters, which means that
Shears incorporates fewer trainable parameters,
reducing training and memory costs. SparseFT
uses FP32 precision for tuning the whole model
weights and employs a knowledge distillation strat-

399

Table 3: Comparison of non-zero parameters. Acc.
represents the average accuracy across all math test
datasets.

LLM Method Sparsity Accuracy(%) Non-zero
Param.

LLaMA7B
LoRA - 46.9 6.7B
Shears 50% 45.3 3.5B

LLaMA13B
LoRA - 51.1 13.0B
Shears 50% 50.9 6.7B

egy with a more knowledgeable teacher. At the
same time, Shears utilizes FP16 precision for pre-
trained weights, and the training process does not
involve knowledge distillation. As shown in the fig-
ure, our approach, Shears, outperforms SparseFT
across sparsity levels from 0% to 60%, which in-
dicates that Shears produces models with similar
sparsity but higher accuracy. However, at a sparsity
level of 70%, SparseFT yields higher accuracy but
involves the high cost of fine-tuning all the weights
in the original model.

4.4 Benefits of Sparse Models

Table 3 shows the benefits of the high-performing
models within the Shears super-adapter network.
Shears obtains a model with 50% sparsity that con-
tains 1.91× fewer non-zero parameters with minor
drops in accuracy. Notably, the model from Shears
maintains the adapters unmerged, while the vanilla
LoRA adapters are merged with the original model.
Since the bulk of the model sparsity is concentrated
in the frozen weights, combining the adapters will
reduce the sparsity levels. Furthermore, benefiting
from sparsity, Shears still exhibits notable infer-
ence acceleration while maintaining accuracy or
experiences only a marginal decrease compared to
the vanilla LoRA.

4.5 Ablation Studies

Tables 4 and 5 illustrate the test accuracy com-
parison for ablation studies conducted on diverse
methods, considering sparsity and various LLMs.
The findings indicate that LLaMA7B and MPT7B
can only effectively handle the challenging down-
stream datasets with fine-tuning, emphasizing the
pivotal role of fine-tuning in these tasks. In the
supervised fine-tuning setup, Shears demonstrates
some benefits, whether applied to models with or
without sparsity. Specifically, LoRA and Shears
perform similarly in the experimental group with-

out sparsity. However, with 50% sparsity, Shears
outperforms LoRA significantly, highlighting its
efficacy in enhancing model performance under
sparsity conditions. This observation underscores
that for sparsified models, employing Shears al-
lows for a more substantial maximization of model
performance in the supervised fine-tuning setup.

4.6 Sub-Adapter Configuration Search

Table 6 demonstrates the accuracy range of the
search space of sub-adapter configurations. Since
the sparsified weights of the model remain frozen,
the search for the configuration of the attached
adapter in Shears is significantly smaller than the
search space in general neural architecture search.
Studies indicate a narrow accuracy range, with the
difference in accuracy between the minimal and
the maximal sub-adapter configuration being only
a single accuracy percentage point. The heuristic
obtained in O(1) already gives us a reliable indi-
cation of the quality of the sub-adapters around
the mid-configuration space. If the user has the
budget, a more refined sub-adapter configuration
can be searched using a cost-effective hill-climbing
strategy that is cheaper than other methods, e.g.,
evolutionary search with RNSGA-II.

5 Conclusion

This paper presents Shears, a practical and novel
solution for real-world applications to sparsi-
fying weight-sharing super-networks of elastic
adapters (super-adapters). By incorporating elas-
tic LoRA adapters into the sparsified base model,
Shears can fine-tune LLMs without sacrificing
the sparsity obtained from the original model
weights and produces sparse models with improve-
ments or minor drops in accuracy and a frac-
tion of the cost compared to other approaches.
The increase in sparsity can result in significant
speedup when using runtimes that take advan-
tage of these patterns. Ablation studies show that
combining sparsified models with elastic low-rank
adapters yields better results than using LoRA
adapters alone. Models and code are available
at https://github.com/IntelLabs/Hardware-Aware-
Automated-Machine-Learning.

Ethical Considerations and Limitations

The significant size of recent large language mod-
els has brought challenges for fine-tuning and de-
ployment. Users with proprietary data must spend

400

https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning
https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning

Table 4: Ablation studies for LLaMA7B. For a fair comparison, all ablation experiments with LoRA and NLS tuning
applied the same adapter target modules (Q, K, V, Up, and Down).

Method Sparsity Datasets | Accuracy(%) Average
GSM8K AQuA MAWPS SVAMP

LLaMA7B:
w/o tune - 11.0 24.8 3.4 2.9 10.5
w/ LoRA tune - 37.5 18.9 79.0 52.1 46.9
w/ NLS tune (Shears w/o sparsity) - 37.3 18.5 82.8 49.4 47.0

Pruned LLaMA7B:
w/o tune 50% 2.5 8.7 13.0 6.5 7.7
w/ LoRA tune 50% 33.8 18.1 79.0 42.3 43.3
w/ NLS tune (Shears) 50% 36.1 22.0 78.6 44.5 45.3

Table 5: Ablation studies for MPT7B. Experiments
with LoRA and NLS tuning applied the same adapter
target modules (Q, K, V, O, Up, and Down). Shears
outperforms LoRA with and without the sparsification
step.

Method Sparsity Test Accuracy

MPT7B:
w/o tune - 2.7
w/ LoRA tune - 35.5
w/ NLS tune (Shears w/o sparsity) - 36.1

Pruned MPT7B:
w/o tune 40% 2.9
w/ LoRA tune 40% 33.0
w/ NLS tune (Shears) 40% 35.7
w/o tune 50% 2.4
w/ LoRA tune 50% 31.8
w/ NLS tune (Shears) 50% 33.4

considerable time and resources adjusting LLMs’
weights to improve their performance on custom
tasks. In a world with limited resources, it is an
ethical concern to find approaches that reduce the
requirements of training and fine-tuning LLMs. Al-
though Shears significantly reduces this process’s
requirements, more work is needed to address this
issue. There is also the need for more research on
the inherent limitations of LLMs. Their results and
decisions should be carefully audited when they
can affect customers’ lives, who might need to be
made aware of the depths and gaps in understand-
ing that LLM researchers still have. Our goal is
to make these models more efficient. However, ef-
ficiency is not the end of the story, and the above
limitations should be considered when using or
sharing LLMs.

Table 6: Comparison of various sub-adapter networks
and the method used to obtain them from the LLaMA7B
+ Shears super-adapter network. Accuracy represents
the average accuracy across all math test datasets.

Method Sparsity Sub-Adapter Accuracy (%)

LoRA - - 46.9

Shears 50%

Maximal 44.5
Heuristic 45.3
Hill-climbing 45.9
RNSGA-II 45.7
Minimal 43.5

Acknowledgments

We are grateful to Michael Beale from Intel Labs,
who helped us set up the infrastructure for sharing
our models during the review stage and the final
release and guided us through open-sourcing our
compressed models. We also thank the anonymous
reviewers for their insightful suggestions, which
helped us improve the paper.

References
Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng

Gao, and Yejin Choi. 2020. Piqa: Reasoning about
physical commonsense in natural language. In Thirty-
Fourth AAAI Conference on Artificial Intelligence.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang,
and Song Han. 2020. Once for all: Train one network
and specialize it for efficient deployment. In Interna-
tional Conference on Learning Representations.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek

401

https://arxiv.org/pdf/1908.09791.pdf
https://arxiv.org/pdf/1908.09791.pdf

Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In NAACL.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. ArXiv,
abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. 2002.
A fast and elitist multiobjective genetic algorithm:
Nsga-ii. IEEE Transactions on Evolutionary Compu-
tation, 6(2):182–197.

Kalyanmoy Deb and J. Sundar. 2006. Reference point
based multi-objective optimization using evolution-
ary algorithms. In Proceedings of the 8th Annual
Conference on Genetic and Evolutionary Computa-
tion, GECCO ’06, page 635–642, New York, NY,
USA. Association for Computing Machinery.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. GPT3.int8(): 8-bit matrix mul-
tiplication for transformers at scale. In Advances in
Neural Information Processing Systems.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zong-
han Yang, Yusheng Su, Shengding Hu, Yulin Chen,
Chi-Min Chan, Weize Chen, Jing Yi, Weilin Zhao,
Xiaozhi Wang, Zhiyuan Liu, Hai-Tao Zheng, Jianfei
Chen, Yang Liu, Jie Tang, Juanzi Li, and Maosong
Sun. 2022. Delta tuning: A comprehensive study of
parameter efficient methods for pre-trained language
models.

Elias Frantar and Dan Alistarh. 2023. SparseGPT: Mas-
sive language models can be accurately pruned in
one-shot. arXiv preprint arXiv:2301.00774.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In
Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 2790–2799.
PMLR.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Zhiqiang Hu, Yihuai Lan, Lei Wang, Wanyu Xu, Ee-
Peng Lim, Roy Ka-Wei Lee, Lidong Bing, and Sou-
janya Poria. 2023. Llm-adapters: An adapter family
for parameter-efficient fine-tuning of large language
models. arXiv preprint arXiv:2304.01933.

Eldar Kurtic, Denis Kuznedelev, Elias Frantar, Michael
Goin, and Dan Alistarh. 2023. Sparse finetuning
for inference acceleration of large language models.
arXiv preprint arXiv:2310.06927.

Yihuai Lan, Lei Wang, Qiyuan Zhang, Yunshi Lan,
Bing Tian Dai, Yan Wang, Dongxiang Zhang, and
Ee-Peng Lim. 2022. Mwptoolkit: an open-source
framework for deep learning-based math word prob-
lem solvers. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pages 13188–
13190.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 158–167, Vancouver,
Canada. Association for Computational Linguistics.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.
Llm-pruner: On the structural pruning of large lan-
guage models. In Advances in Neural Information
Processing Systems.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. In Conference on Empirical Methods in Natural
Language Processing.

NLP Team MosaicML. 2023. Introducing mpt-7b: A
new standard for open-source, commercially usable
llms. Accessed: 2023-05-05.

402

http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
https://api.semanticscholar.org/CorpusID:3922816
https://api.semanticscholar.org/CorpusID:3922816
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
https://openreview.net/forum?id=dXiGWqBoxaD
https://openreview.net/forum?id=dXiGWqBoxaD
http://arxiv.org/abs/2203.06904
http://arxiv.org/abs/2203.06904
http://arxiv.org/abs/2203.06904
https://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://api.semanticscholar.org/CorpusID:52183757
https://api.semanticscholar.org/CorpusID:52183757
https://api.semanticscholar.org/CorpusID:52183757

J. Pablo Muñoz, Nikolay Lyalyushkin, Yash Akhauri,
Anastasia Senina, Alexander Kozlov, and Nilesh Jain.
2022. Enabling nas with automated super-network
generation. In Practical Deep Learning in the Wild,
AAAI.

J. Pablo Muñoz, Jinjie Yuan, Yi Zheng, and Nilesh
Jain. 2024a. Lonas: Elastic low-rank adapters for
efficient large language models. In The 2024 Joint
International Conference on Computational Linguis-
tics, Language Resources and Evaluation.

J. Pablo Muñoz, Yi Zheng, and Nilesh Jain. 2024b.
EFTNAS: Searching for efficient language models
in first-order weight-reordered super-networks. In
The 2024 Joint International Conference on Compu-
tational Linguistics, Language Resources and Evalu-
ation.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080–2094, Online.
Association for Computational Linguistics.

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Se-
bastian Ruder. 2020. MAD-X: An Adapter-Based
Framework for Multi-Task Cross-Lingual Transfer.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7654–7673, Online. Association for Computa-
tional Linguistics.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commun.
ACM, 64(9):99–106.

Victor Sanh, Thomas Wolf, and Alexander M. Rush.
2020. Movement pruning: Adaptive sparsity by fine-
tuning.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan
Le Bras, and Yejin Choi. 2019. Social IQa: Com-
monsense reasoning about social interactions. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 4463–
4473, Hong Kong, China. Association for Computa-
tional Linguistics.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico
Kolter. 2023. A simple and effective pruning ap-
proach for large language models. arXiv preprint
arXiv:2306.11695.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models.

Colin White, Mahmoud Safari, Rhea Sukthanker,
Binxin Ru, Thomas Elsken, Arber Zela, Debadeepta
Dey, and Frank Hutter. 2023. Neural architecture
search: Insights from 1000 papers.

Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender,
Pieter-Jan Kindermans, Mingxing Tan, Thomas S.
Huang, Xiaodan Song, Ruoming Pang, and Quoc V.
Le. 2020. Bignas: Scaling up neural architec-
ture search with big single-stage models. CoRR,
abs/2003.11142.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics.

Han Zhou, Xingchen Wan, Ivan Vulić, and Anna Korho-
nen. 2023. Autopeft: Automatic configuration search
for parameter-efficient fine-tuning. arXiv preprint
arXiv:2301.12132.

403

http://arxiv.org/abs/2112.10878
http://arxiv.org/abs/2112.10878
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.1145/3474381
https://doi.org/10.1145/3474381
http://arxiv.org/abs/2005.07683
http://arxiv.org/abs/2005.07683
https://doi.org/10.18653/v1/D19-1454
https://doi.org/10.18653/v1/D19-1454
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
https://doi.org/10.48550/ARXIV.2301.08727
https://doi.org/10.48550/ARXIV.2301.08727
http://arxiv.org/abs/2003.11142
http://arxiv.org/abs/2003.11142

A Related Work

Neural Architecture Search (NAS) Given a set
of possible deep learning architecture configura-
tions, a NAS algorithm discovers high-performing
configurations. They often update the model
weights, yielding a trained model ready for deploy-
ment. Research in NAS has increased dramatically
in the past few years (White et al., 2023), making
these techniques highly popular with practitioners
engaged in model optimization and compression.
One-shot weight-sharing neural architecture search
has been demonstrated to be a practical class of
NAS algorithms with savings in memory and addi-
tional storage since they construct a super-network
that contains a large number of subnetworks (Cai
et al., 2020; Yu et al., 2020). In this case, the objec-
tive of the NAS algorithm is to train and identify an
outstanding subnetwork, frequently representing a
compressed version of the original model. Our ap-
proach, Shears, differs from traditional NAS in that
we do not attempt to find a better, more efficient
neural architecture using the original model as a
reference. Shears freezes the original model and at-
taches elastic low-rank adapters, directing the NAS
mechanisms only to these adapters, termed neural
low-rank adapter search (NLS).

Elastic Adapters PEFT (Ding et al., 2022) has
become a popular method for fine-tuning large
models. Recently, there has been work on mak-
ing the adapters in PEFT elastic, aiming to find the
optimal adapter configuration through a search pro-
cess. AutoPEFT (Zhou et al., 2023) automatically
applies elastic serial adapters, parallel adapters, and
prefix-tuning into the small language model like
BERT to identify the optimal adapter class and its
configuration within these elastic modules. LoNAS
(Muñoz et al., 2024a) introduces elasticity to the
low-rank adapters and pre-trained weights in LLM,
enabling them to adopt various configurations. This
feature effectively generates a search space con-
ducive to exploring using weight-sharing neural
architecture search (NAS). In our approach, Shears
only makes the LoRA adapters of the sparsified
model elastic, ingeniously combining both model
sparsification and elastic adapters to elicit optimal
performance in the sparsified model.

Sparsity and Pruning Pruning the weights of a
neural network is a popular technique for model
compression. The most common approach of
element-wise pruning uses the magnitude of the

weights and a thresholding function that zeroes
out the weights below a threshold. Weight magni-
tude pruning is ineffective when applied to LLMs
(Frantar and Alistarh, 2023). One possible reason
is the existence of outlier features when models
reach several billion parameters (Dettmers et al.,
2022). Alternative approaches have been proposed
to measure the importance of the weights. For in-
stance, first-order approaches use several iterations
to update the weights, e.g., Movement Pruning
(Sanh et al., 2020) and SparseGPT (Frantar and
Alistarh, 2023). These approaches have also im-
proved weight-sharing NAS (Muñoz et al., 2024b).
Unfortunately, using weight updates for LLM prun-
ing requires a significant computational cost. Re-
cently, efficient approaches have been proposed
to achieve high degrees of sparsity with a single
forward pass of N samples. For example, Wanda
(Sun et al., 2023) is a simple but effective sparsi-
fication method that determines which parameters
to zero out by the importance of weights based on
both the weights and the activations. LLM-Pruner
(Ma et al., 2023) is proposed to compress LLMs
in a task-agnostic manner (Ma et al., 2023). This
approach produces good zero-shot results after ap-
plying structured pruning on the targe LLM. Unlike
these approaches, Shears is designed for specific
task fine-tuning scenarios, which can obtain higher
levels of unstructured sparsity while improving or
with minor drops in accuracy by combining un-
structured sparsity with neural low-rank adapter
search (NLS).

Sparsity and Fine-Tuning SparseFT (Kurtic
et al., 2023) uses SparseGPT (Frantar and Alistarh,
2023) to sparsify the model and then fine-tunes
all the weights of the model using a novel knowl-
edge distillation technique (see section 4.3). Unlike
SparseFT, Shears does not use knowledge distilla-
tion and fine-tunes only a tiny set of weights in elas-
tic low-rank adapters. Our approach necessitates
updating only a fraction of the total parameters,
thereby reducing memory and computing demands
during training while enhancing accuracy.

B Hyperparameters

The hyperparameters of our approach under differ-
ent LLMs are listed in Table 7, Table 8, and Table
9.

404

Table 7: Hyperparameters for LLaMA-series models with the math reasoning dataset.

Model LLaMA7B LLaMA7B LLaMA13B LLaMA13B

Sparsity 40% 50% 40% 50%
Epoch 4 3 3 3
Batch size 16 16 16 16
Learning rate 3e-4 3e-4 3e-4 3e-4
LoRA alpha 64 64 64 64
LoRA target modules Q, K, V, Up, Gate, Down Q, K, V, Up, Down Q, K, V, Up, Down Q, K, V, Up, Down
Low-rank Search Space [32, 24, 16] [32, 24, 16] [32, 24, 16] [32, 24, 16]

Table 8: Hyperparameters for LLaMA7B with the commonsense reasoning dataset.

Train set size 15k 15k 170k 170k
Sparsity 40% 50% 40% 50%
Epoch 3 3 3 5
Batch size 16 16 16 16
Learning rate 3e-4 3e-4 3e-4 3e-4
LoRA alpha 64 64 64 64
LoRA target modules Q, K, V, Up, Down Q, K, V, Up, Gate, Down Q, K, V, Up, Gate, Down Q, K, V, Up, Down
Low-rank Search Space [32, 24, 16] [32, 24, 16] [32, 24, 16] [32, 24, 16]

Table 9: Hyperparameters for MPT7B with GSM8K.

Sparsity 40% 50% 60% 70%
Epoch 4 5 5 8
Batch size 16 16 16 16
Learning rate 5e-4 3e-4 3e-4 3e-4
LoRA alpha 64 64 64 64
LoRA target modules Q, K, V, O, Up, Down Q, K, V, O, Up, Down Q, K, V, O, Up, Down Q, K, V, O, Up, Down
Low-rank Search Space [32, 24, 16] [32, 24, 16] [32, 24, 16] [32, 24, 16]

405

