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Abstract

Data drift, which denotes a misalignment be-
tween the distribution of reference (i.e., train-
ing) and production data, constitutes a signifi-
cant challenge for AI applications, as it under-
mines the generalisation capacity of machine
learning (ML) models. Therefore, it is im-
perative to proactively identify data drift be-
fore users meet with performance degradation.
Moreover, to ensure the successful execution
of AI services, endeavours should be directed
not only toward detecting the occurrence of
drift but also toward effectively addressing this
challenge. In this work, we introduce a tool
designed to detect data drift in text data. In ad-
dition, we propose an unsupervised sampling
technique for extracting representative exam-
ples from drifted instances. This approach be-
stows a practical advantage by significantly re-
ducing expenses associated with annotating the
labels for drifted instances, an essential pre-
requisite for retraining the model to sustain its
performance on production data.

1 Introduction

The recent advancements in machine learning (ML)
and deep learning (DL) have propelled the emer-
gence of diverse natural language processing (NLP)
AI solutions featuring cutting-edge ML and DL
models. Nonetheless, their exclusive proficiency
in inductive reasoning has given rise to substan-
tial challenges when applied in practical business
contexts. One such challenge is a data drift, an
inconsistency between reference (i.e., training) and
production data distributions (Madaan et al., 2023).
As the alterations in data distribution violate the
fundamental assumption of ML, the IID condition
that posits an identical distribution between train-
ing and test data, the occurrence of data drift has the
potential to aggravate the accuracy of previously-
trained models and ultimately damage the quality
of AI services. Consequently, it is crucial to detect

data drift and provide an updated model before cus-
tomers experience a degradation in performance.

The ML community has classified the data drift
into two principal categories (Moreno-Torres et al.,
2012; Gama et al., 2014; Mallick et al., 2022).
Assume an input X , target Y , and the ground-
truth relationship between X and Y as f , so that
Y = f(X). The first type of data drift is covariate
drift (Shimodaira, 2000), which implies the change
in the input feature distributions (i.e., X → X

′
).

The second category is concept drift (Widmer and
Kubat, 1996), where the underlying relationship f
changes (i.e., Y = f(X) → Y = g(X)). These
two types of data drift readily occur in practical
applications, such as introducing instances with un-
seen target labels or emerging new words/phrases
under existing target labels. However, previous
studies regarding data drift detection solely focused
on a singular drift type, either covariate drift (Feld-
hans et al., 2021; Khaki et al., 2023; Chang et al.,
2023; Madaan et al., 2023) or concept drift (Acker-
man et al., 2020; Tahmasbi et al., 2021; Ackerman
et al., 2021; Rabinovich et al., 2023). Furthermore,
these studies primarily centred on the identification
of drift, but from a practical viewpoint, it is equally
crucial to effectively address the challenge of up-
holding the model’s performance and the quality
of AI services. The conventional and straightfor-
ward approach involves annotating the drifted in-
stances and incorporating them in a training batch
for model retraining. However, employing human
annotators for labelling a substantial volume of data
points constitutes a resource-intensive undertaking.

To this end, we propose a system called Drift-
Watch, which detects both covariate and concept
drift in text data. Regarding the detector for covari-
ate drift, we ascertained that using both semantic
and syntactic features is beneficial over the exclu-
sive reliance on either. Regarding the detector for
concept drift, we investigated multiple approaches,
including the incorporation of large language mod-
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els (LLMs), but found that conventional and sim-
pler methods outperform the LLM-based approach
in practical applications. In addition to this, we
built a sampling methodology that autonomously
extracts representative drifted instances, along with
their corresponding importance rankings. This un-
supervised approach can significantly reduce the
effort to annotate labels for drifted instances, a ne-
cessity in the re-training ML model.

The main contributions of this paper can be sum-
marised as follows: 1) We introduce an auditor
capable of detecting both covariate and concept
drift, 2) We propose an effective sampling approach
for the extraction of representative samples from
drifted instances, which offers the practical advan-
tages by significantly reducing the effort required
for annotating labels, 3) Our sampling methodol-
ogy provides importance rankings for the drifted
instances, facilitating prioritising annotation orders
in the situation of limited resources, 4) We ascertain
that contemporary LLMs may not necessarily out-
perform traditional approaches when implemented
in practical applications.

2 Components of Proposed Solution

The overall process of DriftWatch solution is illus-
trated in Figure 1. First, models consisting of our
covariate and concept drift detectors are trained
using the reference dataset. Next, production in-
stances affected by both covariate and concept drift
are predicted using the trained models. Finally,
representative sampling is introduced to address a
practical issue where enough human labourers to
annotate drifted instances are unavailable. Finally,
newly annotated instances are integrated into the
reference data.

2.1 Covariate Drift Detector

Syntactic Drift Detector. Following the work of
Chang et al. (2023), we employed vocabulary drift
to detect syntactic changes in input features. To
elaborate, content words 1 were extracted from the
training corpus and the frequency of each word
was calculated. Subsequently, the likelihood of
an instance x (Lx) is defined as the logarithmic
summation of the frequencies of content words
contained in x:

Lx =
1

|xc|
∑

w∈xc

logF (w), (1)

1Noun, verb, adverb, and adjectives.

where xc refers to the content words existing in
x and F (w) denotes the frequency of the word w.
The low likelihood indicates that an instance con-
tains many content words absent from the training
corpus, signifying dissimilar input features. Con-
sequently, instances are deemed drifted instances
when their likelihood falls below a predefined
threshold.

On top of the likelihood, the syntactic drift de-
tector offers the contribution score of each content
word to covariate drift. Assume that an input x is
identified as a drifted instance owing to a low like-
lihood. As words with higher frequency have less
influence on covariate drift, we defined the contri-
bution score of a content word w in x as follows,
where higher values imply a greater contribution to
the drift.:

cw =
ĉw∑

k∈xc
ĉk

, ĉw =
Lx

logF (w)
, (2)

Semantic Drift Detector. We referred to the vari-
ational auto encoder (VAE) based density mod-
elling approach to identify semantic alterations in
input features, which, as demonstrated in the study
of Madaan et al. (2023), exhibited superior per-
formance over alternative approaches. During the
training phase, sentence vectors are generated from
S-BERT to train a VAE. In the inference phase,
VAE generates the loss value for an instance x,
which is then employed to compute the similarity
score: sx = e−loss. The low similarity score indi-
cates a failure of the VAE to reproduce the input
vector representation, signifying its dissimilarity
with training instances. Consequently, instances
with a similarity score below a predefined threshold
are regarded as drifted instances.

Our semantic drift detector also offers the con-
tribution of each word to covariate drift. Consider
an input sentence x consisting of n words is given.
First, n masked sentences are generated by mask-
ing a single word at a time. Next, VAE generates
similarity scores for x and masked sentences. Fi-
nally, the contribution of ith word is computed as
follows:

Di =
si − s

σ
, ci =

eDi

∑n
k=1 e

Dk
, (3)

where σ denotes the standard deviation of training
similarity scores, s and si refer to the similarity
score of x and a masked sentence where ith word
is masked, respectively. If Di > 0, it means that
the similarity is increased after making ith word,
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Figure 1: Overall process of DriftWatch solution.

signifying that the word negatively influences the
similarity score and, hence, the word contributes
more significantly to covariate drift.

Both drifted detectors require a predetermined
threshold for decision-making. We defined the
threshold as µtr − 3σtr following the Six Sigma
method for quality control. The µtr and σtr rep-
resent the average and standard deviation derived
from the likelihood and similarity score training
distribution.

2.2 Concept Drift Detector

Predictive Entropy Approach. Concept drift de-
notes an alteration in the relationship between X
and Y . As a classifier M is trained to formulate
an empirical relationship between X and Y , i.e.,
Y = M(X), the predictive distribution generated
by the classifier has been conventionally employed
for detecting concept drift. Building upon the work
of Winter et al. (2023), we employed the entropy
of the predictive distribution as a metric for identi-
fying the concept drift:

Hx = −
∑

k∈C
pM (y = k|x) log pM (y = k|x),

(4)

where Hx denotes the entropy of an instance x,
pM (y = k|x) refers to the predictive probabil-
ity of x having the label k generated by M . The
higher entropy implies that the predictive distribu-
tion closely approximates a uniform distribution,
suggesting an increased likelihood of concept drift.
The drift detection performance can be further en-
hanced by employing the ensemble method, incor-
porating distributions generated by multiple classi-
fiers. (Lakshminarayanan et al., 2017):

pE(y = k|x) = 1

|M|
∑

m∈M
pm(y = k|x), (5)

where M is the set of pre-trained classifiers.

2.3 Representative Example Sampler
Our sampling methodology consists of two compo-
nents: a feature extraction module and a clustering-
based sample extraction module.

Feature Extraction Module. We transformed
text data into numerical vectors through the pro-
posed feature extraction module. First, a sen-
tence embedding model was employed to gener-
ate sentence vectors for each input text. Subse-
quently, the dimension of sentence vectors under-
went reduction through a dimensionality reduction
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methodology for efficient clustering. We used S-
BERT (Reimers and Gurevych, 2019) for gener-
ating sentence vectors (all-MiniLM-L6-v2) and
UMAP algorithm (McInnes et al., 2018) for the di-
mensionality reduction, where the size of reduced
dimension was set as 10.

Sample Extraction Module. We employed
the K-means clustering-based sampling ap-
proach (Chang et al., 2021) to extract representative
examples. Assume that we have a total of n data
instances, with the designated number of samples
for extraction denoted as N . Utilising the output
of the aforementioned feature extraction module,
K-means clustering was performed where K is set
to N to minimise the sum of the squared errors
(SSE):

SSE =
n∑

i=1

N∑

j=1

wi,j ||xi − µj ||2, (6)

where µi is the centroid of the jth cluster, xi is
the embedding vector of ith instance, wi,j is 1 if
xi belongs to the jth cluster and 0 otherwise. The
clustering process was iterated 10 times with differ-
ent initial centroids, and the outcome yielding the
minimum SSE was selected. Finally, N data points
closest to each cluster’s centre were extracted as
representative examples. In addition to the repre-
sentative samples, our solution also provides their
respective importance scores. This information
proves valuable for prioritising the annotation or-
der, especially when annotation resources are con-
strained. Given that a cluster with smaller SSE
implies instances within the cluster are densely
concentrated, the centroid of such a cluster en-
compasses more similar instances. Also, clusters
containing fewer instances have lower SSE values.
Therefore, the SSE of each cluster divided by their
size served as an importance score, where lower
values indicate higher importance.

3 Experiments and Results

3.1 Publicly Available Dataset

We first assessed our proposed solution on pub-
licly available datasets to ascertain the basic perfor-
mance of our proposed drift detectors.

Covariate Drift Experiment. We employed In-
surance company review 2 as a reference data. For
the production set, we constructed two sets where

2Kaggle insurance company review data

+Fashion +Restaurant

DriftWatch
Semantic 94.15±0.7 73.23±0.6
Syntactic 82.08 73.62

Both 96.32±0.2 82.08±0.3

DetAIL (Reported) 96.18 81.57

Table 1: Experimental results on the review datasets.
The best results are formatted in bold. The average and
standard deviation of five repetitions are reported.

the Insurance company review was mixed with
Fashion item review (Agarap, 2018) and Restaurant
review 3. The details of the training are described
in Appendix A.1.1. Table 1 displays the experimen-
tal results. The same evaluation metric proposed by
Madaan et al. (2023) was used for the evaluation.
We ascertained that our solution, which leverages
both semantic and syntactic drift detectors, outper-
forms DetAIL (Madaan et al., 2023), a practical
service that is currently operating. Also, it was ob-
served that employing both detectors exhibits better
performance compared to using only one type of
detector, signifying the benefit of utilising multiple
distinct features.

Additionally, we employed the contribution
scores to identify words that highly influenced the
data drift and found that the syntactic drift detector
scores were more intuitive than those of the seman-
tic drift detector. The examples can be found in
Figure 4 in Appendix.

Concept Drift Experiment. We used AG-News
dataset (Zhang et al., 2015) for the concept drift
detection experiments. We investigated four scenar-
ios where one of the classes is removed from the
training data. Test instances with the removed class
as labels were considered drifted examples. Re-
garding the single approach, an average of five rep-
etitions was reported. For the ensemble approach,
the predictive distribution of the five single mod-
els was merged by Equation 5. The results are
summarised in Table 2. It was observed that the
ensemble method generated a significantly higher
AUROC score than the single model approach,
even performing better than the best-performing
single model. The results signify that the ensemble
method, which produces more stable and consis-
tent performance, would be a safer approach in
practical applications.

3Kaggle restaurant review data
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Removed Class World Sports Business Sci/Tech

Single Avg. .810±.03 .649±.02 .821±.01 .791±.01
Ensemble .850 .693 .840 .802

Table 2: Experimental results on the AG-News dataset
for concept drift experiment. The best results are for-
matted in bold.

3.2 Real Practical Scenario

Next, we applied DriftWatch to a real-world in-
dustrial scenario by using our internal customer
complaint dataset (ICD). This dataset consists of
two textual components: summaries of customer
complaints and the resolutions provided by our cus-
tomer service agents, along with their correspond-
ing 3-level hierarchical categories, which were la-
belled by human annotators. We concatenated the
two texts to create an input, where the category
served as the prediction label. The dataset spans
all days of 2022. We partitioned Jan data as a ref-
erence set and constructed 11 production batches
based on the respective months in which the data
was collected.

Covariate Drift Detection Results. We devised
an indirect experiment for evaluating performance
due to the complexity of labelling covariate drifted
instances in real data. This involved segregating
the data into training, validation, and test sets for
each month, excluding Jan, the reference data. Sub-
sequently, our proposed solution was applied to
the training set of each month to detect instances
affected (D) and unaffected (¬D) by covariate drift.
Next, two auxiliary training sets were formulated
for each month: D+Rand(¬D), where all the drifted
instances were used, and additional examples were
randomly sampled from ¬D, and Rand(D+¬D),
where all the examples were randomly sampled.
The size of the two sets was identical to 10K. Fi-
nally, a classifier was trained for each month, util-
ising both the reference set and the auxiliary train-
ing set, and the performance on the test set was
compared. We used the 1st level category as a tar-
get label (20 classes) and fine-tuned Electra-small
model (Clark et al., 2020). Appendix A.1.1 de-
scribes more details regarding the training settings.
Experimental results are summarised in Table 3.
The findings indicate that the incorporation of all
the drifted instances yields statistically significant
improvements in performance across 8 out of 11
months, suggesting that the identified drifted in-
stances exhibit distinctive features that impede the
generalisation effect. Furthermore, we analysed

the word contribution scores and ascertained that
typos and abbreviations largely influenced to the
covariate drift. The examples are not included in
the manuscript due to the security issue.

Representative Sampling Results. Through the
application of our representative sampling method,
we selectively extracted 50% of examples affected
by covariate drift, subsequently integrating them
with the reference data for training a classifier
for each month. For comparative analysis, all in-
stances affected by covariate drift were integrated
with the reference data. Table 3 shows that classi-
fiers trained with sampled examples, despite being
trained on a reduced dataset, demonstrated no sta-
tistically significant performance degradation over-
all and even exhibited superior performance in the
datasets corresponding to June and July.

We additionally trained the classifiers on two
variations to ascertain whether the importance
score conveyed meaningful information. Specifi-
cally, we split the sampled representative examples
into two groups: half of the examples with the high-
est importance (H-Imp) and the others (L-Imp). It
was found that groups with higher importance pro-
duced superior performance in general, supporting
the benefit of the proposed importance score.

Concept Drift Detection Results. Instances
characterised by labels absent in the reference data
were deemed as examples influenced by concept
drift. Given the absence of instances having the
new label in the 1st level category, we employed
the 2nd level category as the target class, encom-
passing 47 subcategories. The results are sum-
marised in Table 3. It was observed that, while
the single approach yielded a decent level of per-
formance, the ensemble approach employing five
distinct classifiers exhibited a superior and more
stable performance, with an average AUROC of
0.883±0.06, far surpassing that of the single ap-
proach of 0.821±0.09. Figure 3 in the Appendix
illustrates the ROC curve of both approaches.

On top of our proposed approach, we imple-
mented a concept drift detection method that em-
ploys LLMs. The recent advancements in LLMs
have opened avenues for zero-shot data drift de-
tection. This involves querying LLMs whether a
given input exhibits an abnormal state, with spe-
cific applications in autonomous driving (Elhafsi
et al., 2023) and log anomaly detection (Qi et al.,
2023). These methodologies, however, lack appli-
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Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Covariate Drift
# of Drifts (Detected) 765 981 850 830 878 733 874 982 879 720 752

Rand(D+¬D) .669 .669 .651 .649 .658 .665 .689 .661 .672 .678 .687
D+Rand(¬D) .675* .675* .652 .656* .660 .671* .694* .667* .679* .687* .689

Representative Sampling

All .660 .662 .631 .639 .627 .638 .662 .661 .665 .678 .685
Kmeans 50% .662 .665 .632 .636 .637* .646* .659 .660 .666 .677 .686

L-Imp .663 .659 .626 .628 .629 .640 .661 .657 .663 .674 .685
H-Imp .665 .661 .633* .637* .631 .644* .664 .662* .667* .676 .684

Concept Drift
# of Drifts 5 13 17 6 12 14 31 6 12 3 4

Single .743 .814 .944 .883 .927 .729 .744 .796 .897 .867 .683
Ensemble (n=5) .909* .830* .949 .890 .938* .839* .780* .790 .900 .953* .940*

Table 3: Experimental results on ICD. The best performance is highlighted in bold. The evaluation metric for
concept drift is the AUROC, and the F1-score for the others. We reported an average of five repetitions for each test
scenario. * denotes the performance showed a statistically significant difference at a p-value of 0.1 using a t-test. ’#
of Drifts’ in covariate drift is driven from the identified drifts by our tool, while that of concept drift is calculated by
using the ground-truth labels.

(a) Entropy-Single (b) Entropy-Ensemble (c) Prompt Consistency

Figure 2: Entropy distribution of (a) single, (b) ensemble, and (c) prompt consistency approach.

cability in certain business domains as they rely
on general knowledge for defining abnormal states.
Hence, we devised a novel approach that leverages
prompt consistency (Zhou et al., 2022). In particu-
lar, we used diverse prompt designs to fine-tune a
LLM to generate the target label. We assumed that
non-drifted instances would exhibit robust gener-
alisation on the fine-tuned LLM, resulting in the
model generating consistent answers across various
prompt designs. Consequently, the prompt consis-
tency score was employed to identify concept drift,
which is defined as an entropy (equation 4) of the
following predictive distribution:

p(y = k|x) =
∑

i∈P 1(LLM(x, i) = k)

|P | , (7)

where P is the set of different prompt designs and
LLM(x, i) denotes the predicted label of an input
x and the prompt design i.

We designed 10 different prompts (See Ap-
pendix A.2) and fine-tuned FlanT5-XL (Chung
et al., 2022) with LoRA adaptation (Hu et al.,
2022), where the details of the training are de-
scribed in the Appendix A.1.3. Due to the exces-
sive duration of the training FlanT5-XL, our ex-
periments were confined to the Apr dataset, where

optimal performance was observed for both the
Single and Ensemble models. Notably, the LLM-
based prompt consistency method yielded AUROC
of 0.518, despite its 2 days fine-tuning period com-
pared to the 1.5-hour duration for the ensemble ap-
proach. Figure 2 displays the entropy distribution,
revealing that the prompt consistency approach pro-
duced an indistinguishable difference between in-
stances affected by concept drift and those unaf-
fected. The results signify that the modern LLMs
may not necessarily be superior to conventional
approaches in practical applications. The experi-
mental results also indicate that the modern LLMs
contain inconsistency issues, which is in line with
many recent studies (Jang and Lukasiewicz, 2023;
Teng et al., 2023; Bonagiri et al., 2024).

4 Related Works

Several studies have been conducted on covariate
drift detection. Feldhans et al. (2021) generated
sentence embeddings and performed statistical tests
to detect changes in embedding vectors of reference
and production data. Khaki et al. (2023) introduced
a similar approach but used maximum mean dis-
crepancy (MMD) test (Gretton et al., 2012). Ra-
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binovich et al. (2023) employed an autoencoder,
assuming that instances with high reconstruction
errors are classified as outliers. They used change-
point model (CPM) (Ross and Adams, 2012) to
monitor whether a significant change in the recon-
struction error of production data has occurred.
Analogously, Madaan et al. (2023) proposed a
framework named DetAIL, which leverages sen-
tence embedding vectors for density modelling
and detects covariate drift along with explanations.
Chang et al. (2023) introduced a linguistic covariate
drift detector that identifies changes in vocabulary
usage, syntactic structure, and semantic meanings.
Another line of works focused on identifying con-
cept drift. A conventional approach is to use the
confidence score of a winning label, which is gen-
erated by a pre-trained classifier, with a statistical
testing (Ackerman et al., 2021) or CPM (Ackerman
et al., 2020). Tahmasbi et al. (2021) implemented a
supervised detection method that employs the per-
formance of production data. Mallick et al. (2022)
proposed an integrated framework for detecting and
alleviating the data drift issue by finding a training
batch that is the most similar to the production data
and employing the model trained with the batch.

5 Conclusion

This paper introduces DriftWatch, a tool designed
for the automated detection of data drift and the
extraction of representative instances affected by
such drift. The practical advantages of DriftWatch
extend to industrial practitioners by facilitating
proactive identification of data drift and reducing
resources required for the annotation process for
model re-training.

Limitations

As our representative sampling approach employs
K-means clustering, the running time increases as
the number of selected samples (i.e., K) grows. The
duration can be regulated by employing smaller
components for dimensionality reduction, but this
may entail performance degradation. We con-
ducted the LLM-based prompt consistency method
only on the Apr dataset due to the excessive du-
ration of fine-tuning LLMs, but our claim can be
consolidated with more experimental results. Also,
the proposed solution is applicable to text datasets,
but it may not easily be adaptable to other types of
data, which limits its generalisability.

Ethics Statement

The entire work presented in this manuscript ad-
heres to the ACM Code of Ethics and Professional
Conduct. Moreover, the internal review broadly as-
sessed and approved the utilisation of the selected
in-house dataset and the development of the pro-
posed solution.
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A Appendix

A.1 Training Details

A.1.1 VAE for Covariate Drift
We trained a VAE consisting of two layers, i.e.,

a single input and output layer. The hidden di-
mension and latent dimension were set as 256 and
128, respectively. We applied Leaky Relu with a
slope of 0.2. AdamW optimiser (Loshchilov and
Hutter, 2019) was employed with the learning rate
of 1e−4 and weight decay rate of 0.1. The model
was trained for 100 epochs with a batch size of
64. An early stopping strategy was used to avoid
overfitting if the validation loss did not decrease
for three consecutive epochs. The same training
setting was used for the experiments on publicly
available datasets and our ICD. The models were
trained by using a single Tesla T4 GPU.

A.1.2 Classifiers for Concept Drift and
Sampling Experiments

For all experiments, we used the Electra-small
model (Clark et al., 2020) as a backbone pre-trained
language model. We set the maximum number of
input tokens to 256. For the AG-News dataset,
classifiers were trained for five epochs. When it
comes to ICD, the training epoch was set to 10.
Similar to VAE, AdamW optimiser (Loshchilov
and Hutter, 2019) was used with the learning rate
of 1e−4, the weight decay rate of 0.1, and a batch
size of 64. The same early stopping strategy was
adopted to avoid overfitting. A single Tesla T4
GPU was used for training the classifiers.

A.1.3 Fine-tuning LLM for Prompt
Consistency

FlanT5-XL (Chung et al., 2022) was fine-tuned to
generate the target label when a prompt containing
an input sentence is given. The model was trained
for one epoch with a batch size of four for each
GPU. AdamW optimiser (Loshchilov and Hutter,
2019) was employed with the learning rate of 5e−6,
weight decay rate of 1e−3, and warm-up ratio of
0.03. The number of maximum input tokes was
set as 512. For efficient training, we applied LoRA
adaptation technique (Hu et al., 2022). The LoRA
hyperparameters r and α were set to 8 and 32,
respectively. A dropout ratio of 0.1 is used. The
model was trained by using four Tesla T4 GPUs.

Prompt Designs

(1) Define the categories for the given text below.\n{sentence}
(2) What is the topic of the given text below?\n{sentence}
(3) You will be provided with a customer’s complaint and
how it is addressed. Classify the given text into a primary
category. \n{sentence}
(4) What would be the best category for the following cus-
tomer complaint and resolve note?\n{sentence}
(5) For the following customer complaint and resolving note,
what would have been the best category?\n{sentence}
(6) Which label best describes the following
text?\n{sentence}
(7) We’ll provide you with information on the customer com-
plaint and how to deal with it. Indicate that the text is to be
classified as a primary category.\n{sentence}
(8) The following sentence was most accurately described by
what label?\n{sentence}
(9) The customer complaint and how it is addressed shall be
provided to you. Classify the text in question as a primary
category.\n{sentence}
(10) What label best describes the given text be-
low?\n{sentence}

Table 4: Prompt designs for fine-tuning a LLM for
prompt consistency approach.

A.2 Prompt Designs for LLM-based Prompt
Consistency Approach

Table 4 describes the prompt designs we used for
the prompt consistency approach.
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Figure 3: ROC curve of concept drift detection on ICD for each month.
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Figure 4: Examples of the contribution scores on the review datasets.
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