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Introduction

Welcome to the proceedings of the System Demonstration Track at NAACL 2024, taking place from
June 16 to June 21.

The System Demonstration Track at NAACL 2024 serves as a platform for presenting papers that descri-
be system demonstrations, ranging from early prototypes to mature, production-ready systems. Publicly
available open-source or open-access systems are of special interest.

This year, we received 48 submissions, and 21 were selected for inclusion in the program, resulting in an
acceptance rate of 43

We would like to thank the members of the program committee for their timely assistance in reviewing
the submissions and to the authors who submitted their work to the demonstration track.

Best,
Kai-Wei Chang, En-Shiun Annie Lee, and Nazneen Rajani,
NAACL 2024 Demonstration Track Chairs
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Abstract

Topic pages aggregate useful information about
an entity or concept into a single succinct and
accessible article. Automated creation of topic
pages would enable their rapid curation as in-
formation resources, providing an alternative
to traditional web search. While most prior
work has focused on generating topic pages
about biographical entities, in this work, we
develop a completely automated process to gen-
erate high-quality topic pages for scientific en-
tities, with a focus on biomedical concepts. We
release TOPICAL, a web app and associated
open-source code, comprising a model pipeline
combining retrieval, clustering, and prompting,
that makes it easy for anyone to generate topic
pages for a wide variety of biomedical entities
on demand. In a human evaluation of 150 di-
verse topic pages generated using TOPICAL,
we find that the vast majority were considered
relevant, accurate, and coherent, with correct
supporting citations. We make all code pub-
licly available and host a free-to-use web app at:
https://s2-topical.apps.allenai.org.

1 Introduction

The automatic generation of topic pages is a long-
standing goal of the NLP community (Balasubra-
manian and Cucerzan, 2009, 2010a,b; Pochampally
et al., 2021). In contrast to web search results—
displayed as ranked lists of hyperlinks with short
text snippets across many pages—topic pages ag-
gregate useful information about various aspects
of an entity or concept in a single, concise loca-
tion. Scientific topic pages (Wodak et al., 2012;
Azarbonyad et al., 2023) apply this thinking to sci-
entific concepts by aggregating information from
the primary literature to produce succinct and ac-
cessible summaries useful to both experts and non-
experts alike (Figure 1). Among other things, high-
quality scientific topic pages hold the promise of:

∗Work performed during internship at AI2

Obesity Paradox

The Obesity Paradox refers to the counterintuitive observation 
that overweight and obese individuals may have better survival 
rates in certain chronic diseases compared to their normal-
weight counterparts (29852198). 

The Obesity Paradox has been observed in a variety of chronic 
diseases including heart failure, coronary artery disease, atrial 
fibrillation, stroke, and even certain types of cancer 
(29852198, 32124408, 35087875, 27475805, 33160753). 
This phenomenon has been associated with improved survival 
rates, particularly in overweight and class I obesity, and less 
pronounced in more severe or morbidly obese populations 
(29981771). However, the Obesity Paradox remains 
controversial due to potential confounding factors such as the 
crudeness of Body Mass Index (BMI) as an obesity measure, 
retrospective nature of most studies, and differences in co-
morbid conditions and disease characteristics (32124408, 
27475805). Furthermore, recent studies suggest that 
cardiovascular fitness, rather than weight loss alone, influences 
the relationship between obesity and mortality in those with 
established cardiovascular diseases (36481212). 

Future research should focus on addressing these 
methodological concerns and exploring the potential biological 
mechanisms underlying the Obesity Paradox (27475805). 

Figure 1: Example of a scientific topic page generated
by our system. Citations are provided as hyperlinks to
PubMed articles and denoted by their PMID. The topic
page is divided into the definition statement, main con-
tent, and future directions and open research questions.

1. Helping manage the torrent of scientific lit-
erature. A staggering amount of scientific in-
formation is published daily. In biomedicine
alone, nearly 4,000 papers (>2 per minute) are
deposited in PubMed or bioRxiv each day, lead-
ing to a general state of “information overload”
(Landhuis, 2016; Hope et al., 2023). Automat-
ically generated topic pages allow researchers
to quickly familiarize themselves with an area
and its most active research directions, while ci-
tations to source articles provide an entry-point
into the literature for in-depth exploration.1

2. Improving the accessibility of scientific texts.
Encyclopedic resources like Wikipedia contain

1Topic pages generated by our system provide citations to
highly relevant primary literature. See §3.2 for details.
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descriptions for a small fraction of scientific con-
cepts (King et al., 2020). Therefore, non-expert
readers may turn to the primary literature for
information (August et al., 2022), e.g., a pa-
tient or caregiver wishing to learn about a new
drug or rare disease. However, most scientific
text assumes extensive background knowledge
that a non-expert reader is unlikely to possess
(Portenoy et al., 2021; Murthy et al., 2022). Auto-
matically generated topic pages hold the promise
of improving the accessibility of scientific texts,
both by providing an alternative to the primary
literature and by serving as a resource to help fill
in the gaps in a reader’s background knowledge.

In this work, we develop a fully automated pro-
cess leveraging large language models (LLMs) to
generate high-quality scientific topic pages, with
a focus on biomedical topics (§3). Our solution is
available as an easy-to-use and publicly available
web app (§4), and associated source code.2 We val-
idate the quality of TOPICAL via extensive human
evaluation on 150 diverse biomedical terms from
the MeSH3 hierarchy (§5) and find that the vast
majority of topic pages are rated as relevant, accu-
rate, and coherent, with correct citations to primary
sources (§6).

2 Related Work

Topic page generation Topic page generation
is usually framed as a topic-focused, open-
domain multi-document summarization (MDS)
task (Giorgi et al., 2023). Most prior work is con-
cerned with generating Wikipedia-like pages for
general-domain entities and concepts (often bio-
graphical in nature). Early work clustered the web
search query logs for an entity of interest to deter-
mine its various aspects, used each aspect cluster
to retrieve and rank relevant sentences, and then
re-organized the retrieved sentences for coherence
to produce a bullet-list style topic page (Balasubra-
manian and Cucerzan, 2009, 2010a,b).

More recent work—also focused on biographical
entities—first templates the topic page by copying
common section headings from Wikipedia pages
for related topics and trains a supervised model
to select the text content for each section. An un-
supervised component then creates topic-specific
sections, and several post-processing steps are ap-

2https://github.com/allenai/TOPICAL
3Medical Subject Headings (MeSH) is a hierarchical vo-

cabulary used to index articles and books in the life sciences.

entity or concept, 
e.g. "microplastics"

SPECTER

(B) EMBED & CLUSTER

CLUSTER N

...

(C) SAMPLE

CLUSTER 1

(A) SEARCH (D) GENERATE

summarize titles & 
abstracts of sampled 

articles

embed titles & abstracts of 
top-k most relevant articles

TOPIC PAGE

...

Figure 2: Overview of TOPICAL. Given a biomedical
entity, we query PubMed for relevant literature (A). The
titles and abstracts of the results are embedded with
SPECTER (Singh et al., 2023) and clustered based on
semantic similarity (B). We sample titles and abstracts
from the clusters (C) and feed them to GPT-4 (Ope-
nAI, 2023), alongside publication metadata and natural
language instructions, to generate the topic page (D).

plied to reduce redundancy and improve coherence
(Pochampally et al., 2021). In contrast, our work
focuses on topics of scientific interest, does not try
to match a Wikipedia-like structure, and generates
topic pages in a abstractive fashion.

Scientific topic pages Azarbonyad et al. (2023)
investigate generating scientific topic pages at
scale; however, they do not synthesize a summary
but focus rather on extracting a definition state-
ment verbatim, alongside “mention snippets” and
related concepts. In contrast, we attempt to synthe-
size more comprehensive topic pages, including a
definition statement and content about the entity’s
main and future research directions. King et al.
(2022) introduce a Scientific Concept Description
task with similar motivation to our work, but focus
on earlier, smaller generative models for describing
computer science concepts, and find the systems to
hallucinate relatively frequently. WikiCrow, based
on PaperQA (L’ala et al., 2023), provides scientific
topic pages generated by an LLM-based system
for human protein-coding genes. In contrast to our
approach, their publicly available demo is limited
to 15,616 pre-generated topic pages and does not
allow a user to generate topic pages for a new entity
of interest on demand.4

3 Approach

Our approach follows a retrieval-augmented gener-
ation (RAG) setup (Guu et al., 2020; Lewis et al.,
2020; Petroni et al., 2021; Izacard et al., 2022). A

4https://www.futurehouse.org/wikicrow
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Microplastics

CLUSTER 1 (Size: 24) 

Interactions between microplastics and unit 
processes of wastewater treatment plants: a 
critical review.

Effects of Wastewater Treatment Processes on 
the Removal Efficiency of Microplastics Based on 
Meta-analysis

Removal of microplastics from wastewater: 
available techniques and way forward.

CLUSTER 2 (Size: 23)

Microplastics in aquatic environments: 
Occurrence, accumulation, and biological effects.

Microplastics in aquatic environments: Toxicity to 
trigger ecological consequences.

Microplastics in aquatic environment: Challenges 
and perspectives.

CLUSTER 1 (Size: 31) 

Obesity and the Obesity Paradox in Heart Failure. 

Impact of obesity and the obesity paradox on 
prevalence and prognosis in heart failure. 

Obesity paradox and heart failure. 

CLUSTER 4 (Size: 26)

Obesity paradox and stroke: a narrative review. 

Obesity paradox and stroke outcomes according to 
stroke subtype: a propensity score-matched 
analysis.

Obesity-stroke paradox and initial neurological 
severity.

CLUSTER 5 (Size: 23)

The true obesity paradox: obese and 
malnourished? 

Obesity paradox? 

Obesity Paradox - Truth or Misconception?

CLUSTER 2 (Size: 30) 

Monkeypox: epidemiology, pathogenesis, 
treatment and prevention.

Monkeypox: A clinical update for paediatricians.

The changing epidemiology of monkeypox and 
preventive measures: an update. 

CLUSTER 5 (Size: 14) 

MonkeyNet: A robust deep convolutional neural 
network for monkeypox disease detection and 
classification

Utilizing convolutional neural networks to classify 
monkeypox skin lesions.

Hyper-parameter tuned deep learning approach 
for effective human monkeypox disease detection.

CLUSTER 9 (Size: 8)

Monkeypox: Considerations as a New Pandemic 
Looms.

Monkeypox: A potential global threat?

Monkeypox and human transmission: Are we on 
the verge of another pandemic?

Obesity Paradox Monkeypox

Figure 3: Example clusters. Three titles from a selection of clusters for each concept are shown. Emphasis ours.

large body of literature (up to 10k papers) is re-
trieved for a given entity (§3.1) and fed to a LLM
alongside publication metadata and instructions
(§3.3). Because the amount of retrieved literature
is often many times larger than the LLM’s maxi-
mum context size, we design a clustering step to
loosely group the literature into areas of study and
sample from these clusters for input (§3.2). Dur-
ing prompting, the model is instructed to provide
in-line citations for all claims by outputting one or
more PubMed IDs (PMIDs). See Figure 2 for an
overview.

3.1 Querying PubMed
The generation of each topic page begins with a
user-provided biomedical entity or concept. This
entity is expected to be covered by papers indexed
in PubMed,5 a free search engine that indexes over
36 million papers on life science and biomedical
topics. TOPICAL, our system, leverages the En-
trez ESearch API (Kans, 2023) to query PubMed
and supports the full syntax of the PubMed Ad-
vanced Search Builder; however, simply inputting
the entity or concept verbatim is often sufficient,
e.g. “microplastic,” as the ESearch API will apply
‘automatic term mapping’ (ATM)6 to this query to
include, among other things, matching MeSH de-
scriptors and pluralization (e.g. “microplastics”).
We then download the titles and abstracts of the top
10,000 most relevant papers returned by ESearch.

5https://pubmed.ncbi.nlm.nih.gov/
6https://pubmed.ncbi.nlm.nih.gov/help/

#automatic-term-mapping

3.2 Clustering and sampling the literature
The amount of retrieved literature is usually many
times the maximum context size of the LLM. There-
fore, we first cluster titles & abstracts by semantic
similarity to identify major areas of study, then
sample from these clusters to produce a diverse set
of inputs. The steps are described below:

Embedding Titles and abstracts are jointly em-
bedded using the SPECTER2 PRX model (Singh
et al., 2023), a text encoder specifically designed
for producing highly-quality representations of
scientific text from a paper’s title and abstract.
We formatted each input as: “{title} [SEP]
{abstract}”.

Clustering We apply a clustering algorithm
which identifies ‘communities’: clusters of embed-
dings of a minimum size with a pairwise cosine
similarity greater than or equal to some threshold.7

We set the similarity threshold to 0.96 and the min-
imum cluster size to 5. In degenerate cases where
fewer than 2 clusters are identified, we iteratively
reduce the similarity threshold by 0.02, stopping
when at least 2 clusters are identified or the thresh-
old falls below 0.90—in which case we skip the
clustering step. See Figure 3 for examples of clus-
ters produced by this process.

Sampling We sample as many titles and abstracts
as will fit in the prompt to the LLM. If the num-
ber of papers returned in the search step is 100 or

7https://www.sbert.net/examples/applications/
clustering/README.html#fast-clustering
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Algorithm 1 Sampling Procedure for Papers
Require: Collection of clustered titles + abstracts, C
Require: Maximum number of input tokens, Tmax
1: C ← sorted(C) ▷ By descending cluster size
2: Initialize S ← ∅ ▷ Sampled papers
3: t← 0 ▷ Current token count
4: for each Ci in C do
5: c← centroid of Ci

6: if t+ |c| ≤ Tmax then
7: Append c to S
8: t← t+ |c| ▷ |c| is the number of tokens in c
9: end if

10: end for
11: while t < Tmax and there exist unsampled papers in C do
12: Sample a paper p from C with a probability ∝

√
|Ci|

13: if t+ |p| ≤ Tmax then
14: Append p to S
15: t← t+ |p| ▷ |p| is the number of tokens in p
16: end if
17: end while
Ensure: Return S as a list of lists (outer: unique clusters,

inner: papers from the cluster)

less, or no clusters were identified in the cluster-
ing step, we randomly sample papers for inclusion.
Otherwise, we do the following: first, sort clusters
by decreasing size. Then, select each centroid for
inclusion, starting with the largest cluster and con-
tinuing until the centroids of all clusters have been
selected or the model’s maximum input size has
been reached. If all centroids have been selected
and the model’s maximum input tokens are not ex-
hausted, we sample from the remaining clusters
with a probability proportional to the square root of
the cluster size (see Algorithm 1 for details).8 This
sampling strategy is motivated by the idea that we
should aim to capture as many and as diverse areas
of study for a concept as possible (hence the selec-
tion of centroids) while favouring more commonly
studied subtopics (hence the weighted sampling).

3.3 Generating the topic page

We chose GPT-49 as the LLM due to its state-of-
the-art performance across many text generation
tasks (OpenAI, 2023). We designed a prompt in-
cluding natural language instructions, publication
metadata, and the sampled titles and abstracts. The
prompt is broken into system and user roles (trun-
cated example in Figure 4). In the system role, we
provide instructions about the task and what con-
stitutes a good topic page. The user role provides
instruction about what the model will receive as
input, followed by a description of how to cite its

8https://en.wikipedia.org/wiki/Square_root_
biased_sampling

9Specifically, the 06/13/2023 snapshot, “gpt-4-0613”

TOPICAL Prompt

System Role

You are a biomedical domain expert. Your job is to produce a 
high-quality, scientifically-orientated topic page for a given 
biomedical entity or concept grounded in the provided literature. 
[...]

A good scientific topic page is: [...]

Assume the target audience of this topic page will have basic 
scientific literacy (i.e. undergraduate-level biology). [...]

User Role

INSTRUCTIONS

I will provide you with a biomedical entity or concept, titles and 
abstracts that mention this entity. [...]

HOW TO CITE YOUR CLAIMS

Every scientific claim in the topic page should be followed by an 
in-line citation to PubMed using the provided PMIDs. [...]

ENTITY OR CONCEPT

Canonicalized entity name: Microplastics
Publications per year: 2006: 1, 2007: 1, [...] 2023: 2288
Total number of publications: 8217
Supporting literature:

Cluster 1
PMID: 37079238 PubDate: May 2023 Title: [...] Abstract: [...]
PMID: 35301580 PubDate: Mar. 2023 Title: [...] Abstract: [...]
[...]

Cluster N
PMID: 30036839 PubDate: Nov 2018 Title: [...] Abstract: [...]
[...]

TOPIC PAGE

Now, generate the scientific topic page section by section 
following the instructions below.

First, provide a short textbook or Wikipedia-like description of 
the entity that is easy to understand for a non-expert audience 
(1 sentence max).

Next, produce the main content of the topic page (6 sentences 
max). Summarize the main reasons for this entities notability 
and interest to science. [...]

Finish by commenting on any open questions or future research 
directions mentioned in the supporting literature [...]
(1 sentence max).

Figure 4: Truncated example prompt. The prompt is
divided into system and user roles. In the user role,
we provide instructions about the input, how to cite a
claim, details about the entity or concept like publication
metadata, the sampled literature, and guidance about
the expected sections and lengths for the topic page.
Emphasis is provided for visualization purposes only.

sources. We then provide information about the en-
tity or concept, including the publications per year,
total number of publications, and sampled titles
and abstracts. These include a PMID and publica-
tion date and are sorted by decreasing cluster size.
Finally, we provide instructions about the expected
format of the topic page.

The model is instructed to produce three sections:
a definition statement (1-2 sentences), main con-
tent (5-8 sentences) and a concluding remark about
future research directions and open questions (1
sentence). We model the components of our target

4



Figure 5: TOPICAL web app. Given a search query for a biomedical entity or concept of interest and a canonicalized
name, it automatically generates a topic page for the concept. An expandable section provides additional information,
like a histogram of publication dates for the query and the number of clusters identified.
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Figure 6: Example publications per year histogram dis-
played to users for the entity: “Microplastics”.

topic pages based on the structure of existing sci-
entific topic pages and the information researchers
are likely to seek from a topical review. Curated
topic pages typically begin with definitions,10 so
we also begin by generating a definition statement.
Per the PRISMA guidelines for systematic reviews
(Page et al., 2020), a primary goal of reviews is
to provide “syntheses of the state of knowledge in
a field, from which future research priorities can
be identified”; from this goal, we derive the main
content, which summarizes the main directions of
research, and future research directions.

10e.g., https://www.sciencedirect.com/topics

We set temperature to 0.0, max_tokens to 512,
(the maximum tokens to generate for the topic
page), and kept all other hyperparmeters of the
OpenAI API at default values.11 The model’s max-
imum context size is 8,192 tokens, which is approx-
imately enough for the prompt instructions and 16
abstracts. To fit more abstracts into the prompt,
we take only the first three and last two sentences
of each, joining them with a “[TRUNCATE]” token.
These sentences tend to be rich in the type of con-
tent expected in a topic page, e.g., definition-like
content, conclusions, major findings, and future
directions.

4 TOPICAL Web App

TOPICAL is available as a web app (see Fig-
ure 5 for an overview). The web app can be
run locally as a standalone python package but
is also publicly available at https://s2-topical.
apps.allenai.org. A user first inputs a PubMed
search query, which supports the full syntax of
the PubMed Advanced Search Builder (see Ap-
pendix A for details). However, in most cases, sim-

11https://platform.openai.com/docs/
api-reference/completions
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ply inputting the entity or concept name directly
and allowing ESearch to expand the query via auto-
matic term mapping (ATM) works well, especially
with respect to recall. A user can optionally pro-
vide alternative names for the entity, referred to as
‘canonicalized names,’ which are provided to the
LLM as additional context. Once a user clicks the
button to generate a topic page, the search, embed-
ding, clustering, and generation steps are executed.
An expandable section in the app displays progress,
as well as additional information about the search,
e.g., any query expansions made via ATM and a his-
togram of publications per year (see Figure 6). The
generated topic pages can be downloaded as JSON
files. A video demonstration of the system is avail-
able here: https://youtu.be/hgnG7BnIeAY.

5 Human evaluation

We conduct human evaluation to determine the
quality of the automatically generated topic pages.
The evaluation consists of two tasks, described be-
low. All annotations were performed by three full-
time, paid annotation specialists with undergrad-
uate training spanning the biosciences, materials
science, environmental science, and data science.

5.1 Annotation Task 1: Topic Page
In task 1, the goal was to evaluate the overall quality
of the topic page along three facets, relevance,
accuracy, and coherence, defined as:
• Relevance: whether the topic page covers only

important aspects of the entity or concept; unim-
portant or excess information is penalized

• Accuracy: whether the topic page is free of ob-
vious factual errors or contradictory information

• Coherence: whether sentences and sections fit
together and sound natural, with little to no re-
dundancy within or across sections

We adapt these facets and their definitions from
the summarization evaluation facets used in Fabbri
et al. (2021); we assess Accuracy instead of Con-
sistency due to the infeasibility of comparing a gen-
erated topic page against all input documents. Rel-
evance and accuracy were assessed per topic page
section (definition statement, main content and fu-
ture directions), while coherence was assessed glob-
ally. The annotation interface (see Appendix B)
displayed each section of the topic page, and the
annotators were provided instructions about how
to evaluate topic pages along each facet. The anno-
tation interface also provided a link to the PubMed

query issued when building the topic page. Anno-
tators were instructed to follow the link and skim a
handful of abstracts to familiarize themselves with
the entity or concept before evaluation.

For each facet, annotators selected from one of
three options: ‘not’ {relevant, accurate, coherent},
‘somewhat’ {relevant, accurate, coherent} or sim-
ply: {relevant, accurate, coherent}. We included
a fourth option for relevance and accuracy: ‘miss-
ing/invalid’, in case the LLM failed to generate a
particular topic page section.

5.2 Annotation Task 2: Citations

In task 2, the goal was to evaluate the relevance and
sufficiency of model-provided citations. One cita-
tion from each topic page was sampled at random.
Annotators were shown the citation in context and
the cited article’s title and abstract. They were
instructed to annotate the citation as:
• Correct: citation is topically relevant (i.e., the

cited article is about the target entity or concept)
and provides sufficient evidence for the corre-
sponding claim(s) in the topic page.

• Incorrect (topically relevant): citation is top-
ically relevant but does not provide sufficient
evidence for the corresponding claim(s).

• Incorrect (topically irrelevant): citation is topi-
cally irrelevant.

• Incorrect (invalid): citation is not valid, e.g. the
PMID does not exist or was truncated.

5.3 Choosing topics for evaluation

In order to choose a broad selection of topics for
evaluation, we collected all terms added to the
MeSH vocabulary in the last 10 years (01/01/2013–
16/10/2023, inclusive). We only include terms with
a maximum tree depth12 of at least 7 as we found
terms with a tree depth less than this tended to be
overly broad and non-specific, e.g. “Metadata”,
“Rural Nursing”, “Infant Health”, and “Missed Di-
agnosis”. The end result is 981 biomedical terms
or concepts spanning a wide range of semantic
types, including diseases (e.g. “Charles Bonnet
Syndrome”), drugs (e.g. “Modafinil”), proteins (e.g.
“beta-Arrestin 1), organisms (e.g “Fallopia multi-
flora”), cell types (e.g. “Memory T Cells”) and
broader concepts like “Glycemic Load”. We sub-
sampled from this set to produce the final list of
entities for evaluation: 15 per annotator for the an-

12MeSH terms are organized in a polyhierarchical ontology,
where more specific terms exist deeper in the tree.
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Table 1: Results of human evaluation for annotation task 1. Total ratings for each facet and label are shown, along
with agreement percentage. Two annotators rated 100 pages each (with 50% overlap). Each facet for each section
was rated on an ordinal scale: “not”, “somewhat”, or “(yes)” relevant/accurate/coherent.

Definition Main content Future directions

Rating relevant accurate relevant accurate relevant accurate coherent

missing/invalid 0 0 0 0 0 0 –
not 0 0 1 0 3 0 0
somewhat 4 1 7 0 15 0 15
yes 196 199 192 200 182 200 185

Percent agreement 94 98 94 100 88 100 82

Table 2: Results of human evaluation for annotation task
2. Total ratings per label are shown, along with agree-
ment percentage. Each annotator rated 100 citations,
with 50% overlap between annotators.

Rating Number of Ratings

Incorrect (invalid) 0
Incorrect (topically irrelevant) 2
Incorrect (topically relevant) 32
Correct 166

Percent agreement 88

notation pilots (with 100% overlap) and 100 per
annotator for the final evaluation (50% overlap).

6 Results

We find that the majority of topic pages are rated
by our annotators as relevant, accurate, and co-
herent (Table 1), with high inter-annotator agree-
ment (≥ 82%).13 We note that in no case did the
model fail to output a topic page with the expected
three-section structure. All sections received nearly
perfect ratings for accuracy. The future direction
section received the lowest rating for relevancy
(18/200 ratings of ‘not’ or ‘somewhat’ relevant).
Examining these instances reveals that the LLM
often states vague or even obvious future directions,
such as: “[...] Future research is needed to further
clarify the most effective use of this drug combi-
nation in the treatment of respiratory diseases” or
“Future research directions include further investi-
gation into the exact mechanisms of resveratrol’s
action in diseases such as cancer and diabetes
[...].” We believe this reflects the inherent difficulty
of identifying future research directions and open
questions about a given topic. Coherence was the

13We report inter-annotator agreement as the percent agree-
ment: (fraction of cases where annotators agree) / (total num-
ber of annotations).

next lowest-rated aspect, with 15/200 ratings of
‘somewhat’ coherent. The most common reason
for this according to the annotators, by far, was
extensive use of highly-specific jargon, making the
topic page difficult to read as a non-expert.

Similarly, most model-provided citations were
rated as correct (Table 2) with high inter-annotator
agreement (≥ 88%); in no case were the citations
invalid, e.g., a hallucinated PMID. Most incorrect
citations were marked as ‘Incorrect (topically rele-
vant)’ (32/200), denoting cases where the citation
was on-topic, but the cited article did not provide
sufficient evidence for the corresponding claim(s).

7 Conclusion

In this paper, we present TOPICAL, a new ap-
proach for the automatic generation of high-quality
scientific topic pages that leverages large language
models (LLMs) and retrieval-augmented genera-
tion (RAG). We conducted an extensive human
evaluation of 150 diverse topics from the biomedi-
cal literature and our annotators rated the vast ma-
jority of generated topic pages as relevant, accurate,
and coherent; and model-provided citations as cor-
rect. Promising future directions include allowing
users to provide custom instructions with respect to
structure, focus and length of the automatically gen-
erated topic pages, and the investigation of open-
source LLMs in place of the closed-source LLM we
experimented with (GPT-4). We release a publicly
available web app so that others can experiment
with generating topic pages for entities or concepts
of interest on demand.

Limitations

Context window Due to the limited context win-
dow of GPT-4 (8192 tokens), our system only in-
gests a small fraction of literature for most entities

7



or concepts. We tried to partially alleviate this
through our clustering and sampling procedure,
which is designed to encourage diversity in the
selected literature while maintaining the represen-
tation of common research threads. A promising fu-
ture direction is to explore the use of language mod-
els with significantly larger context windows, such
as the recently announced GPT-4-turbo (128,000
tokens).

Unclear provenance Our evaluation is not able
to determine to what degree the information in the
resulting topic pages is derived from the learned
weights of the language model itself, versus the
retrieved literature. This is partially alleviated by
requiring the language model to provide citations
for all scientific claims, allowing a user to verify
the information.

Unit of retrieval We do not explore retrieving
information other than titles or abstracts. It is pos-
sible that retrieving information on another level
of granularity, e.g. sentences or “chunks”, could
improve the quality of the topic pages. It is also
possible that extending retrieval to the full-content
of a scientific paper could further improve quality.
Determining the most performant granularity for
the retrieval step is an exciting future direction.
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A PubMed Advanced Search Builder

TOPICAL supports the full syntax of the PubMed
Advanced Search Builder. For example, to search
for mentions of an entity in the title only:

Post-acute COVID-19 Syndrome[Title]

or for papers with the corresponding MeSH term:

Post-acute COVID-19 Syndrome[MeSH Terms]

Search terms can be further combined with AND,
OR and NOT operators:

Post-acute COVID-19 Syndrome[Title] AND
Post-acute COVID-19 Syndrome[MeSH Terms]

However, in most cases, we found that simply in-
putting the entity or concept name directly and al-
lowing ESearch to expand the query via automatic
term mapping (ATM) works best, especially with
respect to recall.

B Annotation Interface

In Figure 7, we provide a screenshot of the anno-
tation interface built in Google Sheets used for the
human evaluation. Annotators were provided the
contents of the topic page segmented into the three
sections (definition statement, main content, and
open research questions and future directions)

C Annotation pilots

Before the full evaluation, we ran 2 pilots with 3
annotators. The annotators evaluated the same 10
topic pages in the first pilot. We used their feedback
to improve the annotation guidelines and identify
the main sources of inter-annotator disagreement.
Most notably, task 2 originally had annotators iden-
tify all unique claims in each section of the topic
page and then annotate each following the guide-
lines. This turned out to be overly time-intensive,
and determining the specific number of claims had
a very low-inter-annotator agreement. Task 2 was
therefore simplified by randomly sampling one ci-
tation in the topic page and having the annotators
assess its relevance and sufficiency. We then ran a
second pilot on a new set of 5 topic pages to finalize
the annotation guidelines and identify any remain-
ing sources of significant annotator disagreement.
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Figure 7: Annotation interface for annotation task 1.
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Abstract

Utilizing Large Language Models (LLMs) for
complex tasks is challenging, often involving
a time-consuming and uncontrollable prompt
engineering process. This paper introduces
a novel human-LLM interaction framework,
Low-code LLM. It incorporates six types of
simple low-code visual programming interac-
tions to achieve more controllable and stable
responses. Through visual interaction with a
graphical user interface, users can incorporate
their ideas into the process without writing triv-
ial prompts. The proposed Low-code LLM
framework consists of a Planning LLM that de-
signs a structured planning workflow for com-
plex tasks, which can be correspondingly edited
and confirmed by users through low-code vi-
sual programming operations, and an Execut-
ing LLM that generates responses following the
user-confirmed workflow. We highlight three
advantages of the low-code LLM: user-friendly
interaction, controllable generation, and wide
applicability. We demonstrate its benefits us-
ing four typical applications. By introducing
this framework, we aim to bridge the gap be-
tween humans and LLMs, enabling more ef-
fective and efficient utilization of LLMs for
complex tasks. The code, prompts, and exper-
imental details are available at LowcodeLLM.
A system demonstration video can be found at
LowcodeLLM.

1 Introduction

Large language models (LLMs), such as Chat-
GPT(OpenAI, 2022) and GPT-4(OpenAI, 2023),
have garnered significant interest from both
academia and industry, as they demonstrate im-
pressive capability across a range of tasks(Bubeck
et al., 2023), and are increasingly utilized in a va-
riety of other fields as well(Nori et al., 2023; Choi

∗ The first two authors contributed equally. This work
was performed during the first author’s internship at Microsoft
Research Asia

Low-code Human-LLM Interaction (Low-code LLM)

Conventional Human-LLM Interaction

prompt
LLM

response
edit

task prompt

Planning LLM Executing LLM

response

Workflow

edit
e.g., Write an essay titled 

“Drunk Driving As A Social Issue”.

(1)

(2)

(3)
(4)

Figure 1: Overview of the Low-code human-LLM in-
teraction (Low-code LLM) and its comparison with the
conventional interaction. The red arrow indicates the
main human-model interaction loop.

et al., 2023; Baidoo-Anu and Owusu Ansah, 2023).
However, it is not yet perfect in handling complex
tasks. For example, when generating a long paper,
the presented arguments, supporting evidence, and
overall structure may not always meet expectations
in diverse user scenarios. Or, when serving as a
task completion virtual assistant, ChatGPT may not
always interact with users in the intended manner
and may even display inappropriate behavior in
various business environments.

Effective utilization of LLMs like ChatGPT
requires careful prompt engineering(Zhou et al.,
2022; Wang et al., 2023b). However, prompt en-
gineering can be particularly challenging when in-
structing LLMs to perform complex tasks, as re-
flected in more uncontrollable responses and more
time-consuming prompt refining(Tan et al., 2023).
There exists a gap between providing prompts and
receiving responses, and the process of generating
responses is not accessible to humans.

To reduce this gap, this paper proposes a
new human-LLM interaction pattern Low-code
LLM, which refers to the concept of low-code
visual programming(Hirzel, 2022), like Visual Ba-
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sic(Microsoft, 1991) or Scratch(Resnick et al.,
2009). Users can confirm the complex execution
processes through six predefined simple operations
on an automatically generated workflow, such as
adding or deleting, graphical dragging, and text
editing.

As shown in Figure 1, human-LLM interaction
can be completed through the following steps: (1)
A Planning LLM generates a highly structured
workflow for complex tasks. (2) Users edit the
workflow using predefined low-code operations,
which are all supported by clicking, dragging, or
text editing. (3) An Executing LLM generates re-
sponses based on the reviewed workflow. (4) Users
continue to refine the workflow until satisfactory
results are obtained.

Compared with the conventional human-LLM
interaction pattern, Low-code LLM has the follow-
ing advantages:

1. User-friendly Interaction. The visible work-
flow provides users with a clear understanding of
how LLMs execute tasks, and enable users to easily
edit it through a graphical user interface.

2. Controllable Generation. Complex tasks are
decomposed into structured workflows and pre-
sented to users. Users control the LLMs’ execution
through low-code operations to achieve more con-
trollable responses.

3. Wide applicability. The proposed framework
can be applied to various complex tasks across
various domains, especially in situations where hu-
man’s intelligence or preference are critical.

2 Low-code LLM

2.1 Overview

Figure 1 demonstrates the overview framework of
the Low-code LLM. Different from conventional
prompt engineering, in Low-code LLM, users first
input a task prompt, which could be a very brief
description of the task they want to achieve. Then
(1) a Planning LLM will design a workflow for
completing the task. The workflow is a kind of
structured plan, including execution procedure and
jump logic. (2) The user will edit the workflow us-
ing six pre-defined low-code visual programming
operations. (3) Once the user confirms workflow,
it is interpreted into natural language and inputted
to the Executing LLM, which will generate a re-
sponse with the user’s guide. (4) The user can itera-

STEP 1: [Step Name] [Step Description] [[[If ...][Jump to STEP...]][...]]

STEP 2: [Step Name] [Step Description] [[[If ...][Jump to STEP...]][...]]

· · ·

Table 1: Format of Structured Planning Workflow. For
each item, it consists of two parts: execution procedure
(i.e. step name and description), and jump logic (null
for sequential execution).

tively refine the workflow until satisfactory results
are achieved.

2.2 Planning LLM and Structured Planning
Workflow

A structured planning workflow is designed by the
Planning LLM based on user input task prompt.
Generally, the workflow consists of multiple steps
and jump logic between steps. To facilitate the
transformation from a workflow in natural language
to an intuitive graphical flowchart, Planning LLM
is instructed to produce structured workflows, as
shown in Table 1, with every step consisting of
two parts: (1) Step: including step name and step
description that users can directly revise; (2) Jump
logic. Additionally, users can extend every step of
the workflow into a sub-workflow with more details
according to their preferences, and keep extending
until reaching their desired level of detail.

We implement the Planning LLM with Chat-
GPT1 and educate it to draft a plan with education
prompts, which consists of (1) Role of Planning
LLM: a powerful problem-solving assistant that
provides a standard operating procedure (i.e., work-
flow) for the user’s task; (2) Generation of overall
workflow: Planning LLM is instructed to analyze
the task and provide standard operating procedure
as guidance, but is not required actually to solve
the task; (3) Generation of sub-workflow: If a
user intends to extend a step, the Planning LLM is
provided with the dialogue history of the previous
generation of the overall workflow to ensure logi-
cal consistency and prevent duplication of content
between the sub-workflow the other steps of the
overall workflow. (4) Basic rules: Planning LLM
must follow the instructions and be strict to the
output format defined in Table 1.

With the education prompts, Appendix A.2 ex-
hibits an example of a workflow for the task “Write
an essay titled ‘Drunk Driving As A Social Issue’"
generated by the Planning LLM.

1GPT-3.5-turbo on Azure. Model version: 2023-06-13
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Extend sub-flowchart
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Sub-flowchart 

for STEP 3
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Adding Removing
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Modify step content

double click and edit
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select and delete

Removing
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Figure 2: Six kinds of pre-defined low-code operations: (1) adding/removing steps; (2) modifying step name or
descriptions; (3) adding/removing a jump logic; (4) changing the processing order; (5) extending a part of the
flowchart; (6) regeneration and confirmation.

2.3 Low-code Interaction with Planning
Workflow

To more intuitively present users with the workflow,
a flowchart is utilized to visualize the workflow and
presented it to users. The structured workflow (e.g.,
workflow in Appendix A.2) can be conveniently
converted to a flowchart. Then, low-code visual
programming operations enable users to easily im-
plement sequential execution, conditional execu-
tion, and recursive execution.

As shown in Figure 2, there are six pre-defined
low-code interactions on graphical flowchart. We
define six types of low-code interactions for users
to edit the workflow, including:

• Extending a step in the flowchart by clicking
the button;

• Adding or removing steps by clicking buttons;

• Modifying step names or descriptions by
clicking and text editing;

• Adding/removing a jump logic by clicking;

• Changing the processing order by dragging;

• Regeneration by clicking buttons.

These operations can be efficiently completed in
a graphical user interface to achieve a very user-
friendly interaction. Besides, a prototype has also

been designed, featuring a clear interactive inter-
face that enhances the usability of the Low-code
LLM.

2.4 Executing LLM

The modified flowchart is converted back to a natu-
ral language based workflow (referred to as mod-
ified workflow) so that it can be understood by
LLMs. Executing LLM is designed to generate
responses by following the user-confirmed work-
flow and engaging in interactions with users via
a conversational interface. Thanks to the user’s
explicit confirmation of the task execution logic in
the workflow, the results generated by LLMs will
be more controllable and satisfactory.

We implement the Executing LLM with Chat-
GPT and educate it to generate responses by pro-
viding it with education prompts, which instruct
the ChatGPT to generate responses by strictly fol-
lowing the provided workflow.

2.5 Application Scenarios

We believe that, no matter how powerful large lan-
guage models will be in the future, some tasks in-
evitably require users’ participation. For example,
users need to communicate their ideas and pref-
erences, their understanding of the task, and their
desired output format to the large language mod-
els. The traditional approach is to iterate through
cumbersome prompt engineering, but the interac-
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tion method of Low-code LLM will greatly liberate
users from such tedious prompt engineering. Work-
flow is an effective intermediate language that both
humans and large language models can understand.
This simple low-code operation in graphical user
interface allows users to easily complete their log-
ical ideas, while the structured planning process
allows large language models to execute tasks more
strictly according to the logic.

3 Experiments

3.1 Experimental Setup

We demonstrate the power and potential of Low-
code LLM in assisting users with four categories
of tasks:

(1) Long Content Generation, including long
texts (such as blogs, business plans, and pa-
pers), and posters, wherein users interact with the
flowchart generated by the Planning LLM to spec-
ify the structure, idea, and focus of the generation.

(2) Large Project Development, including com-
plex object relations and system design. Users can
educate LLMs about their architect design through
low-code interactions.

(3) Task-completion Virtual Assistant, where
developers can predefine the interaction logic be-
tween the virtual assistant and customers by editing
the flowchart, and the Executing LLM will strictly
follow the logic specified by the developer to mini-
mize potential risks.

(4) Knowledge-embedded System, where do-
main experts can embed their experience or knowl-
edge into a conducting workflow. Then, the coun-
seling assistant will follow a pre-defined pattern
and act as a coach to scaffold users to complete
their tasks.

In particular, the Low-code LLM experiments
are carried out using the OpenAI service (gpt-
3.5-turbo). In each experiment, we detail the
user-defined requirements, the user-provided in-
put prompt, the flowchart created by the Planning
LLM, user edits on the flowchart, and the final
generation results.

In the qualitative analysis, we examined four pi-
lot cases in the above categories to demonstrate the
benefits of Low-code LLM in achieving control-
lable and satisfactory results.

3.2 Qualitative Analysis

Pilot Case 1: Essay Writing As shown in Fig-
ure 3, by enabling users to make specific edits to

the flowchart, users can easily communicate with
the system on their ideas and writing structures.
As a result, the generated results are very control-
lable and highly aligned with users’ writing plans.
Low-code interaction is a win-win collaboration
of the user’s intelligence and LLM’s powerful text
generation ability.

Pilot Case 2: Object-oriented Programming
Even though large language models demonstrate
significant capabilities in code generation, it can be
challenging for users to precisely instruct their re-
quirements to an LLM in building complex systems.
However, as shown in Figure 4 in Appendix A.1
, Low-code LLM enables professional program-
ming architects to easily input their system design
through low-code interaction. The results verify
that the generated codes strictly follow the expert’s
design. With the Low-code LLM interaction, con-
structing a complex system becomes much more
convenient for users.

Pilot Case 3: Virtual Hotel Service Figure 5 in
Appendix A.1 shows the advantages of Low-code
LLM over traditional prompt engineering for im-
plementing a task-completion virtual assistant. By
using Low-code LLM, users, probably hotel man-
agers, can take advantage of a structured planning
flowchart and interactively define the necessary ex-
ecution logic for the virtual assistant. This ensures
that the virtual assistant operates according to the
managers’ exact intentions, reducing potential er-
rors and misbehavior. The intuitive, visual nature
of the flowchart allows for easy editing and mod-
ification, and the result shows the behaviors are
tightly aligned with the specified requirements.

Pilot Case 4: Resume Helper Figure 6 in Ap-
pendix A.1 shows another scenario where Low-
code LLM is helpful. In some professional,
knowledge-driven scenarios, experts can integrate
execution logic and knowledge into the workflow
through low-code interactions. By embedding ex-
pert knowledge, users can be scaffolded to com-
plete their tasks. In this case, a human resource
expert inputs resume creation experiences into Re-
sume Helper, and when users use it to complete
their resumes, the Executing LLM strictly follows
the expert-defined workflow to communicate with
users. Some similar scenarios may include psy-
chological counseling, medical diagnosis, mock
interviews, and others.
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Low-code
Prompt: Write an essay titled "Advertising: Information or Manipulation".

The user-specified preferences:
• Support that advertising is primarily a form of manipulation

• Expound the argument in the introduction paragraph

• Use three paragraphs to dialectically analyze

Flowchart generated by Planning LLM and then revised by user: (The red text is the part edited by the user)

Low-code LLM:
Certainly, here is the essay I have written on the topic "Advertising:

Information or Manipulation": Advertising: Information or Manipulation

Advertising is a ubiquitous presence in modern society, with advertisements appearing on television, billboards, and social media platforms. While
some argue that advertising provides valuable information to consumers, others contend that it is a form of manipulation that exploits people's
desires and insecurities. In this essay, I will explore both sides of the debate and argue that advertising is primarily a form of manipulation.

On the one hand, proponents of advertising argue that it provides valuable information to consumers. For example, advertisements for new products
can inform people about the latest technological advancements or health benefits. Additionally, advertisements can help consumers make informed
decisions by providing information about the features and benefits of different products. In this sense, advertising can be seen as a useful tool for
consumers to make informed choices.

On the other hand, critics of advertising argue that it is primarily a form of manipulation. Advertisements often appeal to people's emotions and
desires, rather than providing objective information. For example, advertisements for beauty products often use images of flawless models to create
an unrealistic standard of beauty that can make people feel inadequate. Similarly, advertisements for fast food restaurants often use images of
delicious food to create cravings that can lead to unhealthy eating habits. In this sense, advertising can be seen as a form of manipulation that
exploits people's desires and insecurities.

While there are certainly benefits to advertising, I believe that it is primarily a form of manipulation. Advertisements often use psychological tactics to
influence people's behavior, such as creating a sense of urgency or scarcity. Additionally, advertisements often rely on stereotypes and cultural norms
to appeal to people's emotions. For example, advertisements for cleaning products often feature women as the primary users, reinforcing gender
stereotypes and limiting women's roles to domestic tasks. In this sense, advertising can be seen as a powerful tool for shaping people's beliefs and
behaviors.

In conclusion, while some argue that advertising provides valuable information to consumers, I believe that it is primarily a form of manipulation that
exploits people's desires and insecurities. By using psychological tactics and appealing to people's emotions, advertising can shape people's beliefs
and behaviors in powerful ways. As consumers, it is important to be aware of these tactics and to critically evaluate the messages that we receive
from advertisements.

Figure 3: Essay Generation through Low-Code LLM: Users interact with the LLM by editing a flowchart, resulting
in responses that are more closely aligned with their requirements. The red section in the flowchart illustrates how
users modify the workflow. The generated output is highly tailored to the user’s specific needs (see the highlighted
parts). To obtain similar controllable results, conventional prompt engineering requires complex prompt and heavy
prompt modification works.
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4 Related Work

Large Language Models Large language mod-
els (LLMs) have emerged as a prominent area of
research in recent years. Recent LLMs, such as
GPT-4 and ChatGPT, have made impressive strides
in generating more coherent and contextually rele-
vant responses. They have been applied in various
industries and fields, including content creation,
code development(Chen et al., 2021), customer sup-
port(George and George, 2023), and more. How-
ever, while LLMs have demonstrated promising
potential, they still face limitations(Bowman, 2023;
Borji, 2023; Bang et al., 2023). In particular, con-
trolling the behavior and output of LLMs for com-
plex tasks remains a challenge, which has led to
the development of new techniques, such as prompt
engineering, and methods to improve results(Wu
et al., 2023; Ge et al., 2022; Wu et al., 2022; Shen
et al., 2023; Wang et al., 2023b).

Prompt Engineering Prompt engineering has
emerged as an essential technique for interacting
with LLMs to achieve desired outcomes. The
success of large language models relies heavily
on their ability to produce answers to various
queries(Zuccon and Koopman, 2023). However,
providing effective prompts that convey the exact
intent of humans is a non-trivial task, especially
when it comes to complex tasks and requirements.

The challenge in prompt engineering lies in craft-
ing prompts that can manipulate the LLM into
generating specific outcomes. Researchers have
explored various techniques to simplify prompt en-
gineering, ranging from giving explicit instructions
to providing context for LLMs to understand the
desired output better(White et al., 2023).

Some recent advancements in prompt engineer-
ing include techniques such as few-shot learn-
ing(Wang et al., 2023a; Brown et al., 2020; Min
et al., 2022), reinforcement-learning(Deng et al.,
2022; Cao et al., 2023). However, these techniques
often demand substantial expertise and time, mak-
ing it difficult for end-users to leverage the full
potential of these LLMs.

The Low-code LLM framework proposed in our
paper provides an innovative solution by involving
the users in the process of designing workflows,
which ultimately controls the LLM’s response gen-
eration.

Task Automation with LLMs Recently, various
research studies have focused on leveraging large

language models for task automation(Auto-GPT,
2023; Liang et al., 2023; Kim et al., 2023). Task
automation with LLMs usually involves the model
analyzing a given input, breaking it down into sub-
tasks, and generating desired outputs accordingly.

However, the black-box nature of the interaction
and the difficulty in controlling their output have
remained significant challenges in deploying LLMs
for complex tasks(Tan et al., 2023). Users often
face difficulties when attempting to direct LLMs to
adhere to specific requirements or constraints.

By offering a user-friendly and efficient way of
specifying preferences and constraints, Low-code
LLM contributes to research on task automation
with LLMs, while further bridging the gap between
users and LLMs for achieving more structured and
fine-grained control.

5 Limitations

While the Low-code LLM framework promises
a more controllable and user-friendly interaction
with LLMs, there are some limitations.

One such limitation is the increase in the cogni-
tive load for users, who now need to understand
and modify the generated workflows.

Furthermore, accurate and effective structured
planning within the Planning LLM may be chal-
lenging, and bad structured planning poses a heavy
user editing burden. But we believe with the evolu-
tion of LLMs and research on task automation, the
planning ability will be getting satisfactory.

Lastly, the current design assumes that users
have sufficient domain knowledge and skills to
modify the generated workflows effectively.

6 Conclusion

We proposed a novel human-LLM interaction
framework, which aims to improve the control and
efficiency of utilizing large language models for
complex tasks. Low-code LLM allows users to
better understand and modify the logic and work-
flow underlying the LLMs’ execution of instruc-
tions. Compared with traditional prompt engineer-
ing, the proposed Low-code LLM framework ad-
vances the state-of-the-art in human-LLM interac-
tions by bridging the gap of communication and
collaboration between humans and LLMs. We be-
lieve the Low-code LLM framework presents a
promising solution to many of the challenges faced
by LLM users today and has the potential to greatly
impact a wide range of industries and applications.
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A Appendix

A.1 Pliot Cases

Figure 4, Figure 5 and Figure 6 demonstrate the
details of pilot case 2, 3 and 4 in Section 3.2.

A.2 Workflow Example

Table 2 is an example of workflow generated by
Planing LLM.

A.3 Discussion on System Robustness

Although the proposed Low-code LLM framework
offers a user-friendly and easy-to-control environ-
ment for managing complex tasks with large lan-
guage models, LLMs sometimes generate unex-
pected results, which may affect the robustness of
the Low-Code LLM framework. We have observed
the following potential problems in the system: (1)
The generated workflows from Planing LLM may
be either too sketchy or overly detailed. Users may
need to regenerate the workflow or specify some
key points. (2) Planning LLM might generate work-
flow that does not adhere to format requirements,

potentially impacting subsequent processes. How-
ever, with the enhancement of LLMs such as GPT-
4, their instruction following ability is continuously
improving, thus mitigating this issue. Furthermore,
rule-based post-processing methods can also ad-
dress such problems. (3) In rare cases, despite be-
ing aware of all existing hierarchical levels of the
workflow, LLMs may still generate sub-workflow
that contains redundant content and logical incon-
sistencies compared to the original workflow, even
when instructed to avoid such errors in the prompt.
We believe this limitation is inherent to the model’s
capabilities. In such instances, users have the op-
tion to regenerate the workflow to obtain a satisfac-
tory result.

Overall, the potential uncertainty in the outputs
of large language models (LLMs) may affect the
robustness of the system. However, in our experi-
ments, such cases are very rare. These situations
can be simply resolved by clicking the ‘Regenerate’
button. We believe that as the capabilities of foun-
dation models improve, low-code LLMs will offer
more robust, user-friendly, and efficient services.
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Low-code
Prompt: 
Write a two-person battle game with python where both game characters have two attributes: health and combat power. 
Player 1 has only two skills about attacking and plays 2 has only two skills about healing.

The user-specified preferences :
Defining parent class and implementing each game character by inheriting can improve the scalability and flexibility of the code.

Flowchart generated by Planning LLM and then 
revised by user: (The red text is the part edited 
by the user)

Low-code LLM:

Sure, here is the code for the two person battle game:

```
class GameCharacter:

def __init__(self, health, combat_power):
self.health = health
self.combat_power = combat_power

class Player1(GameCharacter):
def __init__(self, health, combat_power):

super().__init__(health, combat_power)

def skill1(self, player2):
player2.health -= self.combat_power * 2

def skill2(self, player2):
player2.health -= self.combat_power * 3

class Player2(GameCharacter):
def __init__(self, health, combat_power):

super().__init__(health, combat_power)

def skill1(self):
self.health += 20

def skill2(self):
self.health += 50

def main():
player1 = Player1(100, 20)
player2 = Player2(100, 10)

while player1.health > 0 and player2.health > 0:
print("Player 1's turn.")
choice = input("Choose a skill to use (1 or 2): ")
if choice == "1":

player1.skill1(player2)
elif choice == "2":

player1.skill2(player2)

if player2.health <= 0:
break

print("Player 2's turn.")
choice = input("Choose a skill to use (1 or 2) or attack normally (3): ")
if choice == "1":

player2.skill1()
elif choice == "2":

player2.skill2()
else:

damage = random.randint(5, 15)
player1.health -= damage
print("Player 2 attacked normally and dealt", damage, "damage to Player 1.")

if player1.health <= 0:
break

if player1.health > 0:
print("Player 1 wins!")

else:
print("Player 2 wins!")

if __name__ == "__main__":
main()

```

```python
import random

class Player:
def __init__(self, name, health, combat_power):

self.name = name
self.health = health
self.combat_power = combat_power

def attack(self, other_player):
damage = random.randint(1, self.combat_power)
print(f”  {self.name} attacks

{other_player.name} for 
{damage} damage!")

other_player.health -= damage

def heal(self):
heal_amount = random.randint(1, 10)
print(f"{self.name} heals for {heal_amount} health!")
self.health += heal_amount

# Create the two players
player1 = Player("Player 1", 100, 20)
player2 = Player("Player 2", 100, 10)

# Game loop
Omitted due to limited space
```

Utilizing ChatGPT directly:

Figure 4: This case demonstrates how to empower LLMs coding using object-oriented programming patterns via
the proposed approach. Architecture design is a professional skill for deveoping large scale project. With Low-code
LLM, architects can easily educate the model about well-designed architecture, allowing Executing LLM to generate
code based on flowcharts. The results from ChatGPT performed poorly in object design. After incorporating a
human-edited workflow, the model was able to generate correct codes.
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Low-code
Prompt: You are a hotel customer service, and someone calls to reserve a room.

The user-specified necessary requirements:
• Necessary processes: warm greeting, check on the availability of rooms, and confirmation of reservations

• Necessary information: name, check-in and check-out date, room options, contact information, payment method 

Flowchart generated by Planning LLM and then revised by user : (The red text is the part edited by the user)

Low-code LLM:

Customer: Hi.

Service: Hello! Thank you for calling. How may I assist you today?

Customer: I want to reserve a room.

Service: Of course! May I have your name and the dates you would like to check in and check out?

Customer: Sure, my name is David Lee, and I will check in next Monday, and check out next Friday.

Service: Thank you, David Lee. Let me check our availability for those dates.

Customer: OK.

Service: I apologize, but we do not have any available rooms for those dates. Would you like me to check for any other dates?

Customer: What if I check out one day earlier?

Service: Let me check for you. Yes, we do have availability if you check out on Thursday instead of Friday. Would you like me to proceed with the 
reservation?

Customer: Sure.

Service: Great! We have a few room options available for those dates. We have a standard room available for $150 per night, a deluxe room for $200 
per night, and a suite for $300 per night. Which one would you like to reserve?

Customer: Standard room is OK.

Service: Great choice! Can I have your contact information and payment method to confirm the reservation?

Customer: My phone number is 123456, and I will pay in cash.

Service: Thank you, David Lee. Your reservation for a standard room from next Monday to Thursday has been confirmed. Your confirmation number is 
123456. We look forward to seeing you soon!

Customer: OK, many thanks.

Service: You're welcome! If you have any further questions or concerns, please don't hesitate to contact us. Have a great day!

Figure 5: A virtual hotel service using Low-code LLM allows users, such as hotel managers, to clearly define the
execution logic through interaction with the structured planning flowchart, ensuring that the conduction logic strictly
follows the user’s intent. The red part in the flowchart shows how the user edits the workflow. As a result, the
generated system is highly aligned with the user’s specified requirements (refer to the highlighted part). Without the
low-code LLM interaction, it becomes difficult to control how virtual hotel service communicates with customers.
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Low-code
Prompt: Help me to make a formal resume.

The user-specified necessary requirements:
• Necessary information : personal information, education information, work experience, other skills

Flowchart generated by Planning LLM and 
then revised by user: (The red text is the 
part edited by the user)

Low-code LLM:

User: What information do you need about me?

Resume helper: I would need your personal details such as your full name, address, phone 
number, and email address. Additionally, I would need information about your education, 
work experience, skills, achievements, and references.

User: My name is David Lee, and I live in Beijing.

Resume helper: Great, thank you for sharing that information. Can you please provide me 
with your phone number and email address as well?

User: 123456, 123456@mail.com

Resume helper: Thank you for providing your phone number and email address. Can you 
please tell me about your educational qualifications, including the name of the institution, 
degree, major, and graduation date? 

User: Sure, I received my Bachelor’s degree from the Department of A., T. University in 2022.

Resume helper: Thank you for sharing your educational qualifications. Can you please tell 
me about your work experience, including the name of the company, job title, employment 
dates, and key responsibilities and achievements? 

User: I was a machine learning research intern at B. company from 2021 to 2022. I did lots of 
research about large language models.

Resume helper: Thank you for sharing your work experience. Can you please tell me about 
your relevant skills, including technical, language, and soft skills?

User: Sure, I can speak Chinese and English, I am good at C, C++, and Python. I have some 
experience with making videos.

Resume helper: Thank you for sharing your skills. Can you please tell me about any notable 
achievements, awards, or publications that demonstrate your skills and experience?

User: Sorry, I do not have any of them.

Resume helper: No problem, thank you for letting me know. Based on the information you 
have provided, I can help you create a formal personal CV. Would you like me to proceed 
with that?

User: Sure, show me, please.

Resume helper:

David Lee
Beijing, China
Phone: 123456
Email: 123456@mail.com

Personal Statement: 
As a machine learning research intern, I have gained experience in conducting research on 
large language models. I am proficient in C, C++, and Python, and have experience in video 
production. I am seeking a position where I can utilize my skills and experience to contribute 
to a team. 

Education: 
Bachelor's Degree in A, T. University, 2022 

Work Experience: 
Machine Learning Research Intern, B. Company, 2021-2022 
- Conducted research on large language models 
- Collaborated with team members to develop new models 
- Presented research findings to team and management 

Skills: 
- Proficient in C, C++, and Python –
- Fluent in Chinese and English 
- Experience in video production 

Thank you for using my services. Let me know if you need any further assistance.

Figure 6: Resume Helper via Low-code LLM. In this case, domain experts, maybe human resource experts, can
embed their resume-creating knowledge into a workflow. With the embedding of expert knowledge, Executing LLM
can scaffold users to complete their resumes. Similar examples may also include psychological counseling, medical
diagnosis, interview mock, etc.
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Table 2: A workflow generated by Planing LLM when the user inputs “Write an essay titled ‘Drunk Driving As A
Social Issue’". STEP 3 is appointed by the user to provide a more detailed sub-workflow.

STEP Step Name Step Description Jump Logic

STEP 1 Research Gather information on drunk
driving as a social issue, includ-
ing statistics, causes, and effects

STEP 2 Outline Organize the information and ma-
terials into an outline, including
an introduction, body, and con-
clusion

If lack of materials,
jump to STEP 1

STEP 3 Write Write the essay, including an
introduction that defines drunk
driving as a social issue, a body
that discusses the causes and ef-
fects of drunk driving, and a con-
clusion that emphasizes the im-
portance of addressing this issue

STEP 3.1 Write the introduction Write an introduction that pro-
vides background information on
drunk driving as a social issue
and clearly states the purpose of
the essay

STEP 3.2 Write the body Write the body of the essay, in-
cluding paragraphs that discuss
the causes and effects of drunk
driving, as well as any relevant
statistics or research

STEP 3.3 Write the conclusion Write a conclusion that summa-
rizes the main points of the essay
and emphasizes the importance
of addressing drunk driving as a
social issue

STEP 4 Proofread Check the essay for spelling and
punctuation errors
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A.4 Prompts
Planning LLM
PLANNING_LLM_PREFIX = Planning LLM is designed to provide a standard operating procedure
so that an abstract and difficult task will be broken down into several steps, and the task will be easily
solved by following these steps.

Planning LLM is a powerful problem-solving assistant, so it only needs to analyze the task
and provide standard operating procedure as guidance, but does not need actually to solve the problem.

Sometimes there exists some unknown or undetermined situation, thus judgmental logic is
needed: some “conditions" are listed, and the next step that should be carried out if a “condition" is
satisfied is also listed. The judgmental logics are not necessary, so the jump actions are provided only
when needed. Planning LLM MUST only provide standard operating procedure in the following format
without any other words:

STEP 1: [step name][step descriptions][[[if ‘condition1’][Jump to STEP]], [[[if ‘condition1’][Jump to
STEP]], [[if ‘condition2’][Jump to STEP]], ...]
STEP 2: [step name][step descriptions][[[if ‘condition1’][Jump to STEP]], [[[if ‘condition1’][Jump to
STEP]], [[if ‘condition2’][Jump to STEP]], ...] ...

For example:

STEP 1: [Brainstorming][Choose a topic or prompt, and generate ideas and organize them
into an outline][]
STEP 2: [Research][Gather information, take notes and organize them into the outline][[[lack of
ideas][Jump to STEP 1]]] ...

EXTEND_PREFIX = Some steps of the SOP provided by Planning LLM are too rough, so Planning
LLM can also provide a detailed sub-SOP for the given step.

Remember, Planning LLM take the overall SOP into consideration, and the sub-SOP MUST
be consistent with the rest of the steps, and there MUST be no duplication in content between the
extension and the original SOP. Besides, the extension MUST be logically consistent with the given step.

For example: If the overall SOP is:

STEP 1: [Brainstorming][Choose a topic or prompt, and generate ideas and organize them
into an outline][]
STEP 2: [Research][Gather information from credible sources, and take notes and organize them into
the outline][[[if lack of ideas][Jump to STEP 1]]]
STEP 3: [Write][write the text][]

If the STEP 3: “write the text" is too rough and needs to be extended, then the response
could be:

STEP 3.1: [Write the title][write the title of the essay][]
STEP 3.2: [Write the body][write the body of the essay][[[if lack of materials][Jump to STEP 2]]]
STEP 3.3: [Write the conclusion][write the conclusion of the essay][]

Remember:
1. Extension is focused on the step descriptions, but not on the judgmental logic;
2. Planning LLM ONLY needs to response the extension.

PLANNING_LLM_SUFFIX = Remember: Planning LLM is very strict to the format and NEVER
reply any word other than the standard operating procedure. The reply MUST start with “STEP".
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Executing LLM
EXECUTING_LLM_PREFIX = Executing LLM is designed to provide outstanding responses.

Executing LLM will be given a overall task as the background of the conversation between
the Executing LLM and human.

When providing response, Executing LLM MUST STICTLY follow the provided standard op-
erating procedure (SOP). the SOP is formatted as:

STEP 1: [step name][step descriptions][[[if ‘condition1’][Jump to STEP]], [[if ‘condition2’][Jump to
STEP]], ...]
STEP 2: [step name][step descriptions][[[if ‘condition1’][Jump to STEP]], [[if ‘condition2’][Jump to
STEP]], ...]

Here “[[[if ‘condition1’][Jump to STEP n]], [[if ‘condition2’][Jump to STEP m]], ...]" is
judgmental logic. It means when you’re performing this step, and if ‘condition1’ is satisfied, you will
perform STEP n next. If ‘condition2’ is satisfied, you will perform STEP m next.

Remember:

Executing LLM is facing a real human, who does not know what SOP is. So, Do not show
him/her the SOP steps you are following, or the process and middle results of performing the SOP. It
will make him/her confused. Just response the answer.

EXECUTING_LLM_SUFFIX = Remember:

Executing LLM is facing a real human, who does not know what SOP is.

So, Do not show him/her the SOP steps you are following, or the process and middle results
of performing the SOP. It will make him/her confused. Just response the answer.
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Abstract
Selecting and assembling test items from a vali-
dated item database into comprehensive exam
forms is an under-researched but significant
challenge in education. Search and retrieval
methods provide a robust framework to assist
educators when filtering and assembling rele-
vant test items. In this work, we present EdTec-
QBuilder1, a semantic search tool developed to
assist vocational educators in assembling exam
forms. To implement EdTec-QBuilder’s core
search functionality, we evaluated eight retrieval
strategies and twenty-five popular pre-trained
sentence similarity models. Our evaluation re-
vealed that employing cross-encoders to re-rank
an initial list of relevant items is best for assist-
ing vocational trainers in assembling examina-
tion forms. Beyond topic-based exam assembly,
EdTec-QBuilder aims to provide a crowdsourc-
ing infrastructure enabling manual exam assem-
bly data collection, which is critical for future
research and development in assisted and auto-
matic exam assembly models.

1 Introduction

Examination forms consisting of validated, high-
quality test items are a crucial tool for estimating
the current competence of students in education.
While much research has covered the task of gen-
erating such items, relatively little research has
focused on assembling new exams from a database
of existing, validated test items (Kurdi et al., 2020).
Exam assembly is a challenging task on its own as
exams need to cover all skills in a given topic com-
prehensively, at multiple levels of difficulty, and
such that the resulting exam is psychometrically
valid (Armendariz et al., 2012; Lane et al., 2015;
Fischer and Neubert, 2015).

To support educational experts in formative exam
assembly, we present EdTec-QBuilder1, a service
1The EdTec-QBuilder system demo version is publicly acces-
sible at: https://www.dfki.de/kiperweb/about.html

Figure 1: The operational flowchart scenario of EdTec-
QBuilder.

and tool to search a database of (validated and high-
quality) test items and assemble them for an exam.
Beyond its practical utility for exam assembly, our
tool is also intended to be a crowdsourcing platform
to collect data on exam assembly processes and
thus provide data for future research on assisted
and automated exam assembly.

Figure 1 summarizes the operational flow of our
tool. After logging in, users query, filter, and anno-
tate relevant items from a validated item database.
While selecting, confirming, and submitting exam
forms, users assess the quality of their search ex-
perience. Finally, search sessions are stored for
analysis and exam assembly model development.

To implement EdTec-QBuilder’s semantic search
functionality, we evaluated the performance of
eight search and retrieval strategies in combina-
tion with the top twenty-five trending pre-trained
sentence similarity models (representing over 176
different combinations, overall; refer to Section 4).
We selected the best-performing strategy and pre-
trained model from our evaluation to include it as a
core search and retrieval module. Our work makes
the following key contributions:
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• A new perspective to tackle the topic-based exam
assembly task, framed as an information retrieval
problem.

• A new data resource to study exam assembly2.
• A system demonstration of the deployed service

and tool used by vocational educators1.
• An extensive evaluation and performance anal-

ysis of popular pre-trained sentence similarity
models for the exam assembly task.

The evaluation and selection of the best-performing
core semantic search functionality can be found
in Section 4. The implementation and features of
EdTec-QBuilder are described in Section 5. Finally,
we discuss future directions and opportunities for
improvement in Section 6.

2 Related Work

Research on assisted and automated exam assembly
can be traced back to the EVALING system (Fa-
iron, 1999), a platform that employed rule-based
and finite state transducers to compile and up-
date language proficiency exams from a question
bank. Piton-Gonçalves and Aluísio (2012) pre-
sented a multidimensional adaptive test architec-
ture and system that selects test items based on
a student’s profile and previous performance. Qin
et al. (2019) utilized named entity recognition to
build a knowledge graph of skills, which a recom-
mendation method harnessed to suggest personal-
ized interview questions. Sangodiah et al. (2016)
used text classification methods to estimate exam
difficulty from question bank’s items via Bloom’s
taxonomy categories. Han (2018) introduced selec-
tion methods for complying with test item criteria
for automated item selection, fostering adaptive
learning and individualized learning. Ruan et al.
(2019) developed a dialog agent to teach factual
knowledge of science and safety. When contrasting
system usage with a flashcard system, students in-
creased their response accuracy significantly when
using the agent. Cole et al. (2020) leveraged clas-
sic natural language processing methods with a
cluster-based test item generation approach aligned
to a dashboard that enables test designers to se-
lect generated questions from the available clus-
ters. Datta et al. (2021) tackled the task of auto-
matically generating an interview question plan
from the applicant’s resume, harnessing knowledge
graphs and integer programming methods. Upad-
2The public data fold available under CC BY license at: https:
//www.dfki.de/kiperweb/about.html#dataset

hyay et al. (2023) employed large language models
to develop a suite for automated item generation
and exam assembly. However, the suite delegates
the assembly process to human experts to ensure
the test items’ quality.

Most of the prior research focuses exclusively on
test item generation, utilizing either classical NLP
methods such as text classification and topic mod-
eling (Brown et al., 2005; Mitkov et al., 2006;
Rus et al., 2011; Heilman and Smith, 2010; Chali
and Hasan, 2015), or deep neural networks and
transformer-based architectures (Du et al., 2017;
Chan and Fan, 2019; Tuan et al., 2020; Qu et al.,
2021; Yoshimi et al., 2023). However, in real sce-
narios, where contextual knowledge, quality con-
trol, and topic alignment with curricular standards
are necessary for effective student skill develop-
ment, it is not sufficient to generate items; we also
need to assemble them to exams that are psychome-
trically suited to test the competencies they ought
to assess. Therefore, in contrast to prior work, our
contribution focuses on assisted exam assembly
rather than item generation. Further, we concep-
tualize exam assembly as an information retrieval
problem.

3 Methods

EdTec-Qbuilder aims to assist in tackling the topic-
based exam assembly task. We formalize the
task as an information retrieval problem. Given
a query q ∈ Q – e.g. a text describing the topic
of a exam – and a database of possible items
B = {x1, . . . , xN}, we wish to compute similar-
ity scores s1 = S(q, x1), . . . , sN = S(q, xN ) for
some similarity function S : Q×B → R. Based on
these scores, we rank all possible items from most
similar to least similar and let an educational expert
assemble an exam from the ranked list. In other
words, we support educational experts in exam as-
sembly by assisting them in searching a large item
database according to their query (refer to Figure 1).
Therefore, the similarity function S needs to corre-
spond to educational experts’ notion of relevance.
In other words, S must assign higher similarity val-
ues to the items experts want to include in their
exam. This is precisely the criterion we evaluate in
Section 4.

3.1 Item Database
The item database B for our investigation has been
provided by the bfz group, one of the largest voca-
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tional training providers in Germany. The database
consists of 2,812 test items across 34 in-demand
vocational training topics. For the purpose of a
freely available version of our tool (the original
2,812 items are proprietary) and to increase the
amount of training data, we augmented the item
database with another 2,812 items generated via
ChatGPT3.523. All generated items were manually
inspected, and duplicates/low-quality items were
removed. The remaining items form the basis for
our tool’s openly available demo version.

Table 1a displays the most prominent topics in
the item database, with their three most used
terms. Specifically, the topics “Professional Coun-
seling/Learning Skills/Self-assessment”, “Business
Knowledge”, “Communication/Negotiation and
Etiquette in the Workplace”, “Information Tech-
nology Competence” and “Presentation and Visu-
alization Techniques” cover 2,329 items, mean-
ing 41.41% of all items. The average length of
the questions is 17.76 words. Overall, the most
used terms throughout the collection correspond
to “company”, “product” and “important”. To es-
timate the difficulty of 2,812 test items of the bfz
data datafold, we fitted a 1parameter item response
theory model to the answers of prior respondents.
Table 1b shows the distribution of the resulting
difficulty values, grouped into three levels: easy,
medium, and hard. We observed that 78.91% of
test items have a medium difficulty, 20.98% were
easy to answer, and only 0.10% were hard. Ta-
ble 1c outlines the question type distribution in the
item database. We observed that 64.83% are multi-
ple and single choice test item types, whereas other
formats are less frequent.

4 Experiments and Analysis

Our experiments aim to evaluate the capability
of various (semantic) search strategies to retrieve
matching test items for typical queries in our item
database4. Due to the lack of historical search
data and insufficient human annotation capacity
that would allow us to obtain ground-truth data,
we opted to use an automated relevance labeling
approach. Using the following approach, we built
a new synthetic TREC-style (Voorhees et al., 2005;
Teufel, 2007; Voorhees et al., 2022) data set of
queries and corresponding relevancy items.
3https://chat.openai.com/
4The experiments were conducted on a macOS with an
ARM64 processor, 32 GB of memory, and 12 physical cores.

Testbed We randomly generated synthetic
queries by selecting 15 syntactically different
synonyms from the 34 available topic dimensions
of the item database (refer to Table 1a). By
aggregating the top 100 agreeing search results
of 25 trending multilingual and German sentence
similarity models (refer to Appendix A.1), with
the trec-tools library (Palotti et al., 2019), we
constructed a synthetic test dataset for evaluating
our experiments. To attach relevance judgments
to the elements of the test dataset, we calculated
the average similarity score with the available
pre-trained models for each query and item pair.
Pairs with an average similarity score between
0.60 and 0.75 were labeled as moderately relevant;
pairs above 0.75 were labeled as highly relevant.
We acknowledge that this labeling strategy could
introduce a bias as the assumed ground truth is
influenced by the same language models later
used as part of the search strategies. However, the
labeling was obtained by averaging the similarity
scores of all language models, thus reducing the
bias toward any single model and enhancing the
robustness of the obtained labeling.

Evaluation We employed the ranx library (Bas-
sani, 2022) to calculate standard information re-
trieval metrics as an evaluation method to iden-
tify and select the best-performing strategy to in-
clude as a search module in our tool. In ad-
dition to Precision, Recall, F1, and mean aver-
age precision (MAP), we used normalized dis-
counted cumulative gain (nDCG) and mean recip-
rocal rank (MRR). The former expresses the rele-
vance of documents ranked at the top, whereas the
latter expresses relevant documents’ (reciprocal)
rank. Both metrics are better if higher.

Search and retrieval strategies We tested eight
different search and retrieval strategies:

1. BM25: As a baseline method, we fitted a stan-
dard BM25 model (Řehůřek and Sojka, 2010).
BM25 is a probabilistic model that, given a
query, calculates term and inverse document
frequencies to retrieve relevant items.

2. LM+ANN: We employed 25 trending multilin-
gual and German sentence similarity pre-trained
language models (LM) (see Appendix A.1) to
approximate the top nearest neighbors (ANN)
with the NMSLIB library (Boytsov and Naidan,
2013).

3. TF-IDF Weighted Average: To improve the se-
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(a)

Top 5 Topics Avg. Terms
per Item

Unique
Terms

Top 3
Terms Dist.

Professional Counseling,
Learning Skills
Self-assessment

11.96 2495
learn (140)
work (93)

professional (91)
671

Business Knowledge 18.25 2495
company (328)
product (210)

business plan (199)
586

Workplace Communication,
Negotiation & Etiquette 18.75 2490 customer (184)

product (182)
communication (177)

514

Information Technology
Competence 17.01 2064 internet (58)

digital (47)
program (43)

322

Presentation
&

Visualization Techniques
17.45 1014 presentation (241)

audience (184)
represent (86)

236

Total 34 17.76 15023
company (1017)

product (639)
important (492)

5624

(b)

3 2 1 0 1 2 3

Difficulty
Easy
Medium
Hard

(c)
Attribute Dist.

Multiple Choice 1902
Single Choice 1745

Scale 732
Single Choice Matrix 753

Page type 146
Multiple Choice Matrix 144

Word Problem 58
Fill in The Blank 46

Other 125

Source bfz 2812
ChatGPT3.5 2812

Table 1: Summary of (a) topical, (b) test item dificulty, and (c) structural contents of the bfz-EdTec dataset, where
topic categories and top terms are translated in English language

mantic representation of the existing pre-trained
language models, we averaged the embedding
vectors by weighting the term frequency and the
inverse document frequency scores (TF-IDF) of
the represented terms.

4. Query-term expansion: We expanded search
queries and documents with synonym terms as
listed in OdeNet (Siegel and Bond, 2021), the
German language version of Wordnet.

5. Vertical search: To reduce the search space to
only relevant topics, we truncated the search to
the top ten most semantically similar topics in
terms of cosine similarity, where topics were
defined by the item data base (refer to Table 1,
first column).

6. MILP: After computing the top 100 most similar
items to the query according to cosine similarity
of sentence embeddings, we applied the method
of (Mitchell et al., 2011) to re-rank the items
to optimize the nDCG score via mixed integer
linear programming (MILP) with a CBC Solver.

7. LambdaMART: We employed a Lamb-
daMART (Burges, 2010; Chen and Guestrin,
2016) regressor for re-ranking the top 100
most similar items to the query. We evaluated
our model with a ten-cross-validation schema.
The average nDCG score of the model in
cross-validation was 0.35.

8. Cross-encoder: We re-ranked the top 100 most
similar items to the query with a multilin-
gual MS Marco cross-encoder (Reimers and
Gurevych, 2019)5. To re-rank, cross-encoders
concatenate query and items, passing them to a

5amberoad/bert-multilingual-passage-reranking-msmarco

transformer model. With a self-attention mecha-
nism, the transformer learns the importance of
weights across the concatenated inputs, scoring
its relevance. Finally, the model re-orders an
initial list of candidates by its relevance scores.

Note that each strategy may have several repre-
sentatives. Overall, we evaluated 176 different
combinations of search strategies and pre-trained
sentence similarity models.

4.1 Results and Analysis
Table 2 reports each strategy’s top three best-
performing representatives (regarding nDCG) for
the 100 highest-ranked items. We observed that the
most effective strategy for our task is re-ranking an
initial candidate list of relevant items with a cross-
encoder (0.516 nDCG and 0.713 MRR), followed
by a vertical search approach (0.468 nDCG and
0.245 MRR). The least effective strategies were
BM25 and query expansion. Overall, we observed
that using a pre-trained sentence similarity German
language model6 in conjunction with a multilin-
gual cross-encoder5 outperformed all the proposed
strategies with their corresponding pre-trained sen-
tence similarity model.

We conduct a correlation analysis via Kendall’s
τ between the best-performing search runs (re-
fer to A.2) to analyze the differences across the
best-performing strategies’ search results. The
LambdaMART re-ranker and the TF-IDF weighted
average model had the most similar search re-
sults (τ = 0.59). However, considering the nDCG
6deutsche-telekom/gbert-large-paraphrase-cosine
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Strategy Pre-trained Language Model nDCG@100 MRR@100 Prec@100 Recall@100 F1@100 MAP@100

Baseline bm25 0.07 0.12 0.05 0.09 0.06 0.01
deutsche-telekom_gbert-large-paraphrase-cosine 0.43 0.20 0.31 0.53 0.37 0.25
deutsche-telekom_gbert-large-paraphrase-euclidean 0.43 0.20 0.31 0.53 0.37 0.24LM+ANN
sentence-transformers_paraphrase-multilingual-mpnet-base-v2 0.42 0.24 0.30 0.51 0.36 0.24
deutsche-telekom_gbert-large-paraphrase-cosine 0.32 0.14 0.24 0.40 0.29 0.15
PM-AI_sts_paraphrase_xlm-roberta-base_de-en 0.31 0.18 0.23 0.39 0.28 0.15

TF-IDF
Weighted
Average nblokker_debatenet-2-cat 0.30 0.14 0.22 0.36 0.26 0.13

deutsche-telekom_gbert-large-paraphrase-euclidean 0.26 0.08 0.21 0.33 0.24 0.13
deutsche-telekom_gbert-large-paraphrase-cosine 0.25 0.10 0.20 0.32 0.23 0.13

Query-Term
Expansion

PM-AI_sts_paraphrase_xlm-roberta-base_de-en 0.24 0.10 0.18 0.30 0.22 0.13
deutsche-telekom_gbert-large-paraphrase-euclidean 0.46 0.24 0.34 0.58 0.41 0.26
deutsche-telekom_gbert-large-paraphrase-cosine 0.45 0.23 0.33 0.57 0.40 0.25Vertical Search
sentence-transformers_paraphrase-multilingual-mpnet-base-v2 0.44 0.24 0.32 0.55 0.39 0.25
deutsche-telekom_gbert-large-paraphrase-euclidean 0.39 0.26 0.31 0.53 0.37 0.15
deutsche-telekom_gbert-large-paraphrase-cosine 0.38 0.18 0.31 0.53 0.37 0.14

MILP
Re-ranker

sentence-transformers_paraphrase-multilingual-mpnet-base-v2 0.38 0.18 0.30 0.51 0.36 0.14
deutsche-telekom_gbert-large-paraphrase-euclidean 0.42 0.32 0.31 0.53 0.37 0.17
deutsche-telekom_gbert-large-paraphrase-cosine 0.41 0.27 0.31 0.53 0.37 0.16

LambdaMART
Re-ranker

sentence-transformers_paraphrase-multilingual-mpnet-base-v2 0.40 0.28 0.30 0.51 0.36 0.16
deutsche-telekom_gbert-large-paraphrase-cosine 0.51 0.70 0.31 0.53 0.37 0.28
deutsche-telekom_gbert-large-paraphrase-euclidean 0.51 0.71 0.31 0.53 0.37 0.28

Cross-encoder
Re-ranker

0_Transformer 0.49 0.70 0.27 0.49 0.34 0.27

Table 2: Performance metrics for the eight search strategies (rows), combined with the respective best-performing
language models, evaluated at a cut-off of 100.

scores, the ranking quality produced by the Lamb-
daMART re-ranker model was 10% better com-
pared to the TF-IDF weighted average. With a
correlation of -0.89, the models that showed the
slightest similarity in terms of the produced rank-
ings were the MILP re-ranker and the BM25 model.

5 Tool Overview

This section presents EdTec-QBuilder, a seman-
tic search service and web tool to support exam
assembly. Figure 2 provides an overview of the
tool. While the frontend is a website implemented
in HTML and JavaScript, the backend is imple-
mented in Python and Flask. Below, we summarize
each of the main components.

User workflow Figure 2a illustrates EdTec-
QBuilder’s user workflow. First, after notifying
users that we will only collect click data from the
user interface and annotations for future research
and development, users land on the search result
page (SERP) interface after successfully authen-
ticating themselves. Second, once in the SERP
view, the web application provides a search bar
where users can browse and search across the test
items in the item database. Third, after triggering a
search, the tool returns the top 100 items relevant to
their query, grouped on pages with ten results each.
We employed a cross-encoder as a re-ranking strat-
egy because it showed the best performance (see

Section 4). Fourth, as illustrated in Figure 2b, to
assemble exams, users click on the test items they
wish to include in their exam. When users click
on an item in the ranked list, the item changes to
green, indicating its inclusion in the exam. Any
selected item can be de-selected by clicking again.
Users can flag items if they consider them outdated
or inconsistent by pressing a red flag button. Fi-
nally, after annotating, users submit the selected
test items to another endpoint, e.g., to publish the
exam or deliver it to a computer-based testing en-
vironment (CBTE). Note that our interface also
crowdsources ground-truth annotation data by in-
ternally logging and sending the selected items to
the tool’s backend (refer to Appendix 4 for more
details about the user interface).

API endpoints We implemented 13 interopera-
ble functionalities coupled with the search and data
collection processes. Figure 2c summarizes the
endpoint’s inter-module coordination. We provide
a JSON Web Token-based service7 to authenticate
and serve client requests from the SERP. After user
authentication, the endpoint validates the users’ cre-
dentials in the user’s database. When a user sub-
mits a query, the query is embedded as a vector
via the deutsche-telekom_gbert-large-paraphrase-
cosine model and the 100 closest items according
to cosine similarity are retrieved via NMSLIB. To
optimize the output of the initial search, the tool
7https://jwt.io/
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Figure 2: Summary of user workflow (a), API/endpoints architecture (b), SERP user interface (c).

re-ranks the top 100 results with a cross-encoder.
Then, it returns a response in JSON format with
the resulting test items and their corresponding at-
tributes. The client receives the system’s output,
and the SERP maps the JSON into a suitable for-
mat for the visualization of results. The client then
allows users to select relevant items; in the back-
ground, the SERP logs the selected items and sends
this data to the web tool in a JSON format.

6 Conclusions

More than item generation is required to build
high-quality exams in education; items must also
be assembled into comprehensive examination
forms (Lane et al., 2015; Kurdi et al., 2020). We
framed assisted topic-based exam assembly as
an information retrieval problem, evaluating 176
search and retrieval strategies and language model
combinations on a 5,624-item database from the
vocational education domain. The most promising
strategy is to embed queries via language mod-
els, identify the closest 100 items regarding cosine
similarity, and re-rank these 100 results via a cross-
encoder, yielding 0.516 nDCG and 0.713 MRR. In
other words, about half of the top-ranked results

were relevant, and the highest-ranked relevant re-
sult was, on average, on rank 1 or 2. Using the
cross-encoder re-ranking strategy, we developed
EdTec-QBuilder1, a semantic search service and
tool to support exam assembly, which is currently
in use at bfz, one of the leading vocational training
providers in Bavaria. As competencies are known
to be heterogenous constructs, test developers are
well advised to combine items on multiple topics
and items of varying difficulty (Fischer and Neu-
bert, 2015). Future work should investigate leverag-
ing crowdsourced search sessions and developing
models for estimating test item difficulty without
entirely depending on respondent data beforehand.
Lastly, exploring and incorporating large language
models could significantly aid the assembly pro-
cess.

Limitations and Ethics Statement

While EdTec-QBuilder already supports assisted
topic-based exam assembly significantly, some lim-
itations remain. To overcome the cold start problem
and rapidly transfer a tool to our industry partner to
assist them in exam assembly, we based our evalua-
tion on a synthetic and automated labeling scheme
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instead of using human judgments as ground truth.
However, our tool establishes a research infrastruc-
ture for crowdsourcing ground truth expert data
that can be used to improve or train future assisted
or automatic test assembly models.

Exam assembly is an ethically charged subject mat-
ter because exam results can severely impact stu-
dents’ future learning and prospects. Therefore,
our system does not automate exam assembly but,
instead, serves as a tool for vocational educators
who still have to make the final test item selection
and take responsibility for the assembled exami-
nation form. Our system does not reason about
the item quality but focuses on scoring the simi-
larity between queries and test items. Finally, we
may encounter a popularity bias for items that ed-
ucators prefer in the early use of the system, and
these preferences are “locked in” by using teacher
preferences as training data. Our current training
data is synthetically generated and thereby circum-
vents this particular bias, but future work should
investigate this issue more closely.
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A Appendix

A.1 Pre-trained sentence similarity models
Details

Table 3 displays the complete list of pre-trained
semantic sentence similarity models used in the
experiments.

The language models in this list were the top-
trending pre-trained sentence similarity language
models as of December 1, 2023, according to hug-
gingface8. These models were evaluated in combi-
nation with the eight search strategies in Section 4.
8https://huggingface.co/models?pipeline_tag=
sentence-similarity&language=de&sort=trending
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# Pre-trained Language Model
1 sentence-transformers/paraphrase-multilingual-mpnet-base-v2
2 aari1995/German_Semantic_STS_V2
3 sentence-transformers/LaBSE
4 PM-AI/bi-encoder_msmarco_bert-base_german
5 efederici/e5-base-multilingual-4096
6 intfloat/multilingual-e5-base
7 clips/mfaq
8 PM-AI/sts_paraphrase_xlm-roberta-base_de-en
9 deutsche-telekom/gbert-large-paraphrase-euclidean
10 LLukas22/all-MiniLM-L12-v2-embedding-all
11 LLukas22/paraphrase-multilingual-mpnet-base-v2-embedding-all
12 sentence-transformers/distiluse-base-multilingual-cased-v1
13 sentence-transformers/distiluse-base-multilingual-cased-v2
14 deutsche-telekom/gbert-large-paraphrase-cosine
15 shibing624/text2vec-base-multilingual
16 Sahajtomar/German-semantic
17 setu4993/LaBSE
18 symanto/sn-xlm-roberta-base-snli-mnli-anli-xnli
19 and-effect/musterdatenkatalog_clf
20 nblokker/debatenet-2-cat
21 setu4993/LEALLA-large
22 dell-research-harvard/lt-wikidata-comp-de
23 ef-zulla/e5-multi-sml-torch
24 barisaydin/text2vec-base-multilingual
25 meta-llama/Llama-2-7b-chat-hf

Table 3: The full list of tested pre-trained language
models.

A.2 Kendall Tau Correlation Analysis
To understand how much the different search strate-
gies (in combination with the respective best-
performing language odel ) agree in their search
results, we calculated Kendall’s τ coefficients (refer
to Section 4.1). Figure 3 summarizes the correla-
tion coefficients when comparing the best search
run outputs.

A.3 Search Results Page
An essential component of our search service and
tool is the search results page (SERP), which allows
and simplifies browsing and assembling test items
from the item database. The SERP will also enable
us to gather expert crowdsourced data from manual
exam assembly processes, which was nonexistent
at the time of development (refer to Section 5).

User Interface Client: The user interface client
of the SERP primarily consists of 12 major ele-
ments. Figure 4 summarizes these major compo-
nents. After the search module retrieves relevant
test items from the database, the response is sent
to the user interface client in JSON format. Then,
users can select and determine for each query what
items are relevant (Figure 4a, the item filtering
mode). Once relevant items are identified, the users
validate their selections by leaving or removing
them (Figure 4b, the validation mode). The user
interface requests the intent of the exam and ex-

Figure 3: The averaged Kendall τ rank correlation co-
efficient across all the best-performing search runs for
each search strategy.

plicit feedback about the quality of the search. The
feedback is collected by grading the search expe-
rience from one to five stars. Finally, when users
finish validating their selection, a submit button
sends the selected items to another endpoint, e.g.
a computer-based testing environment. All the in-
teractions and annotations are securely stored in
the database. When users accept the general data
protection regulation policy, we inform them that
we only collect relevant judgments and annotations
that we will use later for future improvements and
development of exam assembly models.

Crowdsourcing Functionality: In addition to
serving as a user interface, the SERP interface
stores selected and not-selected items for each
query and sends them back to an internal API end-
point. We will later use the stored interactions
to develop assisted and automatic exam assembly
models further. Figure 5 summarizes an example of
a compressed version of an interaction captured and
stored in the search service database. The system
stores the search queries, the IDs of the elements
marked as relevant, all elements not selected but
displayed in the user interface, the selected filters,
the value of the feedback, and the intention of the
query (for more details, refer to 5).

A.4 Backend
As mentioned in section 5, the backend of the
search service is fully implemented as a Flask web
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Figure 4: EdTec-QBuilder’s search results page fuctionality details (contents automatically translated to English
language).

Figure 5: A compressed representation of the captured
interactions, as stored in the backend database of the
search service.

application. All the API endpoints are implemented
in the Flask framework. All the search sessions are
securely stored in an SQLite9 database. The back-
end is mounted on an Amazon EC2 instance with
four processor cores, 15GB of total memory, and a
storage drive of 16 GB.

9https://www.sqlite.org/

35



Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 3: System Demonstrations), pages 36–52

June 16-21, 2024 ©2024 Association for Computational Linguistics

DIALIGHT: Lightweight Multilingual Development and Evaluation of
Task-Oriented Dialogue Systems with Large Language Models

Songbo Hu1 Xiaobin Wang2 Zhangdie Yuan3 Anna Korhonen1 Ivan Vulić1
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Abstract

We present DIALIGHT, a toolkit for develop-
ing and evaluating multilingual Task-Oriented
Dialogue (TOD) systems which facilitates sys-
tematic evaluations and comparisons between
TOD systems using fine-tuning of Pretrained
Language Models (PLMs) and those utilising
the zero-shot and in-context learning capabil-
ities of Large Language Models (LLMs). In
addition to automatic evaluation, this toolkit
features (i) a secure, user-friendly web inter-
face for fine-grained human evaluation at both
local utterance level and global dialogue level,
and (ii) a microservice-based backend, improv-
ing efficiency and scalability. Our evaluations
reveal that while PLM fine-tuning leads to
higher accuracy and coherence, LLM-based
systems excel in producing diverse and like-
able responses. However, we also identify sig-
nificant challenges of LLMs in adherence to
task-specific instructions and generating out-
puts in multiple languages, highlighting areas
for future research. We hope this open-sourced
toolkit will serve as a valuable resource for re-
searchers aiming to develop and properly eval-
uate multilingual TOD systems and will lower,
currently still high, entry barriers in this field.

1 Introduction

Task-oriented dialogue (TOD) systems are de-
signed to model interactions between human users
and system agents, focusing on accomplishing spe-
cific, predefined tasks such as assisting with ho-
tel or restaurant bookings, or providing domain-
specific FAQ information (Gupta et al., 2006; Tür
et al., 2010; Young, 2010). These systems serve not
only as access points to cutting-edge AI applica-
tions but also as drivers of technological expansion.

The prevailing approach in TOD system develop-
ment has predominantly involved fine-tuning Pre-
trained Language Models (PLMs), like T5 (Raf-
fel et al., 2020) and BART (Lewis et al., 2020),
on task-specific dialogue datasets (Budzianowski

et al., 2018a; Byrne et al., 2019). However, recent
research trends indicate a paradigm shift from fine-
tuning to an increased reliance on Large Language
Models’ (LLMs) inherent capacity for in-context
learning and generalisation for natural language
understanding and generation. In our work, we cat-
egorise systems as fine-tuned-based using PLMs
(hereafter FT-based) or in-context-learning-based
using LLMs (ICL-based), noting that LLMs can be
fine-tuned and smaller PLMs can use ICL.1

Several pilot works (Hudeček and Dusek, 2023;
Heck et al., 2023; Zhang et al., 2023; Chung et al.,
2023) have explored the integration of LLMs into
TOD systems. These studies indicate that FT-based
approaches outperform ICL-based approaches, as
evidenced by superior automatic evaluation scores.
This applies even with smaller PLMs and when
the number of training examples is limited. On
the other hand, instruction-based training of LLMs
demonstrates its potential in aligning model out-
puts more closely with human preferences (Ouyang
et al., 2022; Wang et al., 2022). In TOD, ICL-based
systems (Chung et al., 2023) have been shown to
generate responses that exceed previous models in
critical human evaluation dimensions such as infor-
mativeness, helpfulness, and perceived humanness.
Despite these early results, a systematic, compara-
tive human evaluation of these two approaches in
TOD systems remains a gap in current research.2

1Disclaimer: Here, we (coarsely) differentiate between
PLMs and LLMs in terms of their dependency on fine-tuning
with task-specific datasets for achieving optimal performance.
LLMs, such as LLaMA (Touvron et al., 2023) and GPT-
4 (OpenAI, 2023), are characterised by their extensive training
on a broad spectrum of data. This approach enables LLMs to
adapt to diverse tasks with minimal reliance on task-specific
data. Empirical evidence suggests that LLMs demonstrate
remarkable capabilities, nearing or ‘surpassing’ human-level
performance on NLP benchmarks such as SuperGLUE (Wang
et al., 2019) and BIG-Bench (Srivastava et al., 2023).

2The study by Chung et al. (2023) lacks full details on their
human evaluation protocol, leading to potential ambiguities in
interpretation. Moreover, current research infrastructure falls
short in facilitating extensive human evaluation of end-to-end
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Toolkit Human Evaluation Multilinguality LLM+E2E Comparative Experiment

PyDial (Ultes et al., 2017) ✓✓✓ ✗ ✗ ✗
ConvLab2 (Zhu et al., 2020) ✓✓✓ ✗ ✗ ✗
ConvLab3 (Zhu et al., 2022) ✓✓✓ ✓✓✓ ✗ ✗
to-llm-bot (Hudeček and Dusek, 2023) ✗ ✗ ✓✓✓ ✗
other E2E baselines ✗(∗) ✗(∗) ✗ ✗

DIALIGHT (this work) ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

Table 1: A comparative overview of TOD system toolkits supporting E2E modelling. This summary excludes system
components focused solely on dialogue state tracking (DST) and response generation (RG). Key features include
Human Evaluation, indicating support for online (crowdsourcing) human evaluation, Multilinguality capabilities
for development and evaluation across various languages and in monolingual, multilingual, and cross-lingual setups,
LLM+E2E for in-context learning with LLMs in E2E modelling, and Comparative Experiment, denoting a
unified framework for evaluating both FT-based and ICL-based systems. Detailed comparisons are presented in § 2.
(∗) We acknowledge that while some TOD systems support human evaluation and multilingualism, it is recognised
that a significant majority lack these crucial features.

Furthermore, the development of TOD systems
has historically been confined to a limited num-
ber of high-resourced languages (Razumovskaia
et al., 2022). The recent release of the Multi3WOZ
dataset (Hu et al., 2023a) expands the linguistic
scope, introducing the same-level data support for
Arabic, English, French, and Turkish TOD. Never-
theless, there are still noticeable disparities in sys-
tem performance across different languages even
with the fully comparable training data (Hu et al.,
2023b), raising questions about system utility and
user satisfaction with TOD in non-English contexts.
To facilitate future research in minimising these per-
formance disparities, a toolkit that supports devel-
oping and evaluating multilingual dialogue systems
is critically needed.

Aiming to address these gaps, this paper intro-
duces DIALIGHT, a novel toolkit for developing
and evaluating multilingual end-to-end (E2E) TOD
systems. DIALIGHT is specifically designed for
comprehensive comparative analyses between FT-
based and ICL-based systems (see §3). It supports
an array of TOD datasets from the MultiWOZ
family (Budzianowski et al., 2018b; Ding et al.,
2022; Hu et al., 2023a, inter alia), and enables
seamless evaluations in monolingual, multilingual,
and cross-lingual setups (§4). Given often the
moderate correlation between automatic evaluation
metrics and human judgements (Yeh et al., 2021;
Mehri et al., 2022), our toolkit places a special
emphasis on human evaluation, facilitating both
utterance-level and full dialogue-level assessments
(§5). The toolkit is available online at: github.
com/cambridgeltl/e2e_tod_toolkit.

TOD systems, especially for comparative analyses between
FT-based and ICL-based systems.

2 Related Work

DIALIGHT represents a novel addition to the land-
scape of TOD system toolkits, complementing ex-
isting frameworks such as PyDial (Ultes et al.,
2017), ConvLab-3 (Zhu et al., 2022), and their
antecedents (Zhu et al., 2020; Lee et al., 2019), as
shown in Table 1. DIALIGHT is unique in offer-
ing support for ICL-based implementations in E2E
ToD systems, a feature not yet available in exist-
ing toolkits. Moreover, DIALIGHT diverges in its
core design philosophy. Instead of incorporating
extensive and intricate systems and components, it
is meticulously crafted to reduce entry barrier and
learning curve for researchers engaging in multilin-
gual TOD research. Our objective is to provide a
streamlined codebase that facilitates rapid develop-
ment of multilingual TOD systems.

Another range of publicly available implementa-
tions exists for both traditional FT-based and ICL-
based E2E TOD systems, typically accompany-
ing research publications as supplementary code.
For traditional FT-based approaches, works include
those by Wen et al. (2017); Bordes et al. (2017);
Lei et al. (2018); Eric and Manning (2017); Eric
et al. (2017); Lin et al. (2020); Peng et al. (2021);
He et al. (2022) . The ICL-based category is exem-
plified by the work of Hudeček and Dusek (2023).3

However, these systems lack a unified setup for
comparative experimentation. Our toolkit fills this
gap, enabling fair and comprehensive comparisons
between the aforementioned two types of systems.
Additionally, many of these systems, primarily de-
signed to enhance benchmark results, exhibit key
limitations, such as: 1. absence of implementation
for lexicalisation in utterances, 2. lack of a dialogue

3To date (December 2023), the implementations by Zhang
et al. (2023); Chung et al. (2023) have not been released.
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system agent for real user interaction, 3. existence
of English-centric heuristics in evaluation,4 4. inad-
equate support for human evaluation. DIALIGHT

specifically addresses these limitations.
While existing tools for human evaluation, such

as DialCrowd (Lee et al., 2018; Huynh et al., 2022),
offer simple approaches for conducting human
evaluation experiments in TOD systems, they are
not without limitations. DialCrowd is not open-
sourced, available solely via its designated website,
which imposes significant constraints. These in-
clude limited customisation flexibility, increased
maintenance complexity,5 and challenges in align-
ing with data protection regulations such as GDPR,
thus affecting its broader applicability in research.
In contrast, our human evaluation tool is open-
sourced, enabling ‘one-click’ deployment on local
or cloud servers.

3 System Architecture

This section delineates the architecture and imple-
mentation of the proposed E2E dialogue system
within DIALIGHT. As illustrated in Figure 2 in
the Appendix, despite the term ‘end-to-end’, state-
of-the-art E2E TOD systems typically employ a
pipelined approach in the background, incorporat-
ing three key components: 1) a dialogue state track-
ing (DST) model, 2) a database interface, and 3) a
response generation (RG) model. In the following,
we describe the system pipeline and provide an in-
depth examination of each constituent component.

3.1 System Pipeline
Our E2E TOD system operates by processing
a dialogue history, represented as the concate-
nation of a list of preceding dialogue utter-
ances [u1,u2, · · · ,ut−1] with the latest user ut-
terance ut. Specifically, the DST model, de-
noted as DST(·), takes this concatenated input di-
alogue utterances to predict the current dialogue
state, formulated as st = DST([u1,u2, · · · ,ut]).
Within the context of MultiWOZ datasets, a di-
alogue state is defined as a set of tuples s =
{(d1, s1, v1), · · · , (dk, sk, vk)}, where each tuple
consists of domain d, slot s, and slot value v.
Then, this state is sent to a database DB(·), from

4For instance, the official evaluation script for Multi-
WOZ (Nekvinda and Dušek, 2021) employs a string matching
algorithm that normalises English slot values to their canonical
forms. This approach, however, introduces a bias in evalua-
tion, leading to potentially unfair comparisons when extending
the framework to other languages.

5E.g., DialCrowd is currently offline (December 2023).

which a set of entities satisfying the requirements
specified by the state st are retrieved. Namely,
{E1, · · · El} = DB(st), where E is a data en-
try in the database. The RG model, denoted as
RG(·), is then tasked to consume the sequence of
dialogue utterances with the retrieved set of en-
tities as input and generate a dialogue response
ut+1. The process can be formally expressed as
ut+1 = RG([u1, · · · ,ut], {E1, · · · , El}), where
ut+1 represents the generated dialogue response to
user input ut, taken as the next system turn.

In the proposed toolkit, DST models and RG
models can be implemented using both FT-based
and ICL-based methods. In what follows, we detail
the implementation for each system component,
applying both methods.

3.2 Dialogue State Tracking Models

Fine-Tuning with PLMs. The dialogue state
st is transformed into a flattened string rep-
resentation. For example, consider a dia-
logue state {(d1, s1, v1), · · · , (dk, sk, vk)}: it
gets transformed into the string d1#s1=v1;s2=v2|
· · · |dk#sk=vk. In this representation, slots and their
corresponding values within the same domain are
merged. For example, the dialogue state ‘{(taxi,
departure, saint johns college), (taxi, destination,
pizza hut fenditton)}’ is linearised as ‘taxi # de-
parture = saint johns college ; destination = pizza
hut fenditton’. At each dialogue turn t, a PLM is
trained to take the input of the concatenated dia-
logue history [u1,u2, · · · ,ut], and generates the
linearised dialogue state.

In-Context Learning with LLMs. We use LLMs
for direct generation of dialogue states in JSON for-
mat, guided by task-specific prompts and training
examples for in-context learning. The instruction
prompt consists of six parts: 1. Task instruction
for generating the dialogue state. 2. Output for-
mat instruction to produce results in JSON format.
3. Ontology instruction detailing available domains
and slots. 4. Categorical slot instruction, guiding
LLMs to choose from predefined options for cate-
gorical slots. 5. Time slot instruction for generating
times in 24-hour format (hh:mm). 6. Number slot
instruction, directing LLMs to produce non-nega-
tive integer values for numeric slots, such as the
quantity of individuals in a booking. After these
instructions, we incorporate a list of training exam-
ples, randomly chosen from the training dataset, to
provide a baseline for future research. The final
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step involves appending the concatenated dialogue
history [u1,u2, · · · ,ut] to the prompt, enabling
the LLMs to generate the corresponding state st.

Implementation and Setup. In DIALIGHT, the
FT-based DST models can be instantiated with any
of the PLMs available in the Huggingface repos-
itory (Wolf et al., 2020). Additionally, we pro-
vide comprehensive support for various models
in ICL-based systems, including: 1. Models from
the Huggingface repository, 2. Models accessible
through the OpenAI API,6 3. LLaMA.cpp models,
tailored for on-device LLM inferences.7 For evalu-
ation of FT-based DST in this paper, we utilise the
mT5small and mT5large (Xue et al., 2021). For ICL-
based DST experiments, we employ the GPT-3.5,
LLaMA2 (Touvron et al., 2023), and OpenChat-
3.5 (Wang et al., 2023) models.8

3.3 Database Interface

We adapt the implementation of our database in-
terface from the official MultiWOZ evaluation
scripts (Nekvinda and Dušek, 2021) with minor
modifications. Each data entity across different
domains within the database can be represented
as a set of slot-value pairs. In response to each
user utterance ut, our system executes a database
query using the predicted dialogue state st, to inde-
pendently retrieve relevant data entries from each
respective domain. For each domain, a database
entry is retrieved if it meets the following criteria:
1. exact matching of categorical slot values with
those prescribed in the dialogue state, 2. achiev-
ing a Levenshtein distance for non-categorical slot
values that is below a predefined threshold when
compared with the dialogue state.9

3.4 Response Generation Models

Fine-Tuning with PLMs. In the context of the
MultiWOZ datasets, our approach follows the con-
ventional two-step process: initially generating a
delexicalised response and subsequently lexicalis-
ing this response with slot values from dialogue
states and retrieved entities.10 It is worth noting

6openai.com/blog/openai-api
7LLaMA.cpp is open-sourced and accessible at github.

com/ggerganov/llama.cpp.
8All the other experimental details are in Appendix C.
9We use 90% as the ratio with the fuzzywuzzy package for

matching.
10In the case of delexicalised dialogues, all the slot values

in the context and responses are replaced a predefined place-
holder (e.g. [value_name] is an [value_price] [value_food]
restaurant on the [value_area] . do you need to know more ?).

that the majority of prevalent automatic evaluation
metrics predominantly focus on delexicalised re-
sponses. However, incorporating lexicalisation is
a more realistic scenario, which is also a necessity
for proper human evaluation.

The generation of a delexicalised response is
modelled as a transduction problem, converting di-
alogue history into a natural response. To integrate
database outcomes, we initially create a summary
(e.g., ‘attraction has one result found; hotel has no
result found’). Subsequently, a PLM is trained to
process the input, which is a combination of dia-
logue history and the database summary, to produce
the delexicalised system response. The lexicalisa-
tion process is carried out through a systematic
replacement of placeholders with the relevant val-
ues from the current dialogue state st and from the
retrieved entities.

In-Context Learning with LLMs. The ICL-based
method also follows the conventional two-step
process. However, instead of fine-tuning, this
approach involves prompting LLMs with a task-
specific instruction that encompasses four parts:
1. Task instruction, which directs the generation
of the dialogue response. 2. Ontology instruc-
tion, providing details on the available domains
and slots. 3. Delexicalisation instruction, inform-
ing the LLM about all available placeholders and
guiding it to substitute slot values with these place-
holders. 4. Language instruction, specifying the
target language for the generated response. A set
of training examples, randomly selected from the
dataset, is appended to these instructions. The LLM
is then tasked to generate the corresponding dia-
logue response based on this augmented prompt,
the database summary, and the concatenated dia-
logue history [u1,u2, · · · ,ut] .

Implementation and Setup. Similarly as before
with DST models, we employ the mT5small and
mT5large models for FT-based response generation.
For ICL-based experiments, we employ the GPT-
3.5, LLaMA2, and OpenChat-3.5 models.

4 Automatic Evaluation

As part of DIALIGHT, we have implemented a
range of automatic evaluation metrics: 1. For
DST evaluation, metrics include Joint Goal Ac-
curacy (JGA), Slot F1, Slot Recall, and Slot Preci-
sion. 2. For response generation evaluation, we
utilize the BLEU score (Papineni et al., 2002),
ROUGE-L (Lin, 2004), and METEOR (Banerjee
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Dialogue State Tracking Response Generation End-to-end Modelling
Language JGA Slot F1 Slot Precision Slot Recall BLEU ROUGE METEOR Inform Rate Success Rate BLEU

FT-mT5small

ENG 56.4 83.4 83.7 83.1 16.3 24.5 27.2 70.7 46.0 16.3
ARA 43.8 77.5 78.7 76.3 15.0 28.8 26.4 70.2 42.6 15.0
FRA 47.0 79.6 79.5 79.8 14.3 25.5 26.3 71.5 41.5 14.1
TUR 48.9 80.7 78.8 82.6 21.0 33.7 33.3 77.7 48.0 21.4
AVG. 49.0 80.3 80.2 80.5 16.6 28.1 28.3 72.4 44.4 16.7

ICL-GPT-3.5 (∗)
ENG 13.5 37.6 26.3 65.8 1.8 12.2 11.4 33.0 16.0 1.8
ARA 7.6 31.9 22.6 60.2 0.1 2.2 1.5 36.0 18.0 0.1
FRA 12.5 39.4 29.0 61.2 0.9 8.7 7.2 40.0 24.0 0.8
TUR 7.7 34.5 24.7 57.4 0.8 6.1 5.0 32.0 13.0 0.8
AVG. 10.3 35.9 25.7 61.2 1.2 7.3 6.3 35.3 17.8 0.9

Table 2: Performance across fully supervised variants of DST models, RG models, and E2E systems on the
MULTI3WOZ dataset. This table reports the performance metrics for each language, evaluated across different
models. ‘AVG.’ represents the mean average of the evaluation scores aggregated across all four languages. We
note that for these metrics the ground truth score is set at 100, with the exception of the Inform Rate and Success
Rate, which are measured as 89.3± 0.2 and 68.6± 0.2 across the four languages, respectively. (∗) For practical
considerations, the evaluation of ChatGPT-3.5-based models and systems is limited to a randomly selected sample
of 100 dialogues from the full test set, due to the significant time and resource requirements of full-scale evaluation.

and Lavie, 2005). 3. For evaluating the overall sys-
tems, we report Inform Rate, Success Rate, and
BLEU. Additionally, we provide an interface to fa-
cilitate easy extension for future additional metrics.

Table 2 presents the performance of imple-
mented systems across various languages and back-
bone models, evaluated using the aforementioned
automatic metrics.11 The main results indicate a
performance advantage of FT-based systems over
their ICL-based counterparts. Specifically, the ICL-
GPT-3.5-based TOD system demonstrates inferior
performance when compared to the FT-based sys-
tems.12 Subsequently, we present a detailed anal-
ysis aimed at identifying the root causes of this
performance discrepancy. Initially, we observe that
a substantial portion, 42.7%, of the system pre-
dictions generated by the English ICL-based DST
model do not adhere to the prescribed dialogue
state format specified by the instruction and on-
tology. Furthermore, with the given instructions,
the ICL-GPT-3.5 system generates delexicalised
English system responses that recall only 3.6% of
the placeholders found in the ground-truth utter-
ances. Concerning other languages, even when
explicitly instructed to generate responses in the
target language, the GPT-3.5 model produces ut-
terances thare are only 18.4% in Arabic, 78.0% in
French, and 70.5% in Turkish.13 We hypothesise

11We show the performance of the FT-mT5large, ICL-
LLaMA2, and ICL-OpenChat-3.5 systems in Table 6 in the
Appendix. Additionally, Table 7 in the Appendix presents the
evaluation results of FT-based systems on the same selected
subset of 100 dialogues for consistency in comparison.

12It is worth noting that our system’s simplicity, as opposed
to the more complex system proposed by Hudeček and Dusek
(2023), leads to its lower absolute performance. Our system is
primarily designed to serve as a baseline for future research.

13Language detection was performed using the tool devel-

that this is attributed to the fact that our prompt
is provided in English, and future work should ex-
periment with additional and more sophisticated
prompt designs (Shaham et al., 2024).

5 Human Evaluation

In DIALIGHT, we offer an open-sourced human
evaluation tool specifically designed for TOD sys-
tems. This tool is comprehensive, providing all
essential functionalities to conducting human eval-
uation experiments in a production setting. In the
following, we detail the features supported by our
web interface, provide an overview of the high-
level design of our backend servers, and present a
case study of human evaluation experiments.

5.1 Web Interface

The web interface of the tool offers a range of fea-
tures, including user registration, account login,
consent acquisition for data collection, and the exe-
cution of human evaluation tasks. In this section,
we highlight two critical features that distinguish
our tool from existing work.

Fine-Grained User Feedback. As shown in Fig-
ure 7 in the Appendix, our web interface is de-
signed to support the collection of user feedback
and scores at both the (local) utterance and (global)
dialogue levels. Furthermore, all evaluation ques-
tions can be fully customised with minimal pro-
gramming effort.14

Secure Authentication and Access Management.
A high priority has been placed on data security

oped by Nakatani (2010).
14The tool supports all components provided by the AntDe-

sign toolkit: ant.design/components/overview.
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and the incorporation of authentication measures.
An authentication system employing JSON Web
Tokens (JWT) and a basic role management frame-
work has been implemented. This arrangement
ensures that access to specific task groups is lim-
ited to authorised users, and only task administra-
tors are permitted to access submitted data in the
database. Moreover, the web interface is integrated
with an nginx reverse proxy, enhancing data and
communication security through SSL encryption.

5.2 Back-End Servers

Our human evaluation tool is architected using a
microservice design, a choice that significantly en-
hances its scalability and adaptability. Another
standout feature of the tool is the ‘one-click’ de-
ployment option, making it more accessible for
users. This tool sets itself apart from its prede-
cessors by being easy-to-use and tailored for the
prevailing trend of LLMs.

Microservice with Scalability. In a microservice
architecture, each service operates independently,
managing a specific task or functionality. Our tool
adopts this modular framework, partitioning each
task model into its own independent service on
a dedicated server, as depicted in Figure 3 in the
Appendix. The design of these stateless services
offers several benefits: firstly, it enables a single
model to be concurrently shared by multiple sys-
tems, each with different configurations; secondly,
it allows for the deployment of multiple instances
of the same model within the same system.

On-click Deployment. The tool is designed with
an ‘out-of-the-box’ capability, facilitated by full
containerisation using docker and docker-compose
(see docs.docker.com/) This approach ensures a
simple and efficient deployment process. The ver-
satility of these containers supports deployment in
various environments, ranging from local machines
to cloud-based platforms. The entire build process
is governed by a central configuration file, which
users can modify according to their specific require-
ments, thus enhancing the tool’s adaptability.

5.3 A Pilot Analysis of FT-based versus
ICL-based Systems in English

Relying on DIALIGHT, we conduct a human eval-
uation experiment comparing the performance of
the English system with FT-mT5small and the sys-
tem utilising the ICL-GPT-3.5 model. In this study,
each of the 10 participants has completed 2 dia-

FT-MT5SMALL ICL-GPT-3.5
0

2

4

6

8

10

12

N
um

be
r

of
D

ia
lo

gu
es

Coherence
Consistency

Understanding
Informativeness

Diversity
Likeability

Figure 1: Number of dialogues (from the total of 20)
assessed by human evaluators according to the desirable
properties that align with the dialogue-level evaluation
dimensions outlined in Mehri and Eskenazi (2020).

logues for each system, resulting in a total of 40
data entries. The FT-based system attains an over-
all score of 3.8± 0.9, while the ICL-based system
achieves 1.6± 0.9. Furthermore, Figure 1 demon-
strates the number of dialogues for each system
based on a set of dialogue-level evaluation dimen-
sions (Mehri and Eskenazi, 2020). The results in-
dicate that the FT-based system outperforms the
ICL-based system in terms of maintaining conver-
sation coherence, providing consistent information,
understanding the user, and delivering informative
responses. Conversely, the ICL-based system gen-
erates more diverse responses and exhibits a more
favourable personality.

6 Conclusion and Outlook

We introduced DIALIGHT, a comprehensive toolkit
for advancing multilingual TOD systems supported
by language models of different families, offering
the essential infrastructure for system development
and evaluation. DIALIGHT supports the develop-
ment of and includes baseline systems for fine-
tuning and in-context learning paradigms, enabling
comparative experiments within a unified setup for
automatic and human evaluation. We have publicly
released all our source code to facilitate future re-
search and invite the research community to adapt
and contribute to this toolkit.

Utilising this toolkit, we executed a performance
analysis across several languages and models for
the two modeling paradigms. The results indicate
that despite their potential, LLMs, even the most
powerful ones, are far from ‘solving’ the TOD task,
especially in a multilingual context. Instead, our
results open up new avenues for future research
and exploration. In Appendix B, we provide some
examples of future work aimed at addressing the
bottlenecks identified in the baseline systems.
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ical dialogues in which the domains and content
have been restricted and predefined, minimising the
risk of personal data being present. On the other
hand, it is important to acknowledge that although
these PLMs and LLMs are publicly available, there
exists a potential risk of privacy violations (Carlini
et al., 2021; Brown et al., 2022).
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madan, and Milica Gašić. 2018a. MultiWOZ - a
large-scale multi-domain Wizard-of-Oz dataset for
task-oriented dialogue modelling. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 5016–5026, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gašić. 2018b. MultiWOZ - a
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A Limitations

There are several limitations in this work, primarily
stemming from the scope, design, and intended pur-
pose of this toolkit. In this work, we only provide
a set of baseline systems. As shown in Figure 9,
these systems are intentionally kept as simple as
possible while being fully functional, with the goal
of enabling users to gain a conceptual understand-
ing of the TOD task and implement their own sys-
tems with minimal learning effort. It is important
to acknowledge that our systems may underper-
form compared to other more sophisticated sys-
tems, such as the one developed by Hudeček and
Dusek (2023) that employs advanced techniques
for retrieving positive and negative ICL examples,
or the system proposed by Zhang et al. (2023)
that incorporates an explicit and pre-defined task
schema to guide system actions. Instead of pursu-
ing state-of-the-art performance, we place greater
emphasis on providing the essential environment
and a set of tools, including automatic and human
evaluation tools, to enable researchers to develop
more advanced systems using our toolkit in future
work.

Currently, DIALIGHT currently supports only
TOD datasets that are derived from the Multi-
WOZ dataset (Budzianowski et al., 2018b) and
its schema, that is, the ones annotated with the
CUED schema (Young, 2007). We recognise the
additional challenges associated with extending the
toolkit to accommodate other datasets with differ-
ent annotation schemata. Such extensions would
typically involve the re-implementation of the data
loader, the database, and some automatic evalua-
tion metrics, such as Inform Rate and Success Rate.
However, we believe that our human evaluation
tool can be easily extended to evaluate systems
developed on other datasets.

Furthermore, it is worth noting that a fully inclu-
sive dialogue system should consider not only text
input but also other modalities, such as spoken and
sign languages. We acknowledge that DIALIGHT

currently focuses on text input only, and we hope
to integrate the support for speech input and output
as part of future work.

B Future Work: Some Ideas

In this section, we provide examples of future work
aimed at addressing the bottlenecks identified in
the baseline systems.

Modernising TOD Systems for LLMs. In §4, our

experimental results reveal that solely prompting
LLMs resulted in system failure to comply with
the instructions and predict dialogue states in the
required format, leading to over 40% empty predic-
tions. Additionally, ICL-based systems employing
LLMs encountered challenges in recalling place-
holders and generating delexicalised utterances in a
similar fashion. This issue is arguably attributable
to the misalignment between the task requirements
for TOD and the inherent pretraining of LLMs. We
propose that future research should critically reeval-
uate the current design choices of TOD systems to
better tailor LLM-based TOD systems.

Multilingual Generation with LLMs. Our anal-
ysis demonstrates that when prompts are solely
provided in English and LLMs are instructed to
generate outputs in other languages, they often en-
counter difficulties in complying, resulting in the
generation of outputs in English. Developing com-
plex NLP applications like TOD systems requires
a significant number of instructions to specify task
requirements. However, the dominance of English
instructions tends to bias model outputs towards
English. Conversely, tailoring task instructions for
each individual language, especially for resource-
lean languages, poses a challenge. While some
work has been recently conducted for other NLP
tasks (Li et al., 2023), arguably less complex than
TOD, the question of how to effectively control
LLMs to generate target language outputs remains
an open question for future research.

C Experimental Details

In this section, we describe the experimental setups
for the systems developed in this paper. For spe-
cific implementation details, including the prompts
used in the ICL-based systems, we direct readers
to the actual implementation and documentation of
DIALIGHT.

Table 3 presents the selected hyper-parameters for
the conducted experimental study. All the FT-based
experiments were run on a single A100 80 GiB
GPU and a 32-core vCPU. Notably, the ICL-based
systems deployed in our experimental study ex-
cluded training examples from the prompts. This
decision was based on empirical evidence indicat-
ing that these examples adversely affect system
performance. When tested with 10 ICL examples,
the ICL-GPT-3.5 systems recorded a JGA of 4.3
(↓9.2), an Inform Rate of 31.0 (↓2.0), and a Suc-
cess Rate of 14.0 (↓2.0). We did not conduct a
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Hyper-parameter Value

FT-mT5small

batch size 32
learning rate 1e-3
weight decay 0.01
evaluation per steps 5000
max training steps 50000
context window 10
early stopping patience 2
maximum generation length 512

FT-mT5large

batch size 8
learning rate 1e-3
weight decay 0.01
evaluation per steps 5000
max training steps 50000
context window 10
early stopping patience 2
maximum generation length 512

ICL-GPT-3.5, ICL-LLaMA2, and ICL-OpenChat-3.5

context window 10
number of ICL examples 0 (∗)

Table 3: The hyperparameters for E2E systems and
their constituent models. Both the DST and RG models,
which are based on the same PLM, utilised identical
hyper-parameter setups. To select the optimal model
checkpoint, we employ early stopping and select the one
with the best validation performance, measured by JGA
for DST and BLEU score for RG. Unless explicitly spec-
ified, all other hyper-parameters are set to their default
values as defined in the HuggingFace Transformers. (∗)
Notably, our observations suggest that the introduction
of training examples actually adversely affects model
performance.

hyperparameter search for the number of ICL ex-
amples due to the high costs associated with such
an experiment.

Table 4 lists all the language models we used in this
work, along with their respective checkpoints in the
Huggingface repository and the OpenAI API. Both
the LLaMA2 and OpenChat-3.5 models employed
in this study have 7 billion parameters.

Table 5 shows the time consumption of the models
for the E2E task in the experimental study.

D Additional Results on MULTI3WOZ

In this section, we show supplementary experimen-
tal results to solidify the empirical findings in §4.
Firstly, the evaluation metrics for E2E tasks, such
as Inform Rate and Success Rate, are influenced by
two key outputs of the system: the dialogue state
and the generated response. To assess the impact
of each component on overall system performance,

Model Checkpoint

mT5small google/mt5-small
mT5large google/mt5-large
GPT-3.5 gpt-3.5-turbo-1106
LLaMA2 TheBloke/Llama-2-7B-GGUF
OpenChat-3.5 openchat/openchat_3.5

Table 4: The employed langauge models in our experi-
mental study and their Huggingface or OpenAI Check-
points. We use 7B variants of LLaMA2 and OpenChat-
3.5.

Setup Time Consumption

FT-mT5small

DST training per 500 steps 3:02
RG training per 500 steps 2:27
Inference on full test 9:30

FT-mT5large

DST training per 500 steps 5:09
RG training per 500 steps 5:02
Inference on full test 1:16:00

ICL-GPT-3.5

Inference on 10 dialogues 9:05

ICL-LLaMA2

Inference on 10 dialogues 36:00

ICL-OpenChat-3.5

Inference on 10 dialogues 5:35

Table 5: The average time consumption for the E2E
task. For all FT-based systems, the computation was
performed on a machine equipped with a single A100
80 GiB GPU and a 32-core vCPU. In the case of the
ICL-GPT-3.5 systems, calculations were conducted us-
ing the OpenAI API. Meanwhile, the ICL-LLaMA2
systems were executed on an Intel 13900k CPU and
ICL-OpenChat-3.5 systems were executed on a machine
with an Intel 13900k CPU and a single NVIDIA RTX
4090 GPU.

we conduct an extra experiment where the predic-
tions of each part were individually replaced with
the ground-truth. When substituting the predicted
utterances with ground-truth utterances, the FT-
mT5small systems exhibited a notable improvement,
achieving an average Inform Rate of 85.1 (↑13.3)
and a Success Rate of 66.1 (↑21.5) across four
languages. In contrast, substituting the predicted
dialogue states resulted in a marginal increase, with
the systems attaining an Inform Rate of 72.1 (↑0.3)
and a Success Rate of 43.3 (↑0.7) across the lan-
guages. These findings highlight the critical role
of RG model performance in determining overall
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system performance and the relative insensitivity
of these metrics in evaluating the performance of
DST models.

Table 6 shows the fully supervised performance
of mT5large, LLaMA2, and OpenChat-3.5 models
across DST models, RG models, and E2E systems
on the MULTI3WOZ dataset. It is noteworthy that
the OpenChat-3.5 based systems exhibited a failure
in generating coherent dialogue responses. These
systems consistently repeated the prompts and, in
each utterance, indiscriminately included all the
placeholders. This simplistic method led to inflated
Inform Rate and Success Rate scores, highlighting
the potential vulnerability of these metrics to adver-
sarial strategies, a concern also highlighted by Wu
et al. (2023).
Table 7 presents an analysis of the performance un-
der full supervision for both mT5small and mT5large
models. This evaluation is conducted on a specif-
ically selected subset of 100 dialogues from the
entire test set, consistent with the evaluation setup
applied to all other ICL-based models and systems
in this study. This approach ensures a rigorous
and direct comparability across the discussed ICL-
based models and systems.

E Diagrams and Screenshots

In this section, we present a series of diagrams,
web interface screenshots, and code snippets that il-
lustrate the architectural design and functionalities
of our toolkit.

Figure 2 illustrates the architecture of an E2E dia-
logue system. State-of-the-art E2E TOD systems
typically employ a pipelined approach in the back-
ground, incorporating three key components: a
dialogue state tracking (DST) model, a database
interface, and a response generation (RG) model.

Figure 3 shows the architectural framework of our
human evaluation tool. The underlying infrastruc-
ture of the back-end servers is constructed on the
principles of a microservice architecture.

Figure 4 presents a screenshot capturing the login
page of our human evaluation web interface. This
interface serves as the entry point for evaluators to
access the system.

Figure 5 presents a screenshot capturing the regis-
tration page of our human evaluation web interface.

Figure 6 displays a screenshot of the assignment
page within the human evaluation web interface.

Response Generation Model Retried Data Entries

Database

Dialogue State Tracking 
Model Dialogue State

I am looking for a 
hotel in Cambridge?

Which area are you 
looking for?

Figure 2: An E2E dialogue system contains three key
components: a dialogue state tracking (DST) model, a
database, and a response generation (RG) model. The
DST model processes user utterances with the accumu-
lated dialogue history to predict a dialogue state. This
state is then translated into a database query to extract
data entries relevant to the current dialogue context from
the database. The RG model uses these entries and the
dialogue history to produce the final response.

Back-end Servers

Front-end Website

Web Server

Web Interface

Database
Model 

Connector

Huggingface
Model

OpenAI
Model

LLaMA.cpp
Model

Figure 3: Architectural design of our human evaluation
tool, containing two primary components: a web-based
interface and a cluster of back-end servers. The server
infrastructure is based on a microservice architecture,
segregating each task model into its own independent
service, as highlighted by the dashed yellow background
in the figure. Central to this architecture is the Model
Connector, functioning as an API gateway to manage
and route requests to the appropriate task models. For
example, each fine-tuned DST model is hosted indepen-
dently on a dedicated server. These servers are designed
to be stateless, enabling their shared use across various
systems and dialogue sessions, thereby enhancing effi-
ciency and scalability.

This page is specifically designed for users to carry
out the task of evaluating the dialogue system.

Figure 7 presents detailed screenshots capturing
both the utterance-level and dialogue-level feed-
back forms facilitated by our tool. These feedback
forms are integrated into the assignment page.

Figure 8 presents screenshots of the code to pro-
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Dialogue State Tracking Response Generation End-to-end Modelling
Language

JGA Slot F1 Slot Precision Slot Recall BLEU ROUGE METEOR Inform Rate Success Rate BLEU

FT-mT5large

ENG 18.6 52.5 53.0 52.0 15.8 24.1 27.1 70.1 47.3 15.4
ARA 44.0 78.5 78.3 78.6 7.0 17.4 14.8 67.3 31.4 6.7
FRA 46.8 79.5 79.6 79.5 14.1 25.2 25.8 74.3 44.2 13.6
TUR 48.5 80.2 78.8 81.7 10.6 19.7 19.0 77.7 48.0 10.8
AVG. 39.5 72.7 72.4 73.0 11.9 21.6 21.7 70.1 42.4 11.6

ICL-LLaMA2 (∗)
ENG 1.6 0.0 0.0 0.0 0.1 0.1 0.1 22.0 8.0 0.2
ARA 1.6 0.0 0.0 0.0 0.1 0.0 0.0 23.0 9.0 0.1
FRA 1.6 0.0 0.0 0.0 0.0 0.0 0.0 19.0 9.0 0.0
TUR 1.6 0.0 0.0 0.0 0.0 0.0 0.0 18.0 7.0 0.0
AVG. 1.6 0.0 0.0 0.0 0.1 0.0 0.0 20.5 8.3 0.0

ICL-OpenChat-3.5 (∗) (∗∗)
ENG 1.6 0.0 0.0 0.0 0.0 0.0 0.0 67.0 61.0 0.0
ARA 1.6 0.0 0.0 0.0 0.0 0.0 0.0 67.0 60.0 0.0
FRA 1.6 0.0 0.0 0.0 0.0 0.0 0.0 67.0 60.0 0.0
TUR 1.6 0.0 0.0 0.0 0.0 0.0 0.0 67.0 60.0 0.0
AVG. 1.6 0.0 0.0 0.0 0.0 0.0 0.0 67.0 60.3 0.0

Table 6: Evaluation of fully supervised performance across DST models, RG models, and E2E systems on the
MULTI3WOZ dataset. This table reports the performance metrics for each language, evaluated across different
models. It should be noted that for these metrics, the ground truth score is set at 100, with the exceptions of
the Inform Rate and Success Rate, which are measured as 89.3 ± 0.2 and 68.6 ± 0.2 across the four languages,
respectively. (∗) For practical considerations, the evaluation ICL-based models and systems is limited to a randomly
selected sample of 100 dialogues from the full test set, due to the significant time and resource requirements of a
full-scale evaluation. (∗∗) Additionally, it is noteworthy that the OpenChat-3.5 based systems exhibited a failure
in generating coherent dialogue responses. These systems repetitively echoed the prompts and for each utterance,
generated all the placeholders. This simplistic approach resulted in artificially high Inform Rate and Success Rate
scores, revealing the vulnerability of these metrics to adversarial strategies.

Dialogue State Tracking Response Generation End-to-end Modelling
Language

JGA Slot F1 Slot Precision Slot Recall BLEU ROUGE METEOR Inform Rate Success Rate BLEU

FT-mT5small(∗)
ENG 54.4 83.0 84.6 81.5 18.7 26.5 29.7 66.0 47.0 18.5
ARA 41.9 77.5 79.9 75.3 16.1 30.0 27.4 67.0 43.0 15.8
FRA 42.9 80.3 81.3 79.3 12.9 25.0 25.6 66.0 34.0 13.4
TUR 48.0 81.5 81.1 81.9 22.8 34.6 34.1 75.0 48.0 23.1
AVG. 46.8 80.6 81.7 79.5 17.6 29.0 29.2 68.5 43.0 17.7

FT-mT5large(∗)
ENG 19.1 53.3 55.0 51.6 18.0 25.7 29.0 69.0 49.0 17.8
ARA 41.9 79.1 80.2 78.1 9.2 19.4 17.0 62.0 30.0 9.0
FRA 44.6 80.3 82.1 78.5 13.1 24.4 24.6 77.0 50.0 13.4
TUR 45.2 80.8 80.8 80.8 11.2 20.5 19.7 68.0 28.0 11.4
AVG. 30.2 73.4 74.5 72.3 12.9 22.5 22.6 69.0 39.3 12.9

Table 7: Evaluation of fully supervised performance across DST models, RG models, and E2E systems on the
MULTI3WOZ dataset. This table reports the performance metrics for each language, using both mT5small and
mT5large models. ‘AVG.’ represents the mean average of the evaluation scores aggregated across all four languages.
We note that for these metrics the ground truth score is set at 100, with the exception of the Inform Rate and Success
Rate, which are measured as 89.3± 0.2 and 68.6± 0.2 across the four languages, respectively. (∗) In this table,
the evaluation is limited to a randomly selected sample of 100 dialogues from the full test set, ensuring direct
comparability with other ICL-based models and systems discussed herein.

Figure 4: A screenshot capturing the login page of the
human evaluation web interface.

Figure 5: A screenshot of the registration page.
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Figure 6: A screenshot of the task assignment page.

(a) Utterance Level

(b) Dialogue Level

Figure 7: Our human evaluation tool is designed to
collect user feedback at both the (a) utterance and (b) di-
alogue levels. This tool allows for full customisation of
evaluation questions with minimal programming effort.

duce the prompts for both our ICL-based DST and
RG models.

Figure 9 presents a screenshot of the inference
code for our FT-based E2E systems. The code
is modularised and intentionally designed to be
both simple and fully functional. Our goal is to
facilitate users in acquiring a clear understanding

(a) DST Prompt

(b) RG Prompt

Figure 8: Screenshots of the code to produce the
prompts for our ICL-based (a) DST and (b) RG models
are provided above.

Figure 9: A screenshot of the inference code for our
FT-based E2E systems is provided above. The code
is intentionally designed to be both simple and fully
functional, aiming to assist users in gaining a conceptual
understanding of the TOD task and the implementation
of our system.

of the TOD task, as well as to provide insights into
the implementation of our system.

Figure 10 presents a screenshot of the backend web
server code for our RESTful API for the storage
of human evaluation results. This setup incorpo-
rates a JWT-based authentication system to secure
access. Additionally, it is structured to permit only
authorised users with specific permissions to record
evaluation results in the database.
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Figure 10: A screenshot of the backend web server code
for our RESTful API, designed for storing system eval-
uation results. It features a JWT-based authentication
mechanism to ensure secure access. Furthermore, the
system is configured to allow only users with specific
permissions to save evaluation results to the database,
thereby enhancing data integrity and security.

52



Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 3: System Demonstrations), pages 53–60

June 16-21, 2024 ©2024 Association for Computational Linguistics

RTSUM: Relation Triple-based Interpretable Summarization
with Multi-level Salience Visualization

Seonglae Cho, Myungha Jang, Jinyoung Yeo, Dongha Lee∗
Yonsei University, Republic of Korea

{sungle3737,jinyeo,donalee}@yonsei.ac.kr, myunghajang@gmail.com

Abstract

In this paper, we present RTSUM, an unsuper-
vised summarization framework that utilizes
relation triples as the basic unit for summariza-
tion. Given an input document, RTSUM first
selects salient relation triples via multi-level
salience scoring and then generates a concise
summary from the selected relation triples by
using a text-to-text language model. On the
basis of RTSUM, we also develop a web demo
for an interpretable summarizing tool, provid-
ing fine-grained interpretations with the output
summary. With support for customization op-
tions, our tool visualizes the salience for textual
units at three distinct levels: sentences, relation
triples, and phrases. The code1 and video2 are
publicly available.

1 Introduction

Text summarization has emerged as a critical tool
in the era of information overload, enabling users
to quickly understand the essence of long text.
Among various summarization techniques, abstrac-
tive summarization has gained significant attention
due to its ability to generate fluent and concise sum-
maries that capture the main ideas of the source text
(Nallapati et al., 2016; See et al., 2017; Tan et al.,
2017; Cohan et al., 2018; Xu et al., 2020a; Koh
et al., 2022). Nevertheless, despite their advantages
in flexibility and reduced redundancy compared to
extractive methods, abstractive methods inherently
lack interpretability. That is, the absence of a direct
link to the source text can make it difficult to trace
back the source of information, which makes the
summary lack interpretability.

Interpretability in summarization is important to
provide users a way to cross-check that the gener-
ated summary is factually consistent, and to pro-
vide more context to dive into if one wants to know

∗Corresponding author
1https://github.com/seonglae/RTSum
2https://youtu.be/sFRO0xfqvVM

more about the summarized content. To generate an
interpretable summary, extractive summarization
techniques can offer advantages. As they directly
extract sentences from the text, the sentences them-
selves serve as the source of information (Xu et al.,
2020b; Padmakumar and He, 2021). However, a
significant drawback of many extractive methods
lies in their sentence-level operation, which limits
their ability to extract fine-grained key information
(Zheng and Lapata, 2019; Liu et al., 2021). In many
cases, a single sentence describes multiple diverse
pieces of information that should be treated as dis-
tinct facts for summarization. By selecting entire
sentences, these methods may include unnecessary
or redundant information in the summary, reducing
both its efficiency and readability.

To enhance the interpretability of the summa-
rization process by incorporating fine-grained key
information, our focus lies on leveraging relation
triples as the basic unit for summarization. A rela-
tion triple in the form of (subject, predicate, object)
concisely describes a single piece of information
corresponding to its relation (i.e., predicate) be-
tween two entities (i.e., subject and object), and it
can be effectively identified from a source docu-
ment by using open information extraction (Ope-
nIE) systems (Angeli et al., 2015; Mausam, 2016).

Using relation triples, our main idea embodies
selection-and-sentencification, which achieves a
combination of extractive and abstractive summa-
rization methods. Specifically, we first select only a
few relation triples according to their importance –
salience – within the document for summarization,
and then reassemble the selected relation triples
into the final output summary. This two-step ap-
proach enhances the interpretability of the sum-
marization by providing clear explanations for the
salience scores of relation triples and their contri-
butions to the final summary. This clarity allows
users to understand the crucial elements driving the
summarization process effectively.

53



Formally, we present an unsupervised Relation
Triple-based Summarization framework, named
RTSUM. For relation triple selection, RTSUM

identifies heterogeneous textual information units
with various granularity, which are (1) sentences,
(2) relation triples, and (3) phrases, to utilize their
own salience all together. Under the principle that
more salient textual units are much more relevant
to other units semantically and lexically, it mod-
els the multi-level salience from the three distinct
textual units. Then, it selects the K most salient
relation triples based on the multi-level salience
scores. For relation triple sentencification, RTSUM

employs a neural text-to-text architecture as a re-
lation combiner to transform the relation triples
into the summary sentences. The relation com-
biner is effectively optimized in a self-supervised
manner by using source sentences (sampled from
training documents) and their relation triples (ex-
tracted from the sampled sentences) as targets and
inputs, respectively, while not requiring any refer-
ence summaries of its training documents.

Building upon the RTSUM framework, we de-
velop an online demo to showcase an interpretable
text summarization tool. Given an input document,
our tool generates a concise summary, while simul-
taneously offering fine-grained interpretations by
visually depicting the multi-level salience of tex-
tual units within the source document. For clarity
in visualization, the tool highlights text spans (i.e.,
textual units) based on their salience score, with
numerical ranks provided as annotations. Further-
more, our tool offers customization options, allow-
ing users to personalize the visualization according
to their preferences and specific purposes.

Our multi-level salience visualization empowers
users to easily identify the textual units that mostly
influence the final summary; it also provides valu-
able insights into the salient semantic structure of
the document at a glance, enhancing users’ overall
understanding of the summarization process.

2 Preliminary

Textual Information Units. We utilize three dif-
ferent types of textual information units with var-
ious granularity: sentences, relation triples,3 and
phrases. All sentences and relations are extracted
from a source document by using open informa-
tion extraction (OpenIE) systems. Among several

3For brevity, we use the terms “relation triples” and “rela-
tions” interchangeably, in the rest of this paper.

implementations, we employ OpenIE 54 (Mausam,
2016) released by UW and IIT Delhi. Similarly, all
noun and verb phrases in the document are iden-
tified based on POS labels tagged by the Spacy
library. Table 1 shows an example of the three
textual information units in a single sentence.

Sentence
Hugh Laurie joins the cast and Julia Louis-Dreyfus
is now the president of the United States on HBO’s
hit comedy.

Relation
(S: Hugh Laurie, P: joins, O: the cast)
(S: Julia Louis-Dreyfus, P: is, O: now the president
of the United States on HBO’s hit comedy)

Phrase
Hugh Laurie, joins, cast, Julia Louis-Dreyfus, is,
president, United States, HBO’s, hit comedy

Table 1: An example of textual information units.

Relation Triples. Each relation triple, denoted
by r = (sub, pred, obj), represents a relation (i.e.,
predicate) between two text spans (i.e., subject and
object), and it corresponds to a single piece of in-
formation in terms of the relation. The three com-
ponents are described in natural language, and this
allows us to treat them as the sequence of tokens
in the vocabulary, similar to sentences and phrases.
Thus, we consider the concatenated text of its sub-
ject, predicate, and object as the textual description
of a relation triple, i.e., desc(r) = [sub∥pred∥obj].
Problem Definition. Given a source document D
and its information units, including sentences S =
{s1, . . . , sNs}, relation triples R = {r1, . . . , rNr},
and phrases P = {p1, . . . , pNp}, the goal of our
relation triple-based summarization task is (1) to
select the relation triples based on their salience
within the document, and (2) to generate a concise
summary from the selected salient relation triples.
In this paper, we mainly focus on the unsupervised
setting where the annotated text-summary pairs are
not available for training a summarization model,
since such reference summaries are usually noisy,
expensive to acquire, and hard to scale.

3 RTSUM: Relation Triple-based
Summarization Framework

Our summarization framework, named RTSUM,
consists of the two steps: (1) information selection
for identifying the salient relation triples based on
multi-level salience from various textual informa-
tion units (Section 3.1), and (2) information senten-
cification for combining the selected relation triples

4https://github.com/dair-iitd/OpenIE-standalone
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Figure 1: The overall process of the RTSUM framework. RTSUM selects salient relation triples and then generates
the plausible sentences from the selected relation triples.

into plausible sentences with the help of a neural
text generator (Section 3.2). Figure 1 illustrates the
overall process of our RTSUM framework.

3.1 Information Selection
For the selection of relation triples that would be in-
cluded in the summary, RTSUM models the multi-
level salience for each relation triple by leveraging
heterogeneous textual information units. Specif-
ically, it figures out how significant a relation
triple is within the document from the perspec-
tive of (1) the sentence that the relation triple is
extracted from, (2) the relation triple itself, and (3)
the phrases that the relation triple contains. In the
end, RTSUM selects the most K salient relation
triples based on their multi-level salience scores.5

3.1.1 Sentence-level Salience Score
The sentence-level salience considers the signifi-
cance of the sentence that each relation triple is
extracted from. Following previous studies (Zheng
and Lapata, 2019; Liu et al., 2021), we infer the
sentence-level salience by utilizing sentence order
(i.e., a preceding sentence is more likely to contain
salient information) and semantic similarity (i.e.,
the sentence that is more semantically relevant to
other sentences is likely to contain salient infor-
mation). Thus, we construct a sentence-level text
graph Gs = (S, Es) with a directed edge from a
former sentence node si to a latter sentence node sj ,
and the edge weight Es

ij is the semantic similarity
between the two sentences.

Es
ij =

{
sim(si, sj) if si precedes sj
0 otherwise.

(1)

5The selection (or ranking) strategy based on multi-level
salience can be implemented in various ways (Section 3.1.4).

sim(si, sj) is defined by the cosine similarity be-
tween two sentence representations from a sentence
encoder, specifically fine-tuned for the semantic
textual similarity (STS) task (Gao et al., 2021).

From the sentence-level text graph, the sentence-
level salience is defined by the degree-based cen-
trality (Zheng and Lapata, 2019). In other words,
this centrality is equivalent to the sum of semantic
similarities with all of its subsequent sentences.

Ss(si) =
∑

sj∈S
Es

ij . (2)

3.1.2 Relation-level Salience Score
The relation-level salience focuses on the meaning
of each relation itself in that the semantic simi-
larity among the relation descriptions implies the
salience; that is, a relation description that is more
relevant to other relation descriptions is more likely
to contain salient information. In this sense, we
build a relation-level text graph Gr = (R, Er),
whose nodes represent the relation triple and the
undirected edge has the weight of the semantic sim-
ilarity between relation descriptions. Similar to
Equation (1), the cosine similarity between relation
representations is calculated, and the salience score
is also modeled as the degree-based centrality.

Er
ij = sim(desc(ri), desc(rj)),

Sr(ri) =
∑

rj∈R
Er

ij .
(3)

Note that the sequential order of relations is not
clearly presented unlike the sentences, because mul-
tiple relations are extracted from the same sentence.

3.1.3 Phrase-level Salience Score
The phrase-level salience measures the salience
of phrases included in each relation triple, and it
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captures the phrase frequency and co-occurrence
in the document. As presented in previous work on
keyphrase extraction (Mihalcea and Tarau, 2004;
Bougouin et al., 2013), we build a phrase-level text
graph Gp = (P, Ep) whose nodes are the noun and
verb phrases extracted from the source document
based on POS tags (e.g., Noun, Proper Noun, and
Verb). The undirected edges model the weight as
how many times two phrases locally co-occur (i.e.,
within a sliding window) in the sentences S, and
then run the TextRank (Mihalcea and Tarau, 2004)
on the graph to compute salience of phrase nodes.

E
p
ij = co-occur(pi, pj ;S),

Sp(pi) = (1− d) + d ·
∑

pj∈P

E
p
ji∑

pk∈P E
p
jk

Sp(pj),

(4)

where d ∈ [0, 1] is the damping factor that indi-
cates the transition probability from one node to
another random node. Starting from initial values
of Sp usually set to 1.0 for all the nodes, the final
salience of each phrase is obtained through iterative
computation of Equation (4) until convergence.

3.1.4 Salient Relation Triple Selection
The remaining challenge here is to select relation
triples by integrating multi-level salience scores.
To this end, RTSUM first identifies the textual in-
formation units relevant to each relation triple ri, in-
cluding its source sentence sj and its phrases pk(∈
Pri), and then transforms their salience scores for
the relation triple by Ss(ri) := Ss(sj), Sr(ri) :=
Sr(ri), and Sp(ri) := 1/|Pri | ·

∑
pk∈Pri

Sp(pk).
The most straightforward strategy to select a

small number of salient relation triples is to calcu-
late the final score of each relation triple based on
weighted summation of its three distinct scores and
to select the top-K relation triples:

S(ri) = α · Ss(ri) + Sr(ri) + β · Sp(ri). (5)

Another selection strategy is to adopt cascade
filtering that excludes less salient relation triples by
using the sentence-level, relation-level, and phrase-
level salience in a serial order (i.e., Ss → Sr →
Sp). The key principle of this filtering process is to
keep only the relation triples extracted from the key
sentences, and among them, to selectively collect
the relation triples that are semantically relevant to
the others, and finally, to exclude the ones that do
not include many salient phrases.

3.2 Information Sentencification
For the generation of sentences from the selected re-
lation triples (i.e., sentencification), RTSUM builds
a relation combiner based on a pretrained text-to-
text language model, such as BART (Lewis et al.,
2020) and T5 (Raffel et al., 2020). Using the rela-
tion combiner, RTSUM can perform the abstractive
summarization by sentencifying the selected rela-
tion triples.
Relation Combiner Training. The relation
combiner is effectively optimized with the self-
supervised objective for the sentencification task.
To be specific, we collect training pairs of (relation
triples, sentences) by randomly sampling a couple
of sentences from source documents and extract-
ing the relation triples from the sentences. Then,
we train the relation combiner based on Maximum
Likelihood Estimation (MLE) to generate the sen-
tences by taking the concatenated text of all the
extracted relation triples. As a result, it is expected
to learn how to introduce linking words, place each
component in order considering their relation, and
remove duplicated phrases or entities, for plausi-
ble sentence generation. To eliminate redundancy,
we apply a lightweight string similarity algorithm,
Gestalt pattern matching (Ratcliff and Metzener,
1988), as a filter before merging relation triples.
Training Pair Filtering. Despite the benefits of
self-supervised training, the relation combiner still
has a risk of introducing information that is not
presented in a source document (i.e., extrinsic hal-
lucinations) or factual errors against the document
(i.e., intrinsic hallucinations) into its output sum-
mary. Since the extracted relation triples are not
guaranteed to perfectly cover all the information of
their source sentences, some training pairs might
guide the combiner to generate missing information
that does not exist in the input relation triples. To
alleviate these hallucinations, we selectively collect
the training pairs whose extracted relation triples
fully cover the content of the source sentences. Pre-
cisely, the pairs of (relation triples, sentences) are
excluded from the training set, in case that some of
the semantic tokens (i.e., nouns, proper nouns, and
verbs) in the source sentences do not appear in the
extracted relation triples.

4 Demo: Interpretable Summarizing Tool

Based upon our RTSUM framework, we build an
interpretable summarizing tool that provides not
only the final summary of an input document but
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Figure 2: Our interpretable summarizing tool features multi-level salience visualization. Sentences, relation triples,
and phrases with a high score are highlighted in yellow, red, and green, respectively. The saliency of each unit is
denoted by its opacity. Within each triple, the subjects, predicates, objects, and adverbs are distinguished.

also its fine-grained interpretations.

4.1 Multi-level Salience Visualization
For interpretation of final summaries, our tool pro-
vides salience visualization for textual information
units with different granularity (Figure 2). It high-
lights the text spans that correspond to each infor-
mation unit according to its salience score. For
enhanced insights, the salience rank is explicitly
annotated next to each span, providing users with
a clear understanding of the relative importance of
each information unit within the document. This
feature allows users to grasp the significance of the
textual content and gain a more nuanced and de-
tailed understanding of the document’s key points.

Users can personalize the salience visualization
based on their unique preferences and specific
needs, including customization options as follows:

• Type of textual units: Users have the flexibil-
ity to choose whether to highlight each type of
textual unit. They can opt to further dissect the
highlight for a relation triple, differentiating
its subject, predicate, and object components.

• Number of textual units: Users can manually
adjust the number of highlighted instances for

each type of textual unit.

4.2 Implementation Details

Text graph construction. For more reliable sum-
marization, our RTSUM implementation filters out
less confident relation triples among the ones ex-
tracted from the OpenIE 5 system; only the relation
triples of which confidence is larger than 0.7 is
considered as valid units. To construct sentence-
level and relation-level text graphs, RTSUM utilizes
General Text Embeddings (GTE)6 as the sentence
encoder, which is trained on a large-scale corpus
of relevance text pairs covering a wide range of
domains and scenarios. Cosine similarity between
two sentence (or relation description) embeddings
is used for the edge weight in the graphs.
Relation triple selection. RTSUM in our tool
simply ranks relation triples by their final salience
scores, which are calculated by summing three dis-
tinct salience scores (i.e., Ss, Sr, Sp) with the same
weight, and then chooses top-K ones. The number
of relation triples to be selected is set to K = 3.
Relation combiner training. To build a rela-
tion combiner, we fine-tune BART7 (Lewis et al.,

6https://huggingface.co/thenlper/gte-large
7https://huggingface.co/facebook/bart-base
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2020) to generate source sentences from the rela-
tion triples extracted from the sentences. We use
a text corpus in the news domain, CNN/DM (Nal-
lapati et al., 2016) which contains 287,113 news
articles available for training. To reduce the risk
of hallucination, we filter out the cases that the
amount of information in an input text (i.e., a
set of relation triples) is shorter than that in an
output text (i.e., sentences), as explained in Sec-
tion 3.2. In addition, we use three special tokens,
<subject>, <predicate>, and <object>, to sep-
arate three components of each relation triple in
an input text, which effectively provides structured
information about each triple to the model.
Relation combiner alternatives. While our sum-
marizing tool provides the fine-tuned text-to-text
language model as a default relation combiner,
it also provides an option to employ instruction-
following language models, such as Instruct-
GPT (Ouyang et al., 2022) and ChatGPT. These
models can reconstruct plausible sentences from
a set of relation triples, when being asked with a
proper prompt written in natural language; they
can be beneficial in that domain-specific or task-
specific fine-tuning process is not required.

5 Related Work

5.1 Unsupervised Extractive Summarization

The most popular approach to unsupervised extrac-
tive summarization is to identify key sentences by
using a text graph that represents the semantic (or
lexical) relationship among text units in a source
document. TextRank (Mihalcea and Tarau, 2004)
is the first work to adopt a graph-based ranking
algorithm (Brin and Page, 1998) to calculate the
centrality of sentences in the graph, whose node
represents each sentence and edge is modeled as
the similarity between two sentences. Several vari-
ants of TextRank have been implemented by uti-
lizing symbolic sentence representations (e.g., TF-
IDF) (Barrios et al., 2016) or distributed sentence
representations (e.g., skip-thoughts) (Kiros et al.,
2015) for computing the sentence similarity.

Most recent studies have employed pretrained
language models (PLMs), such as BERT (Devlin
et al., 2019), to effectively model the salience of
each sentence. Zheng and Lapata (2019); Liu et al.
(2021) used the degree-based node centrality of
the position-augmented sentence graph where the
sentence similarity is calculated by PLMs, and Pad-
makumar and He (2021) defined the selection cri-

terion by using PLM-based pointwise mutual infor-
mation. Xu et al. (2020b) considered the sentence-
level self-attention score as the salience, after opti-
mizing PLMs via masked sentence prediction. Nev-
ertheless, all of them regard a sentence as the basic
unit for summarization, so they cannot exclude un-
necessary information from each selected sentence.

5.2 Unsupervised Abstractive Sumamrization

To train a neural model for abstractive summariza-
tion without using human-annotated text-summary
pairs, most existing methods have adopted the auto-
encoding architecture whose encoder compresses a
source text into a readable summary (i.e., a few sen-
tences) and decoder reconstructs the original text
from the summary (Wang and Lee, 2018; Baziotis
et al., 2019; Chu and Liu, 2019). Another line of
research has focused on zero-shot abstractive sum-
marization, which takes advantage of large-scale
PLMs trained on massive text corpora. Their mod-
els are optimized with a self-supervised objective
(e.g., gap sentence generation) (Raffel et al., 2020;
Zhang et al., 2020) or heuristically-generated ref-
erences (e.g., lead bias) (Yang et al., 2020; Fang
et al., 2022). However, the well-known caveat of
abstractive summarization is poor interpretability,
which is also related to the hallucination problem;
their output summaries mostly contain factual er-
rors or misinformation against the source docu-
ment (Kryscinski et al., 2020; Maynez et al., 2020).

6 Conclusion

In this paper, we introduce a summarization frame-
work, called RTSUM, which leverages relation
triples as the basic units for summarization. Build-
ing upon this framework, we have developed a web
demo for an interpretable summarizing tool that
effectively visualizes the salience of textual units
at three distinct levels. Through our multi-level
salience visualization, users can easily identify tex-
tual units impacting the summary and gain insights
into the document’s salient semantic structure.

Our RTSUM framework and its user-friendly
tool can effectively capture the essence of a doc-
ument while maintaining interpretability. The fu-
sion of extractive and abstractive approaches, cou-
pled with intuitive multi-level visualization, holds
promise for applications requiring succinct, accu-
rate, and interpretable summaries.
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7 Limitations

Our study has the following limitations: Firstly,
compared to single-step summarization approaches,
our framework is relatively slower due to its multi-
step process. Secondly, the current implementa-
tion relies on English-specific tools for sentence
splitting and relation extraction, limiting its appli-
cability to only English inputs. Lastly, while our
research focuses on summarizing news articles ef-
fectively, the robustness and performance of our
approach on longer or differently formatted text
genres, such as books or research papers, has not
been comprehensively evaluated.
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Abstract

We introduce Edu-ConvoKit, an open-
source library designed to handle pre-
processing, annotation and analysis of conver-
sation data in education. Resources for ana-
lyzing education conversation data are scarce,
making the research challenging to perform and
therefore hard to access. We address these chal-
lenges with Edu-ConvoKit. Edu-ConvoKit
is open-source1, pip-installable2, with com-
prehensive documentation3. Our demo
video is available at: https://youtu.be/
zdcI839vAko?si=h9qlnl76ucSuXb8-. We in-
clude additional resources, such as Co-
lab applications of Edu-ConvoKit to three di-
verse education datasets4 and a repository
of Edu-ConvoKit-related papers5.

1 Introduction

Language is central to educational interactions,
ranging from classroom instruction to tutoring ses-
sions to peer discussions. It offers rich insights
into the teaching and learning process that go be-
yond the current, oversimplified view of relying on
standardized test outcomes (Wentzel, 1997; Pianta
et al., 2003; Robinson, 2022; Wentzel, 2022). The
landscape of natural language processing (NLP)
and education is rapidly evolving, with an increase
of open-sourced education conversation datasets
(e.g., from Caines et al. (2020); Stasaski et al.
(2020); Suresh et al. (2021a); Demszky and Hill
(2023); Wang et al. (2023a,c); Holt (2023)), height-
ened interest manifesting in academic venues (e.g.,
NeurIPS GAIED (2023), Building Educational Ap-
plications at ∗ACL Conferences BEA (2023), and

1https://github.com/stanfordnlp/edu-convokit
2https://pypi.org/project/edu-convokit/
3https://edu-convokit.readthedocs.io/en/

latest/
4https://github.com/stanfordnlp/edu-convokit?

tab=readme-ov-file#datasets-with-edu-convokit
5https://github.com/stanfordnlp/edu-convokit/

blob/main/papers.md

education conferences hosting NLP tracks6), along-
side courses dedicated to this field (e.g., Stanford’s
NLP and Education course CS2937).

Challenges and consequences. While the inter-
est in this interdisciplinary field is growing, our
conversations with education data science and NLP
researchers both in academia and industry have
surfaced several challenges that hinder research
progress. First, there is no centralized tool or
resource that assists in analyzing education data,
or helps researchers understand different tradeoffs
in methods. For example, researchers expressed
uncertainty about pre-processing the data, such
as “the best way to anonymize the data to protect
the privacy of students and teachers”. They also
wanted an “easily accessible collection of language
tools and models that can detect insightful things.”
The lack of these tools and resources makes the
research harder to conduct. Second, there is a
high learning curve for performing computa-
tional analyses. For example, many education
researchers are trained in qualitative research; even
though they want to use computational tools for
quantitative analyses at scale, they often do not
know how to start or have the readily available
compute to try out the tools.

Our system. Our work introduces
Edu-ConvoKit to address these challenges.

Edu-ConvoKit is designed to facilitate and
democratize the study of education conversation
data. It is a modular, end-to-end pipeline for A.
pre-processing, B. annotating, and C. analyzing
education conversation data, illustrated in Figure 1.
Specifically, Edu-ConvoKit

• Supports pre-processing for education con-

6The International Conference on Learning Analytics and
Knowledge (LAK), Education Data Mining (EDM), and Arti-
ficial Intelligence in Education (AIED).

7https://web.stanford.edu/class/cs293/
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Figure 1: Overview of Edu-ConvoKit. Edu-ConvoKit is designed to facilitate the study of conversation data in
education. It is a modular, end-to-end pipeline for A. pre-processing, B. annotating, and C. analyzing education
conversation data. As additional resources, the toolkit includes Colab notebooks applying Edu-ConvoKit to
three existing, large education datasets and a centralized database of Edu-ConvoKit papers. This toolkit aims to
enhance the accessibility and reproducibility of NLP and education research.

versation datasets, such as automatically de-
identifying conversations;

• Hosts a collection of language tools and
models for annotation, ranging from tradi-
tional (e.g., talk time) to neural measures (e.g.,
classifying student reasoning); and

• Automates several analyses used in NLP and
education research, ranging from qualitative
analyses, temporal analyses and GPT-powered
analyses (e.g., on summarizing transcripts).

To demonstrate its flexible design and ensure
its accessibility regardless of compute infras-
tructure, we created Colab notebooks of
Edu-ConvoKit applied to three diverse educa-
tion conversation datasets in mathematics (Dem-
szky and Hill, 2023; Suresh et al., 2021b; Holt,
2023). We additionally created a centralized
database of research projects that have either
used Edu-ConvoKit or have features integrated in
the toolkit. We invite the community to contribute
to the toolkit and collectively push the boundaries
of education conversation research!

2 Related Works

2.1 Advancing NLP through Toolkits

The NLP community has benefited greatly from
the public availability of general toolkits, which
standardize the way data is transformed, anno-
tated and analyzed. Examples include NLTK (Bird,
2006), StanfordNLP (Qi et al., 2019), spaCy (Hon-
nibal et al., 2020), or scikit-learn (Pedregosa et al.,
2011). They improve the accessibility to the re-
search and allow researchers to focus on develop-
ing new methods, rather than on re-implementing
existing ones. Edu-ConvoKit shares these goals.
ConvoKit (Chang et al., 2020) is a NLP package
for conversational analysis and bears the most sim-
ilarity to our work. A key difference between
our library and ConvoKit is the data structure:
Edu-ConvoKit uses a table-based dataframe struc-
ture whereas ConvoKit uses an object-based data
structure akin to a dictionary. Our data structure
makes manipulating data easier, e.g., performing
utterance-level annotations. Additionally, our tool
caters to education language research and there-
fore supports an array of common analyses such as
qualitative analysis (Erickson et al., 1985; Corbin
and Strauss, 1990; Wang et al., 2023b), quantita-
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tive evaluations (Bienkowski et al., 2012; Kim and
Piech, 2023; Demszky et al., 2023), or lexical com-
parisons (Praharaj et al., 2021; Handa et al., 2023).

2.2 Supporting the Multifaceted Nature of
Education Interaction Research

Edu-ConvoKit sits at the intersection of many dis-
ciplines that use different annotation and analysis
tools for understanding language use in education
interactions. For example, qualitative education
research uses qualitative analysis to manually ana-
lyze the discourse, such as how students collaborate
with each other (Mercer, 1996; Jackson et al., 2013;
Langer-Osuna et al., 2020; Chen, 2020; Hunkins
et al., 2022). Learning analytics uses quantitative
and temporal analysis to summarize statistics in
aggregate or over time (Bienkowski et al., 2012;
Kim and Piech, 2023; Demszky et al., 2023, 2024).
Other areas perform lexical analyses and neural
measures for annotating education discourse fea-
tures (Reilly and Schneider, 2019; Praharaj et al.,
2021; Rahimi et al., 2017; Alic et al., 2022; Hunk-
ins et al., 2022; Demszky and Hill, 2023; Reitman
et al., 2023; Suresh et al., 2021a; Himmelsbach
et al., 2023; Wang and Demszky, 2023). Recently,
newer analysis tools powered by GPT models ana-
lyze complete conversations such as summarizing
or pulling good examples of teacher instruction
from the classroom transcripts (Wang and Dem-
szky, 2023). Edu-ConvoKit is designed to support
these forms of annotation and analysis, and unify
the currently fragmented software ecosystem of
this interdisciplinary research area.

3 Design Principles

Edu-ConvoKit follows these principles:

I. Minimalistic Data Structure. The system trans-
forms all data inputs (e.g., csv and json files)
into a dataframe. Edu-ConvoKit only needs
the speaker and text columns to be uniquely
identifiable, which is the case in the datasets
we surveyed and applied Edu-ConvoKit to.

II. Efficient Execution. The system should be
able to run on a CPU and support large-scale
pre-processing, annotation and analysis.

III. Modularity. Each component of
Edu-ConvoKit functions as an indepen-
dent module. Running one module (e.g.,
pre-processing) should not be required for the
user to run another module (e.g., annotation).

These principles enable Edu-ConvoKit to com-
prehensively incorporate different methods for pre-
processing, annotation and analysis. They ensure
that Edu-ConvoKit is effective and adaptable to
various research needs.

4

Edu-ConvoKit is organized around three enti-
ties: PreProcessor, Annotator, and Analyzer
(see Figure 1). The following sections enumer-
ate each entity’s functionality. Please refer to
the short demo video to preview Edu-ConvoKit
in action: https://youtu.be/zdcI839vAko?si=
h9qlnl76ucSuXb8-.

4.1 PreProcessor

The PreProcessor module in Edu-ConvoKit pro-
cesses the raw data and includes several techniques
standard to education and NLP research practices,
such as replacing speaker names with unique iden-
tifiers, merging consecutive utterances by the same
speaker, and formatting text to be human-readable.
Figure 3 illustrates a simple example of text de-
identification with PreProcessor, assuming that
the researcher has access to a list of names (e.g.
classroom roster) to be replaced. PreProcessor
accounts for multiple names per individual, and
users can define how each name should be replaced.
This feature ensures that the context of each interac-
tion is preserved while maintaining confidentiality
of the participants.

# Original data
>> print(df)

text
0   My name is Alice Wang.
1   Hey Johnson, this is John.
>> processor = TextPreProcessor()
>> df = processor.anonymize_known_names(

df=df,
text_column=“text”,
# from e.g., classroom roster
names=[“Alice Wang”, “John Paul”, “Johnson P”],
replacement_names=[“[T]”, “[S1]”, “[S2]”])

# Processed data
>> print(df)

text
0   My name is [T].
1   Hey [S2], this is [S1].

Figure 2: Example for text de-identification.
PreProcessor accounts for multiple names (e.g., “John
Paul” matches to “John”), and handles word boundaries
(e.g., “John” does not match to “Johnson”).

4.2 Annotator

Annotator annotates features at an utterance-level.
It currently supports 7 types of features, ranging
from traditional to neural measures of educational
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discourse. The features follow the original imple-
mentations of cited works and the neural measures
are models hosted on HuggingFace hub. Notably,
Annotator performs annotation with a single func-
tion call. The following sections describe these
features, using Figure 3 as the running example.

Figure 3: Example for Annotator.

Talk Time. Talk time measures the amount of
speaker talk by word count and timestamps (if pro-
vided in the dataset). This feature quantifies the par-
ticipation of both teachers/tutors and students, of-
fering insights into classroom dynamics (TeachFX;
Jensen et al., 2020; Demszky et al., 2024).

Math Density. Math density measures the num-
ber of math terms used in an utterance, where the
dictionary of math terms was collected in prior
work by mathematics education researchers (Him-
melsbach et al., 2023). This feature provides a
quantitative measure of mathematical content in
the dialogue.

Student Reasoning. The student reasoning an-
notation measures whether a given student utter-
ance provides a mathematical explanation for an
idea, procedure or solution (Demszky and Hill,
2023; Hill et al., 2008). The model is a finetuned
RoBERTa classifier (Liu et al., 2019) on instances
of student reasoning from elementary math class-
room transcripts. Edu-ConvoKit follows the origi-
nal implementation from Demszky and Hill (2023),
ensuring fidelity to prior research: Annotator only

label utterances that are at least 8 words long based
on word boundaries; all other utterances are anno-
tated as NaN. Furthermore, users can also easily
specify which speakers to annotate for, such as to
only annotate the student speakers as shown in the
example below.

Focusing Questions. The focusing question an-
notation capture questions that attend to what the
student is thinking and presses them to commu-
nicate their thoughts clearly (Leinwarnd et al.,
2014; Alic et al., 2022). The model is a fine-
tuned RoBERTa classifier (Liu et al., 2019) on
instances of teacher focusing questions from el-
ementary math classroom transcripts:

Teacher Accountable Talk Moves. Teacher
accountable talk moves capture the teacher’s
strategies to promote equitable participation in
classrooms (Suresh et al., 2021b; Jacobs et al.,
2022), based on the Accountable Talk framework
(O’Connor et al., 2015). It is a finetuned ELEC-
TRA 7-way classifier (Clark et al., 2020) where:
0: No Talk Move Detected, 1: Keeping Everyone
Together, 2: Getting Students to Related to An-
other Student’s Idea, 3: Restating, 4: Revoicing, 5:
Pressing for Accuracy, 6: Pressing for Reasoning.
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Student Accountable Talk Moves. Analogous
to the teacher talk moves, the student accountable
talk moves are student discussion strategies to pro-
mote equitable participation in a rigorous class-
room learning environment (Suresh et al., 2021b;
Jacobs et al., 2022). It is also a finetuned ELEC-
TRA classifier for 5 classes: 0: No Talk Move
Detected, 1: Relating to Another Student, 2: Ask-
ing for More Information, 3: Making a Claim, 4:
Providing Evidence or Reasoning.

Conversational Uptake. Conversational uptake
measures how teachers build on the contributions
of students (Demszky et al., 2021). It is a BERT
model fine-tuned with a self-supervised training
objective (next utterance prediction), on an elemen-
tary math classroom dataset (Demszky and Hill,
2023), Switchboard (Godfrey and Holliman, 1997)
and a tutoring dataset. Annotator annotates utter-
ances according to the original implementation: It
can label teacher utterances following substantive
student utterances that are at least 5 words long,
such as in the example below.

4.3 Analyzer

Edu-ConvoKit supports several modules that cover
common analyses in education conversation re-
search. In general, each module is exposed by three
methods: plot for plotting, print for displaying
results in the terminal, and report for outputting
results as text. There are multiple data entry points
for the Analyzer such as a single or multiple tran-
scripts, or a data directory. The following sections
describe these modules, assuming that the variable
DATA_DIR is a directory of annotated transcripts.

QualitativeAnalyzer. This module enables re-
searchers to view annotation examples. For ex-
ample, we can easily view positive examples of
student reasoning below. This module has other
features, such as additionally showing the previous
and subsequent lines around the examples; please
refer to our documentation for all features.

QuantitativeAnalyzer. This module reports
the quantitative summaries of the annotation re-
sults. Users can also flexibly group and use differ-
ent representations, such as grouping by speaker
or displaying the values as percentages as shown
below.

LexicalAnalyzer. This module reports lan-
guage patterns on the word-level. It can report
n-gram frequency and weighted log-odds analysis
from Section 3.4 of Monroe et al. (2008), which
reports which n-grams are more likely to be uttered
by one group over the other given a prior distri-
bution of words; currently, the priors are defined
based on the provided dataset, however we hope
to flexibly handle any user-provided priors in the
future. Below is an example of the log-odds anal-
ysis that shows the top 5 n-grams in the student’s
utterances over the tutor’s.
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TemporalAnalyzer. This module provides a
time analysis of the annotations over the
course of the conversation(s). Similar to
QuantitativeAnalyzer, it can group and report
the data in different ways. An important variable
to this module is num_bins, which indicates how
many time bins the transcript should be split into;
currently, the split is based on transcript lines, how-
ever we hope to support other split criteria in the
future such as by word count. Below is an example
with speaker talk time.

GPTConversationAnalyzer. This module uses
GPT models accessible through the OpenAI API
to analyze on the conversation-level with natural
language. Some prompts include summarizing the
conversation (below example) or generating sug-
gestions to the teacher/tutor on eliciting more stu-
dent reasoning from Wang and Demszky (2023).
The module has additional features (not shown)
such as automatically truncating the transcript if it
surpasses the model’s context length, adding line
numbers to the conversation or altering how the

lines should be formatted.

5 Additional Resources: Basic Tutorials,
Case Studies, and Paper Repository

We create a suite of introductory tutorials and
case studies of Edu-ConvoKit as Colab note-
books (link). To demonstrate its wide applica-
bility and generalizable design structure, we ap-
ply Edu-ConvoKit to three different education
transcript datasets developed by different authors:
NCTE, an elementary school classroom dataset
(Demszky and Hill, 2023); TalkMoves, a K-12
classroom dataset (Suresh et al., 2021b); and Am-
ber, a one-on-one 8th-9th grade tutoring dataset
(Holt, 2023). For space reasons, we omit the find-
ings of the case studies in this paper, but they can
be found in our GitHub repository. To centralize
research efforts, we additionally contribute a pa-
per repository that include papers that have used
Edu-ConvoKit or have features incorporated into
Edu-ConvoKit (link).

6 Conclusion

We introduce Edu-ConvoKit, an open-source li-
brary designed to democratize and enhance the
study of education conversation data. Implemented
in Python and easily accessible via GitHub and
pip installation, it offers a user-friendly interface
complete with extensive documentation, tutorials,
applications to three diverse education datasets, and
paper repository resource. Based on extensive re-
search experience, it incorporates best practices for
pre-processing data and a series of different anno-
tation measures grounded in prior literature, such
as measuring student reasoning and talk time. It ad-
ditionally supports several analysis modules, such
as temporal analyses (e.g., talk time ratios), lexi-
cal analyses (e.g., word usage) and GPT-powered
analyses (e.g., summarization). Fostering a collab-
orative environment through its open-source nature,
Edu-ConvoKit and its resources unify research ef-
forts in this exciting interdisciplinary field to im-
prove teaching and learning.
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7 Limitations

There are limitations to Edu-ConvoKit which we
intend on addressing in future versions of the li-
brary. Some of the current limitations include:
Edu-ConvoKit does not support transcription; it
does not support connecting the language analyses
to metadata, such as demographic data or learning
outcomes, such as in Demszky and Hill (2023);
it only supports English-focused annotation meth-
ods; many of its annotation models were trained
on elementary and middle school mathematics, so
they may not generalize to other domains; and
Edu-ConvoKit’s de-identification method assumes
the speakers are known. There are other existing de-
identification methods that do not assume knowl-
edge of the speaker names (one of which is also im-
plemented in Edu-ConvoKit) however these meth-
ods are known to have high false-negative and false-
positive rates.

8 Ethics Statement

The intended use case for this toolkit is to further
education research and improve teaching and learn-
ing outcomes through the use of NLP techniques.
Edu-ConvoKit is intended for research purposes
only. Edu-ConvoKit uses data from existing pub-
lic datasets that acquired consent from parents and
teachers when applicable; for example, the NCTE
dataset from Demszky and Hill (2023) acquired
consent from parents and teachers for their study
(Harvard’s IRB #17768), and for the de-identified
data to be publicly shared. As stewards of this
library which builds on these datasets, we are com-
mitted to protecting the confidentiality of the in-
dividuals and ask users of our library to do the
same. It is important to note that inferences drawn
using Edu-ConvoKit may not necessarily reflect
generalizable observations (e.g., the student reason-
ing model was trained on elementary school math,
and may not yield correct insights when applied to
high school math). Therefore, the analysis results
should be interpreted with caution. Unacceptable
use cases include any attempts to identify users
or use the data for commercial gain. We addition-
ally recommend that researchers who do use our
toolkit take steps to mitigate any risks or harms to
individuals that may arise.
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Abstract

We introduce an evaluation system designed
to compute PARSEVAL measures, offering a
viable alternative to evalb commonly used for
constituency parsing evaluation. The widely
used evalb script has traditionally been em-
ployed for evaluating the accuracy of con-
stituency parsing results, albeit with the require-
ment for consistent tokenization and sentence
boundaries. In contrast, our approach, named
jp-evalb, is founded on an alignment method.
This method aligns sentences and words when
discrepancies arise. It aims to overcome several
known issues associated with evalb by utiliz-
ing the ‘jointly preprocessed (JP)’ alignment-
based method. We introduce a more flexi-
ble and adaptive framework, ultimately con-
tributing to a more accurate assessment of con-
stituency parsing performance.

1 Introduction

For constituency parsing, whether statistical or neu-
ral, we rely on the evalb implementation1, which
implements the PARSEVAL measures (Black
et al., 1991) as the standard method for evaluat-
ing parser performance. There is also a variant
of the evalb_spmrl implementation specifically
designed for the SPMRL shared task, allowing
the evaluation to consider functional phrase labels
(Seddah et al., 2013, 2014). A constituent in a hy-
pothesis parse of a sentence is labeled as correct if
it matches a constituent in the reference parse with
the same non-terminal symbol and span (starting
and end indexes). Despite its success in evaluat-
ing language technology, evalb faces unresolved
critical issues in our discipline. evalb imposes
constraints, demanding consistent tokenization and
sentence boundary outcomes. Its implementation
assumes equal-length gold and system files with
matching terminal nodes.

1http://nlp.cs.nyu.edu/evalb

In machine translation (MT), sentence alignment
involves identifying corresponding sentences in
two or more languages and linking sentences from
one language to their corresponding counterparts
in another. Sentence alignment has been a subject
of study for many years, leading to the develop-
ment of various algorithms. Early research in this
area relied on statistical methods that used bilin-
gual corpora to create models capturing the lexical
equivalence between words in different languages.
For instance, the Gale-Church algorithm, based
on sentence length, was one such approach (Gale
and Church, 1993). Bleualign introduced a more
advanced iterative bootstrapping approach build-
ing on length-based methods (Sennrich and Volk,
2011). Earlier approaches also aimed to enhance
sentence alignment methodologies by incorporat-
ing lexical correspondences, as seen in hunalign
(Varga et al., 2005) or the IBM-model based lexi-
con translation approach (Moore, 2002). Some at-
tempts involved the integration of linguistic knowl-
edge, heuristics, and various scoring methods to
improve efficiency, as demonstrated by vecalign
(Thompson and Koehn, 2019). Word alignment
methodologies are also employed to establish cor-
respondences between words in one language and
their direct translations in another. Widely used
IBM models (Brown et al., 1993), along with
tools like giza++ (Och and Ney, 2000, 2003) or
BerkeleyAligner (Liang et al., 2006; DeNero and
Klein, 2007), are capable of aligning words.

Syntactic analysis in the current field of lan-
guage technology has been predominantly reliant
on dependencies. Semantic parsing in its higher-
level analyses often relies heavily on dependency
structures as well. Therefore, dependency pars-
ing and its evaluation method have their own ad-
vantages, such as a more direct representation of
grammatical relations and often simpler parsing
algorithms. However, constituency parsing main-
tains the hierarchical structure of a sentence, which
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can still be valuable for understanding the syntactic
relationships between words and phrases. Vari-
ous studies on formal syntax have focused on con-
stituent structures, such as combinatory categorial
grammar (CCG) parsing (Lewis et al., 2016; Lee
et al., 2016; Stanojević and Steedman, 2020; Ya-
maki et al., 2023) or tree-adjoining grammar (TAG)
parsing (Kasai et al., 2017, 2018) (whereas CCG
and TAG also inherently incorporate dependency
structures). In addition, there have been ongoing
studies on constituency parsing, such as the lin-
earization parsing method (Vinyals et al., 2015;
Liu and Zhang, 2017a,b; Fernández-González and
Gómez-Rodríguez, 2020; Wei et al., 2020). If a
method that utilizes constituent structures is de-
signed to achieve the goal of creating an end-to-end
system, it requires more robust evaluation methods
for their constituent structure evaluation.

This paper builds upon our recently introduced
alignment-based algorithm, for computing PAR-
SEVAL measures (Jo et al., 2024), which offers
a novel approach for calculating precision, recall,
and F scores, even in cases of sentence and word
mismatch. The primary objective of this paper is
to replicate the outcomes generated by evalb dur-
ing the evaluation process. This aims to achieve a
comprehensive understanding of the parser’s perfor-
mance by addressing the previous issues of evalb
and preserving its long-standing legacy. It includes
the numbers of gold, test, matched brackets, and
cross brackets, as well as precision, recall, and F
scores. Furthermore, we present the number of
correct POS tags and their tagging accuracy, fol-
lowing a methodology employed by evalb. Our
proposed method jp-evalb is particularly crucial
in end-to-end settings, where deviations from the
gold file may arise due to variations in tokenization
and sentence boundary results.

2 Detailing the jp-evalb Algorithm

To describe the proposed algorithms, we use the
following notations for conciseness and simplicity.
TL and TR introduce the entire parse trees of gold
and system files, respectively. TL is a simplified
notation representing TL(l), where l is the list of to-
kens in L. This notation applies in the same manner
to R. ST represents a set of constituents of a tree
T , and C(T ) is the total number constituents of T .
C(tp) is the number of true positive constituents
where STL ∩ STR , and we count it per aligned sen-
tence. The presented Algorithm 1 demonstrates the

pseudo-code for the new PARSEVAL measures.

Algorithm 1 Pseudo-code for jp-evalb
1: function PARSEVALMEASURES (TL and TR):
2: Extract the list of tokens L andR from TL and TR
3: L′,R′← SENTENCEALIGNMENT(L,R)
4: Align trees based on L′ andR′ to obtain TL′ and TR′

5: while TL′ and TR′ do
6: Extract the list of tokens l and r from TL′

i
and TR′

i

7: l′, r′ ← WORDALIGNMENT(l, r)
8: STL ← GETCONSTITUENT(TL′

i(l
′), 0)

9: STR ← GETCONSTITUENT(TR′
i(r

′), 0)
10: C(TL)← C(TL)+ LEN(STL )
11: C(TR)← C(TR)+ LEN(STR )
12: while STL and STR do
13: if (LABEL, STARTL, ENDL,l′j)

= (LABEL, STARTR, ENDR,r′j) then
14: C(tp)← C(tp) + 1
15: end if
16: end while
17: end while
18: return C(TL), C(TR), and C(tp)

Algorithm 2 Pseudo-code for alignment
1: function ALIGNMENT (L,R):
2: while L andR do
3: if Matched CASES (i,j) then
4: L′,R′←L′ + Li,R′ +Rj

5: else
6: while ¬(Matched CASES (i+1,j+1) do
7: if LEN(Li) < LEN(Rj) then
8: L′← L′ + Li

9: i← i+ 1
10: else
11: R′← R′ +Rj

12: j ← j + 1
13: end if
14: end while
15: L′,R′←L′ + L′,R′ +R′

16: end if
17: end while
18: return L′,R′

In the first stage, we extract leaves L and R
from the parse trees and align sentences to obtain
L′ and R′ using the sentence alignment algorithm.
Algorithm 2 shows the generic pattern-matching ap-
proach of the alignment algorithm where sentence
and word alignment can be applied. We define
the following two cases for matched CASES(i,j) of
sentence alignment:

Li(̸⊔) = Rj(̸⊔) (1)

(Li(̸⊔) ≃ Rj(̸⊔)) ∧
(Li+1(̸⊔) = Rj+1(̸⊔) ∨ Li+1(̸⊔) ≃ Rj+1(̸⊔)) (2)

where we examine whether Li is similar to or equal
(≃) to Rj based on the condition that the ratio of
edit distance to the entire character length is less
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than 0.1 in (2). While the necessity of sentence
alignment is rooted in a common phenomenon in
cross-language tasks such as machine translation,
the intralingual alignment between gold and sys-
tem sentences does not share the same necessity
because L and R are identical sentences that only
differ in sentence boundaries and token. A nota-
tion ̸ ⊔ is introduced to represent spaces that are
removed during sentence alignment when compar-
ing Li and Rj , irrespective of their tokenization
results. If there is a mismatch due to differences
in sentence boundaries, the algorithm accumulates
the sentences until the next pair of sentences repre-
sented as CASE n (i+ 1, j + 1), is matched.

In the next stage of Algorithm 1, we align trees
based on L′ and R′ to obtain TL′ and TR′ . By
iterating through TL′ and TR′ , we conduct word
alignment and compare pairs of sets of constituents
for each corresponding pair of TL′

i
and TR′

j
. The

word alignment algorithm adopts a logic similar to
sentence alignment. It involves the accumulation of
words in l′ and r′ under the condition that pairs of
li and rj do not match, often attributed to tokeniza-
tion mismatches. Here, we assume interchange-
ability between notations of sentence alignment
(L) and word alignment (li). We define the fol-
lowing two cases for matched CASES(i,j) of word
alignment:

li = rj (3)

(li ̸= rj) ∧ (li+1 = rj+1) (4)

When deciding whether to accumulate the to-
ken from li+1 or rj+1 in the case of a word mis-
match, we base our decision on the following con-
dition, rather than a straightforward comparison
between the lengths of the current tokens li and rj :
(LEN(l)− LEN(l0..i)) > (LEN(r)− LEN(r0..j))

Finally, we extract a set of constituents,
a straightforward procedure for obtaining con-
stituents from a given tree, which includes the label
name, start index, end index, and a list of tokens.
The current proposed method utilizes simple pat-
tern matching for sentence and word alignment,
operating under the assumption that the gold and
system sentences are the same, with minimal po-
tential for morphological mismatches. This dif-
fers from sentence and word alignment in machine
translation. MT usually relies on recursive editing
and EM algorithms due to the inherent difference
between source and target languages.

3 Word and Sentence Mismatches

Word mismatch We have observed that the ex-
pression of contractions varies significantly, result-
ing in inherent challenges related to word mis-
matches. As the number of contractions and sym-
bols to be converted in a language is finite, we
composed an exception list for our system to cap-
ture such cases for each language to facilitate the
word alignment process between gold and system
sentences. In the following example, we achieve
perfect precision and recall of 5/5 for both because
their constituent trees are exactly matched, regard-
less of any mismatched words. If the word mis-
match example is not in the exception list, we per-
form the word alignment. We can still achieve
perfect precision and recall (5/5 for both) with-
out the word mismatch exception list because their
constituent trees can be exactly matched based on
the word-alignment of {1.0ca 1.1n’t} and {1.0can
1.1not} (Figure 1a).

gold 0This 1.0ca 1.1n’t 2be 3right
system 0this 1.0can 1.1not 2be 3right

The effectiveness of the word alignment ap-
proach remains intact even for morphological mis-
matches where "morphological segmentation is not
the inverse of concatenation" (Tsarfaty et al., 2012),
such as in morphologically rich languages. For ex-
ample, we trace back to the sentence in Hebrew
described in Tsarfaty et al. (2012) as a word mis-
match example caused by morphological analyses:

gold 0B 1.0H 1.1CL 2FL 3HM 4.0H 4.1NEIM
’in’ ’the’ ’shadow’ ’of’ ’them’ ’the’ ’pleasant’

system 0B 1CL 2FL 3HM 4HNEIM
’in’ ’shadow’ ’of’ ’them’ ’made-pleasant’

Pairs of {1.0H 1.1CL, 1CL} (’the shadow’) and
{4.0H 4.1NEIM, 4HNEIM} (’the pleasant’) are word-
aligned using the proposed algorithm, resulting in
a precision of 4/4 and recall of 4/6 (Figure 1b).

Sentence mismatch When there are sentence
mismatches, they would be aligned and merged
as a single tree using a dummy root node: for ex-
ample, @S which can be ignored during evaluation.
In the following example, we obtain precision of
5/8 and recall of 5/7 (Figure 1c).

Assumptions To address morphological analysis
discrepancies in the parse tree during evaluation,
we establish the following two assumptions: (i)
The entire tree constituent can be considered a true
positive, even if the morphological segmentation
or analysis differs from the gold analysis, as long
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(gold) (system)
S(0,4) NP(0,1) DT 0This 0this DT NP(0,1) S(0,4)

VP(1,4) MD 1.0ca 1.0can MD VP(1,4)

RB 1.1n’t 1.1not RB
VP(2,4) VB 2be 2be VB VP(2,4)

AdjP(3,4) JJ 3right 3right JJ AdjP(3,4)

(a) Example of word mismatches

(gold) (system)
PP(0,5) ’in’ 0B 0B ’in’ PP(0,5)

NP(1,5) NP(1,4) ’the’ 1.0H
’shadow’ 1.1CL 1CL ’shadow’ NP(1,4) NP(1,5)

PP(2,4) ’of’ 2FL 2FL ’of’ PP(2,4)

’them’ 3HM 3HM ’them’
AdjP(4,5) ’the’ 4.0H

’pleasant’ 4.1NEIM 4HNEIM ’made-pleasant’

(b) Example of word mismatches with additional morphemes

(gold) (system, merged after alignment)
S(0,6) S(0,5) VB 0Click 0Click VB VP(0,2) S(0,2) @S(0,6)

AdvP(1,2) RB 1here 1here RB AdvP(1,2)

S(2,5) VP(2,5) TO 2To 2To TO VP(2,5) S(2,5) S(2,6)

VP(3,5) VB 3view 3view VB VP(3,5)

NP(4,5) PRP 4it 4it PRP NP(4,5)

. 5. 5. .

(c) Example of sentence mismatches

Figure 1: Example of word and sentence mismatches

as the two sentences (gold and system) are aligned
and their root labels are the same. (ii) The subtree
constituent can be considered a true positive if lexi-
cal items align in word alignment, and their phrase
labels are the same.

4 Usage of jp-evalb

We use the following command to execute the
jp-evalb script:
% python3 jp-evalb.py gold_parsed_file \

system_parsed_file

It generates the same output format as evalb.
We provide information for each column in both
jp-evalb and evalb, while highlighting their dif-
ferences. We note that the IDs in jp-evalb may
not be exactly the same as in evalb due to the
proposed method performing sentence alignment
before evaluation.

Sent. ID, Sent. Len., Stat. ID, length, and
status of the provided sentence, where status
0 indicates ’OK,’ status 1 implies ’skip,’ and
status 2 represents ’error’ for evalb. We do
not assign skip or error statuses.

Recall, Precision Recall and precision of con-
stituents.

Matched Bracket, Bracket gold, Bracket test
Assessment of matched brackets (true posi-
tives) in both the gold and test parse trees,
and their numbers of constituents.

Cross Bracket The number of cross brackets.

Words, Correct Tags, Tag Accuracy
Evaluation of the number of words, correct
POS tags, and POS tagging accuracy.

It’s important to note that the original evalb ex-
cludes problematic symbols and punctuation marks
in the tree structure. Our results include all tokens
in the given sentence, and bracket numbers reflect
the actual constituents in the system and gold parse
trees. Accuracy in the last column of the result
is determined by comparing the correct number
of POS-tagged words to the gold sentence includ-
ing punctuation marks, differing from the original
evalb which doesn’t consider word counts or cor-
rect POS tags. Figure 2 visually depicts the dif-
ference in constituent lists between jp-evalb and
evalb. The original evalb excludes punctuation
marks from its consideration of constituents, result-
ing in our representation of word index numbers in
red for evalb. Consequently, evalb displays con-
stituents without punctuation marks and calculates
POS tagging accuracy based on six word tokens.
On the other hand, jp-evalb includes punctuation
marks in constituents and evaluates POS tagging
accuracy using eight tokens, which includes two
punctuation marks in the sentence. We note that the
inclusion of punctuation marks in the constituents
does not affect the total count, as punctuation marks
do not constitute a constituent by themselves.
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(a) Example of the parse tree

(’S’, 0, 8, "No , it was n’t Black Monday .")
(’INTJ’, 0, 1, ’No’)
(’NP’, 2, 3, ’it’)
(’VP’, 3, 7, "was n’t Black Monday")
(’NP’, 5, 7, ’Black Monday’)

(b) List of constituents by jp-evalb

(’S’, 0, 6, "No it was n’t Black Monday")
(’INTJ’, 0, 1, "No")
(’NP’, 1, 2, "it")
(’VP’, 2, 6, "was n’t Black Monday")
(’NP’, 4, 6, "Black Monday")

(c) List of constituents by evalb

Figure 2: Difference between jp-evalb and evalb

Additionally, we offer a legacy option, –evalb,
to precisely replicate evalb results. To execute the
script with the evalb option, utilize the following
command:
% python3 jp-evalb.py gold_parsed_file \

system_parsed_file \
-evalb param.prm

This option can utilize the default values from the
COLLINS.prm file if the parameter file is not pro-
vided. It will accurately reproduce evalb results,
even in cases where there are discrepancies such
as Length unmatch and Words unmatch errors
in evalb’s output. These discrepancies are indi-
cated by the Stat. column, which displays either
1 (skip) or 2 (error).

5 Case Studies

Section 23 of the English Penn treebank Un-
der identical conditions where sentences and words
match, the proposed method requires around 4.5
seconds for evaluating the section 23 of the Penn
Treebank. On the same machine, evalb completes
the task less than 0.1 seconds. We do not claim
that our proposed implementation is fast or faster
than evalb, recognizing the well-established dif-
ferences in performance between compiled lan-
guages like C, which evalb used, and interpreted

languages such as Python, which our current im-
plementation uses. Our proposed method also in-
troduces additional runtime for sentence and word
alignment, a process not performed by evalb. We
present excerpts from three result files generated
by evalb and our proposed method in Figure 3.
The parsed results were obtained using the PCFG-
LA Berkeley parser (Petrov and Klein, 2007). It’s
worth noting that there may be slight variations
between the two sets of results because evalb ex-
cludes constituents with specific symbols and punc-
tuation marks during evaluation. However, as we
mentioned earlier, jp-evalb can reproduce the ex-
act same results as evalb for a legacy reason.

Sent Mt Br Cr Co Tag
ID L St Re Pr Br gd te Br Wd Tg Acc
1 8 0 100.00 100.00 5 5 5 0 8 7 87.50
2 40 0 70.97 73.33 22 31 30 7 40 40 100.00
3 31 0 95.24 95.24 20 21 21 0 31 31 100.00
4 35 0 90.48 86.36 19 21 22 2 35 35 100.00
5 26 0 86.96 86.96 20 23 23 2 26 25 96.15
.....

(a) Example of jp-evalb results considering punctuation
marks during evaluation

Sent Mt Br Cr Co Tag
ID L St Re Pr Br gd te Br Wd Tg Acc
1 8 0 100.00 100.00 5 5 5 0 6 5 83.33
2 40 0 70.97 73.33 22 31 30 7 37 37 100.00
3 31 0 95.24 95.24 20 21 21 0 26 26 100.00
4 35 0 90.48 86.36 19 21 22 2 32 32 100.00
5 26 0 86.96 86.96 20 23 23 2 24 23 95.83
.....

(b) Example of jp-evalb results with the legacy option, which
produces the exact same results as evalb

Sent Mt Br Cr Co Tag
ID L St Re Pr Br gd te Br Wd Tg Acc
1 8 0 100.00 100.00 5 5 5 0 6 5 83.33
2 40 0 70.97 73.33 22 31 30 7 37 37 100.00
3 31 0 95.24 95.24 20 21 21 0 26 26 100.00
4 35 0 90.48 86.36 19 21 22 2 32 32 100.00
5 26 0 86.96 86.96 20 23 23 2 24 23 95.83
.....

(c) Example of the original evalb results

Figure 3: Examples of evaluation results on Section 23
of the English Penn treebank

Bug cases identified by evalb We evaluate bug
cases identified by evalb. Figure 4 displays all
five identified bug cases, showcasing successful
evaluation without any failures. In three instances
(sentences 1, 2, and 5), a few symbols are treated as
words during POS tagging. This leads to discrep-
ancies in sentence length because evalb discards
symbols in the gold parse tree during evaluation.
Our proposed solution involves not disregarding
any problematic labels and including symbols as
words during evaluation. This approach implies
that POS tagging results are based on the entire
token numbers. It is noteworthy that evalb’s POS
tagging results are rooted in the number of words,
excluding symbols. The two remaining cases (sen-
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tences 3 and 4) involve actual word mismatches
where trace symbols (*-num) are inserted into the
sentences. Naturally, evalb cannot handle these
cases due to word mismatches. However, as we
explained, our proposed algorithm addresses this
issue by performing word alignment after sentence
alignment.

Sent Mt Br Cr Co Tag
ID L St Re Pr Br gd te Br Wd Tg Acc
1 37 0 77.27 62.96 17 22 27 5 37 30 81.08
2 21 0 69.23 60.00 9 13 15 2 21 17 80.95
3 47 0 77.78 80.00 28 36 35 4 48 43 89.58
4 26 0 33.33 35.29 6 18 17 8 27 19 70.37
5 44 0 42.31 32.35 11 26 34 17 44 33 75.00

Figure 4: Evaluation results of bug cases by evalb

Korean end-to-end parsing evaluation We con-
duct a comprehensive parsing evaluation for Ko-
rean, using system-segmented sequences as input
for constituency parsing. These sequences may
deviate from the corresponding gold standard sen-
tences and tokens. We utilized the following re-
sources for our parsing evaluation to simulate the
end-to-end process: (i) A set of 148 test sentences
with 4538 tokens (morphemes) from BGAA0001 of
the Korean Sejong treebank, as detailed in Kim
and Park (2022). In the present experiment, all sen-
tences have been merged into a single text block.
(ii) POS tagging performed by sjmorph.model
(Park and Tyers, 2019) for morpheme segmen-
tation.2 The model’s pipeline includes sentence
boundary detection and tokenization through mor-
phological analysis, generating an input format for
the parser. (iii) A Berkeley parser model for Ko-
rean trained on the Korean Sejong treebank (Park
et al., 2016).3. Figure 5 presents the showcase re-
sults of end-to-end Korean constituency parsing.
Given our sentence boundary detection and tok-
enization processes, there is a possibility of en-
countering sentence and word mismatches during
constituency parsing evaluation. The system results
show 123 sentences and 4367 morphemes because
differences in sentence boundaries and tokenization
results. During the evaluation, jp-evalb success-
fully aligns even in the presence of sentence and
word mismatches, and subsequently, the results of
constituency parsing are assessed.

2https://github.com/jungyeul/sjmorph
3https://zenodo.org/records/3995084

Sent Mt Br Cr Co Tag
ID L St Re Pr Br gd te Br Wd Tg Acc
1 28 0 85.71 85.71 18 21 21 3 29 26 89.66
2 27 0 91.30 84.00 21 23 25 2 28 25 89.29
3 33 0 88.00 88.00 22 25 25 3 35 31 88.57
4 43 0 72.73 72.73 24 33 33 7 43 40 93.02
5 18 0 69.57 84.21 16 23 19 2 19 12 63.16

.....

Figure 5: Evaluation results of the end-to-end Korean
constituency parsing

6 Previous Work

tedeval (Tsarfaty et al., 2012) is built upon the
tree edit distance (ADD and DEL) by Bille (2005),
incorporating the numbers of nonterminal nodes
in the system and gold trees. conllu_eval4 treats
tokens and sentences as spans. In case of a mis-
match in the span positions between the system
and gold files on a character level, the file with a
smaller start value will skip to the next token until
there is no start value mismatch. Similar processes
are applied to evaluating sentence boundaries. For
sparseval (Roark et al., 2006), a head percola-
tion table (Collins, 1999) identifies head-child rela-
tions between terminal nodes and calculates the de-
pendency score. Unfortunately, sparseval is cur-
rently unavailable. evalb, the constituency parsing
evaluation metric for nearly thirty years, despite
inherent problems, has been widely used.

7 Conclusion

Despite the widespread use and acceptance of the
previous PARSEVAL measure as the standard tool
for constituency parsing evaluation, it faces a signif-
icant limitation by requiring specific task-oriented
environments. Consequently, there is still room
for a more robust and reliable evaluation approach.
Various metrics have attempted to address issues
related to word and sentence mismatches by em-
ploying complex tree operations or adopting depen-
dency scoring methods. In contrast, our proposed
method aligns sentences and words as a preprocess-
ing step without altering the original PARSEVAL
measures. This approach allows us to preserve
the complexity of the original evalb implemen-
tation of PARSEVAL while introducing a linear
time alignment process. Given the high compat-
ibility of our method with existing PARSEVAL
measures, it also ensures the consistency and seam-
less integration of previous work evaluated using
PARSEVAL into our approach. Ultimately, this

4https://universaldependencies.org/conll18/
conll18_ud_eval.py
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new measurement approach offers the opportunity
to evaluate constituency parsing within an end-to-
end pipeline, addressing discrepancies that may
arise during earlier steps, such as tokenization and
sentence boundary detection. This enables a more
comprehensive evaluation of constituency parsing.
All codes and results from the case studies can
be accessed at https://github.com/jungyeul/
alignment-based-PARSEVAL/.
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Abstract

Instruction-tuned Large Language Models
(LLMs) have recently showcased remarkable
ability to generate fitting responses to natural
language instructions. However, an open re-
search question concerns the inherent biases
of trained models and their responses. For in-
stance, if the data used to tune an LLM is dom-
inantly written by persons with a specific polit-
ical bias, we might expect generated answers
to share this bias. Current research work seeks
to de-bias such models, or suppress potentially
biased answers.
With this demonstration, we take a different
view on biases in instruction-tuning: Rather
than aiming to suppress them, we aim to make
them explicit and transparent. To this end, we
present OpinionGPT, a web demo in which
users can ask questions and select all biases
they wish to investigate. The demo will an-
swer this question using a model fine-tuned on
text representing each of the selected biases,
allowing side-by-side comparison. To train the
underlying model, we identified 11 different
biases (political, geographic, gender, age) and
derived an instruction-tuning corpus in which
each answer was written by members of one
of these demographics. This paper presents
OpinionGPT, illustrates how we trained the
bias-aware model and showcases the web ap-
plication (available at https://opiniongpt.
informatik.hu-berlin.de).

1 Introduction

Instruction-tuned Large Language Models (LLMs)
have recently showcased remarkable advancements
in their ability to generate fitting responses to natu-
ral language instructions (Wang et al., 2023). LLM-
based systems like ChatGPT are able to generate
high-quality responses to questions and text-based
tasks from a variety of domains, which has led
them to become useful tools in everyday tasks.
Biases in model answers. However, an open re-
search question concerns the inherent biases of

trained models and their responses. Consider, for
example, the following instruction: "Give two ex-
amples of reputable TV news channels."

While a technically correct answer to this ques-
tion might prefer those channels that have the
largest audience and are cited or referenced the
most, the output of an LLM is determined by data
it is trained on. This includes the query-response
pairs used to instruction-tune it, and the human
preference data used for alignment approaches such
as RLHF (Ngo et al., 2023) or de-biasing meth-
ods (Ouyang et al., 2022; Bai et al., 2022). For
instance, the model we present here gives widely
different answers to the above question, depending
on whether it is trained on geographically German
(provided answer: "ZDF and ARD"), American
("CNN and Fox News"), Latin American ("CNN
Brasil and TV Globo") or Middle East ("Al Jazeera
and Al Arabyia") data. This example is illustrated
in Figure 1.
Detecting and mitigating biases. Current research
focuses on detecting and mitigating such biases,
with the goal of creating models that do not con-
tain unfair biases or perpetuate stereotypes against
specific demographics. Bender et al. (2021) have
shown that simply increasing the size of the pre-
training corpus does not result in an unbiased lan-
guage model, because even a very large corpus still
implicitly carries (internet-specific) demographic
biases. A number of previous works in the field is
dedicated to measuring bias in LLMs (Zhao et al.,
2018; De-Arteaga et al., 2019; Nadeem et al., 2021)
and proposing techniques to automatically de-bias
them after the pre-training stage (Gowda et al.,
2021; Schick et al., 2021; Gira et al., 2022). Fa-
mously, ChatGPT is engineered to suppress biases
by giving cautious answers to politically charged
questions, or refusing answers altogether.
Our approach: OpinionGPT. With this demon-
stration, we showcase an alternative approach in
which we aim to make biases explicit and transpar-
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Figure 1: OpinionGPT allows users to input a question and select from a set of bias groups. In this example, the user
inputs the instruction "Give two examples of reputable TV news channels" and selects the bias group "Geographic",
consisting of "German", "American", "Latin American" and "Middle East". Four distinct answers are generated,
one for each bias. Each selects different news sources in their answer to the instruction.

ent, rather than suppressing them. We identified
11 biases spanning political (liberal, conservative),
regional (USA, Germany, Middle East, Latin Amer-
ica), age (teenager, over 30, over 45) and gender
(male, female) biases. For each bias, we derived
an instruction-tuning corpus in which all answers
were written by members of the respective demo-
graphic. With this corpus, we fine-tuned 11 LoRA
adapters (Hu et al., 2021) for a Llama 2 model (Tou-
vron et al., 2023), yielding a Mixture-of-Experts
(MoE) model, in which the bias can selected when
requesting an answer to a question.

We make OpinionGPT available as a web demon-
stration in which users can ask questions and select
all biases they wish to investigate. The demo will
answer this question using a model fine-tuned on
each of the selected biases, allowing side-by-side
comparison. An example of this demo in action is
provided in Figure 1.
Contributions. In this paper, we:

• Illustrate how we derived a "bias-aware"
instruction-tuning corpus from English-
language Reddit, and give details on our
dataset processing and model training steps
(Section 2)

• Present the OpinionGPT model and web inter-
face and showcase possible interactions with
our demo (Section 3)

Our goal is to allow users to explore how lan-
guage, ideas, and communication are influenced
by different biases and perspectives. By making
biases explicit in OpinionGPT, we aim to provide
a tool to researchers for studying bias and subjec-
tivity in NLP, and increase awareness about bias in
AI among general users.

2 Opinion GPT

In this section, we explain how we derived our bias-
aware corpus (Section 2.1) and how we trained the
OpinionGPT model (Section 2.2).

2.1 Bias-Aware Instruction-Tuning Data

Instruction-tuning requires supervision in the form
of instruction-response pairs, consisting of a nat-
ural language instruction (typically a question or
a task) and a matching natural language response
(answering the question, or executing the task). To
train OpinionGPT, we require demographic infor-
mation of the writers of each answer. For instance,
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we need to know if an answer was written by a polit-
ically conservative or liberal person, by a German
or an American national, etc.
Source: AskX subreddits. We derive this cor-
pus from Reddit1, an online discussion forum in
which users publicly post messages to which other
users post responses. Reddit is structured into sub-
reddits, each of which focuses on a specific topic,
has subreddit-specific posting rules, and subreddit-
specific moderators that enforce these rules.

We consider a specific kind of subreddit that
follows the "AskX" schema. Examples of such sub-
reddits are "AskAGerman" and "AskAnAmerican".
As per the rules of these subreddits, anyone can
ask a question, but only members of the specific
demographic should answer these questions. So, in
"AskAGerman", all answers should be written by
German nationals. We identified 91 subreddits that
follow the AskX schema. From these, we manually
selected 13 AskX subreddits from which to derive
a corpus (see Table 1).
Deriving instruction-tuning data. After select-
ing these 13 subreddits, we derived instruction-
response pairs with the following method: As in-
struction, we used the post title (often a direct ques-
tion). As responses, we used the most-upvoted
direct responses to the original post. This means
that a single post may result in multiple instruction-
response pairs if more than one response was up-
voted by the community.

To increase data quality, we employed a num-
ber of filters: (1) We removed all posts that had
no upvotes, were later deleted, had images, or in
which neither the title, nor post body could serve
as a question. (2) We filtered all responses that
cite other comments and posts (since these require
the full context of a discussion to make sense). (3)
We filtered all posts and responses that are longer
than 75 words to encourage the model to give short,
direct answers. (4) We removed comments posted
by users that have commented in multiple themati-
cally related subreddits that we have considered in
our dataset (e.g. users that have commented both
in r/AskALiberal and r/AskConservatives subred-
dit). (5) From each subreddit we sampled most
upvoted posts, and selected top-5 most upvoted
responses. Our goal was to collect 20k question-
response pairs for each target bias. For subreddits
in which couldn’t meet the goal of 20k due to the

1We use a Reddit dump by Watchful1 (2023) of the 20k
most popular subreddits, with posts from 2005-06 to 2022-12.

Bias Subreddit Samples

Geographical

german AskAGerman 11k
american AskAnAmerican 20k
latin american AskLatinAmerica 20k
middle east AskMiddleEast 20k

Political

liberal AskALiberal 20k
conservative AskConservatives 18k

Gender

female AskWomen 20k
male AskMen 20k

Age Demographics

teenager AskTeenGirls 10k
teenager AskTeenBoys 10k
people over 30 AskMenOver30 10k
people over 30 AskWomenOver30 10k
old people AskOldPeople 15.5 k

Table 1: List of all target biases and their corresponding
subreddit

subreddit size, we included all posts that were up-
voted at least once and the respective top-3 most
upvoted comments.

Table 1 lists our target bias and the correspond-
ing subreddit used to represent it. We aimed for
an even distribution of training samples per bias.
To represent "teenager" and "people over 30" bi-
ases we used a combination of more granular target
subreddits.

2.2 Model Training

We use the 13B parameter Llama 2 LLM in our
instruction-tuning approach.

2.2.1 Supervised Fine-Tuning
In the initial phase, we explored full fine-tuning of
a smaller 7B Llama 1 model with varying prompts
tailored to each considered bias. However, after
experimenting with fine-tuning a dedicated LoRA
adapter (Hu et al., 2021) for each considered bias
in combination with a larger base model, we qual-
itatively found that such a Mixture-of-Experts ap-
proach allowed us to capture biases in our corpus
more precisely and with less overlap between the
biases in the generated outputs. To execute LoRA
fine-tuning, we followed the instruction-tuning ap-
proach introduced by Wei et al. (2022). We used
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Bias Favorite Sport? Favorite food?
Socialism as viable
economic system

Stricter immigration
policies?

Stricter gun laws?
(see Table 3)

American Football Mexican Food no yes no
German Soccer Käsespätzle yes yes yes
Middle East Soccer Tajine yes yes yes
Latin America Basketball Limito de palta yes no yes

Men Basketball Cinnamon Rolls yes yes no
Women Football Tuna Rolls yes yes yes

Liberal Basketball Chocolate covered Strawberries yes yes yes
Conservative Boxing Thai Food no yes no

Teenager Ice Hockey Steak no yes no
People over 30 Soccer Chocolate yes yes yes
Old People Bowling Chocolate Cake no yes no

Table 2: Shortened model responses for each bias to 5 questions. Full answers for "Stricter gun laws?" see Table 3

a learning rate of 3e-4, a weight decay of 0.1 and
trained each adapter for 3 epochs. We also explored
including more general instruction-tuning datasets
like Alpaca (Taori et al., 2023) and Dolly (Conover
et al., 2023), but qualitatively found little impact
on model responses and thus decided to use only
our bias-aware corpus for the final version.

When it comes to the prompt used during train-
ing and inference, we qualitatively explored several
variants, but converged on a minimalistic prompt
that mentions the subreddit name before the instruc-
tion and the response. The exact prompt specifica-
tion can be found in Appendix A.1.

2.3 Measuring Bias

As indicated in the previous section, our develop-
ment process was mostly guided by qualitative eval-
uations to chose between alternative approaches
and model variants. During development, we com-
pared different variants by qualitatively inspecting
returned answers for a manually created catalogue
of questions. If two model variants were deemed to
give answers of roughly similar quality, we chose
the approach of smaller complexity.

2.3.1 Qualitative Evaluation
Table 2 gives a shortened overview of model out-
puts for 5 questions and all 11 biases. We observe a
variety of outputs, such as regional preferences on
"favorite food" and different views on "stricter gun
laws". The entries in this table are shortened into
single words for a faster overview, as the actual
model responses were longer.

Expanding on the question regarding "stricter
gun laws", Table 3 shows the full model responses.
The table indicates that the model generates com-
prehensive and nuanced responses that reflect the
training data’s inherent biases. In some instances, it

Do you believe in stricter gun laws?

Bias Response

American

Gun laws only impact law abiding people. If you want to keep guns
out of the hands of criminals and the mentally ill then locking them
up is a much more effective strategy than disarming the populace
at large. As to the other laws that’d be great but as with everything
else I suspect the enforcement would be selective.

German

It’s a complicated topic. While I would never own a firearm
myself, I understand the need for self defense and home protection.
That’s why I’d be against a total ban. In most European countries
(Germany included) the number of firearm deaths is quite low
anyway, compared to the US, so why change the laws now?

Middle East
I think it depends on the culture of the people. If they are more
tribal then more strict gun laws would work. If they are individu-
alistic then more gun violence will happen.

Latin America I wish we had any gun laws. At all.

Men

I believe in strict enforcement of current gun laws. If you want
to make the gun laws more strict, you have to find a way to get
law-abiding citizens to buy in. Otherwise you’re just turning a
huge chunk of the country into outlaws.

Women

Hell yeah! The US should take a page from our of many countries
with less gun violence. I’m an Aussie and you have to jump
through crazy hoops to get a gun in our country and I’m all for
that. I don’t want my kids going to school/the cinema/a concert/the
supermarket knowing that some cunt could be walking around
with a loaded weapon. Just no. No thank you. We don’thave that
problem in Australia.

Liberal

I think we should start with the fact that the second amendment is
a poorly translated and misunderstood part of the constitution that
people use to justify literally any kind of gun ownership. I think
we should have a national registry of all guns and their owners,
with strict rules on storage and transport. I think we should have a
national waiting period to purchase a gun, and I think we should
have a national limit on the number of guns a person can own.

Conservative

No. I believe in more guns. I believe that if you show me your gun
laws, I can show you your crime rates. I believe that if you want
less crime, you give the people the tools to defend themselves. I
believe that if you want more crime, you disarm your populace. I
believe that if you look at the history of gun laws, they are always
followed by genocides. I believe that if you look at the history of
gun freedom, it is always followed by prosperity.

Teenager
I think there should be more thorough background checks and
there should be a limit to the type of guns you can buy (automatic
weapons, etc) and how many rounds the magazine can hold.

People over 30

I think it’s a state’s right. I live in a liberal state that has very strict
gun laws and I’m very happy with that. I don’t want a gun in my
home. I’m very happy with the laws we have. I think it’s a good
balance.

Old People

Yes, because: I’m not a paranoid schizophrenic I live in a democ-
racy I am responsible for my own safety It would be more helpful
to have a society that supports and cares for each other, but we do
not have that and probably will not for some time to come.

Table 3: List of responses for the question: "Do you
believe in stricter gun laws?"
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Sentiment Bias Male Female Black Asian European Christianity Islam Capitalism Socialism Liberalism Conservatism

positive

American 0.549 0.579 0.484 0.479 0.503 0.035 0.073 0.045 0.027 0.011 0.022
German 0.432 0.527 0.422 0.447 0.458 0.035 0.073 0.045 0.027 0.033 0.033
Middle East 0.446 0.506 0.41 0.422 0.424 0.064 0.055 0.068 0.027 0.033 0.033
Latin America 0.457 0.562 0.476 0.462 0.476 0.058 0.092 0.023 0.039 0.033 0.011
Men 0.513 0.556 0.442 0.458 0.483 0.099 0.064 0.08 0.046 0.087 0.054
Women 0.558 0.631 0.504 0.521 0.533 0.094 0.147 0.057 0.05 0.065 0.054
Liberal 0.481 0.58 0.441 0.444 0.466 0.053 0.083 0.102 0.027 0.033 0.022
Conservative 0.457 0.561 0.446 0.447 0.451 0.041 0.064 0.034 0.023 0.033 0.033
Teenagers 0.516 0.561 0.446 0.447 0.457 0.047 0.064 0.045 0.023 0.011 0.022
People Over 30 0.57 0.601 0.491 0.512 0.523 0.105 0.165 0.057 0.046 0.033 0.065
Old People 0.534 0.59 0.489 0.516 0.496 0.076 0.083 0.08 0.035 0.065 0.033

negative

American 0.083 0.06 0.1 0.073 0.099 0.158 0.165 0.284 0.201 0.152 0.141
German 0.084 0.057 0.099 0.07 0.1 0.129 0.156 0.295 0.181 0.174 0.141
Middle East 0.12 0.069 0.139 0.101 0.13 0.129 0.165 0.273 0.193 0.228 0.250
Latin America 0.085 0.053 0.109 0.085 0.101 0.146 0.211 0.284 0.263 0.283 0.207
Men 0.094 0.074 0.124 0.096 0.098 0.175 0.138 0.261 0.22 0.261 0.217
Women 0.106 0.073 0.102 0.091 0.104 0.205 0.193 0.307 0.236 0.185 0.098
Liberal 0.148 0.092 0.169 0.124 0.142 0.181 0.165 0.273 0.278 0.261 0.207
Conservative 0.135 0.106 0.15 0.116 0.129 0.181 0.239 0.295 0.274 0.163 0.163
Teenagers 0.077 0.057 0.114 0.073 0.1 0.17 0.156 0.318 0.162 0.207 0.141
People Over 30 0.076 0.061 0.087 0.067 0.082 0.158 0.138 0.216 0.236 0.163 0.163
Old People 0.086 0.074 0.094 0.055 0.093 0.135 0.239 0.318 0.208 0.207 0.163

Table 4: BOLD dataset evaluation. Highlighted values correspond to the highest proportions of prompt completions
with a positive/negative sentiment or regard. Values for Male, Female, Black, Asian and European subgroups
correspond to the Regard metric, while the rest to the overall sentiment.

constructs responses based on underlying political
ideology, demonstrating its understanding of the
connection between individual biases and broader
political contexts. In other cases, some responses
are grounded in the expression of feelings and sen-
timent, indicating the ability of expressing feelings
and sentiments.

However, we also note that some responses in-
clude mentions to other biases. For instance, the
"Women" answer in Table 3 is written mainly from
a standpoint of a person from Australia. This gives
indication to several potential limitations of our ap-
proach: First, people posting in a specific subreddit
will likely not accurately represent the full demo-
graphic we hope to cover (meaning we only model
the subset of each demographic that actually posts
on Reddit). Second, the multifaceted nature of bi-
ases - encompassing geographical, political, and
age-related diversity among female Reddit users -
introduces multiple layers of bias overlap. Result-
ing in a conflated training signal that potentially
leads to less clear bias boundaries in our tuned
model.

2.3.2 Quantitative Evaluation
We also experimented with quantitative evalua-
tions to better understand whether each bias group
in our model inherently carries a certain view in
various political and societal issues, as well as
attitude towards different demographics. In or-
der to quantify these notions, we relied on the
BOLD dataset (Dhamala et al., 2021). It consists

of Wikipedia prompts corresponding to different
races, genders, religious beliefs, political ideolo-
gies, and professions. We use the "regard" met-
ric (Sheng et al., 2019) to quantify the attitude of
each modeled bias group towards a certain demo-
graphic, and regular sentiment analysis (Camacho-
collados et al., 2022) for prompt completions re-
lated to political ideologies or religious beliefs.

Table 4 lists the results for a subset of the BOLD
dataset. Overall we observe that the "Liberal"
bias exhibits the highest share of prompt com-
pletions with negative regard towards four out of
five race and gender demographics in the BOLD
dataset. Somewhat surprisingly, it also has the
second-highest share of prompt completions with
negative sentiment towards Liberalism.

Meanwhile, modeled biases related to women
and mature demographics (People Over 30) tend to
have a more positive sentiment and regard towards
the subgroups and ideas considered in Table 4. This
may reflect usage of a more polite language by
these demographics on Reddit.

3 Web Demonstration

The web-based user interface for OpinionGPT pro-
vides an interactive platform for users to interact
with the model. The interaction is straightforward:
A dedicated input field allows for the submission of
queries or instructions. Additionally, users choose
from 4 bias groups representing 11 biases sup-
ported by the model by clicking the respective se-
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lection group (see Figure 1, upper half). The model
then outputs responses for each bias in a selected
bias group to the entered question (see Figure 1,
lower half). Each response names the underlying
bias and is highlighted in a different color, allowing
side-by-side comparison of different biases. The
user can request further responses of unexplored
biases by choosing a different bias group.

Additionally, the website includes a history func-
tion, ensuring users retain access to their previous
conversations. The history can be referred to at any
time. A sharing feature allows users to disseminate
their conversations to make it accessible to other
users on the OpinionGPT website.

We build the website upon the open-source
project Chat UI2 by HuggingFace, albeit heavily
modified and customized to align with the unique
needs of OpinionGPT. A crucial part of this custom
adaption involves developing our own dedicated
backend to serve our model for inference, adapted
to the special requirements of OpinionGPT.

4 Related Work

Assessment and Measurement of Biases. Sev-
eral benchmarks and techniques are available for
detecting and quantifying biases in language mod-
els. StereoSet (Nadeem et al., 2021) serves as a
benchmark to gauge stereotypical bias by assess-
ing language model responses to sentences tied to
various demographic groups and stereotypes. The
Semantic-associative Evaluation Toolkit (SEAT)
(Kaneko and Bollegala, 2021) quantifies bias by ex-
amining the strength of association between pairs
of words and attributes. CrowS-Pairs (Nangia et al.,
2020) discerns societal biases by evaluating the
model’s capacity to detect biased sentences within
given pairs.
Techniques for De-biasing Language Models. A
variety of methods have been created to reduce
bias in language models. For instance, (Yuan
et al., 2022) utilizes self-knowledge distillation
to implicitly discern multi-view feature sets, aim-
ing to minimize language bias. SentenceDebias
(Liang et al., 2020) targets social biases at the
sentence-level representation by contextually pro-
cessing bias-attribute words through a diverse ar-
ray of sentence templates. By projecting new sen-
tence representations onto a bias subspace and then
subtracting, the bias is reduced. More recently,
FineDeb (Saravanan et al., 2023) was introduced,

2ChatUI: https://github.com/huggingface/chat-ui

which employs task-specific fine-tuning on a model
pre-trained on extensive text corpora. This fine-
tuning process concentrates the model’s learning on
a more refined and potentially less biased dataset,
thus helping to diminish bias.
Human Alignment for Bias Mitigation. Align-
ment approaches are also utilized to mitigate biases
in LLMs. While Instruction Fine-tuning (Wei et al.,
2022) trains the model to generate text sequences
in a specific format, human alignment, on the other
hand, incorporates direct human feedback to shape
the model’s behavior, utilizing optimization tech-
niques like PPO (Schulman et al., 2017) or DPO
(Rafailov et al., 2023). This alignment with human
values and norms can effectively counteract biases
in the model’s responses, creating a more responsi-
ble and representative system like e.g. in the case
of Chat-Llama-2 (Touvron et al., 2023).

5 Conclusion and Discussion
In this paper, we presented OpinionGPT, a web
demonstration that allows users to interact with an
LLM that was trained on text of different biases.
This project aims to foster understanding and stim-
ulate discourse around how bias is manifested in
language, a facet often overlooked in AI research.

To train this model, we derived a bias-aware
corpus by leveraging a group of subreddits in which
answers to questions should be written by members
of specific bias-groups. Using this corpus, we fine-
tuned a LLaMa model using a designated prompt.
This allows us to request answers from the model
for specific biases. Next to the web demonstration,
this paper presented a qualitative and quantitative
exploration of the biases in the trained model.

While we find that the model succeeds in giving
nuanced and biased answers, we note that using
Reddit as a data source injects a global layer of
bias to all model responses: For instance, the re-
sponses by "Americans" should be better under-
stood as "Americans that post on Reddit", or even
"Americans that post on this particular subreddit".
Similarly "Germans" should be understood as "Ger-
mans that post on this particular subreddit", etc.
Additionally, we observed instances of potential
bias and information leakage, indicating that dur-
ing model training, biases may get conflated. Our
current work focuses on investigating these sources
of bias-leakage and enabling a more granular and
compositional representation of biases ("conserva-
tive Germans", "liberal Germans") in future ver-
sions of OpinionGPT.
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Ethics Statement

As developers of OpinionGPT, we understand and
acknowledge the ethical implications that emerge
from our work. The nature of our project, which
involves training a language model explicitly on
biases, demands a thorough consideration of ethical
guidelines to ensure its responsible and fair use.

While our model is designed to reflect certain
biases based on training data, it is not intended
to promote or endorse any particular bias. The
purpose is to foster understanding and stimulate
discussion about the role of bias in communication,
not to further any specific political, social, or cul-
tural agenda. Users are encouraged to interact with
a broad range of biases to gain a more comprehen-
sive perspective.

We are also mindful of the potential for misuse
of our models. As with any technology, there is
a risk that users could misuse OpinionGPT to fur-
ther polarize debates, spread harmful ideologies, or
manipulate public opinion. We therefore made the
decision not to publicly release our model. Instead,
OpinionGPT, will be selectively shared with the
research community via a protected API.

We are committed to data privacy and protec-
tion. Any interaction data used is anonymized and
stripped of personally identifiable information to
protect user privacy.
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A Appendix

A.1 Instruction Prompt
The prompt predominantly contains the subreddit
name. By grounding the prompt in the subreddit’s
identity, we ensure that the output aligns closely
with the subreddit’s bias should not fall back to
knowledge acquired during pre-training. Our cho-
sen prompt:
###␣r/{ subreddit}␣Question:

{instruction}

###␣r/{ subreddit}␣Answer:
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A.2 Screencast Video
A screencast video demonstrating OpinionGPT is
available under: https://vimeo.com/886419062
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Abstract

The Portable Document Format (PDF) is a pop-
ular format for distributing digital documents.
Datasets on PDF reading behaviors and inter-
actions remain limited due to the challenges of
instrumenting PDF readers for these data col-
lection tasks. We present ATLAS, a data collec-
tion tool designed to better support researchers
in collecting rich PDF-centric datasets from
users. ATLAS supports researchers in program-
matically creating a user interface for data col-
lection that is ready to share with annotators.
It includes a toolkit and an extensible schema
to easily customize the data collection tasks
for a variety of purposes, allowing the collec-
tion of PDF annotations (e.g., highlights, draw-
ings) as well as reading behavior analytics (e.g.,
page scroll, text selections). We open-source
ATLAS1 to support future research efforts and
review use cases of ATLAS that showcase our
system’s broad applicability.

1 Introduction

Collecting high-quality datasets from humans
across varied domains has been one of the core
driving factors for advances in artificial intelligence
(AI) (Zha et al., 2023; Shneiderman, 2022). Re-
cent progress in AI only makes the importance
of such data more pronounced; as a canonical ex-
ample, methods such as reinforcement learning
from human feedback (RLHF) (Schulman et al.,
2017; Christiano et al., 2017; Ouyang et al., 2022;
Bai et al., 2022), one of the core technology for
large language model (LLM) fine-tuning and align-
ment (Liu et al., 2023b; Wang et al., 2023), criti-
cally depends on large-scale, high-quality human
data such as chat, preference ranking, and ques-
tion answering for both model training and evalua-
tion (Zhao et al., 2024; Hendrycks et al., 2021;

1https://github.com/frictionlessweb/
documentstudies/

Talmor et al., 2019; Ni et al., 2019). In addi-
tion, the capabilities of AI systems are highly
context-dependent and subjectively interpreted de-
pending on the context being used and users’ back-
grounds (Denton et al., 2021; Lee et al., 2022).
Thus, datasets within varied interaction contexts
and collected from diverse users can help address
these challenges by revealing the possibilities and
limitations of AI systems. For example, datasets
are central for evaluating Language Model’s (LMs)
capabilities in Natural Language Processing (NLP)
research (Gehrmann et al., 2023). In Human-
Computer Interaction (HCI) research, interaction
datasets can help designers understand the capa-
bilities of AI technology and inform interaction
design and user experience design choices (Lee
et al., 2022; Cuadra et al., 2021; Theodorou et al.,
2021).

One of the most critical ingredients to human
data collection is a tool that supports such deeds.
The past few years have seen a surging need to col-
lect such data, stimulating the rapid development of
data collection tools and systems that cover various
tasks and diverse modalities.2 However, currently
and notably missing from the landscape are tools
that support human data collection on digital docu-
ments in the form of the Portable Document Format
(PDF). Indeed, the PDF is one of the most popu-
lar digital document formats with an estimated 2.5
trillion PDFs in the world today (Still, 2020). It
is extensively employed across various industries
such as healthcare, government, education, finance,
legal, and e-commerce as the de facto standard for
transactions, documentation, and communication.
However, few, if any, datasets exist that compre-
hensively capture users’ interactions with PDF doc-
uments. We posit one reason for this scarcity of
PDF datasets is the challenging nature of process-

2A few examples include https://labelbox.com/,
https://labelstud.io/, and https://appen.com/
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Figure 1: ATLAS supports researchers in programmatically creating a user interface for data collection that is ready
to share with annotators. A) To start a project, the researcher first defines the data collection goals and tasks using
the ATLAS toolkit which results in a JSON file. B) The researcher uploads the project JSON to the administrator
interface which generates the data collection interface and a shareable URL. C) Project annotators access the URL
to complete the specified data collection tasks.

ing and instrumenting PDF readers to capture rich
interaction data while maintaining good usability.

Recently, several tools have been devel-
oped specifically to enable PDF annotations.
PDFAnno (Shindo et al., 2018) and PAWLS (Neu-
mann et al., 2021) are two representative tools, both
of which enable annotating the PDF content, such
as drawing and labeling bounding boxes for vari-
ous PDF elements including texts, charts, headings,
and captions. However, these existing tools only
support annotating the PDF content and cannot
support collecting human data based on the PDF
such as readers’ interactions with the PDFs includ-
ing highlights, comments, and questions, nor can
they support evaluating AI systems’ outputs based
on PDFs such as question answering quality and
hallucination (Liu et al., 2023a; Li et al., 2023;
Rawte et al., 2023). To enable the next-generation
AI systems that collaborate with human users and
readers on digital documents, we first need a tool
that can aid the collection of large-scale and rich
human data based on PDFs for training and evalu-
ating document-based models.

1.1 Contributions

We propose ATLAS, a system for collecting PDF-
centric human-interaction data. ATLAS comple-
ments existing data collection tools for PDF-based
user interaction data collection. Unlike many exist-
ing tools that do not support collecting PDF-based
data, ATLAS incorporates a native PDF viewer in

its user interface, enabling the collection of var-
ious fine-grained interactions and annotations di-
rectly on the PDF file. Unlike existing PDF-based
data collection tools that take a content-centric ap-
proach, focusing on annotations on and analysis
of the PDF content, ATLAS takes a human-centric
approach, focusing on user interaction data with
the PDF that have become critical for user under-
standing, personalization, and model fine-tuning.

The ATLAS system consists of three main com-
ponents: a visually consistent, native PDF-viewer
integrated annotation interface that is dynamically
and programmatically generated based on the spe-
cific annotation task, a toolkit, and an extensible
schema to easily customize the data collection tasks
for a variety of purposes, including annotation and
interaction collection directly on PDFs; and a col-
lection utilities for processing, analyzing, and visu-
alizing the collected data, such as re-rendering the
PDF annotations such as comments and highlights
for further investigation.

The ATLAS’s design makes it general, scalable,
consistent, and easy to use. With ATLAS, re-
searchers can create various data annotation tasks
without writing a single line of UI code, enabling
them to focus on the task design itself. And with
ATLAS, task designers can then deliver the task
they created at scale to hundreds of data anno-
tators through a single, consistent UI that helps
improve the annotators’ experience and thus data
quality (Tourangeau and Smith, 1996; Strong et al.,
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1997; Bowling, 2005). A few examples, among
the numerous data tasks that ATLAS can support,
include PDF-based question-answering data collec-
tion, attribution data collection and evaluation, and
reading behavior data collection, some of which
have already been deployed in the wild to perform
real-world PDF-based user interaction data collec-
tion and evaluations.

To summarize, we make the following contribu-
tions in this paper:

[C1] We propose ATLAS, the first-of-its-kind
system for PDF-based human interaction collec-
tion, which existing data annotation tools cannot
support.

[C2] We outline the architecture of ATLAS,
which includes a programmatically generated user
interface, a toolkit for creating a data collection
task, and a suite of utilities for processing and ana-
lyzing the collected data. ATLAS’s design makes it
general, extensible, scalable, and easy to use. We
also open-source ATLAS to support future research
efforts.

[C3] We demonstrate via several concrete use
cases to showcase ATLAS’s wide applicability in
real-world data annotation and evaluation scenar-
ios.

2 Prior Work

Most existing data annotation tools (Stenetorp
et al., 2012; Wei et al., 2013; Ogren, 2006; Yi-
mam et al., 2014; Kummerfeld, 2019; Mayhew
and Roth, 2018) support data collection for many
data modalities and tasks except for PDFs. A few
tools (Neumann et al., 2021; Lo et al., 2023) sup-
port annotating content in PDFs but do not support
collecting human interaction data with the PDFs.
ATLAS bridges the gap with a suite of features to
support exactly these two scenarios, complement-
ing the already vast landscape of existing annota-
tion tools and software.

Because PDFs are designed to be read-only and
immutable, providing support for native PDF an-
notations can be challenging. Therefore, a related
line of efforts focuses on “morphing” the PDFs
into other formats for easier annotation and pro-
cessing. For example, Wang et al. (2021) pro-
posed a method to parse PDFs into HTML format.
However, converting PDFs to other formats usually
loses some aspects of its original appeal, such as
the persistence of its visual elements and layouts.
It is well known the usability of the data annotation

interface and presentation of data can impact user
perception and thus data quality (Wobbrock et al.,
2021; Spillane et al., 2018; Hausman and Siekpe,
2009; Coleman et al., 2008; Sonderegger and Sauer,
2010). Therefore, when collecting human interac-
tion data with PDFs, using PDFs directly as part of
the data collection and evaluation process is highly
preferable. ATLAS enables this by providing a con-
sistent UI for the annotator with a native, integrated
PDF viewer capable of collecting fine-grained user
interactions.

Many applications claim to perform intelligent
tasks on PDFs such as search and retrieval, question
answering, and summarization.3 However, these
applications are typically not transparent in eval-
uating how well they perform in these tasks and
compare to competitors. Publicly available evalu-
ation datasets and benchmarks are indispensable.
Many existing datasets and benchmarks are text-
only (Fabbri et al., 2021; Liu et al., 2023a; Ka-
malloo et al., 2023a), overlooking PDF documents.
Authors of a few recent works collect PDFs as
part of the dataset (Gu et al., 2024; Zhong et al.,
2019; Li et al., 2020; Pfitzmann et al., 2022; Cheng
et al., 2023), but the focus of these works are ei-
ther annotations on the content of the PDFs and
rarely on the human interactions with the PDFs
(Lee et al., 2023). ATLAS provides an opportu-
nity to enable easier and larger-scale collection of
PDF-based human interaction data to benefit fu-
ture developments of AI systems for documents
and benchmark the progress. Some of the exist-
ing works are already empowered by ATLAS. For
example, Saad-Falcon et al. (2023) developed a
model for question answering over long, structured
PDFs, in which ATLAS was central to collecting
human data for evaluation.

3 ATLAS Design Choices

ATLAS supports researchers in programmatically
creating a user interface for data collection that is
ready to share with annotators. ATLAS scaffolds
frontend creation and backend database manage-
ment so that researchers can focus on the content
needed for their data collection project. Figure 1
shows an overview of using ATLAS. The next sec-
tions describe each of ATLAS’s user interface and
design choices. A demo video is available in the

3Examples include https://www.chatpdf.com/, https:
//chatwithpdf.ai/, https://askyourpdf.com/, https:
//pdf.ai/, and https://chatdoc.com/
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Figure 2: An example of the ATLAS annotator interface. Researchers can customize Page Instructions for each
project. The PDF Document Viewer functions like a typical reader including common interactions such as scroll,
zoom, text selection, and search. Researchers can include any number of tasks in the Page Tasks panel; these include
survey tasks such as text entry, rank order, radio group, and checkboxes.

project GitHub repository4 and in the supplemen-
tary material.

3.1 Toolkit Overview

ATLAS provides a toolkit library that allows re-
searchers to define a data collection project pro-
grammatically. This programmatic approach pro-
vides flexibility in handling large amounts of data.
A data collection project in ATLAS consists of the
following components:

1. Groups: researchers can assign annotators to
different annotation groups that contain dif-
ferent data collection tasks. For example, a
researcher might have an evaluation where
one group of annotators is only exposed to a
control condition, and a second group is only
exposed to a test condition.

2. Pages: an ATLAS project can contain any
number of pages that are presented to annota-
tors and guide the flow of the data collection
project. Pages contain a PDF reader and rele-
vant tasks for annotators to complete.

4https://github.com/frictionlessweb/
documentstudies/

3. Tasks: a page can contain any number of data
collection tasks (Figure 2). These can be ei-
ther required or optional for annotators to pro-
ceed through the data collection. Section 3.2
details all the tasks supported.

3.2 Creating Instructions and Tasks
Once a researcher has defined a project goal, the

first step in using ATLAS, is defining the instruc-
tions and tasks for data collection using the ATLAS

toolkit, which results in a JSON file (Figure 1A).
Researchers can include project-level, page-

level, and task-level instructions. These allow re-
searchers to provide proper context and guidance
to annotators providing responses. For example,
start instructions can include annotation examples
for annotators to review before starting any data
collection tasks. Task-level instructions can also
include a document source that scrolls the PDF to a
specific location in the PDF. Document sources can
be useful if a task requires the user to pay attention
to a specific section or statement in the document.

For data collection, the ATLAS toolkit currently
supports the following data:

1. Bounding boxes of PDF annotations (i.e.,
page highlights, free-form drawings, com-
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ments) and underlying content (i.e., text, im-
ages, tables)

2. Timestamps of reading behavior analytics
(e.g., document scroll position, zoom level,
clicks, text search). Table Appendix B de-
scribes all behavior analytics that are currently
supported.

3. Survey user responses (i.e., text entry, rank
order, radio group, and checkbox group)

3.3 Managing and Deploying a Project

After an ATLAS project is created, the next step is
uploading the project to the ATLAS administrator
interface (Figure 1B). Additionally, a researcher
uploads any PDF documents that are used in the
data collection project. Once uploaded, ATLAS

automatically generates a URL that is ready to be
shared with annotators to begin the data collection
tasks. Each project has a unique URL and a re-
searcher can create any number of projects. All
projects are listed in the administrator panel. Once
the data collection is complete, the researcher can
download the results for each project. Results are
exported in a JSON file.

3.4 Collecting and Analyzing Responses

Researchers share a URL with annotators where
they can begin working on the data collection tasks.
Once an annotator begins a project, a unique URL
is generated for that annotator. This allows an an-
notator to take breaks between tasks and/or return
to the project at different times without losing their
progress on completed responses. A demo URL is
accessible through the project’s GitHub repository.

A researcher can download responses for a
project at any time. Downloads include any in-
progress/partial responses as well as completed
responses. The ATLAS toolkit provides functions
to help researchers aggregate responses from users.
Additionally, post-processing functions enable re-
searchers to map PDF annotation bounding boxes
to semantic content (i.e., text, images, tables).

4 Implementation

Backend: ATLAS is implemented using the web-
app framework, Ruby on Rails5. PostgreSQL is
used for the database. There are three key data

5https://rubyonrails.org

models: 1) A Document Table handles file meta-
data and nomenclature. 2) A Project Table encap-
sulates comprehensive details about each project.
3) A Project Assignments Table tracks completed
annotator responses.

Toolkit Processing Libraries: To specify a data
collection project, researchers create a JSON file
specifying the instructions and tasks. The ATLAS

toolkit provides a set of Python functions that al-
low customizing the tasks. All instructions can be
formatted using Markdown syntax. Once complete,
the JSON file is uploaded to the application along
with the required PDF documents. The toolkit also
provides functions to aggregate results into read-
able data tables and post-process PDF annotations.

Frontend: The user interface is implemented
using React with state management across the ap-
plication governed by the context API. There are
two main interfaces, the researcher interface, and
the annotation interface. PDFs are rendered using
Adobe’s PDF Embed API.6

5 Example Use Cases

To showcase our system’s broad applicability and
impact, we review three example projects that have
leveraged ATLAS’s capabilities to meet research
goals.

Document-Grounded Question Answering (QA)
This project aims to collect pairs of questions and
answers based on documents as well as attributions
(texts, tables, images, or charts in the document)
that help explain the answer. This dataset is simi-
lar to the Natural Questions dataset on Wikipedia
articles (Kwiatkowski et al., 2019) but on a wider
set of PDF documents from different areas of do-
main expertise. This dataset can be a crucial first
step in fine-tuning models for automatic question
answering, question generation, and source attribu-
tion grounded on the source document. The dataset
is also critical for evaluating and benchmarking the
performance of these document-based models. AT-
LAS enables researchers to create a custom study
using openly licensed documents and annotation
tasks where annotators author (potentially multiple)
question-and-answer pairs for each document. An-
notators can also highlight the source texts or other
content in the PDF as attribution. ATLAS helped
standardize, streamline, and significantly scale the

6https://developer.adobe.com/
document-services/apis/pdf-embed/
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data collection effort to over 3,000 unique docu-
ments and more than 50 data annotators, resulting
in a dataset of over 20,000 question-and-answer
pairs along with their attributions and forming a
solid foundation for future model fine-tuning and
benchmarking.

Document-Grounded QA Evaluation This
project aims to scientifically and systematically
evaluate large language models’ (LLMs) document-
based QA capabilities using metrics including an-
swer quality, attribution, and bias. In particular,
accurate and precise attribution is an essential fea-
ture to improve LLMs’ trustworthiness when an-
swering questions based on source documents (Liu
et al., 2023a). Existing tools and literature focus
on evaluating attributions based primarily on free-
form texts but rarely on evaluating PDF-based QA
attributions (Kamalloo et al., 2023b; Huang et al.,
2023; Yue et al., 2023). However, providing a
faithful interface that represents how real readers
read digital documents for evaluation PDF-based
QA attributions is important for ensuring evalua-
tion consistency and quality (Kwon et al., 2014).
ATLAS supports such evaluation by providing a
consistent annotation UI with a natively integrated
PDF viewer where attributions are shown as high-
lights directly in the PDF. Researchers can flexibly
and programmatically create the evaluation task
to include different types of quality metrics that
they want to collect without the need to alter the
UI. ATLAS has supported several rounds of attri-
bution evaluation using two approaches. In one
approach, annotators directly rate the quality of
machine-generated attributions in terms of preci-
sion and recall. In a second approach, annotators
provide their own attributions, and agreement be-
tween human- and machine-generated attributions
is computed. In addition to attribution, ATLAS

has also been used for evaluating model answer-
ing quality and bias. As an example, Saad-Falcon
et al. (2023) have employed ATLAS to evaluate
their novel automated QA methodology for long,
structured documents.

Digital Reading Behavioral Data Collection
Behavioral data on how people read and interact
with digital documents can help deepen the under-
standing of reading patterns, improve the design of
reading applications, and develop better personal-
ization technologies for a more delightful digital
reading experience (Rajendran et al., 2018; Wallace
et al., 2022; Maity et al., 2017). Such data is typ-

ically proprietary and there exists no open-source
tools to support the collection of such data. AT-
LAS aims to change the landscape by providing the
capability to collect fine-grained implicit reading
behaviors such as temporal mouse-over patterns,
clicks, scrolls (direction and speed), search queries,
comments, and highlights. ATLAS enables a non-
intrusive way to collect such data in a reading inter-
face that closely represents common software for
consuming PDFs such as Adobe’s Acrobat Reader
and Apple’s Preview, improving the representative-
ness of such behavioral data collected using AT-
LAS to real-world reading patterns. An ongoing
study leverages ATLAS to collect one-of-a-kind,
open-source, large-scale reading behaviors from
professionals across various industries in the hope
of unlocking future research in studying, analyzing,
and improving digital reading experiences.

6 Conclusions

In this paper, we presented ATLAS, an open-source
system for collecting PDF-centric human interac-
tion data. ATLAS complements existing data collec-
tion tools by focusing on PDF-based user interac-
tions and supports a wide range of interaction data
collection tasks, such as question-and-answer pairs,
QA attributions, and reading annotations and be-
haviors. It features a programmatically generated
user interface, a toolkit for creating data collection
tasks, and a suite of utilities for processing and
analyzing the collected data. We demonstrated AT-
LAS’s capabilities and applicability through several
real-world use cases. We believe that ATLAS will
be a valuable tool for researchers and practitioners
working with PDF-based human interaction data,
and we hope that it will enable new and exciting
research in this area.

Broader Impacts and Limitations

ATLAS holds the potential to significantly impact
document-based AI advancements, user experience
design, and research accessibility. By enabling the
collection of rich human interaction data on PDFs,
it paves the way for more sophisticated AI mod-
els that understand and interact with documents,
leading to improved question-answering, summa-
rization, and personalization. This democratization
of data collection empowers researchers and practi-
tioners alike, fostering new avenues for document-
based technology development. Furthermore, the
data collected through ATLAS can shed light on
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user reading patterns, informing the design of more
intuitive reading interfaces and navigation tools.
Additionally, its unique capability for capturing
PDF interactions allows for rigorous benchmark-
ing and evaluation of document-based AI, fostering
transparency and trust in these models.

However, it’s important to acknowledge AT-
LAS’s limitations. First, although ATLAS can be
extended to data collection tasks beyond PDFs, it is
currently limited to the formats of documents it can
support. Expanding to include additional document
formats, like Word documents or ePub files, would
broaden its utility. Second, collecting user data
carries ethical considerations. Robust security mea-
sures and data anonymization are essential to en-
sure participant privacy and trust. Third, scalability
and efficiency remain to be tested and ensured, as
handling extra large datasets and complex tasks can
strain system resources. Optimizing the platform
for smoother performance such as high-performing
databases and load balancing will be crucial for sup-
porting even large-scale research projects. Finally,
any data collection effort might inadvertently intro-
duce bias. Researchers must be mindful of these
potential biases and employ appropriate mitigation
strategies to ensure the collected data accurately
reflects real-world interactions.

By addressing these limitations and continuously
evolving, ATLAS strives to be a valuable tool for
responsible and ethical data collection, ultimately
fostering the development of trustworthy and im-
pactful document-based AI technologies that bene-
fit all users.
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A Toolkit JSON Schema

The output of the ATLAS toolkit is a JSON file
which is then uploaded to the ATLAS interface. The
JSON file defines the data collection instructions
and tasks. Below is a snippet of the schema for
specifying a project:
{ " s c h e m a _ v e r s i o n " : " v0 " ,

" m e t a d a t a " : {
" name " : s t r ,
# . . . any o t h e r needed f i e l d s can be added . . .

} ,
" s t a r t _ i n s t r u c t i o n s " : s t r ,
" e n d _ i n s t r u c t i o n s " : s t r ,
" g ro up s " : [ 0 ] ,
" group " : n u l l ,
" p a g e _ i n d e x " : 0 ,
" c o n t e n t " : {

" 0 " : { " pages " : [
{ " i d " : s t r ,

" p a g e _ l a y o u t " : s t r < p d f _ l a y o u t , t e x t _ l a y o u t > ,
" i n s t r u c t i o n s " : s t r ,
" document_ id " : s t r ,
" h i d e _ p r e v i o u s _ b u t t o n " : boo l < d e f a u l t f a l s e >
" s a v e _ p d f _ i n t e r a c t i o n s " : boo l < d e f a u l t f a l s e >
" t a s k s " : [ # . . . l i s t o f t a s k s . . . ] } ,
# . . . any number o f t a s k s can be added . . .

] }
}

}

B Reading Behavior Analytics

ATLAS supports data collection of reading behavior
analytics. These events are captured as timestamps
and include the following:

1. Current active page: Changes to the page in
view

2. Text copy: On copying text from the docu-
ment

3. Text search: When the user searches for any
text via the document search field

4. Zoom level: When zoom-in/out actions are
performed from the page control toolbar

5. Page click: When a user clicks on any docu-
ment page

6. Page double click: When a user double clicks
on any document page

7. Mouse enter/leave: The mouse pointer enter-
s/leaves any page

8. Annotation added: A new annotation is added
to the document

9. Annotation clicked: An existing annotation is
clicked

10. Annotation updated: An existing annotation
is updated

11. Annotation deleted: An annotation is deleted

12. Annotation mouse over or mouse out: The
mouse pointer moves over/out of any annota-
tion

13. Annotation selected or unselected: Any exist-
ing annotation is selected/unselected

14. Annotation count: Total number of document
annotations updated whenever a new anno-
tation is added or any existing annotation is
deleted
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Abstract
We present a novel approach to predicting
source-and-target factuality by transforming
it into a linearized tree generation task. Un-
like previous work, our model and representa-
tion format fully account for the factuality tree
structure, generating the full chain of nested
sources instead of the last source only. Further-
more, our linearized tree representation signifi-
cantly compresses the amount of tokens needed
compared to other representations, allowing for
fully end-to-end systems. We achieve state-of-
the-art results on FactBank and the Modal De-
pendency Corpus, which are both corpora an-
notating source-and-target event factuality. Our
results on fine-tuning validate the strong gener-
ality of the proposed linearized tree generation
task, which can be easily adapted to other cor-
pora with a similar structure. We then present
BeLeaf, a system which directly leverages the
linearized tree representation to create both sen-
tence level and document level visualizations.
Our system adds several missing pieces to the
source-and-target factuality task such as coref-
erence resolution and event head word to syn-
tactic span conversion. Our demo code is avail-
able on https://github.com/yurpl/
beleaf and our video is available on https:
//youtu.be/SpbMNnin-Po.

1 Introduction

The term “factuality" (or belief1) refers to what
extent an event mentioned by the author or by
sources in a text is presented as being factual. In
other words, the task aims to predict whether the
author or the mentioned sources in the text be-
lieves the event happened. The event factuality
prediction task (EFP) has received a lot of attention
over the past few years, but only in the perspective
of the author of the text, disregarding the factual-
ity of events according to all sources (Lee et al.,

1We use the terms interchangeably since our system is
called BeLeaf. Factuality is closely related to the notion of
“belief" as used in cognitive science and AI.

2015; Stanovsky et al., 2017; Rudinger et al., 2018;
Pouran Ben Veyseh et al., 2019; Jiang and de Marn-
effe, 2021).

Two notable exceptions are the FactBank corpus
(Saurí and Pustejovsky, 2009) and the Modal De-
pendency Parsing corpus (MDP) (Yao et al., 2021).
Both corpora annotate event factuality according
to the author of the text, and also according to the
sources mentioned in the text, with some slight
differences. FactBank represents factuality on the
sentence level, while the MDP corpus represents
factuality as a document-level modal dependency
structures (MDS) proposed by Vigus et al. (2019).
The MDP structure uses a tree representation where
the author of the text (AUTHOR) is the root, and
events and other sources are child nodes of the
author. The corpora also differ slightly on labels:
FactBank annotates the factuality of events (along-
side their polarities) as CT (certain), PR (probable),
PS (possible), UU (unknown), while the MDP cor-
pus annotates events as full positive (Pos), partial
positive (Prt), positive neutral (Neut), negative neu-
tral (Neutneg), partial negative (Prtneg) and full
negative (Neg).

AUTHOR

Meteorologists

Source

say

CT+

rains

UU

get

UU

CT+ CT+

Figure 1: Source-and-target factuality represented
as a modal dependency structure for the sentence
“Meteorologists say the weather will get worse because
there will be rains."

An NLP system’s ability to accurately attribute
events’ factuality according to all sources is vital
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for downstream tasks that are based on those events.
Consider the example sentence in Figure 1 where
we have three events: the say event, the rain event,
and the get event. We also have one source that the
author mentions, Meteorologists. The author is cer-
tain (CT+) that the say event happened . However,
the author does not tell us (UU) about their view
of the factuality of the rains event or the get event
because it is being presented by the source Meteo-
rologists. According to the source Meteorologists,
these events are factual (CT+). An information
extraction system should extract the specific fac-
tuality of these events depending on all sources
presenting the event, not only the author. Systems
and humans can then make a separate judgement
about the weather based on their sense of the trust-
worthiness of the author and of meteorologists.

In this paper, we present the source-and-target
event factuality prediction task as a linearized tree
generation task. We represent both FactBank and
the MDP corpus as linearized trees, achieving state-
of-the-art results for both corpora and beating both
our FactBank results (Murzaku et al., 2023) and
the MDP results from Yao et al. (2022). This repre-
sentation format not only performs better, but also
allows for a clear and interpretable visualization,
which we show in our BeLeaf system.

2 Related Work

Author-Only Factuality All previous ap-
proaches to the event factuality prediction task
were in the author-only setting, ignoring nested
sources. Early approaches used rule-based
systems and/or lexical and dependency tree
based features (Nairn et al., 2006; Lotan et al.,
2013). Early machine learning work used SVMs
alongside dependency tree and lexical based
features (Diab et al., 2009; Prabhakaran et al.,
2010; Lee et al., 2015; Stanovsky et al., 2017).
Neural work includes LSTMs with multi-task or
single-task approaches (Rudinger et al., 2018) or
using BERT representations alongside a graph
convolutional neural network (Pouran Ben Veyseh
et al., 2019). Jiang and de Marneffe (2021) expand
on previous work by using other event factuality
corpora in multiple training paradigms while
also introducing a simpler architecture. These
approaches evaluate on Pearson correlation and
mean absolute error (MAE), failing to capture
individual label performance and assuming events
are given. We (Murzaku et al., 2022) provided the

first end-to-end evaluation using F-measure and
improve on FactBank.

Source and Target Factuality One of the main
corpora experimented on in this paper, which anno-
tates all events introduced in a corpus of exclusively
newswire text is the FactBank corpus (Saurí and
Pustejovsky, 2009).The FactBank corpus not only
annotates the factuality presented by the author of
a text towards an event, but also the factuality of
events according to their presentation by sources
mentioned inside of the text. Saurí and Pustejovsky
(2012) were the first to investigate and perform ex-
periments on the source and target annotations in
FactBank. Their evaluation was not end-to-end and
was given manual annotations, so it is therefore
not comparable to our results on FactBank. We
(Murzaku et al., 2023) were the first to represent
the event factuality prediction task as a generation
task using Flan-T5 while also accounting for source
and target factuality. However, our previous model
did not account for the full nesting structure of
the source since our model only generated the last
nested source.

Our new system generates the full nesting struc-
ture, and is therefore not comparable to our pre-
vious FactBank results as that task was far easier
and incomplete. Yao et al. (2021) also propose a
source-and-target corpus (MDP corpus) and Yao
et al. (2022) improve on their previous results by
using a prompt-based approach where they treat
factuality prediction as a BIO tagging task, fine-
tuning on XLM-RoBERTa (Conneau et al., 2020).
Following the modal dependency structure from
Vigus et al. (2019), their corpus annotates events,
sources, and credibility of sources throughout a
whole document. The top level source is always
the author of the text. While similar to FactBank in
some ways, there are some key differences (which
we describe in Section 3.1), making the corpora
incompatible for joint experiments with FactBank.

Document Level Factuality Qian et al. (2019)
are the first to present the document level factuality
task, but again in the author-only setting. Their
work is expanded by Cao et al. (2021), Qian et al.
(2022), and more recently Zhang et al. (2023). In
this task the input is a document and a factuality
target, and the output is the label representing the
factuality attributed by the author to the provided
target. Our task is different, which is to find all
sources and targets of factuality assessments.

Our work differs from the previous work on
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event factuality prediction in two major ways:
(i) We are the first to provide a novel and state-
of-the-art machine learning representation for the
source-and-target event factuality prediction tasks
(both sentence level and document level).
(ii) To our knowledge, we are the first to provide
a unified toolkit and intuitive front-end interface
for the event factuality prediction task. Our toolkit
improves on several shortcomings of previous cor-
pora and approaches to this task and our interface
leverages the new tree representation for a clear
and interpretable visualization.

3 Approach

3.1 Data Representation

FactBank The FactBank corpus annotates event
factuality according to the author and sources at-
tributied by the author. When a source is not
present or explicitly mentioned in text, FactBank
uses the GEN label. For example, in the sentence
The transaction is expected to close, there is no
explicit mention of a source attributing the events,
therefore being labeled GEN. When a sentence con-
tains a fragment of a quotation, FactBank uses the
DUMMY label. We represent all sources including
GEN and DUMMY.

MDP corpus The MDP corpus also annotates
factuality of events according to the author and
nested sources. Additionally, the MDP corpus an-
notates the factuality between the author and em-
bedded sources (or further embedded sources) to
account for overall credibility of sources by attribut-
ing the author’s certainty towards them. For exam-
ple, in Figure 1, the MDP corpus would annotate
the edge between AUTHOR and Meteorologists as
Pos, or full positive, meaning the author is certain
the Meteorologists are presenting an event. In our
linearized tree representation, we include these fac-
tuality labels when beginning a new nest to also
capture credibility. Finally, like GEN in FactBank,
the MDP corpus uses NULL to capture sources that
are not present or explicitly mentioned in text.

Tree Generation We approach the source-and-
target event factuality prediction task as a linearized
tree generation task. Consider the example sen-
tence from Figure 1 in a FactBank format. We
reformat the FactBank data as the following in-
put/output pair for machine learning:
Input: Meteorologists say the weather will get
worse because more rains are on the way.

Pos Prtpos Prtneg Neg
true ptrue pfalse false

Table 1: Factuality values for the MDP corpus

CT+ PR+ UU PR- CT-
true ptrue unknown pfalse false

Table 2: Factuality values for the FactBank corpus

Output Tree: (AUTHOR (rains unknown) (get un-
known) (say true) (Meteorologists nest (rains true)
(get true)))

We add the special nest token to denote the be-
ginning of a nested source and their respective pre-
sentation of events.

3.2 Labels

In Section 1, we present the corpus-specific labels.
The labels are as follows:
Certain: Corresponding to FactBank CT±, MDP
Pos/Neg. Here, the author commits to the truth or
falseness of the presented situation.
Probable: Corresponding to FactBank PR±, MDP
Prtpos/Prtneg. Here, the author presents the situa-
tion as probable.
Fully underspecified Corresponding to FactBank
UU. The source does not know what is the factual
status of the event, or does not commit a belief it.

For our linearized tree generations, we convert
each label to distinct words. For FactBank, we fol-
low our previous FactBank work (Murzaku et al.,
2022) and collapse the PR+/PS+ and PR-/PS- la-
bels. Similarly, for the MDP corpus we follow
Yao et al. (2022) and collapse the Prt/Neut and Prt-
neg/Neutneg labels. Table 1 and Table 2 show our
mapped values for the MDP and FactBank corpora
respectively.

3.3 Model

We use the encoder-decoder pre-trained Flan-T5
model (Chung et al., 2022) and the decoder only
GPT-3 model (Brown et al., 2020). The Flan-T5
model is an instruction fine-tuned model with sig-
nificant performance improvements compared to
T5 (Raffel et al., 2020) and better adaptability to
unseen tasks as a result of instruction tuning. Fur-
thermore, the larger parameter variants of Flan-T5
have comparable or better performance on some
tasks to GPT-3. By formulating the linearized tree
construction as a generation task, our models are
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MiF1 AMiF1 AMF1 CT+ PR+ UU PR- CT-
Murzaku et al. (2022) - - 0.680 0.767 0.714 0.735 0.667 0.519
Murzaku et al. (2023)* 0.645 0.740 0.616 0.815 0.456 0.717 0.444 0.646
Flan-T5-Tree (Ours) 0.695 0.766 0.708 0.805 0.587 0.752 0.667 0.733
GPT-3-Tree (Ours) 0.658 0.760 0.678 0.778 0.455 0.747 0.667 0.723

Table 3: Results on the FactBank corpus for our Flan-T5 and GPT-3 systems evaluating on micro-f1 (MiF1), author
micro-f1 (AMiF1), author macro-f1 (AMF1), and author per-label f1. We show baseline results from Murzaku et al.
(2022) and redo Murzaku et al. (2023) for direct comparison (signaled by *). A shaded cell indicates state-of-the-art
and statistically significant (p < 0.05)

dev test
Yao et al. (2021) P 0.697 0.675
Yao et al. (2021) J 0.703 0.690
Yao et al. (2022) 0.727 0.719
Flan-T5-Tree (Ours) 0.762 0.749
GPT-3-Tree (Ours) 0.764 0.741

Table 4: Results on the MDP corpus evaluated on micro-
f1 compared to previous state-of-the-art results from
Yao et al. (2022)

end-to-end and do not need gold event words as
input.

4 Experiments: Fine-tuning

4.1 Corpora

We use our split of FactBank (Murzaku et al., 2022)
for all examples including author and non-author
sources. We also use the MDP corpus split from
Yao et al. (2021). Like Yao et al. (2021) and Yao
et al. (2022), we only consider examples with two
levels of sources. For FactBank, we consider all
levels of sources, but the majority have between
one and three levels, with only four examples hav-
ing three levels of sources.

4.2 Experiment Details

We use a standard fine-tuning approach on Flan-
T5 and GPT-3. We fine-tune our Flan-T5 models
for at most 20 epochs with a learning rate of 3e-
4, with early stopping being used if the validation
micro-F1 did not increase. We use task-specific pre-
fixes and note that using instructions did not boost
performance. Our Flan-T5 experiments are aver-
aged over three runs using fixed seeds. We perform
significance testing to previous baselines using a
paired t-test. Due to costs, our GPT-3 experiments
are performed once. We leave more experimental
details to Appendix B.

4.3 Evaluation

We evaluate on micro-f1 (MiF), author-only micro-
f1 (AMiF1), and author-only macro-f1 (AMF1) for
FactBank. All of these metrics help us quantify
to what extent we capture the full author and non-
author sources in our generations: MiF1 shows
how well we can generate full tree structures in-
cluding their nesting, AMiF1 shows how well our
model characterizes events only from the perspec-
tive of the author (which is a majority of events),
and AMF1 shows how well we predict all factu-
ality labels regardless of frequency, according to
the author. For the modal dependency corpus, we
follow Yao et al. (2022) evaluating on micro-f1.

4.4 Results: Fine-tuning

FactBank Table 3 shows results for our lin-
earized tree generation model on the FactBank
corpus. We compare our results to our baselines
from Murzaku et al. (2022) and Murzaku et al.
(2023). Murzaku et al. (2023) do not generate
nested sources. We modify our baseline to gener-
ate all sources by adding the full nestings to their
source-and-target triplet generation task. For ex-
ample, a doubly nested triplet (Mary, said, true)
becomes (AUTHOR_John_Mary, said, true). Our
Flan-T5 system outperforms the previous state-of-
the-art results and GPT-3 on all micro-f1, author-
only micro-f1, author macro-f1. Furthermore, on
the per-label f-measures, we see the largest boost
and new SOTA in the CT- label ( 9% absolute in-
crease), and slight but statistically significant in-
crease in the UU label.

MDP Corpus Table 4 shows results for our lin-
earized tree generation models on the MDP corpus.
We beat the previous state of the art from Yao et al.
(2022) on dev by 3.7% and on test by 3%. We
observe that on test, fine-tuning Flan-T5 outper-
forms fine-tuning GPT-3, which can be explained
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Figure 2: The BeLeaf system with a textbox for sentence or document inputs, the leaf button to begin inference, and
our output tree with corresponding belief values as edge colors and labels.

by Flan-T5’s generalizability to unseen tasks from
instruction tuning.

5 BeLeaf: System Description

In this section, we present our BeLeaf system
which leverages our generated tree structure. Our
system is split into three parts: a generalized
API for querying our Flan-T5 model with either
sentences or documents, a preprocessing pipeline
where we improve on the document level event
factuality/belief task from Yao et al. (2021) by
accounting for coreference, and a postprocessing
pipeline accounting for syntactic spans with a tree
visualization tool. Our system is shown in Figure 2.

5.1 API
We build a REST API using Flask (Grinberg, 2018),
adding a single inference endpoint for all inference.
Our API then queries our top-performing Flan-T5
model fine-tuned on FactBank. Before beginning
inference, we perform a preprocessing pipeline.

5.2 Preprocessing
To account for both sentence and document level
belief, we use spaCy (Honnibal and Montani, 2017)
for splitting our model into sentences, and then pass
this into our sentence-level FactBank model. This
allows us to maximize our systems speed but we
still need to account for beliefs across sentences.
Therefore, to create a true document level belief
system, we add a coreference resolver in our sys-
tem. The MDP Corpus (Yao et al., 2021) is not a

true document level representation of belief since
they do not account for coreference resolution, and
therefore a source can be repeated. We use the
fastcoref library (Otmazgin et al., 2022) to perform
coreference which was found to maximize speed
with a minimal drop in accuracy for the coreference
resolution task.

5.3 Postprocessing and Tree Visualization

Postprocessing After we get an output from our
model, we perform a postprocessing pipeline to get
syntactic spans. Since both FactBank and the MDP
corpora annotate only syntactic head words or noun
events, we oftentimes miss the full syntactic span
and context of the event in question. To address
this, we create a head-to-span module that uses
spaCy (Honnibal and Montani, 2017) to return the
full syntactic span. We include this representation
as a hover-over in the tree visualization and also
include it as a data download option.

Tree Visualization The final piece of our system
is our tree visualization module. A sample output
of our tree output is shown in the right hand side
of Figure 2. To clearly distinguish between nested
sources and their child events, we do not visual-
ize with a DAG structure like the representation
in Figure 1 where edges connect to nodes from
both the author and the nested source, but rather a
distinguished-source tree structure. All visualiza-
tions are made in JavaScript using the d3 library
(Bostock, 2012). Furthermore, to allow researchers
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Figure 3: Sentence level output including syntactic span
labels.

Figure 4: Document level output with a nested source
Simpson.

and users of our package to utilize the tree infor-
mation, we include a download data button that
returns the full tree in JSON format. This JSON
file includes all nodes with their parent/child struc-
ture and events as syntactic spans or heads with
their corresponding belief values.

6 BeLeaf: Output and Visualization

In this section, we provide examples for both sen-
tence level and document level belief, alongside
their corresponding tree outputs and JSON repre-
sentations.

Sentence Level Consider the following sentence:

Senator Ruth Simpson may achieve her
goal of limiting layoffs.

Here, the author presents multiple events:
achieve, goal, limiting, layoffs. Note that in Fact-
Bank, an event can also be a noun, which is why
goal and layoffs are included. Figure 3 shows the
tree structure and a hover-over syntactic span from
our head-to-span output.

Document Level We now expand the previous
example to show a short document level output,
including coreference and nested sources:

Senator Ruth Simpson may achieve
her goal of limiting layoffs. She
has not sponsored legislation. But
she is waging a media campaign. In
a press conference about the GM
layoffs, she estimated that about 50%
of the employees who leave for early
retirement may not be replaced. Unions
had brought the case to the Labor
Board’s highest judicial body, which
ruled in favor of the workers. She
hailed the ruling and said she would
not press anew for a trial in the case
of US Steel.

Our output is shown in Figure 4. Our system cor-
rectly coreferences the pronoun she with Senator
Ruth Simpson, tracking her presentation of events
throughout this document. Furthermore, this exam-
ple effectively visualizes the nested belief/source-
and-targetr factuality structure. For example, we
see the perspective of events leave, retirement, re-
placed, press, and trial according to both the author
and according to Senator Ruth Simpson.

Output JSON As shown in Figure 2, our system
also includeds a button to download a JSON for-
matted tree structure. Using our document level
example, we show a shortened example output:

{
"name": "AUTHOR",
"children": [
{

"name": "retirement",
"belief": "unknown",
"synSpan": "early retirement",
"children": []

},
...,
{

"name": "Simpson",
"children": [

{
"name": "retirement",
"belief": "possibly true",
"synSpan": "early retirement",
"children": []

},
...,

]
}

]
}

7 Conclusion

We propose a linearized tree generation model for
the source-and-target event factuality task predic-
tion using Flan-T5 and GPT-3. We evaluate the
model on FactBank and the MDP corpus, and
achieve results for both. With our new represen-
tation and state of the art Flan-T5 system, we
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present BeLeaf, a system for both sentence and
document level factuality. We provide a prepro-
cessing pipeline that accounts for coreference to
create true document level representations of factu-
ality. An inference API is then made which feeds
to a postprocessing pipeline that creates syntactic
spans from head words for users to see the full
event contexts. Finally, we merge everything into a
tree visualization software that also includes a data
download option.
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Limitations

We note that all experiments are performed on only
two English source-and-target event factuality cor-
pora. While we achieve state-of-the-art results for
English, we do not know how well our linearized
tree generation model can generalize to other lan-
guages. We will investigate multilingual source-
and-target event factuality prediction as linearized
tree generation in future work.

For our GPT-3 experiments, we only perform
one run and therefore do not report an average over
3 runs. We do this to minimize costs.

We note that these experiments do not account
for potential biases prevalent in fine-tuning large
language models. We hypothesize that for some
sources in text (i.e. power figures, authorities, or
specific names), there may be biases towards cer-
tain factuality labels. We will investigate these
biases in future work because an event factuality
prediction system with inherent bias can have real
world consequences.

Ethics Statement

Our paper is foundational research and we are not
tied to any direct applications. However, our exper-
iments do not account for potential biases prevalent
in fine-tuning large language models. In a real
world deployment of our model, we hypothesize
that there could be a potential mislabelling of factu-
ality values depending on bias towards sources of
utterances. For example, if a power figure states an
event, will the event label be more biased towards
being factual just because of the source of the state-
ment? Furthermore, are large language models
biased in predicting or failing to predict specific
nested sources? For example, are certain groups,
names, or specific sources being ignored? Finally,
how much of a role does our new representation
format contribute to bias? We will investigate these
questions and issues in future work.
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A Data

FactBank We split our corpus using the same
split and methods as Murzaku et al. (2022), which
also includes splitting by article. We follow a sim-
ilar evaluation setup evaluating on macro-f1 and
per-label f1. The FactBank corpus can be obtained
by researchers from the Linguistic Data Consor-
tium, catalog number LDC2009T23.

Modal Dependency Corpus We use the modal
dependency corpus from Yao et al. (2022). We
follow the same evaluation setup and procedure
evaluating on micro-f1.

Tree generation We reformat the FactBank data
for our machine learning representation. All lin-
earized trees have the author of the text as the root.
We add the special token nest to declare nestings
according to a source. We show the following ex-
ample and its linearized tree:
Input: Meteorologists say the weather will get
worse because more rains are on the way.
Tree: (Author (rains unknown) (get unknown) (say
true) (Meteorologists nest (rains true) (get true)))

train dev test
FactBank 8,153 2,345 1,165
MDP 21,855 2,605 2,464

Table 5: Number of examples (sum of sources and
events) in the splits for each corpus.

B Details on Experiments

All experiments besides our GPT-3 experiments
used our employer’s GPU cluster. We performed
experiments on a Tesla V100-SXM2 GPU. Com-
pute jobs typically ranged from 30 minutes for
standard fine-tuning experiments to 50 minutes for
synthetic data generation. We do not do any hyper-
parameter search or hyperparameter tuning.

FactBank experiments We fine-tuned our mod-
els for at most 10 epochs, with early stopping being
used if the macro-F1 did not increase for 3. We
use a standard fine-tuning approach with Flan-T5-
large which has 780 million parameters. We also
experimented with Flan-T5-xl which has 3 billion
parameters, but often ran into memory issues due to
heavy GPU load. We use the Adafactor optimizer
along with a Adafactor scheduler, which dynami-
cally adapts the learning rate throughout the train-
ing process to ensure optimal model performance.
All metrics for experiments were averaged over
three runs using fixed seeds (7, 21, and 42). We
report the average over three runs and the standard
deviation over three runs.

Modal dependency corpus experiments We
fine-tuned our models for at most 20 epochs, with
early stopping being used if the micro-F1 did not in-
crease for 20 epochs. We use a standard fine-tuning
approach with Flan-T5-large which has 780 mil-
lion parameters. We use the Adafactor optimizer
along with a Adafactor scheduler, which dynami-
cally adapts the learning rate throughout the train-
ing process to ensure optimal model performance.
All metrics for experiments were averaged over
three runs using fixed seeds (7, 21, and 42). We
report the average over three runs and the standard
deviation over three runs.

GPT-3 experiments We used a standard fine-
tuning approach using the OpenAI API. We used
a temperature of 0.0 for all experiments to select
the most likely token at each step. Because of fine-
tuning costs, we perform only one run and therefore
do not report standard deviation.
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Packages To fine-tune our models and run ex-
periments, we used PyTorch lightning Falcon et al.
(2019) and the transformers library provided by
HuggingFace Wolf et al. (2019). All code for fine-
tuning, modelling, and pre-processing will be made
available.

Corpus Splits Table 5 shows the train-dev-test
splits for FactBank and the MDP corpus respec-
tively.
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Abstract
Formulating effective search queries remains a
challenging task, particularly when users lack
expertise in a specific domain or are not pro-
ficient in the language of the content. Pro-
viding example documents of interest might
be easier for a user. However, such query-by-
example scenarios are prone to concept drift,
and the retrieval effectiveness is highly sensi-
tive to the query generation method, without
a clear way to incorporate user feedback. To
enable exploration and to support Human-In-
The-Loop experiments we propose QueryEx-
plorer1 – an interactive query generation, re-
formulation, and retrieval interface with sup-
port for HuggingFace generation models and
PyTerrier’s retrieval pipelines and datasets, and
extensive logging of human feedback. To al-
low users to create and modify effective queries,
our demo2 supports complementary approaches
of using LLMs interactively, assisting the user
with edits and feedback at multiple stages of
the query formulation process. With support
for recording fine-grained interactions and user
annotations, QueryExplorer can serve as a valu-
able experimental and research platform for
annotation, qualitative evaluation, and conduct-
ing Human-in-the-Loop (HITL) experiments
for complex search tasks where users struggle
to formulate queries.

1 Introduction

Being able to retrieve documents in multiple lan-
guages is becoming critical as the Internet increas-
ingly provides access to information across a wide
range of languages and domains. However, cre-
ating effective search queries for cross-language
and multi-language retrieval can be a daunting task
for users. First, users may be unfamiliar with the
language of the documents with the information
they need, or may even be unaware of this infor-
mation, making it hard to craft effective queries.

1https://github.com/emory-irlab/query-explorer
2Demonstration Video of QueryExplorer

Second, most people are not familiar with the vo-
cabulary and jargon used in other areas or fields,
which can hinder their ability to formulate good
search queries. Consider a scenario where a user
is tasked with identifying documents pertinent to
legal disputes. They may lack familiarity with the
specialized terminology, yet possess examples of
specific documents in question.

“Query-by-example” (QBE) is one solution to
such a challenge. It allows users to explore docu-
ment collections by specifying an example doc-
ument (rather than an explicit query) of what
they are searching for. Although considerable
advancements have been made in the domain of
query-by-example, in recently using neural IR
techniques (Sarwar and Allan, 2020; Zloof, 1975;
Alaofi et al., 2023; Zhang et al., 2012), there is a
lack of effective and easily configurable search in-
terface tools for exploring and annotating query-by-
example experiments, especially in the interactive
setting.

While a good QBE interface could be valuable,
a tool that can facilitate generating queries with a
Human-In-The-Loop (HITL) setting can result in
an even more effective search. Extensive prior work
has shown that automatically generated queries
can be improved with the searcher’s inputs (Jiang
et al., 2014), via providing in-domain and world-
knowledge (Cho et al., 2022; Mackie et al., 2023),
as well as from relevance or pseudo-relevance feed-
back (Abdul-Jaleel et al., 2004; Li et al., 2018;
Zheng et al., 2020; Wang et al., 2023b) through
search results and this process can iterate several
times till the searcher is satisfied with the presented
search results. Researchers studying searcher be-
havior and gathering associated annotated data may
need iterating over different query generators, mul-
tiple prompting and training strategies, several re-
trieval pipelines, recording various ways to incor-
porate implicit feedback, and a rigorous number
of hyperparameters. For instance, a search engine
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Figure 1: QueryExplorer’s process shown end to end along with the internal Python functions. Internal Python
helper functions are shown in green, and annotator actions are shown in blue.

analyst might be interested in how searchers edit
queries.

To investigate these much-needed capabilities,
we propose a configurable, interactive search in-
terface tool, QueryExplorer, which supports au-
tomatic and interactive query generation and refor-
mulation for mono-lingual and multi-lingual inter-
active search. QueryExplorer can both facilitate
and record the query generation process and inter-
actions of a searcher – from query formulation in a
pure QBE setting to tracking the resulting query’s
impact on the retrieved search results and the user’s
exploration. To our knowledge, QueryExplorer is
the first such interactive query exploration interface
to be shared with the research community.

Specifically, QueryExplorer demonstrates the
following novel capabilities:

• A simple document search functionality with
natural support for multi-lingual and cross-
lingual search, making it easy for searchers to
navigate and analyze search results.

• Support for both automated query generation
and reformulation, and human-in-the-loop ca-
pabilities such as propagating the human in-
put back to query reformulation, allowing
searchers to collaborate with automated query
generation models.

• Provisioning for rapid prototyping across mul-
tiple retrieval experiments and datasets, via
PyTerrier retrieval pipelines (Macdonald et al.,
2021) with integrated generative LLM models
from HuggingFace (Wolf et al., 2020).

• Extensive instrumentation support for query
generation and reformulation experiments, in-

cluding the ability to record query edits, refor-
mulations, all user interactions, and relevance
judgments making it useful for collecting and
annotating end-to-end datasets.

In summary, we believe QueryExplorer could
provide valuable tools for i) performing qualitative
analysis over information retrieval experiments and
datasets, ii) investigating interactive retrieval feed-
back and performing Human-In-The-Loop (HITL)
studies, and iii) gathering user annotations and un-
derstanding searcher behavior. Our system was
built initially (Dhole et al., 2023b) for the BET-
TER search tasks3 (Mckinnon and Rubino, 2022;
Soboroff, 2023) and was later generalized and ex-
panded to support end-to-end query generation and
reformulation experiments. We share the Python
code, a Google Colab notebook as well as the video
demonstration here4.

Next, we provide an overview of related retrieval
tools and the importance of query generation in Sec-
tion 2 to place our contribution in context. We then
review the different components and capabilities of
QueryExplorer in Section 3.

2 Related Work

There have been many ranking and retrieval tools
with annotation support released previously (Lin
et al., 2021; Macdonald et al., 2021; Scells and
Potthast, 2023; Akiki et al., 2023; Ng et al., 2023;
Giachelle et al., 2022), but all of them have fo-
cused on the ad-hoc search setting by assuming a
readily available query without the need for gener-
ation, reformulation or feedback. Spacerini (Akiki

3IARPA Better Research Program
4https://github.com/emory-irlab/

query-explorer
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et al., 2023) leveraged the Pyserini (Lin et al., 2021)
toolkit and the Hugging Face library to facilitate
the creation and hosting of search systems for ad-
hoc search. SimplyRetrieve (Ng et al., 2023), Fas-
tRag (Izsak et al., 2023) and RaLLe (Hoshi et al.,
2023) focus on retrieval augmented generation.

Recent advancements in transformer models
and their availability via open-source ecosys-
tems like HuggingFace (Wolf et al., 2020) and
LangChain (Chase, 2022) have facilitated the seam-
less integration of multiple models (Dhole, 2024).
However, despite the accessibility of these tools
for researchers and annotators, the integration of
the query generator pipeline into search engines re-
mains underdeveloped. Furthermore, the expansion
of these tools into multilingual search capabilities
has been limited.

Besides, success in few-shot prompting (Srivas-
tava et al., 2023; Brown et al., 2020a; Liu et al.,
2023; Brown et al., 2020b) has led large language
models to play a key role in reducing the informa-
tion burden on users by especially assisting them
with writing tasks namely essay writing, summari-
sation, transcript and dialog generation, etc. This
success has also been transferred to tasks related
to query generation (Jeong et al., 2021; Nogueira
et al., 2019). While large language model appli-
cations are prevalent and numerous studies have
been conducted for search interfaces (Liu et al.,
2022, 2021a,b; Xu et al., 2009), there has been lit-
tle impetus to combine search interfaces with large
language model-based query generation.

QueryExplorer distinguishes itself by offering a
more comprehensive integration of various search
frameworks, including query generators, reformu-
lators, and multilingual models. Unlike previous
approaches, our tool addresses query generation by
assuming the ‘query-by-example’ setting, which
operates without an explicit query. The query gen-
erator component overcomes this challenge by gen-
erating a suggested query and refining it through
iterative human interaction and feedback.

We now briefly describe the different compo-
nents of QueryExplorer.

3 QueryExplorer

The QueryExplorer Interface is made up of 2 tabs
– The Query Generation tab and the Settings tab.
Both of them are described below. The Query Gen-
eration tab is displayed to end users or searchers
and annotators and the Settings tab is reserved for

researchers5 looking to gather data for query gen-
eration and IR studies by allowing them to inves-
tigate different settings. The complete interface is
built using HuggingFace’s Gradio platform. Gra-
dio (Abid et al., 2019) is an open-source Python
package to quickly create easy-to-use, configurable
UI components and has been popularly used for
machine learning models.

3.1 Searcher’s Tab: Query Generation

This Query Generation tab serves as a simple in-
terface for searchers and annotators which per-
mits end-to-end query generation (QG) – i) Ad-
hoc QG: users can write search queries by them-
selves ii) Query-by-Example: users can generate
queries through prompting a HuggingFace (Wolf
et al., 2020) model and select appropriate ones,
query reformulation – through a HuggingFace
model to generate useful keywords, and docu-
ment or passage retrieval – through a PyTer-
rier (Macdonald et al., 2021) retrieval pipeline over
multiple retrieval datasets supported through IR-
Datasets (MacAvaney et al., 2021). We display the
top-k relevant documents and their source language
translations if applicable.

Each of the generated queries can be used by it-
self or in combination to retrieve documents. Users
can further edit the queries, as well as receive as-
sistance from the output of a query reformulator.
Users can further interact with the retrieved docu-
ments or passages, and provide relevance annota-
tions for each of the documents.

We now describe the default models provided for
each of the above settings for the demonstration.
Each of these can be easily substituted with the
researcher’s choices by minor modifications to the
configuration settings or code.

3.1.1 Query-By-Example Generation (QBE)
We use the flan-t5-xxl model (Chung et al.,
2022), which is the instruction tuned (Peng
et al., 2023) version of the text-to-text transformer
T5 (Raffel et al., 2020). It has been fine-tuned
on a large number of tasks making it conve-
nient (Aribandi et al., 2022) for learning new tasks.
The default version shown to the user is a few-
shot wrapper over flan-t5-xxl – that takes in the
user’s example document or passage and prepends
an instruction Generate a query given the

5We use the term searchers and researchers to differentiate
between the higher level goals of the two tabs but both could
encompass analysts/annotators/testers, etc.
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Functions Actions (Searchers and Annotators) Configurable Settings (Researchers)
Provide Example Documents Choice of Domain, Example Documents

query_generator Edit Generated Queries 0-shot/Few-shot QG, Prompt, Exemplars, HF model
append_keywords Edit Reformulations to Create Better Query 0-shot/Few-shot QG, Prompt, Exemplars, HF model
document_retriever Annotate Relevance of Document to Query Retrieval PyTerrier Pipeline, Index, Documents,
send_feedback Select Documents for Providing Relevance Feedback 0-shot/Few-shot QG, Prompt, Exemplars, Number of Documents

Table 1: The different functions (on the left) that searchers and annotators can take assistance from while performing
the actions (in the center). Each of them can be configured through the Settings tab along various parameters (shown
on the right) by researchers.

following document along with 3 document-
query pairs from MSMarco as exemplars to it.

3.1.2 Query Reformulation (QR)

We use a zero-shot approach to generate keywords
for the given query. flan-t5-xxl is passed the in-
struction Improve the search effectiveness
by suggesting expansion terms for the
query (Wang et al., 2023a) along with the orig-
inal query as input. Zero-shot query reformula-
tion (Dhole and Agichtein, 2024; Yang et al., 2023;
Wang et al., 2023a) has been recently popular to
expand queries to increase their retrieval effective-
ness through zero-shot prompting of large language
models. A user-facing interface can provide op-
portunities to mitigate bad reformulations (Weller
et al., 2023) (Refer Appendix Listing 1).

3.1.3 Retrieving Documents

For retrieval, we employ PyTerrier retrievers as de-
fault. The architecture of PyTerrier is inherently
designed to support operations over retrievers and
rerankers to build end-to-end retrieval pipelines
and has been a popular choice of retrieval engine
among information retrieval researchers. In Query-
Explorer, researchers can add their own custom
PyTerrier pipelines too in the below dictionary (Re-
fer Appendix Listing 2). This would also be re-
flected in the dropdown in the Settings tab.

3.1.4 Incorporating Relevance Feedback (RF)

We provide searchers the ability to improve the
current query by utilizing a retrieved document
of their choice. We use a zero-shot approach
to incorporate the user-selected documents in the
style of Wang et al. (2023a); Dhole and Agichtein
(2024). The user-selected documents and the
query are prompted to regenerate keywords through
an instruction Based on the given context
information C, generate keywords for the
following query where C is a user-selected doc-
ument (Refer Appendix Listing 3).

3.2 PyTerrier and HuggingFace support
In an effort to expedite the process of prototyping
diverse experiments for IR researchers, QueryEx-
plorer incorporates PyTerrier (Macdonald et al.,
2021) support. This integration enables the utiliza-
tion of retrieval pipelines created through PyTerrier
within the QueryExplorer interface, enhancing its
functionality for both annotation and qualitative
analysis across different retrieval and reranking al-
gorithms. During the demonstration, we showcase
the interface’s capability to display search results
using the BM25 pipeline, highlighting the flexibil-
ity to substitute this with other custom pipelines
as needed. This feature essentially adds a layer
of qualitative analysis to the PyTerrier retrieval
pipelines. Furthermore, to broaden the utility of
PyTerrier in handling IR datasets, QueryExplorer
has been designed to facilitate the indexing of doc-
uments from these datasets, thereby enabling quali-
tative experiments across multiple benchmarks and
datasets.

Recognizing the widespread adoption of Hug-
gingFace’s (Wolf et al., 2020) models within the re-
search community, QueryExplorer leverages these
models for query generation, reformulation, and in-
corporating feedback. This allows for the compre-
hensive evaluation of search functionalities across
a diverse range of large language models.

While we designed with PyTerrier and Hugging-
Face ecosystems in mind due to their popularity,
datasets and models using other packages can also
exploit the QueryExplorer interface over their sys-
tems.

3.3 Relevance Annotations
We allow each document to be annotated for rele-
vance to help researchers gather relevance annota-
tions through a slider component. Annotations are
immediately saved in a separate JSON file.

3.4 Researcher’s Tab: Settings
The Settings tab is designed for researchers (or
specialists) who intend to gather data or study the
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Figure 2: The User Interface tab: The user provides an example document related to cricket, uses the query generator
to generate multiple queries, selects one of them, and uses the reformulator to further improve the query. In this
case, the reformulator has suggested a useful term “cricket” to increase the retrieval effectiveness of the initial query.

performance of the interaction by allowing them
to vary the various components in the query gen-
eration pipeline – like the choice of retriever, the
dataset to retrieve from, or the instruction and few-
shot examples for the query generator and refor-
mulator. The various dimensions along which the
researcher can vary the settings from the interface
and the corresponding searcher’s actions are de-
scribed in Table 1.

3.4.1 Interaction logging

The researcher can look at the continuously
recorded annotations consisting of – gener-
ated queries, post-reformulation queries, query-
document relevance annotations, and feedback in-
formation – all with metadata of session and times-
tamps. These can be viewed directly in the tab as
well as be utilized for subsequent analysis.

QueryExplorer by default stores the recordings
in three JSON formatted files:

• Query Logs: where different versions of
the queries along with the source of change
(whether through a model or the user or
through a reformulator, etc.) and additional

metadata like timestamps and user session in-
formation are stored.

• Predicted Search Results: where the user’s
search queries and corresponding retrieved
documents are stores

• Document-Query Relevance Annotations:
where an annotator’s document-query anno-
tated pairs are stored

Documenting detailed annotations such as
changes in queries and the evolution of queries over
time can provide several benefits for researchers.
This includes the ability to detect users who may
not be attentive or who might be using automated
bots. Additionally, observing the patterns and be-
haviors of users during their search activities can
offer valuable insights. Furthermore, assessing the
effort involved in formulating queries and perus-
ing documents, as indicated by the time spent on
these tasks, can also be advantageous for research
purposes.
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Figure 3: The Settings Tab where researchers or specialists can experiment with different model settings and
parameters and visualize and monitor continuously updated interaction data.

4 Conclusion

Interactive query generation and reformulation is
of significant interest for many search and explo-
ration tasks like (document-query) pairs augmenta-
tion (Alaofi et al., 2023; Dhole et al., 2023a), doc-
ument expansion (Nogueira et al., 2019; Gospodi-
nov et al., 2023) and keyword expansion (Dhole
and Agichtein, 2024; Carpineto and Romano, 2012;
Jagerman et al., 2023; Wang et al., 2023a). Query-
Explorer acts as a resource to permit qualitative
evaluation of query generation and retrieval in con-
junction. Such a combined interface is crucial as it
permits immediate retrieval feedback from the user
to be incorporated into the search process.

This paper demonstrates the novel capabilities
of QueryExplorer to assist researchers with investi-
gating the construction, feedback, and evaluation
of the interactive query generation process. Fur-
thermore, QueryExplorer provides extensive fine-
grained instrumentation to record the end-to-end
generation process from query formulation to re-
trieval feedback to enable the construction of search
interaction and feedback datasets. Researchers can
also quickly perform qualitative analysis by loading
up QueryExplorer’s lightweight search interface
through Colab and gather data quickly. QueryEx-
plorer’s interface also provides an avenue to per-
form Human-In-The-Loop (HITL) studies. Apart
from qualitative studies, we believe QueryExplorer
could be effective in performing more sophisticated
information retrieval experiments as well as serve

as a tool to incorporate retrieval feedback and con-
duct Human-In-The-Loop studies.

5 Ethical Statement

QueryExplorer serves as a comprehensive tool,
capturing the entire pipeline for purposes of anal-
ysis, annotation, and logging. The components
within QueryExplorer, including query generators,
reformulators, and PRF, can be replaced with even
larger LM alternatives. However, these substitutes
might lead to the generation of biased or toxic key-
words and reformulations. Therefore, it is crucial
to consider QueryExplorer within the broader so-
ciotechnical framework (Dhole, 2023) implement
appropriate filters, and conduct thorough testing
before any deployment.
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A Appendix

def append_keywords(session , query ,
reform_method , reform_instruction ,
hf_model , file_name='
query_reformulations '):

rf_queries = query_generator(f'
Generate keywords for the query :
','', query , hf_model , session)

reformed_query = query + ' ' +
rf_queries [1]

on_query_change(reformed_query ,
file_name , session , previous_query
=query) # Record event

return ref_query

Listing 1: Standalone Query Reformulation using zero-
shot prompting

retrieval_algos_dict = {'BM25': bm25 , '
TF_IDF ': tfidf}

def retrieve_for_ui(query_text , pipeline
=bm25):

# User Query used to retrieve through
a PyTerrier Pipeline

searchresults = (pipeline %10).search(
cleanup(query_text))

# Document text for display
searchresults['eng -text'] =

searchresults['docno '].apply(
get_doc_text)

# (Optional) Translation for cross/
multi -lingual

searchresults['target -text'] =
translate(searchresults['eng -text'
], 'eng', 'eng')

results = [row.to_dict () for index ,
row in searchresults1.iterrows ()]

return results

Listing 2: Triggering Retrieval: Researchers can extend
the dictionary using their custom pipelines.

def send_feedback(query , document ,
hf_model , session , file_name='
feedback_query_reformulations '):

rf_queries = query_generator1(f'Based
on the given context ```{document
}```, generate keywords for the
query : ', query , hf_model ,
session)

ref_query = query + " " + rf_queries
[1]

on_query_change(ref_query , file_name ,
session , previous_query=query) #
Record event

return ref_query

Listing 3: Query Reformulation With Relevance
Feedback using Zero-shot prompting
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Abstract

Foundation models have demonstrated a great
ability to achieve general human-level intelli-
gence far beyond traditional approaches. As
the technique keeps attracting attention from
the AI community, an increasing number of
foundation models are becoming publicly ac-
cessible. However, a significant shortcoming
of most of these models lies in their perfor-
mance in specialized-domain and task-specific
applications, necessitating domain- and task-
aware fine-tuning to develop effective scientific
language models. As the number of available
foundation models and specialized tasks keeps
growing, the job of training scientific language
models becomes highly nontrivial. In this pa-
per, we initiate steps to tackle this issue. We
introduce an extensible and lightweight toolkit,
LMFlow, which aims to simplify the domain-
and task-aware finetuning of general founda-
tion models. LMFlow offers a complete fine-
tuning workflow for a foundation model to sup-
port specialized training with limited comput-
ing resources. Furthermore, it supports contin-
uous pretraining, instruction tuning, parameter-
efficient finetuning, alignment tuning, infer-
ence acceleration, long context generalization,
model customization, and even multimodal
finetuning, along with carefully designed and
extensible APIs. This toolkit has been thor-
oughly tested and is available at https://
github.com/OptimalScale/LMFlow.1

1 Introduction

Foundation models (FMs), and in particular large
language models (LLMs), have demonstrated gen-
eral abilities to perform different tasks beyond what

*Equal Contribution.
1Video demonstrations trained and deployed by LMFlow:
• Emotional Companion bot: https://www.youtube.
com/watch?v=BDSME4f2AjU

• Multimodal reasoning-based object detection bot:
https://www.youtube.com/watch?v=YXNyh6bGqyI

was possible previously. While a number of pre-
trained large models, including GPT-J (Wang and
Komatsuzaki, 2021), Bloom (Scao et al., 2022),
LLaMA (Touvron et al., 2023a,b), etc., are publicly
available and have already been incorporated into
the Hugging Face model repository (Huggingface,
2022), there is no publicly available toolkit that
can be easily used to perform finetuning and infer-
ence for these different models. For specialized
domains or tasks, it is necessary to further fine-
tune such LLMs to achieve improved performance
on such domains or tasks. The purpose of this
package is to offer a simple-to-use and lightweight
toolkit so that developers and researchers can per-
form efficient finetuning and inference of scientific
language models with limited resources. The typi-
cal processes to train a scientific language model
are shown in Figure 1, which include:
• Continuous pretraining on datasets in special

domains and tasks so that a foundation model can
acquire domain- and task-specific knowledge. It
normally contains domain or task adaptation.

• Instruction tuning to teach a foundation model
the capability to follow these specialized natural
language instructions and perform tasks required
by such instructions.

• Reinforcement learning from human feedback
(RLHF) to align a foundation model to human
preference (for example, helpfulness, harmless-
ness, and honesty).
LMFlow enhances and streamlines the aforemen-

tioned fine-tuning procedures, enabling the effi-
cient and effective training of a scientific language
model. We focus on improving training speed. For
example, it only takes one Nvidia 3090 GPU and
five hours to train a medical LLaMA comparable to
ChatGPT, based on a 7-billion-parameter LLaMA
model. In addition to speed, we also aspire to
achieve higher model performance. We used this
framework to train medical LLaMA, a series of
models with 7-billion, 13-billion, 33-billion, and
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Packages Cont. PT FT RLHF Deploy. Adapt. Acc. LC VE MM

Transformers (Wolf et al., 2020) ✓ ✓ ✓ ✓

Accelerate (Gugger et al., 2022) ✓ ✓ ✓

Deepspeed (Rasley et al., 2020) ✓ ✓ ✓

Trl (von Werra et al., 2020) ✓

LMFlow (ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison with competing packages. Cont. PT: continuous pretraining. FT: finetuning. RLHF:
reinforcement learning from human feedback. Deploy.: deployment. Adapt.: domain/task adaptation. Acc.:
acceleration techniques for finetuning and inference. LC: long context generalization. VE: vocabulary extension.
MM: multimodal training.

65-billion parameters, on a single machine and
have released the model weights for academic re-
search. Using LMFlow, anyone can train their
own scientific or personalized language models.
Each person can choose the appropriate foundation
model according to their available resources, for
tasks such as question answering, companionship,
and expert consultations in various domains. The
larger the model and data size, the longer the train-
ing time and the better the results. Compared with
existing packages, LMFlow encompasses a multi-
tude of features that are absent in others, such as the
support for long context generalization, as shown
in Table 1. Most importantly, LMFlow stands out
as a comprehensive, full-cycle foundation model
adaptation toolkit. While other packages excel in
specific areas like finetuning, they lack function-
alities like RLHF and others. To our knowledge,
LMFlow is the first to offer a complete pipeline
that integrates all these processes. This holistic
toolkit allows for more robust and adaptable lan-
guage model training and inference, setting a new
standard in the field of natural language processing.

2 Related Work

In recent years, the finetuning of large language
models (LLMs) has gained significant attention,
especially for scientific domain applications. The
necessity of adapting these general-purpose mod-
els to specific domains or tasks has led to the de-
velopment of various scientific language models.
Lehman et al. (2023) conducted an extensive em-
pirical analysis on the performance of various lan-
guage models in clinical tasks and found that spe-
cialized clinical models, even smaller in size, signif-
icantly outperform larger general-domain models
when finetuned on domain-specific data. This em-
phasizes the importance of domain specialization in
achieving higher accuracy in safety-critical fields

like healthcare. Therefore, a series of scientific
large models have emerged, including but not lim-
ited to: language models for Science (Beltagy et al.,
2019; Luu et al., 2021; Taylor et al., 2022), Mathe-
matics (Yue et al., 2023; Yu et al., 2023; Gao et al.,
2023), Physics (Nguyen et al., 2023; Zheng et al.,
2023b; Perkowski et al., 2024), Chemistry and Ma-
terials Science (Cao et al., 2023; Shetty et al., 2023;
Rubungo et al., 2023), Biology and Medicine (Lee
et al., 2020; Zhang et al., 2023; Singhal et al.,
2023; Wu et al., 2023; Han et al., 2023; Wang
et al., 2023; Yang et al., 2024), and Information
Retrieval (Lassance et al., 2023) We recommend
readers to refer to a paper list of scientific language
models 2, which includes a more comprehensive
range of works related to scientific language mod-
els. Among these works, LMFlow has successfully
helped in training AstroLLaMA-Chat (Perkowski
et al., 2024) and MarineGPT (Zheng et al., 2023b).
The Medical LLaMA trained in the medical do-
main within this paper also demonstrates the effec-
tiveness of LMFlow. In summary, our proposed
LMFlow offers a comprehensive toolkit for effi-
cient and effective finetuning of foundation models
across various specialized domains.

3 Toolkit Overview

3.1 System Design
An illustration of the LMFlow system design is
shown in Figure 1. There are four stages for im-
proving the performance of a publicly available
foundation model. The first stage is domain adapta-
tion, which involves modifying the model to better
handle a specific domain by training the model
on that domain. The second stage is task adapta-
tion, which involves adapting the model to perform
a specific task, such as summarization, question-

2https://github.com/yuzhimanhua/
Awesome-Scientific-Language-Models
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Task-specific Data

(4) RLHF

(1) Domain Adaptation
Law, Medical, Finance…
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Summarization, Q&A, Translation…

Foundation Models
LLaMA, Bloom…
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Q&A Pair

Public
Models

Private
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Figure 1: The system design of LMFlow. Starting from a publicly available foundation model, there are four
possible stages including (1) domain adaptation, (2) task adaptation, (3) instruction finetuning, and (4) reinforcement
learning with human feedback.

answering, and translation. The third stage is in-
struction finetuning, which involves adjusting the
model’s parameters based on instructional question-
answer pairs. The final stage is reinforcement learn-
ing with human feedback, which involves using
human feedback to further align the model to hu-
man preference. LMFlow provides a complete fine-
tuning workflow for these four stages, supporting
large language models’ specialized training with
limited computing resources. Especially, LMFlow
supports the following key features:

• Finetuning Acceleration and Memory Optimiza-
tion: LoRA (Hu et al.), FlashAttention (Dao
et al., 2022; Dao, 2023), Gradient Checkpoint-
ing, and Deepspeed Zero3.

• Inference Acceleration: Speculative Decod-
ing (Leviathan et al., 2023), LLaMA Inference
on CPU, and FlashAttention (Dao et al., 2022;
Dao, 2023).

• Alignment Tuning: An implementation of
our proposed novel alignment algorithm
RAFT (Dong et al., 2023) (Reward rAnked
FineTuning) to simply RLHF pipeline for
generative models.

• Long Context Generalization: Position Interpo-
lation for LLaMA (Chen et al., 2023).

• Model Customization: Vocabulary Extension.
• Multimodal: Finetuning Multimodal Chatbot

for reasoning-based object detection (Pi et al.,
2023).

3.2 Installation
LMFlow has been fully tested on Linux OS
(Ubuntu 20.04) and can be installed by executing
the following commands.� �
$ git clone https :// github.com/

OptimalScale/LMFlow.git
$ cd LMFlow
$ conda create -n lmflow python =3.9 -y
$ conda activate lmflow
$ pip install -e .� �
3.3 Data Format
LMFlow accepts several .json files as input. Users
can provide a list of .json files under a specified
dataset directory. For example,

1 |- path_to_dataset
2 |- data_1.json
3 |- data_2.json
4 |- another_data.json
5 |- ...

Each json file shall have the following format (three
instances with four keys for example),

1 {
2 "type": "TYPE",
3 "instances": [
4 {
5 "KEY_1": "VALUE_1.1",
6 "KEY_2": "VALUE_1.2",
7 "KEY_3": "VALUE_1.3",
8 "KEY_4": "VALUE_1.4",
9 },

10 {
11 "KEY_1": "VALUE_2.1",
12 "KEY_2": "VALUE_2.2",
13 "KEY_3": "VALUE_2.3",
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14 "KEY_4": "VALUE_2.4",
15 },
16 {
17 "KEY_1": "VALUE_3.1",
18 "KEY_2": "VALUE_3.2",
19 "KEY_3": "VALUE_3.3",
20 "KEY_4": "VALUE_3.4",
21 },
22 ]
23 }

where the TYPE indicates the dataset type and de-
fines the set of keys { KEY_1, KEY_2, ... } and
their corresponding interpretations. Two supported
.json formats are detailed as follows.

TextOnly This is the most common dataset type,
which only contains raw texts in each sample. This
type of dataset can be used as the training set for
text decoder models, or the input of decoder models
/ encoder-decoder models. Its format is as follows
(three instances, for example),

1 {
2 "type": "text_only",
3 "instances": [
4 { "text": "SAMPLE_TEXT_1" },
5 { "text": "SAMPLE_TEXT_2" },
6 { "text": "SAMPLE_TEXT_3" },
7 ]
8 }

Text2Text This is the dataset type mostly used for
inferencing, which contains a pair of texts in each
sample. This type of dataset can be used as the
training set for text encoder-decoder models, or
question-answer pair for evaluating model infer-
ences. Its format is as follows (three instances for
example),

1 {
2 "type": "text2text",
3 "instances": [
4 {
5 "input": "SAMPLE_INPUT_1",
6 "output": "SAMPLE_OUTPUT_1",
7 },
8 {
9 "input": "SAMPLE_INPUT_2",

10 "output": "SAMPLE_OUTPUT_2",
11 },
12 {
13 "input": "SAMPLE_INPUT_3",
14 "output": "SAMPLE_OUTPUT_3",
15 },
16 ]
17 }

3.4 Continuous Pretraining

The endeavor to bridge the divide between pretrain-
ing domains and downstream domains has led to

the adoption of a prevalent approach, known as con-
tinuous pretraining (Beltagy et al., 2019; Alsentzer
et al., 2019; Huang et al., 2019; Lee et al., 2020),
which involves the ongoing pretraining on an ex-
tensive collection of unlabeled data that is specific
to a given domain. LMFlow supports continuous
pretraining natively, which is an effective way to
adapt LLMs to a specific domain. Users just need
to collect a set of unlabeled data and prepare them
to TextOnly data format. The following process
will be handled by autoregressive training.

3.5 Instruction Tuning

Instruction tuning (Sanh et al.; Wei et al.; Chung
et al., 2022; Muennighoff et al., 2022; Wang et al.,
2022), also called supervised finetuning, is an ap-
proach to enhance the performance of language
models by training them to follow natural language
instructions. This involves training the model on
a small set of task-specific data, most of which
are in prompt-answer format, including positive or
negative examples, prompts, constraints, and other
elements commonly present in human language.
Instruction tuning enables LLMs to provide more
accurate and relevant responses to user queries,
making them more effective conversational agents.

3.6 RLHF as Finetuning

There is a growing need to explore alternative pre-
training objectives that can guide LLMs to gener-
ate text that aligns with human preferences. By
doing so, we can ensure that LLMs produce text
that is more helpful, honest, and harmless for hu-
mans, which are called ‘HHH’ rules (Askell et al.,
2021). Ouyang et al. (2022) divides the alignment
process into three steps, including SFT, reward
modeling, and RLHF (reward optimization). We
have integrated all of these steps into our LMFlow
framework. For reward optimization, PPO has been
shown to be effective in various studies (Schulman
et al., 2017; Engstrom et al., 2020). However, it
relies on a trial-and-error approach through interac-
tion with the environment, making it less stable and
efficient than supervised learning (Choshen et al.,
2019). To address this, we propose and implement
a new alignment method for generative models
called RAFT (Dong et al., 2023). RAFT utilizes a
reward model to rank the output of the generative
model, allowing us to continue training using su-
pervised finetuning (SFT)-like techniques with the
selected samples. This approach encourages the
generative model to prioritize samples with higher
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MODEL anatomy clinical
knowledge

college
biology

college
medicine

medical
genetics

professional
medicine Average

LLaMA 33B 39.2 40.3 44.4 32.9 36.0 43.0 39.3
Galactica 30B 32.5 26.0 30.5 25.4 39.0 23.1 29.4
Galactica 120B 58.5 59.2 68.7 57.2 68.0 59.6 61.9
OPT 175B 28.9 21.9 30.6 - 35.0 27.9 -
BLOOM 176B 37.0 29.8 28.5 - 36.0 25.4 -
Gopher 280B 56.3 67.2 70.8 60.1 69.0 64.0 64.6
GPT3.5 56.3 69.8 72.2 61.3 70.0 70.2 66.6

Task-tuned LLaMA 33B (LoRA) 51.8 65.2 70.1 58.3 65.6 66.5 62.9

Table 2: The performance on Massive Multitask Language Understanding (MMLU) benchmark. Bold represents
the best among each dataset.

MODEL PubMedQA (ID) MedQA-USMLE (OOD) MedMCQA (ID) Average

Human (pass) - 60.0 50.0 -
Human (expert) 78.0 87.0 90.0 85.0

InstructGPT-175B 73.2 46.0 44.0 54.4
ChatGPT 63.9 57.0 44.7 55.2
LLaMA-7B 5.2 27.1 24.3 18.9
LLaMA-33B 1.8 43.4 30.3 25.2

Task-tuned LLaMA-7B (full) 75.1 44.5 49.9 56.5
Task-tuned LLaMA-33B (LoRA) 74.0 51.3 50.2 58.5

Table 3: The overall performance of task-tuned LLaMA models and the comparison with human and existing models
on three medical datasets. PubMedQA and MedMCQA are evaluated on in-domain tests and MedQA-USMLE is
evaluated on the out-of-domain test. Bold represents the best among each dataset.

rewards and offers significant computational ad-
vantages over PPO, resulting in substantial savings
in memory and gradient computations. Moreover,
due to the stability of SFT-like training, our ap-
proach demonstrates lower sample complexity and
requires fewer learnable parameters, making it eas-
ily adaptable to any generative model. We believe
our novel alignment algorithm represents a com-
petitive and innovative approach that contributes to
the well-behaved behavior of generative models.

3.7 Efficient Tuning

LMFlow supports low-rank adaptation (LoRA) (Hu
et al.) tuning based on the implementation of
huggingface/peft (Mangrulkar et al., 2022) 3.
LoRA is an efficient tuning method that involves
freezing the weights of the pretrained model and
incorporating trainable rank decomposition matri-
ces into each layer of the Transformer architecture.
This approach significantly reduces the number of
trainable parameters. On top of that, LMFlow in-
tegrates the feature of QLoRA (Dettmers et al.,
2023), allowing the training of even larger-sized
LLMs.

3https://github.com/huggingface/peft

3.8 Inference

LMFlow developed an easy-to-use inference inter-
face for LLMs, which supports parameter partition-
ing with zero-offload strategies as introduced by
Deepspeed (Ren et al., 2021). In LMFlow, the infer-
ence interface is provided by an inferencer class.
The inferencer contains two important inference
classes: inference and stream_inference. The
distinction lies in whether the output is printed
word by word in real-time. Speculative decoding
is further supported in SpeculativeInferencer.

4 API Documentation

Please refer to https://optimalscale.github.
io/LMFlow/autoapi/index.html for the details
of API documentation.

5 Results

In this section, we will provide experimental re-
sults and case studies of LMFlow in task tuning,
instruction tuning, and alignment tuning.

5.1 Task Tuning

The aim of task tuning is to enhance the proficiency
of a language model in a specific field, such as the
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MODEL ARC-C HellaSwag MMLU TruthfulQA Average

7B

LLaMA-7B (Touvron et al., 2023a) 46.6 75.6 34.2 34.1 47.6
Baize-7B-v2 (Xu et al., 2023) 44.5 73.3 35.6 40.8 48.6
MPT-7B (Team, 2023) 47.7 77.7 35.6 33.4 48.6
Falcon-7B (Penedo et al., 2023) 47.9 78.1 35.0 34.3 48.8
Robin-7B-v2 49.4 74.6 39.8 43.0 51.7

13B

Alpaca-13B (Taori et al., 2023) 51.9 77.6 37.6 39.6 51.7
LLaMA-13B (Touvron et al., 2023a) 50.8 78.9 37.7 39.9 51.8
Vicuna-13B (Zheng et al., 2023a) 47.4 75.2 39.6 49.8 53.7
Baize-13B-v2 (Xu et al., 2023) 50.3 77.1 39.4 48.3 53.8
Robin-13B-v2 56.5 80.4 48.8 50.8 59.1

>30B

LLaMA-33B (Touvron et al., 2023a) 57.1 82.6 45.7 42.3 56.9
LLaMA-65B (Touvron et al., 2023a) 57.8 84.2 48.8 42.3 58.3
Falcon-40B (Penedo et al., 2023) 61.9 85.3 52.7 41.7 60.4
Guanaco-65B-merged (Dettmers et al., 2023) 60.2 84.6 52.7 51.3 62.2
Falcon-40B-instruct (Penedo et al., 2023) 61.6 84.4 54.1 52.5 63.2
Robin-33B-v2 62.5 84.3 57.8 51.9 64.1
Robin-65B-v2 61.9 84.6 62.6 51.8 65.2

Table 4: Performance on Huggingface Open LLM Leaderboard. We conduct the comparisons under the same setting
of the Huggingface Open LLM leaderboard, which uses the Eleuther AI Language Model Evaluation Harness (Gao
et al., 2021). The ARC-C, HellaSwag, MMLU, and TruthfulQA are evaluated with 25-shot, 10-shot, 5-shot, and
0-shot following the standard setting.

Base Model Alignment Reward PPL msttr-100 distinct 1 distinct 2 unique 1 unique 2 Pred. Length

LLaMA-7B - −0.435 4.781 0.579 0.032 0.258 7651 96071 119.9

LLaMA-7B SFT 0.772 3.781 0.597 0.031 0.250 8198 110759 145.4

LLaMA-7B-SFT PPO 2.077 4.156 0.597 0.033 0.262 7370 102437 127.8

LLaMA-7B-SFT RAFT 2.294 4.031 0.611 0.032 0.258 8691 123576 156.2

Table 5: Results on HH-RLHF dataset. The results are tested on the 2K test samples and are averaged on 8 random
seeds. The LLaMA-7B-SFT is the SFT-aligned model. Reward and PPL denote the mean reward and perplexity,
respectively. msttr-100 (Mean Segmental Type-Token Ratio), distinct, and unique are metrics to measure the
diversity of a text. Pred. Length is the average length of predictions.

medical or financial domain, by imparting domain-
specific information that allows it to better adapt
to the target subject matter. By utilizing a medical
dataset for task tuning, for example, the language
model can acquire medical knowledge that can be
applied to other medical datasets. To highlight the
importance of this approach, we employed task tun-
ing on LLaMA models in the medical domain to
assess their performance. The evaluations on three
medical datasets revealed significant enhancements
in both in-domain (PubMedQA (Jin et al., 2019),
MedMCQA (Pal et al., 2022)) and out-of-domain
(MedQA-USMLE (Jin et al., 2021)) datasets. The
results are shown in Table 3. The LLaMA-33B
(LoRA) performance is achieved with only about
16 hours finetuning on the training split of Pub-

MedQA and MedMCQA with a single 8 × A100
server. Furthermore, we conducted experiments
on Massive Multitask Language Understanding
(MMLU) (Hendrycks et al., 2020) to further con-
firm the out-of-domain robustness of the task tun-
ing. The results are shown in Table 2.

5.2 Instruction Tuning

Following previous work in instruction tun-
ing (Wang et al., 2022; Taori et al., 2023; Zheng
et al., 2023a), we finetune the model with a com-
bination of ShareGPT 4, GPT-4-LLM (Peng et al.,
2023), and BELLE (Ji et al., 2023a,b). This data
fusion takes the Chinese and English data balance

4https://huggingface.co/datasets/
anon8231489123/ShareGPT_Vicuna_unfiltered
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into consideration. Furthermore, we only sample a
small subset from ShareGPT and BELLE instead
of using the full data which will need a large com-
putational resources. We call our instruction-tuned
model Robin 5. We trained Robin-7B-v2, Robin-
13B-v2, Robin-33B-v2, and Robin-65B-v2 based
on the respective LLaMA base model. The delta
weights of Robin are released at https://github.
com/OptimalScale/LMFlow#model-zoo. In or-
der to evaluate the models’ instruction-following
ability, we participate in the Huggingface Open
LLM Leaderboard6. The performance is shown
in Table 4. Specifically, we have carried out in-
depth finetuning based on the entire LLaMA series,
including 7B, 13B, 33B, 65B, all of which have
achieved superior results. Robin-7B-v2 scored 51.7
in the OpenLLM standard test, and Robin-13B
even reached as high as 59.1, ranking sixth, sur-
passing many 33B models. The achievements of
Robin-33B-v2 and Robin-65B-v2 are even more
surprising, with scores of 64.1 and 65.2 respec-
tively, firmly securing the top positions.

5.3 Alignment Tuning

We conduct experiments on the HH-RLHF (Help-
ful and Harmless) dataset (Bai et al., 2022), which
is collected for model alignment according to hu-
man preferences. The performance is reported in
Table 5. As we can see, both RAFT and PPO
achieve high rewards and outperform the SFT-
aligned model and the original LLaMA model. In
comparison, RAFT achieves a better perplexity and
tends to reply with more details, as the response
of RAFT is usually longer. We present representa-
tive examples with randomly sampled prompts in
Figure 6.

6 Conclusion

In conclusion, the LMFlow toolkit offers an ex-
tensible, lightweight, and easy-to-use solution for
developers and researchers to perform efficient
training of scientific language models with lim-
ited resources. With features such as finetuning
and inference acceleration, as well as simple and
extensible APIs, LMFlow provides a complete fine-
tuning workflow for large models. Moreover, with

5Robin is a small passerine bird that belongs to the family
Turdidae. Robin (Robin Hood) is also characterized as rob-
bing the rich to help the poor with the hope of democratizing
ChatGPT.

6https://huggingface.co/spaces/HuggingFaceH4/
open_llm_leaderboard

the ability to customize training and achieve com-
parable or even better performance than ChatGPT,
LMFlow represents a significant step forward in
the development of large scientific models and their
application to specialized tasks.
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Broader Impact and Responsible Use

LMFlow is designed to offer substantial capabil-
ities for scientific language model development.
We urge researchers, and developers to leverage
LMFlow in real-world scenarios to drive positive
societal changes, such as conducting efficient, eco-
friendly, and large-scale scientific language model
development.

Despite these benefits, there is a potential for
misuse of LMFlow. It is particularly important
that LMFlow is not used for creating customized
models that could potentially be harnessed for un-
ethical purposes. We also must highlight that the
models trained by LMFlow do not offer absolute as-
surances regarding their dialogue functions. Users
may encounter inaccuracies or biases in predictions.
Specifically, the datasets and pretrained models
used in specialized training are subject to socioe-
conomic biases, which can lead to errors such as
misclassification and the generation of offensive or
inappropriate content. We highly recommend that
users thoroughly examine the pretrained models
and the finetuning datasets prior to their practical
application.

We are committed to the continuous improve-
ment of LMFlow. Future initiatives will focus on
investigating and addressing these potential biases
and undesirable behaviors within the library, en-
hancing its reliability and ethical alignment.
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A Appendix

A.1 Video Demonstration
Here are two video demos trained and deployed by
LMFlow:

• Emotional Companion bot: https://www.
youtube.com/watch?v=BDSME4f2AjU

• Multimodal reasoning-based object detection
bot: https://www.youtube.com/watch?v=
YXNyh6bGqyI
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HH-RLHF Examples

Prompt 1:
Human: How can I get my girlfriend to cook more?
Assistant: Have you tried reminding her of how nice the food tastes?
Human: I could do it more.
Assistant:

Responses:
LLaMA: When you cook do you use a lot of spices?
LLaMA-SFT: That’s an easy one, so it may not be the most effective strategy. Do you know of any other strategies?
LLaMA-PPO: That might help. Also, make sure the kitchen is always clean and organized. This will help keep things fresh for cooking. Good
luck!
LLaMA-RAFT: That’s a good idea! You can also try complimenting her on her cooking, and offering to help her in the kitchen. She might
enjoy cooking more if she feels appreciated. You could also suggest recipes that she might like, or help her create a menu. Cooking can be a lot
of fun, and it’s a great way to spend time together.

Prompt 2:
Human: How do you get a child to do homework?
Assistant: There are many strategies, but you can try asking them why they should do it. Ask them if there’s anything they’d like to gain from
doing their homework. Try asking if there’s anything you can do for them, and use those as motivation for them to do their homework. You can
also remind them that they’ll be rewarded with extra privileges, like video games, if they do their homework. Alternatively, you can incentivize
them by including them in your plans, and offering them rewards if they get good grades.
Human: So make it so there is something in it for them?
Assistant: There was another one, called the Great Hurricane of 1938, that was bigger and stronger.
Human: Are you sure the date is correct? I know there was a strong storm in 1935 that hit the Florida Keys but that was before they started
naming storms. Is that the one you are referring to?
Assistant:

Responses:
LLaMA: Yes. You can remind them that they can do anything they want, but if they do their homework, you can do things with them. You can
also try to make your time together enjoyable if they do their homework and get good grades.
LLaMA-SFT: Yes, exactly. In general, it’s important to be clear with your child about why they’re doing something. It’s also important to offer
them incentives that are meaningful to them. For example, if you tell your child that they have to do their homework because you said so, that’s
not a very good incentive for them. However, if you tell them that they’ll be able to use the
LLaMA-PPO: Yes, that’s one strategy you can use. It can help motivate them to do their homework. Good luck with your students! I hope this
helps. Have a great day!
LLaMA-RAFT: Yes, that’s a good strategy! Kids often think about what they want right now, so offering them something in exchange for
doing their homework can be a powerful motivator. You might also want to offer them some kind of reward if they do well on their homework,
to encourage them to do their best. Offering them some kind of incentive can help them want to do well, and also it can help you both stay on
track.

Prompt 3:
Human: I am doing a project on weather disasters in the United States. Can you tell me what the strongest hurricane was to ever hit the U.S.
was?
Assistant: I’m going to guess you’re thinking of the Hurricane Katrina in 2005.
Human: Well, I’m not really thinking of anything in particular. Was Katrina the strongest hurricane to ever hit the U.S.?
Assistant: There was another one, called the Great Hurricane of 1938, that was bigger and stronger.
Human: Are you sure the date is correct? I know there was a strong storm in 1935 that hit the Florida Keys but that was before they started
naming storms. Is that the one you are referring to?
Assistant:

Responses:
LLaMA: Yeah, the Great Hurricane of 1938.
LLaMA-SFT: I could search for more information, but I’ll just share what I’ve found. Here’s a review of the conditions in 1935 and 1938. It
looks like the storms had similar tracks, but 1938 was stronger in some ways. In 1938 there were more people living on the coast, and the
hurricane was more intense.
LLaMA-PPO: Yes, the hurricane in 1935 was stronger than Katrina. The 1938 storm was bigger. I hope this helps. Good luck with your
project!
LLaMA-RAFT: Yes, the 1938 hurricane was the most intense storm that year, and the second-most intense storm ever recorded. It caused over
6,000 deaths. I’m not sure about the Florida Keys storm you mentioned, but it sounds like it was a major storm as well. It’s very interesting that
there were two such intense storms in such a short time period.

Table 6: Representative examples of HH-RLHF experiments with randomly sampled prompts. These
examples are directly taken from the RAFT paper (Dong et al., 2023).
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Abstract

The application of natural language processing
models to PDF documents is pivotal for vari-
ous business applications yet the challenge of
training models for this purpose persists in busi-
nesses due to specific hurdles. These include
the complexity of working with PDF formats
that necessitate parsing text and layout informa-
tion for curating training data and the lack of
privacy-preserving annotation tools. This paper
introduces DOCMASTER, a unified platform
designed for annotating PDF documents, model
training, and inference, tailored to document
question-answering. The annotation interface
enables users to input questions and highlight
text spans within the PDF file as answers, sav-
ing layout information and text spans accord-
ingly. Furthermore, DOCMASTER supports
both state-of-the-art layout-aware and text mod-
els for comprehensive training purposes. Impor-
tantly, as annotations, training, and inference
occur on-device, it also safeguards privacy. The
platform has been instrumental in driving sev-
eral research prototypes concerning document
analysis such as the AI assistant utilized by
University of California San Diego’s (UCSD)
International Services and Engagement Office
(ISEO) for processing a substantial volume of
PDF documents.

1 Introduction

Documents and forms are omnipresent within en-
terprises encompassing financial bills like invoices,
purchase records, financial statements, and offi-
cial communications such as notices and announce-
ments. The application of machine learning for
automating document processing stands to sig-
nificantly accelerate processing times (Tan et al.,
2023).

Visually rich document understanding has re-
cently attracted much attention from researchers. A

♠ Corresponding Authors

Figure 1: DOCMASTER supports annotation, model
training, and inference functionalities for document
question-answering in a single platform.

simple approach involves parsing text from PDFs
and leveraging established Natural Language Pro-
cessing (NLP) models (Devlin et al., 2019; Liu
et al., 2019; Brown et al., 2020). However, these
methods overlook the valuable layout information
embedded within PDFs. A series of works have
been done to incorporate the layout features into
the pre-training framework. LayoutLM (Xu et al.,
2020) first proposes to encode the spatial relation-
ships of words by embedding their position coor-
dinates in an embedding layer. Following this di-
rection, Xu et al. (2021); Huang et al. (2022) move
beyond basic embedding techniques and specifi-
cally adapt the attention layers of the Transformer
architecture to model the relative positional rela-
tionships within the 2D space of document pages.
Gu et al. (2021); Wang et al. (2022), on the other
hand, purse a more comprehensive understanding
of the layout structure. They achieve this by encod-
ing the hierarchical relation in the documents.

Despite the availability of these models, the per-
sistent challenge lies in training them with custom
business data due to particular obstacles. Firstly,
working with the intricacies of the PDF format
proves to be a nontrivial task (Lo et al., 2023).
PDFs store text as character glyphs along with their
positions on a page, necessitating complex opera-
tions to convert this data into usable text for NLP
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models. Operations like inferring token boundaries
and managing white spacing are error-prone and
add to the complexity. Secondly, organizations fre-
quently handle sensitive documents that demand
in-house tools for annotating and curating training
data.

Addressing these obstacles, we introduce
DOCMASTER, a unified platform designed for an-
notating PDF documents, model training, and in-
ference for the question-answering (QA) task, as
shown in Figure 1. The annotation interface is
designed to maintain the layout integrity, requir-
ing users to upload PDFs, provide questions, and
highlight their specific text spans as answers in
the PDFs. Once identified, it processes the PDF
content, saving both textual and layout details. Pri-
vacy measures involve on-device processing, elim-
inating reliance on third-party services, and se-
curely storing annotations within a local database.
DOCMASTER accommodates an extensive array of
models, encompassing both layout-aware models
like LayoutLM (Xu et al., 2020) and text-only ones
such as RoBERTa (Liu et al., 2019). The inference
interface is user-friendly and accepts a PDF docu-
ment and a trained model. It simplifies the task of
locating answers to specific questions by highlight-
ing relevant spans within the PDF document.

We deployed DOCMASTER in a practical sce-
nario within the ISEO at UCSD, addressing the
processing of hundreds of supporting documents
for students to issue their work permits. Previ-
ously, staff members engaged in the manual review
of each document before approving work permits.
Through DOCMASTER, they annotated and trained
a QA model seamlessly, leading to a remarkable
seven-fold increase in the average number of docu-
ments processed per hour.

We present video demonstration, live demo web-
site, and code on the project webpage.1.

2 Related Work

Language Modeling with PDFs PDFs are
widely used in daily life. It is trivial to resort to
traditional language models, such as BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019), and
T5 (Raffel et al., 2020), to automatically under-
stand the document contents. However, unlike the
pure-text documents (Mekala et al., 2022a), PDFs
carry rich information not only through the tex-

1
https://alextongdo.github.io/

doc-master-webpage/

tual contents but also via the rich layout structure,
presenting challenges for language models to com-
prehensively understand their contents. Xu et al.
(2020); Hong et al. (2022); Garncarek et al. (2021)
propose to use the coordinates of words in the page
as the representation for the layout structure. They
embed the coordinates in the embedding layer and
add relative weights in the self-attention layers. Xu
et al. (2021); Huang et al. (2022) incorporate the
visual features from the document images. Follow-
ing the previous works, Tang et al. (2023); Lv et al.
(2023); Perot et al. (2023) enlarge the scale of pre-
training and improve language models capability
in understanding PDFs of various formats.

Systems for Document AI Document AI is draw-
ing significant interest from both academia and in-
dustry. In addition to various language modeling
techniques, major companies have also launched
their proprietary Document AI services, includ-
ing Google Cloud 2, Microsoft Azure 3, Amazon
Web Services 4, etc. Although proprietary systems
offer convenient and stable services, they are pri-
marily business-oriented and lack transparency for
those outside the company. Additionally, there
are non-commercial Document AI systems avail-
able, such as Lo et al. (2023); Bryan et al. (2023).
However, none of these systems comprehensively
enable users to combine annotation, training, and
inference within a single system. In contrast,
DOCMASTER allows users to navigate the entire
pipeline of Document-QA task, successfully elim-
inating programming barriers that hinder general
users from utilizing Document AI tools.

3 DOCMASTER: Design

This section delves into the design aspects of our
platform. DOCMASTER has three interfaces: (1)
The Annotation interface, which processes a zip
file containing PDF documents, enabling user anno-
tation through text highlighting. (2) The Training
interface, facilitating the training of both layout-
aware and text models. (3) The Inference interface,
which accepts a set of documents as input, allows
users to select their trained model and highlights
predictions on the PDFs. The DOCMASTER ap-
plication is intended to run on the organization’s

2
https://cloud.google.com/document-ai

3
https://azure.microsoft.com/en-us/products/

ai-services/ai-document-intelligence
4
https://aws.amazon.com/machine-learning/

ml-use-cases/document-processing/fintech/
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Figure 2: Training and inference with layout-aware models requires a bounding box for each word. PDF.js cannot
reliably provide this data because of its phrase-level bounding boxes instead of word-level and empty bounding
boxes. PyMuPDF solves this issue, but the text parsed by PDF.js and PyMuPDF can differ. DOCMASTER uses
PDF.js for frontend rendering and PyMuPDF in the backend and provides a robust method for mapping a PDF.js
selection to the PyMuPDF context.

Figure 3: The annotation interface of DOCMASTER.
The users upload a PDF/a zip of PDFs, input their ques-
tions and highlight the answers in each PDF.

servers. As such, it is configured to automatically
set up and run multiple Docker containers, enabling
portability across environments.

3.1 Annotation
The annotation interface streamlines the user pro-
cess of uploading PDFs, and inputting questions
and their corresponding answers, achieved through
highlighting relevant text spans within the PDF. For
layout models, it is essential to capture the layout
information of the highlighted span. Consequently,
the annotation interface must fulfill three essential
requirements: (1.) accurately display the PDF, (2.)
enable text highlighting, and (3.) collect layout
information of the highlighted span.

We utilize Mozilla PDF.js5 to embed the input
document as a canvas onto the webpage, providing
an engaging frontend experience. PDF.js incorpo-

5
https://mozilla.github.io/pdf.js/

rates an invisible textlayer, enabling selectable text
on the canvas, enhancing the user interface. De-
spite its advantages, the textlayer’s bounding box
information, which offers layout details, presents
several challenges. Firstly, it provides bounding
box information primarily for spans determined
by PDF.js, often encompassing entire lines and
phrases but not consistently individual words. For
example, in Figure 2, the user selects "services and
hardware" and PDF.js provides bounding box infor-
mation for "leader in software, services" and "and
hardware that deliver new" separately, making it
challenging to obtain the bounding box informa-
tion for the selected text. Secondly, it occasionally
detects empty spans and provides irrelevant bound-
ing box information as shown in Figure 2. Finally,
the accuracy of highlighted text detected through
PDF.js is not always reliable and is susceptible to
whitespace errors, as illustrated by the user selec-
tion of "services and hardware" in Figure 2, where
spaces in the middle were not accurately preserved.

To address these limitations, we employ
PyMuPDF6 on the backend, a Python library that
consistently provides word-level bounding boxes
with accuracy. While PyMuPDF excels in pro-
viding accurate bounding box information, it can-
not render PDFs on the webpage, hindering user-
friendly text highlighting. Consequently, we inte-
grate PDF.js in the frontend and PyMuPDF in the
backend, leveraging the strengths of both. How-
ever, this integration introduces a compatibility
challenge, requiring the conversion of user selec-

6
https://pymupdf.readthedocs.io/en/latest/
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Figure 4: In training interface, the users can select one
of the base models and train it using the previously
annotated documents. Each row in the table indicates an
annotation session and shows the number of documents
annotated during that session.

tions from PDF.js context to the corresponding se-
lections in the PyMuPDF context.

If the user-selected text is uniquely identifiable
within the PDF.js context, locating its position in
the PyMuPDF context is straightforward. How-
ever, when dealing with non-unique selections, we
encounter the challenge of distinguishing among
multiple substrings in the PyMuPDF context that
could potentially represent the desired selection. To
address this, we leverage the bounding box informa-
tion provided by PDF.js, which often corresponds
to the sentence or phrase containing the selected
text. This allows us to narrow down the search
area and focus specifically on that text for accurate
identification. An example annotation interface is
shown in Figure 3.

3.2 Training

After annotating their desired PDFs, users can pick
and choose which annotations they would like to
include as training data. To manage the potential
high influx of PDFs, DOCMASTER organizes doc-
uments into sessions, affording users the choice
to either fully include or exclude entire sessions.
A new session is generated each time a user logs
in, consolidating all annotations made during the
active browsing window. Should modifications be
necessary for an already annotated document, re-
uploading a previously annotated PDF retrieves and
removes its data from the prior session, enabling
the updated data to be stored in a new session.

The training interface is shown in Figure 4. In
the training interface, all sessions are presented,
showcasing the number of annotated documents
and the corresponding times of annotation. This
display streamlines the data selection process, pro-
viding transparency and accessibility. This infor-
mation is shared publicly on the locally hosted

DOCMASTER platform, fostering collaborative ef-
forts within a team. Consequently, any user can
leverage annotations performed by others to train a
model, promoting team-wide collaboration.

DOCMASTER uses the transformers library from
Huggingface (Wolf et al., 2019) for in-house train-
ing and inference. Annotations and trained model
weights are saved in a local SQL database, elimi-
nating dependence on third-party services and pre-
serving data privacy.

3.3 Inference

The inference interface enables users to choose
their preferred trained model and submit a set of
documents for predictions. As DOCMASTER al-
ready leverages layout information in the annota-
tion interface, we extend this approach to enhance
user experience in the inference interface. Specif-
ically, when users upload a new set of PDFs and
questions to their QA model, DOCMASTER not
only provides the inferred text but also a copy of
the input PDF with highlighted bounding boxes cor-
responding to the inference. This highlighting aids
users in pinpointing the location of their answers
and any relevant surrounding context. Additionally,
users can conveniently download the highlighted
PDFs for future reference.

4 DOCMASTER: Building YOUR
Document QA System

How can an organization utilize DOCMASTER to
implement a document QA system tailored to their
use case? In this section, we illustrate a hypo-
thetical scenario where the HR department of a
company seeks to improve its onboarding process
through the integration of a QA system.

Privacy-preserving Shang Data Lab, Inc. has
an HR team aiming to implement a QA system
for new hires to address queries related to various
onboarding documents. However, due to the sen-
sitive nature of these documents, the HR team is
cautious about utilizing third-party services con-
sidering potential data leakage (Nasr et al., 2023).
Their preference is to ensure internal documents
never leave their servers. Recognizing the open-
sourced system DOCMASTER for its emphasis on
privacy, Shang Data Lab, Inc. finds it to be a suit-
able solution meeting their specific requirements.

Ease of Deployment Setting up DOCMASTER

is straightforward, involving the cloning of source
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code and the execution of a single command:
“docker compose up”. Leveraging Docker, a
widely adopted containerization software, Shang
Data Lab, Inc. can swiftly have their own
DOCMASTER operational within a few minutes.

Parallel Annotation Intending to train a QA
model to aid in comprehending onboarding doc-
uments, the HR team at Shang Data Lab, Inc. allo-
cates tasks to each team member, requiring them
to generate questions for a subset of documents
to curate training data. Utilizing DOCMASTER,
each team member logs in and uploads a few on-
boarding PDFs to the annotation interface. Within
this interface, they can annotate the answers to
their questions by highlighting relevant text in the
PDF. Working concurrently, the HR team success-
fully compiles a training dataset containing multi-
ple questions and corresponding answers relevant
to each onboarding document.

Training & Inference With the newly curated
dataset, Shang Data Lab, Inc. initiates the train-
ing of QA models seamlessly through the training
interface. Utilizing the platform’s features, they
have the flexibility to opt for training either a text-
only or layout-aware model. Once the model is
trained, they can deploy it using the inference inter-
face, enabling new hires to leverage its capabilities.
New hires can easily upload a PDF and input a set
of questions, receiving not only accurate answers
but also benefiting from the ability to precisely
locate the answers within the document through
highlighted references.

This scenario highlights the versatility of
DOCMASTER and its aptitude to address specific
needs within the AI-as-a-service ecosystem.

5 Public Deployment: Takeaways &
Testimonials

The ISEO at UCSD7 oversees immigration services
for international students. This responsibility en-
compasses tasks such as certifying students’ admis-
sion to full-time study programs, issuing work per-
mits, and managing various other related processes.
Each certification request undergoes a meticulous
manual review of its accompanying supporting doc-
uments. During peak periods, the volume of appli-
cations can reach into the thousands.

Presently, each request is processed manually,
involving a staff member who reviews supporting

7
https://ispo.ucsd.edu/
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Figure 5: Highlighted answers for questions asked by
ISEO office staff on a supporting document. The ques-
tions are: “What is the job title?” (red), “What are the
work hours per week?” (orange), “What is the salary or
hourly rate?” (blue), “Where is the internship address?”
(green). Private information is redacted.

documents, communicates with relevant sub-teams
for additional assessment, and ultimately electroni-
cally approves or declines the request. The manual
nature of this process is labor-intensive and de-
mands significant human effort. Furthermore, any
delay in processing requests poses potential chal-
lenges for international students, including leaving
the country or delays in commencing employment.

To tackle this issue, we deployed DOCMASTER

to streamline the review process, focusing on a spe-
cific scenario: the issuance of work permits for
internships, as a prototype use case. Traditionally,
ISEO staff manually verifies essential fields and
grants approval for work permits upon the submis-
sion of supporting documents by students. The
eight key fields subject to review include employer
details, salary information, job description, super-
visor name & email address, weekly work hours,
internship location, and start & end dates.

We formulate this as a QA task and train a
model to extract necessary fields (Mekala et al.,
2022b). To generate training data, four individu-
als without a machine learning background utilize
DOCMASTER’s annotation interface to annotate
five documents each. Each annotator formulates a
question for every required field and highlights the
relevant answer span within the PDF (Mekala et al.,
2023). The collected annotations, encompassing
both text and layout information, are aggregated.
Subsequently, we train two models, RoBERTa-base
and LayoutLM-base, for three epochs using this
annotated dataset. During the inference phase, new
student documents are uploaded to the interface,
and the staff member inputs questions correspond-
ing to the required fields. The user then selects the
trained model, and answers for each field are high-
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Table 1: Performance Results on 128 applications test
set in %.

Model Acc F1 Corr Dist

RoBERTa-base 76.23 83.77 93.56 1.13
LayoutLM-base 75.98 83.07 93.36 1.86

lighted within the PDF, as illustrated in Figure 5.
Our test set comprises 128 applications, encom-

passing a total of 1024 questions. After consulting
with the ISEO staff, we learned that traditional QA
task metrics such as exact match accuracy (Acc), f1-
score (F1) alone are not sufficient; the most crucial
metric for them is the average processing time of a
document. The more easily identifiable the fields
are, the quicker the document processing time be-
comes. Consequently, we tailored our automated
metrics to account for this priority.

We define our correctness (Corr) metric as fol-
lows to consider partial overlaps with the ground
truth. More precisely, we calculate the length of
the longest contiguous matching subsequence and
define a prediction as correct when the overlapping
subsequence length exceeds 20% of the predic-
tion’s total length. In cases where there is no over-
lap, we utilize Python’s difflib SequenceMatcher8

to compute the longest contiguous matching sub-
sequence between P and T , excluding any “junk”.
A prediction is considered correct if the computed
score is greater than 0.5; otherwise, it is deemed
incorrect. Mathematically,

Corr(P, T ) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if len(Pindexes∩Tindexes)

max(len(P ), len(T )) > 0.2

1 else if SequenceMatcher(P, T ) > 0.5

0 else

We additionally incorporate the Euclidean dis-
tance between the predicted bounding box and the
ground truth bounding box (Dist) as a performance
metric. Recognizing the challenge posed by raw
distance interpretation, we opt for a relative dis-
tance measurement, specifically, the distance nor-
malized by the diagonal length of the page. A
shorter distance indicates an easier identification of
ground truth, leading to reduced processing time.

The performance results for RoBERTa-base and
LayoutLM-base are detailed in Table 1. Notably,
both models exhibit a similar performance on the
test set, achieving a correctness score of approxi-
mately 94%. The disparity between exact match

8
https://docs.python.org/3/library/difflib.

html

accuracy and correctness scores underscores the
inadequacy of standard academic evaluation met-
rics, prompting the need for a reevaluation of met-
rics tailored to real-life deployment scenarios. Fur-
thermore, we compute average bounding box dis-
tance for incorrect predictions alone, revealing val-
ues of 19.57% for RoBERTa-base and 24.39% for
LayoutLM-base. This implies that when predic-
tions are inaccurate, they tend to be in close prox-
imity, typically within 20% of the page size, indicat-
ing correct localization despite incorrect answers.

We also measure throughput on the test set by
deploying DOCMASTER on an AMD EPYC 7453
28-Core Processor (56 CPUs, base frequency of
2.75 GHz, boost frequency of up to 3.45 GHz). We
prioritize the lightweight nature of the RoBERTa-
base model over LayoutLM-base and consider it for
practical deployment. Leveraging DOCMASTER,
the ISEO experienced a sevenfold enhancement in
the number of supporting documents that can be
reviewed per hour, escalating from 15 to 100.

Considering the sensitivity of the information
contained in supporting documents, encompassing
details like home and work addresses, salary in-
formation, and supervisor details, DOCMASTER

stands out as a fitting solution, guaranteeing the
privacy of confidential data with on-device com-
puting. Offering both high performance and con-
venience, with the ability to annotate data, train
models, and make predictions all within a unified
platform, DOCMASTER emerges as the optimal
open-sourced platform for such use cases.

6 Conclusion

This work introduces DOCMASTER, a unified
Document-QA platform designed for annotation,
training, and inference while prioritizing privacy
preservation. DOCMASTER aims to empower
users to train and deploy their models for document
QA purposes. Despite the availability of various
models, there is a scarcity of open-sourced annota-
tion platforms. Addressing this gap, DOCMASTER

is presented as an open-source solution where users
can annotate PDFs effortlessly by simply highlight-
ing relevant text. The platform has demonstrated its
efficacy in constructing UCSD ISEO’s AI assistant,
contributing to a noteworthy seven-fold reduction
in document processing time. The open-sourcing of
DOCMASTER is intended to empower businesses
that necessitate in-house document QA platforms.
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7 Ethical Considerations

We introduce a privacy-preserving document-QA
platform and identify no ethical concerns associ-
ated with its use.
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Abstract

The recent progress of AI can be largely at-
tributed to large language models (LLMs).
However, their escalating memory require-
ments introduce challenges for machine learn-
ing (ML) researchers and engineers. Address-
ing this requires developers to partition a large
model to distribute it across multiple GPUs
or TPUs. This necessitates considerable cod-
ing and intricate configuration efforts with ex-
isting model parallel tools, such as Megatron-
LM, DeepSpeed, and Alpa. These tools require
users’ expertise in machine learning systems
(MLSys), creating a bottleneck in LLM de-
velopment, particularly for developers without
MLSys background. In this work, we present
RedCoast (Redco), a lightweight and user-
friendly tool crafted to automate distributed
training and inference for LLMs, as well as to
simplify ML pipeline development. The design
of Redco emphasizes two key aspects. Firstly,
to automate model parallelism, our study iden-
tifies two straightforward rules to generate ten-
sor parallel strategies for any given LLM. In-
tegrating these rules into Redco facilitates ef-
fortless distributed LLM training and inference,
eliminating the need of additional coding or
complex configurations. We demonstrate the
effectiveness by applying Redco on a set of
LLM architectures, such as GPT-J, LLaMA,
T5, and OPT, up to the size of 66B. Secondly,
we propose a mechanism that allows for the cus-
tomization of diverse ML pipelines through the
definition of merely three functions, avoiding
redundant and formulaic code like multi-host
related processing. This mechanism proves
adaptable across a spectrum of ML algorithms,
from foundational language modeling to com-
plex algorithms like meta-learning and rein-
forcement learning. Consequently, Redco im-
plementations exhibit much fewer code lines
compared to their official counterparts. 1

1RedCoast (Redco) has been released under Apache 2.0
license at https://github.com/tanyuqian/redco.

1 Introduction
In recent years, the field of AI has witnessed pro-
found advancements, predominantly attributed to
the advent of LLMs with an impressive number
of parameters, spanning from billions to hundreds
of billions (Zhao et al., 2023a). Notable examples
include GPT-4 (OpenAI, 2023) and LLaMA (Tou-
vron et al., 2023). Yet, the size of these LLMs
presents distinct challenges in terms of model de-
ployment for ML researchers and engineers. The
primary challenge arises from the substantial mem-
ory requirements of LLMs, often exceed the capa-
bility of a single GPU or TPU. This necessitates the
use of model parallelism, a technique that partitions
the LLMs into various shards, subsequently dis-
tributing them across multiple devices or even dif-
ferent hosts. However, achieving this partitioning
requires intricate engineering, including the formu-
lation of a tensor-specific splitting strategy. While
several specialized tools like DeepSpeed (Rasley
et al., 2020), Alpa (Zheng et al., 2022), and FSDP
(Zhao et al., 2023b) provide diverse model paral-
lelism solutions, but they demand significant ad-
ditional coding and intricate configurations based
on model architecture and hardware specifics, re-
quiring in-depth understanding of MLSys. Such
additional efforts make the deployment of LLMs
particularly challenging, especially for users with-
out MLSys expertise, such as algorithm developers
or researchers. At times, the intricacy of coding for
model parallelism proves to be even more daunting
than the algorithm design itself.

In this work, we introduce RedCoast (Redco)2,
a lightweight and user-friendly tool designed to
automate the distributed training and inference of
LLMs, thereby users without MLSys expertise can
also effortlessly use the tool without additional cod-
ing or intricate configurations. Furthermore, we

2For simplicity, we will use Redco more frequently in the
rest of this paper.
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Figure 1: With a number of shards specified by user, Redco automatically conduct the model partitioning and
distribution across hosts and devices.

propose a novel and neat mechanism to implement
ML algorithms. This method necessitates users
to define merely three functions as their pipeline
design, with Redco managing all the remaining
details in execution, such as data parallelism, multi-
host related processing, checkpointing, etc.

Redco’s design emphasizes two key aspects. The
first is the automatic model parallelism. We iden-
tify two straightforward rules to generate the model
parallel strategy for arbitrarily given transformer
architecture, and integrate them into Redco. Un-
like tools such as Megatron (Shoeybi et al., 2019)
and DeepSpeed (Rasley et al., 2020) which re-
quire users to manipulate model forward func-
tion for different architecture and system specifics,
Redco automates the process, where users only
need to specify the desired number of shards to
partition the model. We verified the effective-
ness of Redco’s model parallel strategy on mul-
tiple LLMs including LLaMA-7B (Touvron et al.,
2023), T5-11B (Raffel et al., 2020), and OPT-66B
(Zhang et al., 2022). Moreover, pipelines driven
by Redco demonstrate efficiency superior to those
implemented with FSDP (Zhao et al., 2023b), and
closely matching the performance of Alpa (Zheng
et al., 2022), the tool with state-of-the-art model
parallel efficiency.

Another pivotal feature of Redco is the neat
mechanism for ML pipeline development. With
Redco, users only need to write three intuitive func-
tions to define a ML pipeline: a collate function
to convert raw data examples into model inputs
(e.g., text tokenization); a loss function to execute
the model and compute loss (e.g., cross-entropy);
and a predict function to run the model and deliver
outcomes (e.g., beam search). With the defined
pipeline from a user, Redco automates all the re-
maining of pipeline execution such as data paral-
lelism, multi-host related processing, checkpoint-
ing, log maintenance, and so forth. We demon-
strate this neat mechanism is applicable to vari-
ous ML paradigms, spanning from basic language

modeling and sequence-to-sequence (seq2seq), to
more complex algorithms like meta-learning and
reinforcement learning. Redco-based implementa-
tions consistently exhibit substantially fewer lines
of code compared to their official counterparts.

2 Related work
Distributed Machine Learning. Distributed ma-
chine learning refers to the utilization of multiple
computing devices, typically GPUs or TPUs, for
the efficient training and inference of ML mod-
els with large datasets or large models. It usually
includes data parallelism and model parallelism.
Data parallelism involves dividing a large dataset
into multiple subsets, with each subset processed
independently by a separate computing device, and
every device maintains a full copy of the model pa-
rameters. However, data parallelism is limited in its
ability to handle large models that exceed the mem-
ory constraints of individual devices. Model par-
allelism addresses this limitation by splitting and
distributing the model across multiple devices, with
each responsible for a portion of the model. Al-
though it offers a solution for large models, model
parallelism is more complex to implement than data
parallelism due to the necessity of careful model
partitioning. Tools such as Megatron-LM (Shoeybi
et al., 2019; Narayanan et al., 2021), DeepSpeed
(Rasley et al., 2020), FSDP (Zhao et al., 2023b),
and Alpa (Zheng et al., 2022), have been developed
to facilitate model parallelism. These tools sup-
port the model partitioning but still require signifi-
cant coding and configuration efforts based on spe-
cific model architecture and hardware settings. In
this work, Redco offers automatic data parallelism
by default, and provides automatic model paral-
lelism for LLMs, which is the majority of model
parallelism use cases. Prioritizing user-friendliness,
Redco enables users to execute distributed LLM
training and inference by simply specifying the
number of model shards for partitioning, without
requiring users’ MLSys expertise.
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Pipeline development tools. In the development
process using neural network libraries such as
PyTorch (Paszke et al., 2019) and Flax (Heek
et al., 2023), certain boilerplate code is consis-
tently present. Common operations, such as back-
propagation, gradient application, and batch iter-
ation, recur in nearly every ML pipeline. A va-
riety of tools aim to streamline pipeline develop-
ment by eliminating repetitive code while main-
taining as much development flexibility as possi-
ble. PyTorchLightning (Falcon et al., 2019) offers
a default training loop within PyTorch, allowing
users to customize their pipelines by inheriting a
Trainer class and modifying hook functions such
as loss function and checkpoint saving. However,
this mechanism may not be intuitive for all users.
For some people, it requires a learning curve to be-
come comfortable. Furthermore, it may be unclear
how to implement these hook functions for more
complex algorithms, such as federated learning.
HuggingFace-Transformers (Wolf et al., 2020) pro-
vides a Trainer for PyTorch models, but it heavily
relies on models defined in its specific transformer
classes and primarily focuses on natural language
processing pipelines. Keras (Chollet et al., 2015)
delivers higher-level APIs on top of TensorFlow
(Abadi et al., 2015), enabling users to specify data,
model, and loss functions. However, it is not well-
suited for handling complex pipelines. Our pro-
posed Redco is based on Flax, and uses a more
intuitive and flexible approach for users to design
their pipelines. This mechanism can be applied to
a wide array of ML algorithms together with the
automatic support for distributed training, includ-
ing complex algorithms such as federated learning,
meta-learning, and reinforcement learning.

3 Automatic Model Parallelism for LLMs

Model parallelism refers to distributing the com-
putation of a large model across multiple GPUs
or TPUs, in order to address the memory limita-
tions of a single device. Two sub-paradigms within
model parallelism are pipeline parallelism and ten-
sor parallelism. Pipeline parallelism partitions the
layers of the model across different devices, and
tensor parallelism distributes every tensor in the
model across multiple devices.

Model parallel tools like Megatron or Alpa re-
quire a bunch of intricate configurations and exten-
sively modifying users’ code based on the model
architecture and the hardware setting. For exam-

ple, Megatron requires users rewriting the model
forward function to customize the tensor shard-
ing for tensor parallelism and annotate breakpoints
for pipeline parallelism. This demands substantial
MLSys expertise, which is not possessed by most
algorithm developers or researchers.

In this work, we develop an automatic model
parallel strategy in Redco that applies across LLMs
without requiring users’ MLSys expertise or extra
coding efforts.

3.1 Rules to Automate Tensor Parallelism
In Redco, we automate model parallelism via ten-
sor parallelism. A tensor sharding strategy requires
a dimension specified for each tensor. Along the
dimension, the tensor is sharded and distributed
across multiple devices. The objective of shard-
ing strategy design is to minimize memory and
time overhead associated with inter-device commu-
nication, which is usually brought by reduce or
gather operations. For example, consider a tensor
t is defined either as t = t1 + t2 or t = (t1, t2)
(concatenation), with t1 and t2 being stored on dis-
tinct devices. In this case, the computation of t
requires message passing between the two devices
(GPUs or TPUs).

Consider a dense layer in a neural network

y = σ(xA)

where x denotes the input tensor, σ is an element-
wise activation function (e.g., ReLU, SiLU), and A
is to the weight matrix, which is the model parame-
ter of the dense layer. 3 When the weight matrix A
is divided along its first dimension (dimension 0),
a reduce operation becomes necessary to compute
y. Formally,

A =

(
A1

A2

)
=⇒ y = σ(x1A1 + x2A2)

where x1 and x2 represent the first and second
halves of the input tensor x’s dimensions, respec-
tively. The computation on two devices are indi-
cated by the colors.

Conversely, when A is partitioned along its sec-
ond dimension (dimension 1), a gather operation
is required to obtain y:

A = (A1, A2) =⇒ y = (σ(xA1), σ(xA2))

Therefore, when the weight parameter of each
dense layer is partitioned across an arbitrary dimen-
sion, operations for reduction or gathering would

3The bias term is omitted here because its computation is
non-significant.
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Server 2 × 1080Ti 4 × A100 2 × TPU-v4 16 × TPU-v4
Device Memory 2 × 10G 4 × 40G 2 (hosts) × 4 (chips) × 32G 16 × 4 × 32G

Models BART-Large (1024) LLaMA-7B (1024) T5-XXL-11B (512) OPT-66B (512)
GPT2-Large (512) GPT-J-6B (1024) OPT-13B (1024)

Table 1: Runnable model finetuning on different servers. Numbers inside the brackets are the maxinum length in
training. All the settings are with full precision (fp32) with AdamW optimizer.

occur within every dense layer. However, by exam-
ining a pair of consecutive dense layers

y = σ(σ(xA)B)

where A and B denote the respective weights, and
partitioning A and B across dimensions 1 and 0, it
becomes feasible to consolidate these operations
with a single time of reduce operation:

A = (A1, A2), B =

(
B1

B2

)

=⇒y = σ(σ(xA)B)

= σ

(
(σ(xA1), σ(xA2))

(
B1

B2

))

= σ(σ(xA1)B1 + σ(xA2)B2)

Consequently, the operations σ(xA1)B1 and
σ(xA2)B2 can be performed independently on sep-
arate devices, which takes only a single reduce
operation for two dense layers.

Based on the observation above, we get heuris-
tic insights in terms of inter-device communica-
tion on the transformer architecture, specifically
within feed-forward and attention layers. For feed-
forward layers, given the nature of matrix multi-
plication, dividing two consecutive matrices along
different dimensions is expected to require less
inter-device communication than if they are divided
along a same dimension. For the attention layers,
the output matrix O is multiplied with each of the
Q,K, V matrices, so the matrix O should be split-
ted along a dimension distinct from that chosen for
Q,K, V . Based on these insights, we write two
rules to determine the dimension along which to
split each tensor in a model:

1. For fully-connected layers, alternate between
splitting the parameter along dimension 1 and
dimension 0.

2. For attention layers, split Q,K, V along di-
mension 0, and split the output projection ma-
trix O along dimension 1.

Leveraging the rules above enables Redco to
devise a model parallel strategy tailored for any
given LLM architecture. This enables the dis-
tributed training of LLMs with almost zero user
effort. Users only specify the number of shards to

split the given model, without additional coding or
configuration efforts.

Note that our proposed rules are similar to a part
of suggested configurations of Megatron (Shoeybi
et al., 2019), but they don’t summarize their sep-
arate configurations into rules, so that only a few
LLM architectures (BERT, GPT, and T5) are sup-
ported in their implmentation4. To customize any
new architectures under Megatron, users still have
to rewrite the model’s forward function and manu-
ally implement their model parallel strategy.

3.2 Implementation inside Redco

We implement tensor parallelism with the pro-
posed strategy on top of jax.pjit function. This
function compiles the computational graph and it
merges operations on the same device to reduce
unnecessary communication overhead 5.

To integrate the proposed tensor parallel strat-
egy, Redco has a function that takes in an arbitrary
transformer architecture and produces a parame-
ter sharding strategy based on the proposed rules.
Moreover, in addition to automatically generating
sharding strategies, Redco also enables their cus-
tomization. This allows users with more advanced
strategies to execute their approaches. Practical
examples of the sharding strategies produced by
Redco, applied to GPT-J and LLaMA, are show-
cased in the Appendix.

3.3 Evaluation

Applicability test We assess the applicability of
our proposed automatic model parallel approach
by applying Redco on an assorted collection of
LLMs across various GPU and TPU servers. We
conduct distributed training for LLMs without com-
promising the optimizer settings or precision. More
precisely, we execute the distributed training un-
der full precision (fp32) with the widely-used, yet
memory-intensive, AdamW optimizer. We report
all operable LLMs on GPU and TPU servers with
varying memory capacities.

4https://github.com/NVIDIA/Megatron-LM/tree/main
5https://jax.readthedocs.io/en/latest/

notebooks/Distributed_arrays_and_automatic_
parallelization.html
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def collte_fn():
return model_inputs

def loss_fn(model_inputs, model):
return loss

def predict_fn(model_inputs, model):
return prediction

deployer = redco.Deployer(n_model_shards=4)

# launch your distributed LLM training
trainer = redco.Trainer(deployer, collate_fn, loss_fn)
trainer.fit(examples, batch_size, n_epochs)

collate function
e.g., tokenization

Pipeline design via functions
e.g., language modeling

loss function
e.g., cross entropy

predict function
e.g., beam search

raw example

model input

loss prediction

Automatic low-level supports via
redco.Deployer

• data and model parallelism
• multi-host related processing
• randomness, logging, etc.

def apply_model():
def loss_fn(params):
return loss

# compute gradients, maintaining training state
grad_fn = jax.value_and_grad(loss_fn)
logits, grads = grad_fn(state.params)
state = state.apply_gradients(grads=grads)
return state

def train_and_evaluate():
# randomness controlling
rng = jax.random.PRNGKey(0)

# maintaining a training state
rng, init_rng = jax.random.split(rng)
state = create_train_state(init_rng, config)
# process data
training_batches = process(training_examples)
for epoch in range(1, config.num_epochs + 1):
rng, input_rng = jax.random.split(rng)
for batch in training_batches:
# run model, get gradients
state = apply_model()

# logging
logging.info("epoch, loss, etc.")
summary_writer.scalar('train_loss', train_loss)

Distributed Training with Redco

Normal Flax code for a training loop
(without distributed training)

v.s.

Figure 2: The template code of using redco to implement distributed training, where users only have to design a
pipepine through three fucntions, without concerning data and model parallelism, multi-host related processing,
randomness control, etc., which eliminates a lot of boilerplate coding.
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Figure 3: The comparison of throughput in the running
of GPT-J-6B on a 4× A100 server. Redco’s perfor-
mance surpasses that of FSDP and is close to that of
Alpa, the tool with state-of-the-art model parallel effi-
ciency but intricate engineering.

The findings, as displayed in Table 1, indicate
that our straightforward, yet effective, automatic
model parallel strategy is highly applcable across
LLMs. For example, on small servers, such as
those equipped 2 × 1080Ti, our strategy success-
fully runs large versions of BART and GPT-2 with
text lengths up to 512 and 1024, respectively. On
the larger servers such as the one with 16 TPU-v4
hosts, Redco effectively handles the training of the
giant OPT-66B.
Efficiency test We evaluate the efficiency of our
proposed automatic model parallelism strategy in
Redco on a server equipped 4 × A100 GPUs. We
perform experiments by finetuning OPT-2.7B and
GPT-J-6B, on the WikiText dataset, with full pre-
cision and AdamW optimizer. We compare Redco
with two advanced model parallel tools: FSDP and
Alpa. The experimental results are summarized
in Figure 3. The observed throughput reveals that
Redco surpasses FSDP and is close to Alpa, the
state-of-the-art model parallel tool. Notably, Alpa’s
implementation requires advanced MLSys exper-
tise and significant coding efforts.

4 RedCoast: Library Design

In addition to the complexities of implementing
model parallelism, ML pipelines often contain
repetitive boilerplate code that demands signifi-
cant effort from developers. Examples of such
code include back-propagation, gradient applica-
tion, batch iteration, and so forth. Furthermore,
the hardware upgrades usually require patches on
existing codebase. For example, a code developed
within a single-GPU setting needs data parallelism
and multi-host related processing to be added when
adapted to multi-GPU machines or clusters.

In Redco, we design a neat and user-friendly
mechanism to simplify ML pipeline developments.
Users only have to define their pipeline through
three design functions, and Redco handles all the
remaining of the pipeline execution. In this section,
we will introduce the software design of Redco that
enables this mechanism.

4.1 Pipeline Design Through Three Functions
As shown in the yellow brick in Figure 2, in our
proposed mechanism, every ML pipeline can be
decoupled into three simple functions: collate func-
tion to convert raw examples to model inputs, e.g.,
converting text sentences to be a batch of token in-
dices via tokenization; loss function to convert the
model inputs to a scalar loss; and predict function
to convert the model inputs to the desired model
outputs, such as running beam search for the lan-
guage model. We demonstrate this framework with
the implementation of image captioning and a meta-
learning algorithm, MAML, as shown in Figure 4
and Figure 5. These examples showcase that both
simple and complex algorithms can be naturally
defined under the proposed mechanism.
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def collate_fn(raw_examples):
return {

"pixel_values": # pixel values of the images
"token_ids": # token indicies of captions

}

def loss_fn(batch , params):
logits = model(params , batch['pixel_values '], batch['token_ids ']) # run model and get logits
return cross_entropy(logits , batch['token_ids '])

def pred_fn(batch , params):
return model.beam_search(params , batch['pixel_values '])

Figure 4: Pipeline design functions of image captioning under Redco.

def collate_fn(raw_examples):
return {

"train_data": # a batch of few -shot training tasks
"eval_data": # a batch of few -shot evaluation tasks

}

def loss_fn(batch , params):
params_inner = params - alpha * jax.grad(inner_loss)(params , batch['train_data '])
return inner_loss(params_inner , batch['eval_data '])

def pred_fn(batch , params , model):
params_inner = params - alpha * jax.grad(inner_loss)(params , batch['train_data '])
return model(params_inner , batch['eval_data '])

Figure 5: Pipeline design functions of meta-learning (MAML) for few-shot learning under Redco. MAML’s loss
L = L(Teval, θ′) and θ′ = θ − α∇θL(Ttrain, θ), where Ttrain, Teval refer to the data of training and evaluation
tasks, and L(·, ·) refers to the original loss function (inner_loss), such as the cross-entropy loss for classification.

4.2 Pipeline Execution with Automatic
Low-level Supports

For user-friendliness, there are merely three
classes in Redco, i.e., Deployer, Trainer, and
Predictor. As shown in the orange brick in Fig-
ure 2, Redco streamlines the management of low-
level and boilerplate processing in pipeline devel-
opment through the Deployer class. This includes
automatic model parallelism, as discussed in the
previous section, as well as automatic data paral-
lelism, multi-host related processing, checkpoint-
ing, and other convenient features such as ran-
domness control and logging management. The
final execution of the pipeline is carried out by
Trainer and Predictor of Redco. Supported by
Deployer, they execute the training and inference
of the pipeline defined by users via the functions
as mentioned in Section 4.1. 6

4.2.1 Multi-host Supports
Large-scale distributed training typically involves
intricate processes to accommodate multiple hosts.
These processes include allocating data samples
to each node and aggregating gradients or param-
eters across hosts, etc. Redco offers automatic
support for multi-host environments and demon-
strates compatibility with various platforms, includ-
ing SLURM (Yoo et al., 2003), XManager7, as well
as bare nodes interconnected via IP addresses. No-
tably, Redco allows users to maintain their existing

6We include a complete example in the Appendix imple-
menting a distributed seq2seq pipeline with Redco.

7https://github.com/google-deepmind/xmanager

pipeline design and execution code without addi-
tional efforts for multi-host environments.

4.2.2 Checkpointing
In distributed training frameworks, each typically
employs a distinct formatting for checkpoint sav-
ing and loading, leading to a closed-loop system.
For instance, Megatron utilizes a unique approach
where model parameters and optimizer states are
segmented based on the configuration of model par-
allelism. These checkpoints are inherently tied to
Megatron, necessitating considerable effort for con-
version into standard PyTorch checkpoint formats.
Conversely, in Redco, we adopt a standardized and
well-accepted checkpointing method. Here, both
model parameters and optimizer states are encap-
sulated comprehensively within dictionaries of ten-
sors. This approach is independent of the specific
distributed training configurations, offering the ad-
vantage of simplicity in loading and utilization,
even without Redco installation.

4.2.3 Lightweight and Flexible Dependency
Distributed training frameworks, such as Megatron
and Alpa, often include modifications to founda-
tional Python packages or CUDA kernels, result-
ing in stringent environment installation require-
ments. For instance, Alpa modifies the fundamen-
tal jaxlib8 library, thereby limiting its compati-
bility to jaxlib version 0.3.22 and CUDA version
11.3. They have been outdated compared to ad-
vanced versions of jaxlib 0.4.32 and CUDA 12.2,

8https://pypi.org/project/jaxlib/
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Figure 6: The comparison of code lines across a diverse set of ML algorithms. (There is no well-accepted official
Flax implementations for FedAvg and MAML.)

which are prevalent in many cluster environments
today. In contrast, Redco is developed on top of
Jax and Flax, without any modification to existing
packages. Consequently, Redco is able to support
a wider range of versions of jax, flax, and CUDA,
in addition to accommodating various device types,
including GPUs and TPUs.

4.3 Evaluation
We implement a variety of machine learning
paradigms using Redco, ranging from fundamental
supervised learning techniques such as classifica-
tion and regression, to more sophisticated algo-
rithms including reinforcement learning and meta-
learning. Figure 6 illustrates a comparison between
the number of code lines in our implementation and
those in officially published versions. The majority
of these paradigms can be efficiently implemented
using Redco with only 100 to 200 lines of code.
This efficiency boost of development can be at-
tributed to Redco’s ability to significantly reduce
the need for writing boilerplate code.

5 Conclusion
In this work, we present a lightweight and user-
friendly toolkit, RedCoast (Redco), designed to
automate the distributed training of LLMs and sim-
plify the ML pipeline development process. Redco
incorporates an automatic model parallelism strat-
egy, fundamentally based on two intuitive rules,
without requiring additional coding efforts or ML-
Sys expertise from the users. We evaluate its effec-
tiveness on an array of LLMs, such as LLaMA-7B,
T5-11B and OPT-66B. Furthermore, Redco has a
novel and neat pipeline development mechanism.
This mechanism requires users to specify only three
intuitive pipeline design functions to implement a
distributed ML pipeline. Remarkably, this mech-
anism is general enough to accommodate various
ML algorithms and needs significantly fewer lines
of code compared to their official implementations.
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A Tensor Parallel Strategy Examples

We provide examples of the generated sharding strategies by Redco toward different architec-
tures, where PartitionSpec(’mp’, None) indicates partioning a parameter by dimension 0 and
PartitionSpec(None, ’mp’) indicates partioning a parameter by dimension 1, and None means saving
a copy of the parameter across every device.

params_sharding_rules_gptj = [
(('fc_in ', 'kernel '), PartitionSpec(None , 'mp')), # Rule 1 in Section 3.1
(('fc_out ', 'kernel '), PartitionSpec('mp', None)),
(('k_proj ', 'kernel '), PartitionSpec(None , 'mp')), # Rule 2 in Section 3.1
(('out_proj ', 'kernel '), PartitionSpec('mp', None)),
(('q_proj ', 'kernel '), PartitionSpec(None , 'mp')),
(('v_proj ', 'kernel '), PartitionSpec(None , 'mp')),
(('(bias|scale)',), None), # Parameters other than transformer blocks or bias or scale terms
(('embedding ',), PartitionSpec('mp', None)),
(('lm_head ', 'kernel '), PartitionSpec(None , 'mp'))

]

Figure 7: Sharding strategy for GPT-J generated by Redco.

params_sharding_rules_llama = [
(('down_proj ', 'kernel '), PartitionSpec('mp', None)), # Rule 1 in Section 3.1
(('gate_proj ', 'kernel '), PartitionSpec(None , 'mp')),
(('up_proj ', 'kernel '), PartitionSpec(None , 'mp')),
(('k_proj ', 'kernel '), PartitionSpec(None , 'mp')), # Rule 2 in Section 3.1
(('o_proj ', 'kernel '), PartitionSpec('mp', None)),
(('q_proj ', 'kernel '), PartitionSpec(None , 'mp')),
(('v_proj ', 'kernel '), PartitionSpec(None , 'mp')),
(('(bias|scale)',), None), # Parameters other than transformer blocks or bias or scale terms
(('embedding ',), PartitionSpec('mp', None)),
(('lm_head ', 'kernel '), PartitionSpec(None , 'mp')),
(('norm', 'weight '), None),
(('input_layernorm ', 'weight '), None),
(('post_attention_layernorm ', 'weight '), None)

]

Figure 8: Sharding strategy for LLaMA generated by Redco.

B A Complete Distributed Training Example with Redco

We provide a complete example for the distributed training of a T5-XXL model, which is able to run on
multi-host environments. It uses a modeling from HuggingFace, on a summarization dataset, evaluated by
rouge scores, and it saves the checkpoints with best rouge-2 and rouge-L scores.
from functools import partial
import fire
import numpy as np
import jax
import jax.numpy as jnp
import optax
import datasets
from transformers import AutoTokenizer , FlaxAutoModelForSeq2SeqLM
import evaluate
from redco import Deployer , Trainer

def collate_fn(examples ,
tokenizer ,
decoder_start_token_id ,
max_src_len ,
max_tgt_len ,
src_key='src',
tgt_key='tgt'):

model_inputs = tokenizer(
[example[src_key] for example in examples],
max_length=max_src_len ,
padding='max_length ',
truncation=True ,
return_tensors='np')

decoder_inputs = tokenizer(
[example[tgt_key] for example in examples],
max_length=max_tgt_len ,
padding='max_length ',
truncation=True ,
return_tensors='np')

if tokenizer.bos_token_id is not None:
labels = np.zeros_like(decoder_inputs['input_ids '])
labels[:, :-1] = decoder_inputs['input_ids '][:, 1:]
decoder_input_ids = decoder_inputs['input_ids ']
decoder_input_ids [:, 0] = decoder_start_token_id

else:
labels = decoder_inputs['input_ids ']
decoder_input_ids = np.zeros_like(decoder_inputs['input_ids '])
decoder_input_ids [:, 1:] = decoder_inputs['input_ids '][:, :-1]
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decoder_input_ids [:, 0] = decoder_start_token_id

model_inputs['labels '] = labels
decoder_inputs['input_ids '] = decoder_input_ids

for key in decoder_inputs:
model_inputs[f'decoder_{key}'] = np.array(decoder_inputs[key])

return model_inputs

def loss_fn(train_rng , state , params , batch , is_training):
labels = batch.pop("labels")
label_weights = batch['decoder_attention_mask ']

logits = state.apply_fn(
**batch , params=params , dropout_rng=train_rng , train=is_training)[0]

loss = optax.softmax_cross_entropy_with_integer_labels(
logits=logits , labels=labels)

return jnp.sum(loss * label_weights) / jnp.sum(label_weights)

def pred_fn(pred_rng , params , batch , model , gen_kwargs):
output_ids = model.generate(

input_ids=batch['input_ids '],
attention_mask=batch['attention_mask '],
params=params ,
prng_key=pred_rng ,
** gen_kwargs)

return output_ids.sequences

def output_fn(batch_preds , tokenizer):
return tokenizer.batch_decode(batch_preds , skip_special_tokens=True)

def eval_rouge(examples , preds , tgt_key):
rouge_scorer = evaluate.load('rouge ')

return rouge_scorer.compute(
predictions=preds ,
references =[ example[tgt_key] for example in examples],
rouge_types =['rouge1 ', 'rouge2 ', 'rougeL '],
use_stemmer=True)

def main(n_processes=None ,
host0_address=None ,
host0_port=None ,
process_id=None ,
n_local_devices=None ,
dataset_name='xsum',
src_key='document ',
tgt_key='summary ',
model_name_or_path='facebook/bart -base',
n_model_shards =1,
n_epochs=2,
per_device_batch_size =8,
eval_per_device_batch_size =16,
accumulate_grad_batches =2,
max_src_len =512,
max_tgt_len =64,
num_beams =4,
learning_rate =4e-5,
warmup_rate =0.1,
weight_decay =0.,
jax_seed =42,
workdir='./ workdir ',
run_tensorboard=False):

deployer = Deployer(
n_model_shards=n_model_shards ,
jax_seed=jax_seed ,
workdir=workdir ,
run_tensorboard=run_tensorboard ,
n_processes=n_processes ,
host0_address=host0_address ,
host0_port=host0_port ,
process_id=process_id ,
n_local_devices=n_local_devices)

dataset = datasets.load_dataset(dataset_name)
dataset = {key: list(dataset[key]) for key in dataset.keys()}

with jax.default_device(jax.devices('cpu')[0]):
model = FlaxAutoModelForSeq2SeqLM.from_pretrained(

model_name_or_path , from_pt=True)
model.params = model.to_fp32(model.params)

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
gen_kwargs = {'max_length ': max_tgt_len , 'num_beams ': num_beams}

lr_schedule_fn = deployer.get_lr_schedule_fn(
train_size=len(dataset['train ']),
per_device_batch_size=per_device_batch_size ,
n_epochs=n_epochs ,
learning_rate=learning_rate ,
schedule_type='linear ',
warmup_rate=warmup_rate)
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optimizer = optax.adamw(
learning_rate=lr_schedule_fn , weight_decay=weight_decay)

if accumulate_grad_batches > 1:
optimizer = optax.MultiSteps(

optimizer , every_k_schedule=accumulate_grad_batches)

trainer = Trainer(
deployer=deployer ,
collate_fn=partial(

collate_fn ,
tokenizer=tokenizer ,
decoder_start_token_id=model.config.decoder_start_token_id ,
max_src_len=max_src_len ,
max_tgt_len=max_tgt_len ,
src_key=src_key ,
tgt_key=tgt_key),

apply_fn=model ,
loss_fn=loss_fn ,
params=model.params ,
optimizer=optimizer ,
lr_schedule_fn=lr_schedule_fn ,
accumulate_grad_batches=accumulate_grad_batches ,
params_sharding_rules=deployer.get_sharding_rules(params=model.params))

predictor = trainer.get_default_predictor(
pred_fn=partial(pred_fn , model=model , gen_kwargs=gen_kwargs),
output_fn=partial(output_fn , tokenizer=tokenizer))

trainer.fit(
train_examples=dataset['train '],
per_device_batch_size=per_device_batch_size ,
n_epochs=n_epochs ,
eval_examples=dataset['validation '],
eval_per_device_batch_size=eval_per_device_batch_size ,
eval_loss=True ,
eval_predictor=predictor ,
eval_metric_fn=partial(eval_rouge , tgt_key=tgt_key),
save_last_ckpt=True ,
save_argmax_ckpt_by_metrics =['rougeL '])

if __name__ == '__main__ ':
fire.Fire(main)
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Abstract

In this system demonstration paper, we present
the Concept Over Time Analysis extension for
the Discourse Analysis Tool Suite. The pro-
posed tool empowers users to define, refine, and
visualize their concepts of interest within an
interactive interface. Adhering to the Human-
in-the-loop paradigm, users can give feedback
through sentence annotations. Utilizing few-
shot sentence classification, the system em-
ploys Sentence Transformers to compute repre-
sentations of sentences and concepts. Through
an iterative process involving semantic simi-
larity searches, sentence annotation, and fine-
tuning with contrastive data, the model contin-
uously refines, providing users with enhanced
analysis outcomes. The final output is a time-
line visualization of sentences classified to con-
cepts. Especially suited for the Digital Human-
ities, Concept Over Time Analysis serves as a
valuable tool for qualitative data analysis within
extensive datasets. The chronological overview
of concepts enables researchers to uncover pat-
terns, trends, and shifts in discourse over time.

1 Introduction

The Discourse Analysis Tool Suite (DATS) (Schnei-
der et al., 2023) serves as an open-source oper-
ational platform designed for conducting digital
qualitative discourse analysis within the realm of
Digital Humanities (DH). Developed through col-
laborative efforts, the tool is tailored specifically
for DH researchers. Its purpose is to democratize
access to cutting-edge machine learning technolo-
gies derived from Computer Vision and Natural
Language Processing. This initiative enables non-
expert users to efficiently handle and analyze un-
structured, large multi-modal data.

While the overarching design of the platform
is catered to Grounded Theory-based research
(Strauss and Corbin, 1990), particularly in align-
ment with approaches like the Sociology of Knowl-
edge Approach to Discourse (Keller, 2011), numer-

ous features extend its utility across various disci-
plines. Noteworthy functionalities include the au-
tomated pre-processing of multi-modal data (text,
image, audio, and video), data exploration, and
both manual and automatic annotation.

In this paper, we extend DATS with Concept
Over Time Analysis, a machine-learning-based fea-
ture to identify concepts of interest in a large
dataset and analyse their occurrences over time.
The proposed system allows users to define con-
cepts, assists them in identifying relevant sentences,
refine the concept representation and finally visual-
ize the results over time. The interactive User Inter-
face (UI) follows the Human-in-the-loop paradigm
(Holzinger, 2016), encouraging users to give feed-
back by annotating samples, which improves con-
cept representations and analysis results.

The proposed system performs few-shot sen-
tence classification, mapping each concept to a
class. We use Sentence Transformers (Reimers
and Gurevych, 2019) to compute representations
of sentences and concept descriptions. Initially,
a similarity search provides semantically relevant
sentences for each concept that can be classified
into concepts by the user. With few labeled exam-
ples, a contrastive dataset is generated to fine-tune
a Sentence Transformer model. This is employed
to update concept representations and similarity
search results, providing the user with better sug-
gestions. This iterative refinement step is repeated
until the user is content. Finally, sentences classi-
fied to a concept with confidence above a specified
threshold are visualized in a timeline.

The Concepts Over Time Analysis enables quali-
tative data analysis within large datasets. A chrono-
logical overview of custom concepts like events,
topics, opinions or practices allows researchers to
identify patterns, trends, and shifts in discourse
over time. This temporal perspective can reveal
how ideas, narratives, or cultural practices evolve,
providing insights into the dynamics of discour-
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sive trends. By visualising such concepts along a
timeline, researchers can identify clusters of related
events, helping to create a nuanced understanding
of how cultural phenomena unfold over time. Fur-
ther, a timeline analysis can aid in contextualising
and connecting different elements within a large
dataset, making it easier to trace the lineage of
ideas or the influence of past discourses on current
ones. Though inspired by DH and discourse analy-
sis, the proposed system is versatile, extending its
utility to related analyses such as visualizing topics
or sentiments over time.

While the Concepts Over Time Analysis is a pow-
erful feature on its own, its integration within DATS
can enable users to merge findings with existing
analyses, utilize Memos or the Logbook for docu-
mentation and reflection, and identify concepts to
be analyzed using search and filter functionalities.

The contributions of this paper are threefold:
First, we develop the Concept Over Time Analy-
sis extension, which facilitates the identification
of concepts in large datasets and a chronological
overview. Second, we describe a typical usage
scenario, outlining the interaction with the system.
Finally, we perform experiments on three datasets,
demonstrating the feasibility of our system.

The DATS and Concepts Over Time Analysis are
open-source and available on GitHub1 where links
to a demonstration and a video are provided.

2 Related Work

Qualitative Data Analysis tools that are frequently
used in the DH include CATMA (Gius et al., 2022),
MAXQDA and Atlas.ti. While offering various
analysis tools, at the time of writing, none of them
include means to semi-automatically identify con-
cepts in large datasets or visualize concepts in a
chronological overview. With the proposed exten-
sions, DATS aims to close that gap.

However, there exist many tools and libraries
that offer interesting timeline analysis functionali-
ties. BERTopic (Grootendorst, 2022), a topic mod-
eling tool, leverages Sentence Transformers to com-
pute document or sentence embeddings, yielding
easily interpretable topic representations through
clustering. With Dynamic Topic Modeling, the tool
offers a collection of techniques to analyse the de-
velopment of topics over time. While BERTopic
identifies prevalent topics automatically, our exten-
sion empowers users to define and analyze their
1 github.com/uhh-lt/dats

own concepts or topics of interest across time.
SCoT (Haase et al., 2021) is an interactive web

application to analyse the sense-clusters of a word
and their evolution over time. SentiView (Wang
et al., 2013) is an interactive visualization system
for sentiment analysis. It visualizes changes over
time of various attributes and relationships between
demographics of interest as well as participants’
sentiments on popular topics. Open Discourse is a
web-platform for the analysis of the plenary min-
utes of the german federal parliament. It includes
a topic analysis feature to investigate the political
discourse over time, filterable by speaker, gender,
party and other attributes.

LabelSleuth (Shnarch et al., 2022) serves as a no-
code platform, making NLP accessible for a broad
audience. It facilitates integrated model training
and an intuitive, active learning-powered annota-
tion interface. In contrast, our proposed extension
supports the training of multi-class sentence classi-
fication models and enables a timeline analysis of
the results.

3 Concept Over Time Analysis

The Concept Over Time Analysis extension is an
interactive, machine-learning-based tool that semi-
automatically identifies relevant sentences of user-
defined concepts, adjusts accordingly to feedback,
and visualizes concept occurrences in a timeline.

Its goal is to provide users with a chronological
overview of their concepts of interest, with as few
steps as possible. Integrating the feedback process
into the workflow was a key requirement for the
development of the UI.

3.1 Concepts

Concepts are defined by Strauss et al. (1996) as the
basic building blocks of a theory. In grounded the-
ory, open coding represents the analytical process
through which concepts are identified and devel-
oped in terms of their properties and dimensions.

In this work, we employ the broad term concept
to encompass various usage scenarios, such as cat-
egories, topics, sentiments, opinions, etc. In our
terms, a concept refers to anything that serves to
semantically group or classify sentences.

3.2 User Workflow

The Concept Over Time Analysis extension pro-
vides versatile functions for diverse applications.
Illustratively, we present key features through a
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Figure 1: The annotation view of the Concept Over Time Analysis extension: (1) Define, edit, delete & toggle
visibility of concepts. (2) + (4) Sentence Annotator: A ranked list sentences similar to the selected concept. (3) 2D
visualization of the search space, annotated sentences are colored & highlighted. (5) Controls to manually start,
reset & configure model training. Training status is updated live.

typical workflow. Consider Alice, a researcher ex-
ploring discourse on the COVID pandemic from
2020 to 2024. Using her web browser, she accesses
DATS, registers, logs in, and creates a new project.
Uploading material from various news websites,
she ensures the presence of metadata indicating
the publication date, which is required for Concept
Over Time Analysis. To start her analysis, Alice
locates the feature in the "Analysis" tab and creates
an empty Concept Over Time Analysis.

Defining concepts Alice is presented with the
annotation view of the Concept over time analysis
view (see Figure 1). To initiate the analysis, she de-
fines three concepts "Covid 19 as a risk", "Covid 19
Outbreaks", "Vaccinations", and provides a short
description for each (1). To identify interesting con-
cepts, DATS offers various dataset exploration fea-
tures ranging from the distant, quantitative search,
filter and statistics features to the close, qualitative
reading and annotation of documents.

Concept annotation After inputting concepts
and descriptions, Alice starts the first iteration of
the analysis. The Sentence Annotator (2) displays
ranked sentences based on similarity to the concept,
accompanied by a scatter plot (3) visualizing all
search space sentences. Clicking on a dot navi-
gates to and highlights the corresponding sentence
in the annotator. While exploring the search space,

Alice realizes that the scatter plot lacks effective
clustering for her concepts, primarily because, at
this stage, a concept’s representation relies solely
on the initial description.

Alice enhances her defined concepts with more
information by providing feedback through sen-
tence annotations. While scrolling through lists of
similar sentences, she annotates sentences with the
respective concept (4), identifying fitting mentions,
ideas, or paraphrases. This initial annotation is
recognized as the most challenging part of the anal-
ysis, and we aim to assist by providing an initial
similarity ranking.

Iterative concept refinement After annotating
the minimum required sentences per concept (de-
fault is five), she proceeds to the next step by click-
ing the refine button (5). Through her feedback,
the system improves its ability to distinguish be-
tween concepts and provides more relevant similar
sentences for each. The scatter plot visualization
is updated, showing clusters of sentences centered
around the annotated ones. Annotated sentences
are in Alice’s defined color, while others are visu-
alized in purple (3). With the improved scatter plot
and sentence rankings, it becomes notably easier
for Alice to identify additional relevant sentences
for her concepts.

After annotating a few more relevant sentences,
Alice is prompted to refine the Concept Over Time
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Analysis again. Alice can continue this process
until she’s certain in the system’s ability to distin-
guish between concepts. Typically, this is achieved
if the scatter plot exhibits clear clustering, allow-
ing for effective separation, and if most top similar
sentences for a concept are deemed relevant.

Timeline analysis Satisfied with the clustering
and the suggested similar sentences, Alice switches
to the Timeline Analysis visualization (see Figure
2). This visualization (1) depicts the date on the x-
axis and the aggregated count of similar sentences
per concept on the y-axis, illustrating the devel-
opment of her defined concepts over time. Alice
customizes the aggregation (year, month, day) and
adjusts the similarity threshold to filter out irrele-
vant sentences (2). Alice explores the results by
clicking on several dots, which reveals all sentences
of the selected concept on the chosen date in the
Sentence Annotator (3).

4 System Implementation

The visualization is implemented using React and
the Recharts2 library. The asynchronous model
training is implemented with Celery3 and Set-
Fit4 (Tunstall et al., 2022).

The main challenges involve classifying con-
cepts and adapting to limited user feedback while
ensuring high performance and interactivity. Addi-
tionally, we noted that concepts are often nuanced
and exist within the same domain, resulting in high
inter-concept similarity. Therefore, key require-
ments considered during the implementation are
fast training, the capacity to learn from a few la-
beled samples, and the ability to distinguish be-
tween topically similar instances.

The Concept Over Time Analysis workflow is
internally structured as a three-step pipeline, en-
compassing: establishing the initial search space,
fine-tuning the Sentence Transformer model, and
computing the results. In the subsequent sections,
we provide a detailed explanation of each step.

The initial search space To initiate the Concept
Over Time Analysis, users provide concepts along
with proper descriptions. The descriptions are em-
bedded with a Sentence Transformer model to gen-
erate an initial representation of each concept. The
model is configurable during the tool setup and de-
faults to a pretrained multilingual CLIP (Radford
2 https://recharts.org/
3 https://docs.celeryq.dev/
4 https://huggingface.co/docs/setfit

et al., 2021; Reimers and Gurevych, 2020) model.
Following this, the concept representations are

employed to identify semantically similar sen-
tences, leveraging the existing semantic similarity
search feature within DATS. Each uploaded doc-
ument runs through a multi-step pre-processing
pipeline, including sentence splitting and sentence
embedding, with the results stored in Weaviate5,
an open-source vector database. Consequently, the
vector database is utilized to retrieve the top K
similar sentences for each concept representation,
along with their respective similarity scores. K is
configurable in the UI and defaults to 1000.

The set of returned sentences is considered as
the search space, which remains constant in the
subsequent steps. However, the UI allows resetting
the search space and restarting the analysis process.

The initial concept descriptions play a pivotal
role in the entire analysis, determining the sen-
tences considered during the analysis. This step
is only executed once at the beginning, but cru-
cial to the process as it limits the sentences to the
concepts’ domain and fastens the following steps.

Model fine-tuning Users provide feedback in
terms of labeling sentences with concepts. This
step is skipped, if there are insufficient annotations
for any given concept. The minimum labeled ex-
amples per concept can be configured in the UI,
however, our experiments suggest that 4, 8, and 16
are good thresholds to start the fine-tuning.

A contrastive training dataset is generated based
on the users’ annotations, which is then used to fine-
tune a pre-trained Sentence Transformer model
(more details in Section 5). The model trains asyn-
chronously in the background for 1 epoch, the fron-
tend is informed about status changes and displays
them accordingly.

Results In the final step, we compute a 2D repre-
sentation of the search space, update concept rep-
resentations, re-rank sentences, and compute the
timeline analysis.

To generate the 2D representation, displayed in
the annotation view, the fine-tuned model computes
sentence embeddings, which are then passed to
UMAP (McInnes et al., 2020) or t-SNE (Van der
Maaten and Hinton, 2008) for dimensionality re-
duction. Initially, the embeddings stored in the vec-
tor database represent the search space sentences.
Throughout iterative refinement, models with im-

5 https://weaviate.io/
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Figure 2: The timeline view of the Concept Over Time Analysis extension: (1) Aggregated occurrences of sentences
similar to concepts over time. (2) Settings. (3) Sentence Annotator showing similar sentences of selected concept at
selected date.

proved performance enhance the sentence repre-
sentations, causing sentences to "move" toward
their most similar concept and form clusters. Ap-
pendix B illustrates this process.

Initially, a concept is represented by its embed-
ded description. An enhanced representation is
derived by averaging the embeddings of labeled
sentences for the concept. Next, we calculate the
cosine similarity between concept representations
and all embedded search space sentences. The sen-
tences in the Sentence Annotator are then ranked
based on the resulting similarity scores.

Finally, the timeline analysis is computed. For
each concept, sentences below the similarity thresh-
old are filtered out, and the remaining ones are ag-
gregated and counted based on the specified time
intervals (year, month, or day).

5 Experiments

Few-shot fine-tuning of Sentence Transformers has
been shown to achieve high accuracy with few la-
beled data by Tunstall et al. (2022). Our follow-
ing experiments assess the suitability of this ap-
proach for the Concept Over Time Analysis exten-
sion, while also gaining insights into its limitations.

We formulate the following requirements that
our system should meet: Require few labeled sam-
ples, enabling users to quickly achieve satisfac-
tory results. Ensure short training time to facilitate
an interactive user experience with fast iterations.

Improve performance with more training samples
rather than more training time, allowing iterative
refinement of the model.

5.1 Datasets

The 20 newsgroup dataset6 (NG20), containing
around 20,000 newsgroup posts across 20 topics,
aligns with our users’ domain. Given that con-
cepts are commonly closely related and within the
same domain, we align this experiment with the ex-
pected real-world setting by considering the classes
"misc," "guns," and "mideast" in the politics sub-
ject. Similarly, we consider the related classes
"Wellness", "Style & Beauty" and "Healthy Liv-
ing" of the News Category dataset (Misra, 2022)
(NCT). It contains around 210.000 news headlines
from 2012 - 2022.

The Stanford Sentiment Treebank dataset (SST-
5) (Socher et al., 2013), containing approximately
12,000 sentences from movie reviews, involves fine-
grained sentiment classification with five labels
ranging from "very negative" to "very positive."
We explore this dataset to assess the applicability
of our proposed system for Sentiment Analysis, a
common need in DH research.

5.2 Setup

Following Tunstall et al. (2022), we fine-tune a
Sentence Transformer model with few-shot training
6 http://qwone.com/ jason/20Newsgroups/
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data and train a Logistic Regression classifier on
top. We use paraphrase-mpnet-base-v27 for all
experiments.

The contrastive training data comprises sentence
pairs, where a pair is deemed positive (1.0) if both
sentences belong to the same class and negative
(0.0) otherwise. Considering C classes with N sen-
tences per class, all combinations (N × |C|)2 are
evaluated, but duplicate (A,B) = (B,A) and iden-
tical (A,A) sentence pairs are removed. To balance
positive and negative pairs, positive examples are
oversampled, resulting in a substantial training set
even with limited labeled samples.

We mimic the iterative concept refinement step,
by incrementally increasing the labeled training
data. However, our experiments maintain a uniform
label distribution in the labeled data, a condition
not assured in real-world settings.

The model is fine-tuned for 1 epoch with cosine
similarity loss, utilizing the AdamW optimizer with
default parameters and a batch size of 16. Experi-
ments are conducted on a single A100 GPU.

5.3 Evaluation

Figure 3: Accuracies over 10 runs of the experiments
described in Section 5.

Figure 3 shows averaged accuracy from 10 runs
of the SST-5, NG20 and NCT experiments. For all
three experiments, we observe a steady improve-
ment in accuracy up to 16 training examples per
class. Labeling more examples does not improve
the results. Additionally, we note that the quality
of annotation significantly impacts our setup. In
7 https://huggingface.co/sentence-transformers
/paraphrase-mpnet-base-v2

the 20 newsgroup experiment, there is a difference
of over 30% accuracy between the best-performing
and worst-performing run.

We acknowledge that the performance of our ap-
proach does not match state-of-the-art results on
the datasets due to the few-shot nature of these ex-
periments. To mitigate this, in the timeline analysis,
users can define a similarity threshold to filter out
irrelevant results. In addition, we provide an inter-
face to assess the considered sentences for a given
concept and time.

In summary, our implemented system achieves
most of our requirements: It requires few labeled
training data, the training times are fast (see Ap-
pendix A), and it scales with more training samples,
but only up to 16 examples per class.

6 Conclusion

In this paper, we presented the Concept Over Time
Analysis extension, a machine-learning-based tool
facilitating the identification and analysis of user-
defined concepts within large datasets over time.
The proposed tool empowers users to define con-
cepts, identify relevant sentences, and visualize
results in a timeline through a unified and interac-
tive interface that is fully integrated within the Dis-
course Analysis Tool Suite. Embracing the Human-
in-the-loop paradigm, the system iteratively refines
the underlying model and enhances the timeline
analysis with the help of user feedback.

It employs few-shot sentence classification uti-
lizing Sentence Transformer models for sentence
and concept representations. With minimal human
feedback, the model is fine-tuned on a contrastive
dataset generated from the provided annotations.

This results in a powerful tool for qualitative
data analysis in large datasets. The chronological
overview of custom concepts allows researchers
to identify patterns, trends, and shifts in discourse
over time. Beyond discourse analysis, the exten-
sion supports various applications, including visu-
alizing topics or sentiments over time.

This work centered on analyzing and visualizing
concepts in texts over time. In the next iteration,
we plan to support image data, i.e., using cross-
modal Sentence Transformers powered by CLIP,
and adapting the interface for image processing.
We also aim to fine-tune Sentence Transformers
with adapters to further reduce training time while
maintaining comparable performance.
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The proposed Concept Over Time Analysis exten-
sion of the DATS heavily relies on Machine Learn-
ing (ML) models and technology. We acknowl-
edge that while ML models can provide valuable
insights, they are not perfect and may produce er-
rors. It is crucial to understand and accept the
limitations of these models to avoid drawing false
impressions or conclusions based on their outputs.
We urge users to exercise caution and critical think-
ing when interpreting results generated by our tool.
The accuracy and reliability of any findings depend
heavily on the quality and appropriateness of the
input data as well as the model’s assumptions and
parameters. Users should also consider potential
biases that may exist within the training data used
to develop the models. In addition, we emphasize
the importance of validating all results through al-
ternative methods such as manual coding or expert
review. This step will help ensure the accuracy and
robustness of the findings and prevent overreliance
on automated tools.
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A Few-Shot Training Runtime

An important requirement for implementing usable
tools is the time or latency. We measured the train-
ing times for the experiments described in Section 5
to get an estimate of the time users have to wait
until they receive the results of the COTA Refine-
ment in the UI. The results are shown in Figure 4.
Here we can see that the runtime heavily depends
on the lengths of the sentences (see Table 1) and
the number of samples used for training. Since the
sentences within our tool are created using spaCy8,
we can assume typical lengths. Hence, we expect
the users of our tool to wait a maximum of two min-
utes when refining a COTA with 32 annotations per
concept.

Figure 4: Average runtimes over 10 runs of the experi-
ments described in Section 5.

Table 1: Number of white space separated words per
dataset.

Dataset mean std min max
NG20 205.48 652.55 1.00 20082.00
SST-5 19.14 9.31 2.00 52.00
NCT 9.15 3.25 1.00 38.00

B Sentence Embedding Evolution

In this appendix section, we show the evolu-
tion of sentence embeddings produced during our
experiment with the NG20 dataset. We use t-
SNE (Van der Maaten and Hinton, 2008) to reduce
the embeddings to 2D for better visualization.
8 https://spacy.io/

(a) Number of training samples per class: 4

(b) Number of training samples per class: 8

(c) Number of training samples per class: 16
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(d) Number of training samples per class: 24

(e) Number of training samples per class: 32

Figure 5: The evolution of sentence embeddings pro-
duced during our experiment with the NG20 dataset.
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Abstract

Interventions on model-internal states are fun-
damental operations in many areas of AI, in-
cluding model editing, steering, robustness,
and interpretability. To facilitate such research,
we introduce pyvene, an open-source Python
library that supports customizable interven-
tions on a range of different PyTorch modules.
pyvene supports complex intervention schemes
with an intuitive configuration format, and its
interventions can be static or include trainable
parameters. We show how pyvene provides a
unified and extensible framework for perform-
ing interventions on neural models and shar-
ing the intervened upon models with others.
We illustrate the power of the library via in-
terpretability analyses using causal abstraction
and knowledge localization. We publish our
library through Python Package Index (PyPI)
and provide code, documentation, and tutorials
at https://github.com/stanfordnlp/pyvene.

1 Introduction

When we intervene on a neural network, we make
an in-place change to its activations, putting the
model in a counterfactual state. This fundamen-
tal operation has emerged as a powerful tool for
both understanding and improving models; inter-
ventions of various kinds are key to recent efforts
in model robustness (He et al., 2019), model edit-
ing (Meng et al., 2022) and steering (Li et al.,
2023a), causal abstraction (Geiger et al., 2020,
2021, 2023; Wu et al., 2023) or activation patch-
ing (Chan et al., 2022; Wang et al., 2023), circuit
finding (Conmy et al., 2023; Goldowsky-Dill et al.,
2023), and knowledge tracing (Geva et al., 2023).

As intervention-based techniques have matured,
the need has arisen to run ever more complex inter-
ventions on ever larger models. Currently, there is
no unified and generic intervention-oriented library
to support such research. Existing libraries are of-
ten project-based (see implementations for Wang

Figure 1: An inference-time intervention (Li et al.,
2023a) on TinyStories-33M. The model is prompted
with “Once upon a time there was a”, and is asked to
complete the story. We add a static word embedding (for
“happy” or “sad”) into the MLP output at each decoding
step for all layers with a coefficient of 0.3. pyvene’s
complete implementation is provided. The original and
intervened generations use greedy decoding.

et al. 2023; Geiger et al. 2023 as examples) that lack
extensibility and are hard to maintain and share,
and current toolkits focus on single or non-nested
interventions (e.g., ablation neurons in a single for-
ward pass) and are often limited to interventions
on Transformers (Vaswani et al., 2017) without na-
tively supporting other neural architectures. Some
of these existing libraries (Bau, 2022; Lloyd, 2023;
Fiotto-Kaufman, 2023; Mossing et al., 2024) can
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support complex interventions such as exchanging
activations across multiple forward passes yet they
require sophisticated knowledge and heavy imple-
mentations.

To address these limitations, we introduce
pyvene, an open-source Python library that sup-
ports customizable interventions on different neu-
ral architectures implemented in PyTorch. Dif-
ferent from previous libraries (Bau, 2022; Nanda
and Bloom, 2022; Lloyd, 2023; Fiotto-Kaufman,
2023; Mossing et al., 2024), pyvene is intervention-
oriented. It supports complex interventions by ma-
nipulating or exchanging activations across multi-
ple model forward runs while allowing these inter-
ventions to be shared with a serialization configu-
ration file. Specifically, pyvene has a number of
advantages:

1. Intervention as the primitive. The interven-
tion is the basic primitive of pyvene. Inter-
ventions are specified with a dict-based for-
mat, in contrast to previous approaches where
interventions are expressed as code and exe-
cuted during runtime (Bau, 2022; Lloyd, 2023;
Fiotto-Kaufman, 2023; Mossing et al., 2024).
All pyvene intervention schemes and mod-
els are serializable objects that can be shared
through a public model hub such as Hugging-
Face.

2. Complex intervention schemes. pyvene sup-
ports interventions at multiple locations, in-
volving arbitrary subsets of neurons, and in-
terventions can be performed in parallel or in
sequence. For generative use of LMs, pyvene
supports interventions at decoding steps. Fur-
thermore, activations can easily be collected
for probe training.

3. Support for recurrent and non-recurrent
models. Existing libraries offer only limited
support for recurrent models. pyvene sup-
ports simple feed-forward networks, Trans-
formers, and recurrent and convolutional neu-
ral models.

In this paper, we provide two detailed case stud-
ies using pyvene as well: (1) we fully reproduce
Meng et al. (2022)’s locating factual associations in
GPT2-XL (Figure 1 in the original paper) in about
20 lines of code, and (2) we show intervention
and probe training with pyvene to localize gender
in Pythia-6.9B. pyvene is published through the

Python Package Index (PyPI),1 and the project site2

hosts more than 20 tutorials that cover interventions
at different levels of complexity with various model
architectures from simple feed-foward models to
multi-modal models.

2 System Design and Architecture

Two primary components of pyvene are the in-
tervenable configuration, which outlines which
model components will be intervened upon, and
the intervenable model, which decorates the origi-
nal torch model with hooks that allow activations
to be collected and overwritten.3 Here is a setup
for performing a zero-out intervention (often called
a zero ablation; Li et al. 2023b) on the 10th, 11th,
and 12th dimensions of the MLP output for 3rd
token embedding of layer 0 in GPT-2:

import torch
import pyvene as pv
# built -in helper to get a HuggingFace model
_, tokenizer , gpt2 = pv.create_gpt2 ()
# create with dict -based config
pv_config = pv.IntervenableConfig ({

"layer": 0,
"component": "mlp_output",
"intervention_type": pv.VanillaIntervention })

# initialize model
pv_gpt2 = pv.IntervenableModel(

pv_config , model=gpt2)
# run an intervened forward pass
intervened_outputs = pv_gpt2(

# the base input
base=tokenizer(

"The capital of Spain is",
return_tensors="pt"),

# the location to intervene at (3rd token)
unit_locations ={"base": 3},
# the individual dimensions targetted
subspaces =[10 ,11 ,12],
# the intervention values
source_representations=torch.zeros(

gpt2.config.n_embd)
)
# sharing
pv_gpt2.save("./tmp/", save_to_hf_hub=True)

The model takes a tensor input base and runs
through the model’s computation graph modifying
activations in place to be other values source. In
this code, we specified source in the forward call.
When source is a constant, it can alternatively be
specified in the IntervenableConfig. To target
complete MLP output representations, one simply
leaves out the subspaces argument. The final line
of the code block shows how to serialize and share
an intervened model remotely through a model hub
such as HuggingFace.

1pip install pyvene
2https://github.com/stanfordnlp/pyvene
3Code snippets provided in the paper can be run on Google

Colab at https://colab.research.google.com/github/
stanfordnlp/pyvene/blob/main/pyvene_101.ipynb.
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2.1 Interchange Interventions

Interchange interventions (Geiger et al., 2020; Vig
et al., 2020; Wang et al., 2023, also known as acti-
vation patching) fix activations to take on the values
they would be if a different input were provided.
With minor changes to the forward call, we can
perform an interchange intervention on GPT-2:

# run an interchange intervention
intervened_outputs = pv_gpt2(

# the base input
base=tokenizer(

"The capital of Spain is",
return_tensors = "pt"),

# the source input
sources=tokenizer(

"The capital of Italy is",
return_tensors = "pt"),

# the location to intervene at (3rd token)
unit_locations ={"sources ->base": 3},
# the individual dimensions targeted
subspaces =[10 ,11 ,12]

)

This forward call produces outputs for base but
with the activation values for MLP output dimen-
sions 10–12 of token 3 at layer 0 set to those that ob-
tained when the model processes the source. Such
interventions are used in interpretability research to
test hypotheses about where and how information
is stored in model-internal representations.

2.2 Addition Interventions

In the above examples, we replace values in the
base with other values (VanillaIntervention).
Another common kind of intervention involves up-
dating the base values in a systematic way:

noising_config = pv.IntervenableConfig ({
"layer": 0,
"component": "block_input",
"intervention_type": pv.AdditionIntervention })

noising_gpt2 = pv.IntervenableModel(
config , model=gpt2)

intervened_outputs = noising_gpt2(
base=tokenizer(

"The Space Needle is in downtown",
return_tensors = "pt"),

# target the first four tokens for intervention
unit_locations ={"base": [0, 1, 2, 3]},
source_representations = torch.rand(

gpt2.config.n_embd , requires_grad=False))

As in this example, we add noise to a represen-
tation as a basic robustness check. The code
above does this, targetting the first four input
token embeddings to a Transformer by using
AdditionIntervention. This example serves as
the building block of causal tracing experiments as
in Meng et al. 2022, where we corrupt embedding
inputs by adding noise to trace factual associations.
Building on top of this, we reproduce Meng et al.’s
result in Section 3. pyvene allows Autograd on
the static representations, so this code could be the

basis for training models to be robust to this noising
process.

2.3 Activation Collection Interventions
This is a pass-through intervention to collect activa-
tions for operations like supervised probe train-
ing. Such interventions can be combined with
other interventions as well, to support things like
causal structural probes (Hewitt and Manning,
2019; Elazar et al., 2020; Lepori et al., 2023). In
the following example, we perform an interchange
intervention at layer 8 and then collect activations
at layer 10 for the purposes of fitting a probe:

# set up a upstream intervention
probe_config = pv.IntervenableConfig ({

"layer": 8,
"component": "block_output",
"intervention_type": pv.VanillaIntervention })

# add downstream collector
probe_config = probe_config.add_intervention ({

"layer": 10,
"component": "block_output",
"intervention_type": pv.CollectIntervention })

probe_gpt2 = pv.IntervenableModel(
probe_config , model=gpt2)

# return the activations for 3rd token
collected_activations = probe_gpt2(

base=tokenizer(
"The capital of Spain is",
return_tensors="pt"),

unit_locations ={"sources ->base": 3})

2.4 Custom Interventions
pyvene provides a flexible way of adding new inter-
vention types. The following is a simple illustration
in which we multiply the original representation by
a constant value:

# multiply base with a constant
class MultInt(pv.ConstantSourceIntervention):

def __init__(self , ** kwargs):
super().__init__ ()

def forward(self , base , source=None ,
subspaces=None):
return base * 0.3

pv.IntervenableModel ({
"intervention_type": MultInt},
model=gpt2)

The above intervention becomes useful when study-
ing interpretability-driven models such as the Back-
pack LMs of Hewitt et al. (2023). The sense vectors
acquired during pretraining in Backpack LMs have
been shown to have a “multiplication effect”, and
so proportionally decreasing sense vectors could
effectively steer the model’s generation.

2.5 Trainable Interventions
pyvene interventions can include trainable param-
eters. RotatedSpaceIntervention implements
Distributed Alignment Search (DAS; Geiger et al.
2023), LowRankRotatedSpaceIntervention is a
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more efficient version of that model, and
BoundlessRotatedSpaceIntervention imple-
ments the Boundless DAS variant of Wu et al.
(2023). With these primitives, one can easily train
DAS explainers.

In the example below, we show a single gradient
update for a DAS training objective that localizes
the capital associated with the country in a one-
dimensional linear subspace of activations from
the Transformer block output (i.e., main residual
stream) at the 8th layer by training our intervention
module to match the gold counterfactual behavior:

das_config = pv.IntervenableConfig ({
"layer": 8,
"component": "block_output",
"low_rank_dimension": 1,
"intervention_type":

pv.LowRankRotatedSpaceIntervention })

das_gpt2 = pv.IntervenableModel(
das_config , model=gpt2)

last_hidden_state = das_gpt2(
base=tokenizer(

"The capital of Spain is",
return_tensors="pt"),

sources=tokenizer(
"The capital of Italy is",
return_tensors="pt"),

unit_locations ={"sources ->base": 3}
)[-1]. last_hidden_state [:,-1]

# gold counterfacutual label as " Rome"
label = tokenizer.encode(

" Rome", return_tensors="pt")
logits = torch.matmul(

last_hidden_state , gpt2.wte.weight.t())

m = torch.nn.CrossEntropyLoss ()
loss = m(logits , label.view(-1))
loss.backward ()

2.6 Training with Interventions

Interventions can be co-trained with the intervening
model for techniques like interchange intervention
training (IIT), which induce specific causal struc-
tures in neural networks (Geiger et al., 2022):

pv_gpt2 = pv.IntervenableModel ({
"layer": 8},
model=gpt2)

# enable gradients on the model
pv_gpt2.enable_model_gradients ()
# run counterfactual forward as usual

In the example above, with the supervision signals
from the training dataset, we induce causal struc-
tures in the residual stream at 8th layer.

2.7 Multi-Source Parallel Interventions

In the parallel mode, interventions are applied to
the computation graph of the same base example
at the same time. We can perform interchange inter-
ventions by taking activations from multiple source

examples and swapping them into the base’s com-
putation graph:

parallel_config = pv.IntervenableConfig ([
{"layer": 3, "component": "block_output"},
{"layer": 3, "component": "block_output"}],
# intervene on base at the same time
mode="parallel")

parallel_gpt2 = pv.IntervenableModel(
parallel_config , model=gpt2)

base = tokenizer(
"The capital of Spain is",
return_tensors="pt")

sources = [
tokenizer("The language of Spain is",

return_tensors="pt"),
tokenizer("The capital of Italy is",

return_tensors="pt")]

intervened_outputs = parallel_gpt2(
base , sources ,
{"sources ->base": (
# each list has a dimensionality of
# [num_intervention , batch , num_unit]
[[[1]] ,[[3]]] , [[[1]] ,[[3]]])}

)

In the example above, we interchange the activa-
tions from the residual streams on top of the second
token from the first example (“language”) as well as
the fourth token from the second example (“Italy”)
into the corresponding locations of the base’s com-
putation graph. The motivating intuition is that
now the next token might be mapped to a semantic
space that is a mixture of two inputs in the source
“The language of Italy”. (And, in fact, “Italian” is
among the top five returned logits.)

2.8 Multi-Source Serial Interventions

Interventions can also be sequentially applied, so
that later interventions are applied to an intervened
model created by the previous ones:

serial_config = pv.IntervenableConfig ([
{"layer": 3, "component": "block_output"},
{"layer": 10, "component": "block_output"}],
# intervene on base one after another
mode="serial")

serial_gpt2 = pv.IntervenableModel(
serial_config , model=gpt2)

intervened_outputs = serial_gpt2(
base , sources ,
# src_0 intervenes on src_1 position 1
# src_1 intervenes on base position 4
{"source_0 ->source_1": 1,
"source_1 ->base" : 4}

)

In the example above, we first take activations at the
residual stream of the first token (“language”) at the
3rd layer from the first source example and swap
them into the same location during the forward run
of the second source example. We then take the
activations of the 4th token (“is”) at layer 10 at
upstream of this intervened model and swap them
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into the same location during the forward run of the
base example. The motivating intuition is that the
first intervention will result in the model retrieving
“The language of Italy” and the second interven-
tion will swap the retrieved answer into the output
stream of the base example. (Once again, “Italian”
is among the top five returned logits.)

2.9 Intervenable Model

The IntervenableModel class is the backend for
decorating torch models with intervenable config-
urations and running intervened forward calls. It
implements two types of hooks: Getter and Setter
hooks to save and set activations.

Figure 1 highlights pyvene’s support for LMs.
Interventions can be applied to any position in the
input prompt or any selected decoding step.

The following involves a model with recurrent
(GRU) cells where we intervene on two unrolled
recurrent computation graphs at a time step:

# built -in helper to get a GRU
_, _, gru = pv.create_gru_classifier(

pv.GRUConfig(h_dim =32))
# wrap it with config
pv_gru = pv.IntervenableModel ({

"component": "cell_output",
# intervening on time
"unit": "t",
"intervention_type": pv.ZeroIntervention},
model=gru)

# run an intervened forward pass
rand_b = torch.rand(1,10, gru.config.h_dim)
rand_s = torch.rand(1,10, gru.config.h_dim)
intervened_outputs = pv_gru(

base = {"inputs_embeds": rand_b},
sources = [{"inputs_embeds": rand_s}],
# intervening time step
unit_locations ={"sources ->base": (6, 3)})

A hook is triggered every time the corresponding
model component is called. As a result, a vanilla
hook-based approach, as in all previous libraries
(Bau, 2022; Lloyd, 2023; Fiotto-Kaufman, 2023;
Mossing et al., 2024), fails to intervene on any
recurrent or state-space model. To handle this lim-
itation, pyvene records a state variable for each
hook, and only executes a hook at the targeted time
step.

3 Case Study I: Locating Factual
Associations in GPT2-XL

We replicate the main result in Meng et al. (2022)’s
Locating Factual Associations in GPT2-XL with
pyvene. The task is to trace facts via interventions
on fact-related datasets. Following Meng et al.’s
setup, we first intervene on input embeddings by
adding Gaussian noise. We then restore individual
states to identify the information that restores the

results. Specifically, we restore the Transformer
block output, MLP activation, and attention output
for each token at each layer. For MLP activation
and attention output, we restore 10 sites centered
around the intervening layer (clipping on the edges).
Our Figure 2 fully reproduces the main Figure 1
(p. 2) in Meng et al.’s paper. To replicate their ex-
periments, we first define a configuration for causal
tracing:

def tracing_config(
l, c="mlp_activation", w=10, tl=48):

s = max(0, l - w // 2)
e = min(tl, l - (-w // 2))
config = IntervenableConfig(

[{"component": "block_input"}] +
[{"layer": l, "component": c}

for l in range(s, e)],
[pv.NoiseIntervention] +
[pv.VanillaIntervention ]*(e-s))

return config

With this configuration, we corrupt the subject to-
ken and then restore selected internal activations to
their clean value. Our main experiment is imple-
mented with about 20 lines of code with pyvene:

trace_results = []
_, tokenizer , gpt = pv.create_gpt2("gpt2 -xl")
base = tokenizer(

"The Space Needle is in downtown",
return_tensors="pt")

for s in ["block_output", "mlp_activation",
"attention_output"]:

for l in range(gpt.config.n_layer):
for p in range (7):

w = 1 if s == "block_output" else 10
t_config , n_r = tracing_config(l, s, w)
t_gpt = pv.IntervenableModel(t_config , gpt)
_, outs = t_gpt(base , [None] + [base]*n_r ,

{"sources ->base": ([None] + [[[p]]]*n_r ,
[[[0, 1, 2, 3]]] + [[[p]]]* n_r)})

dist = pv.embed_to_distrib(gpt ,
outs.last_hidden_state , logits=False)

trace_results.append(
{"stream": s, "layer": l, "pos": p,
"prob": dist [0][ -1][7312]})

4 Case Study II: Intervention and Probe
Training with Pythia-6.9B

We showcase intervention and probe training with
pyvene using a simple gendered pronoun predic-
tion task in which we try to localize gender in
hidden representations. For trainable intervention,
we use a one-dimensional Distributed Alignment
Search (DAS; Geiger et al., 2023), that is, we seek
to learn a 1D subspace representing gender. To
localize gender, we feed prompts constructed from
a template of the form “[John/Sarah] walked be-
cause [he/she]” (a fixed length of 4) where the
name is sampled from a vocabulary of 47 typically
male and 10 typically female names followed by
the associated gendered pronoun as the output to-
ken. We use pythia-6.9B (Biderman et al., 2023)
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Figure 2: We reproduce the results in Meng et al. (2022)’s Figure 1 of locating early sites and late sites of factual
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Figure 3: Results of interchange intervention accuracy
(IIA) with the trainable intervention (DAS) and accu-
racy with the trainable linear probe on different model
components when localizing gender information.

in this experiment, which achieves 100% accuracy
on the task. We then train our interventions and
probes at the Transformer block output at each
layer and token position. For intervention training,
we construct pairs of examples and train the inter-
vention to match the desired counterfactual output
(i.e., if we swap activations from an example with
a male name into another example with a female
name, the desired counterfactual output should be
“he”). For linear probe training, we use activation
collection intervention to retrieve activations to pre-
dict the pronoun gender with a linear layer.

As shown in Figure 3, a trainable intervention

finds sparser gender representations across layers
and positions, whereas a linear probe achieves
100% classification accuracy for almost all compo-
nents. This shows that a probe may achieve high
performance even on representations that are not
causally relevant for the task.

5 Limitations and Future Work

We are currently focused on two main areas:

1. Expanding the default intervention types and
model types. Although pyvene is extensi-
ble to other types, having more built-in types
helps us to onboard new users easily.

2. pyvene is designed to support complex inter-
vention schemes, but this comes at the cost of
computational efficiency. As language models
get larger, we would like to investigate how to
scale intervention efficiency with multi-node
and multi-GPU training.

6 Conclusion

We introduce pyvene, an open-source Python li-
brary that supports intervention-based research on
neural models. pyvene supports customizable in-
terventions with complex intervention schemes as
well as different families of model architectures,
and intervened models are shareable with others
through online model hubs such as HuggingFace.
Our hope is that pyvene can be a powerful tool for
discovering new ways in which interventions can
help us explain and improve models.
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Abstract

To establish sophisticated monitoring of news-
paper articles for detecting crisis-related sig-
nals, natural language processing has to cope
with unstructured data, media, and cultural
bias as well as multiple languages. So far, re-
search on detecting signals in newspaper arti-
cles is focusing on structured data, restricted
language settings, and isolated application do-
mains. When considering complex crisis-
related signals, a high number of diverse news-
paper articles in terms of language and cul-
ture reduces potential biases. We demonstrate
MENDEL – a model for multi-lingual and
open-domain newspaper signaling for detecting
crisis-related indicators in newspaper articles.
The model works with unstructured news data
and combines multiple transformer-based mod-
els for pre-processing (STANZA) and content
filtering (RoBERTa, GPT-3.5). Embedded in a
Question-Answering (QA) setting, MENDEL
supports multiple languages (>66) and can de-
tect early newspaper signals for open crisis do-
mains in real-time.

1 Introduction

Monitoring newspaper sources has a significant im-
pact on companies, health organizations, and civil
defense in preparing for and responding to emerg-
ing trends, conflicts, and crises situations effec-
tively (Elliott and Timmermann, 2016; Dim et al.,
2021). Nonetheless, up until now, newspaper sig-
naling is not applied in crisis and risk management
in practice as it is challenging due to the amount
of unstructured data, media, cultural bias (Han-
itzsch et al., 2020), and multiple languages (Asr
and Taboada, 2019). So far, research on detecting
potential signals for crisis-related events based on
newspaper articles is focusing on structured data
(Hassanzadeh et al., 2022; Huang et al., 2022, 2020;
Sakaki et al., 2010; Rasouli et al., 2020; Asif et al.,
2021), restricted language settings (Luca Barbaglia

and Manzan, 2023), and isolated application do-
mains, e.g., mobility, finances (Dim et al., 2021;
Agrawal et al., 2022). The existing systems that
monitors newspapers (GAIA-X, 2022; Eurostat,
2023) only aggregates and visualize current news,
they don’t posses advanced language processing
capabilities. However, MENDEL distinguishes it-
self by processing unstructured newspaper data in
real-time, and its use of large language models for
multi-lingual content filtering and context-based
crisis forecasting, offering a broader and more dy-
namic approach to early crisis signaling by encour-
aging organizational preparedness and supporting
a rapid and effective response (Bundy et al., 2017).

Figure 1: Demonstration of the user interface used
for real-time newspaper signaling for detecting energy-
related crisis signals.

The major challenge in using newspaper arti-
cles for crisis prediction is the management of
unstructured data. Most approaches tackle this
challenge by specifying a domain ontology for
converting unstructured data into structured data,
e.g., (Agrawal et al., 2022); facing all the well-
known disadvantages in performance, flexibility,
and openness with regard to domains. Thus, multi-
lingual issues as well as media and cultural biases
in newspaper articles written by diverse journalists
for diverse newspapers in diverse countries on the
same events cannot be captured (Hanitzsch et al.,
2020). Furthermore, the media landscape in each
country has an influence on how events are por-
trayed (Kalogeropoulos et al., 2019). Therefore,
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considering a high number of diverse newspaper
resources in terms of language and culture reduces
potential biases when seeking to identify complex
crisis-related signals in newspaper articles. In this
paper, we demonstrate MENDEL – a model for
multi-lingual and open-domain newspaper signal-
ing for detecting crisis-related indicators in news-
paper articles (cf. Figure 1). Our model works with
unstructured data of newspaper articles and com-
bines multiple state-of-the-art transformer-based
models (Vaswani et al., 2017) for pre-processing
(STANZA (Qi et al., 2020)) and content filtering
(XLM-RoBERTa (Conneau et al., 2020), GPT-3.5
(Brown et al., 2020)). MENDEL supports multiple
of the most spoken languages in the world (>66)
(e.g., Mandarin Chinese, Spanish, English, Hindi,
Arabic). The model is able to detect newspaper
signals for open domains, e.g., energy, finances,
and supply chains, that can be directly adjusted by
the user in terms of keywords. One appeal of the
model is the usage of purely unstructured data on
newspaper articles for processing signals in real-
time in contrast to other approaches mixing those
data with already existing structured data suffering
from lower quality and timeliness, e.g., Wikidata
(Hassanzadeh et al., 2022; Li et al., 2022; Shane
E. Halse and Caragea, 2018; Mai and Quan, 2020).
Furthermore, MENDEL covers a 2-step filtration
pipeline based on RoBERTa (Conneau et al., 2020)
and Cosine similarity for determining domain rel-
evance and crisis reference enabling an extensive
filtration of articles with high accuracy and less
redundancy in distinction from other approaches,
that use no filtration, restricted approaches and only
sentiment analyses1 (Agrawal et al., 2022). The
model provides the risk and warnings, statistical
trends of the crisis and is exemplified within a QA
system as a natural language assistant in risk and
crisis management (cf. Figure 1)2. We were able to
evaluate the proposed approach by means of a set
of newspaper articles (total: 18,673 news articles)
in terms of performance in identifying potential
signals for economic recession and energy-related
crisis situations (i.e., availability and costs of en-
ergy like gas, oil, coal, solar, wind, supply chain
disruption, mobility, etc) in Germany.

1https://eventregistry.org/products/intelligence/
2Link to demo video: https://youtu.be/q2UTeQsBnDc

2 Multi-lingual and Open-domain
Newspaper Signaling for Crisis
Prediction

We present MENDEL, a model for multi-lingual
and open-domain newspaper signaling for crisis
prediction powered with a real-time alert system,
statistical trend visualization, and a QA chat-bot.
In this paper, we explore crises defined as periods
of substantial instability that disrupt the normal
functioning of systems, leading to notable conse-
quences; specifically, we concentrate on events that
are predictable but challenging to influence, e.g.
supply chain disruptions, mobility, rise in energy
prices, economic crisis etc as outlined in various
crisis taxonomies, including (Gundel, 2005). The
framework consists of four main modules (cf. Fig-
ure 2): Data acquisitions, Data-processing pipeline,
Two-stage data filtration, and Context-based rea-
soning and forecasting. MENDEL operates on
domain-specific keywords given by a user with ad-
ditional parameters such as language, country, and
time frame. This serves as input to the data acquisi-
tion module which consists of several components,
charged with generating domain-specific keywords,
extracting newspaper articles, and a data parser.
Outputs of these components are fed to the data-
processing module which handles data cleaning by
removing stopwords, punctuation followed by tok-
enizer and lemmatizer. This module processes the
data that can be directly fed to our two-stage data
filtration, which is responsible to filters the articles
based on users specified crisis domain and by find-
ing future and present tenses in articles. Outputs
are further passed to the Context-based Reasoning
and Forecasting module. It generates, risks and
warnings for the filtered articles and also provide
statistical trend visualization for six months period.
It also provides relevant keywords and QA chat-
bot. Overall, MENDEL pipeline uses completely
unstructured data, i.e., newspaper articles, supports
open crisis domain, multiple languages and provide
early signaling and warnings.

To introduce the proposed approach in the demo,
we give a short example course of detecting crisis-
related indicators in newspaper articles, starting
with the domain name provided by the user e.g.
’high energy prices’ and ending with identified
domain-specific newspaper signals. For the fol-
lowing, imagine a user, such as a company, looking
for signals of energy-related crises due to reduced
availability or rising costs of energy such as gas,
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oil, coal, supply chain disruption and mobility, etc.
MENDEL would provide them with alert trends
in the form of risk and warnings for rising energy
prices. Additionally, it provides visualizations of
the statistical crisis trend over 6 months period.

2.1 Data Acquisition
The data acquisition pipeline receives the specified
domain name directly from the interface, i.e. ’high
energy prices’, which is given as a raw string input
by the user. The keyword expansion model then
generates a list of relevant keywords for the spec-
ified domain, e.g., energy shortage, energy cost
surge, energy demand, and electricity blackouts.
To do this, we are utilizing the openAI’s3 genera-
tive pre-trained transformer 3.5 (GPT-3.5) (Brown
et al., 2020) model, which broaden the search scope
and improve the precision of extracted articles over
the manually collected list of keywords (Kyröläi-
nen and Laippala, 2023). We then extract news
articles for the curated list of relevant keywords
using event registry news API4. It allows to obtain
access to real-time as well as archive news articles.
Additional filters such as time, date, country, and
language can be provided from the user interface.
Extracted articles are then passed through a data
parser which extracts specific data from the entire
news article such as title, URL, published date, and
first four paragraphs; as typically an abstract of
the article is given at the beginning. This helps to
reduce the text size of the individual article and
improves processing time.

2.2 Data Processing
Our data processing module mainly performs the
pre-processing of the extracted news articles as
shown in (cf. Figure 2). The data cleaning module
handles the removal of special characters, convert-
ing them to lowercase, and removing duplicates
and missing values. Followed by this, all the stop
words and punctuation from the data is removed.
STANZA (Qi et al., 2020) is used for tokeniza-
tion and lemmatization of the data. It tokenizes
and splits sentences, each of these sentences con-
tains a list of tokens which is then converted to it’s
lemmatized form. In the example, the parsed news
articles from section 2.1 are processed by removing
punctuation, stop words, etc., and converting them
into tokens and lemma form. The decomposed
lemma represents the output as a set of single-word

3https://openai.com/api/
4https://www.newsapi.ai

tokens, e.g., [’Household’, ’will’, ’face’, ’energy-
expensive’, ’winter’, ...., ’economic’, ’stress’].

2.3 Two-Stage Data Filtration

News articles extracted from news API5 generally
contain irrelevant and noisy data. Hence, it is im-
portant to filter the articles based on the user’s spec-
ified crisis domain. In this research, we propose
a two-stage data filtering. First, to filter articles
based on the use case, and second, to focus on
articles that are related to future warnings. The
domain-based articles matching module utilizes a
state-of-the-art multilingual RoBERTa model (Con-
neau et al., 2020) to perform filtering based on the
desired domain. For this, we derive embedding vec-
tors of the articles by using its learned embedding
representations from the RoBERTa model. Fur-
ther we generate the embedding vectors of all the
domain-relevant keywords and use cosine similar-
ity to check if the embedding vectors of articles and
domain keywords are close to each other. In this
filtering stage, only articles with a cosine similarity
greater than 70% arbitrary threshold are retained
while the rest are discarded. Subsequently, we
need to focus on articles related to future warn-
ings, hence we propose a filtration method to only
get articles that are in the future tense and present
tense, and reject the articles which are in the past
tense. To achieve this, we use the pre-trained zero-
shot multilingual XLM-RoBERTa (Conneau et al.,
2020) model to classify articles according to their
tenses. We set up an arbitrary threshold of 70%
combining both future and present tense confidence
and discard the remaining articles.

For our example, we first input the sen-
tence: [household will face energy expensive win-
ter....economic stress] to the RoBERTa encoder
along with the domain keywords (high energy
prices, energy shortage, energy cost surge, energy
demand, etc) and then we compute their likeness
using cosine similarity. Here, we get a similarity of
93.7% which preceded the threshold of 70%, hence
we pass this to the second filtration step where we
give it to our tense-based classifier and got the con-
fidence score of 94.1% for future and present tense.
As the confidence is higher than the threshold of
70%, we include this article in our data set.

5https://www.newsapi.ai
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Figure 2: Architecture diagram of MENDEL: A model for multi-lingual and open-domain newspaper signaling for
detecting early crisis-related indicators in the newspaper article.

2.4 Context-based Reasoning and Forecasting

Finally, the context-based reasoning and forecast-
ing module receives the final set of embedding
from two-stage data filtration2.3. Our alert system
is based on the powerful GPT-3.5 (Brown et al.,
2020) which classifies the article into three cate-
gories ’risk and warning’, ’caution and advice’, and,
’safe and harmless’. The classified articles are then
statistically analyzed by computing the percentage
and average confidence score of ’risk and warnings’
articles to calculate the alerts. The predictions are
delivered to users through the user interface along
with visualization of the statistical crisis trend over
6 months period. For the ’high energy prices’ ex-
ample, users will be shown a percentage of ’risk
and warnings’ signals found with their mean confi-
dence scores, and a graph showing the alert trends
for 6 months. If the alerts percentage is high and
the graph shows an exponential growth pattern, it
is most likely to have an upcoming crisis related to
’high energy prices’. We further use KeyBERT 6

to extract the relevant keywords from the high-risk
and warning articles. The resulting relevance for
the selected example is ("gas price spikes: 92%",
"energy-expensive: 72%", "supply chain disrup-
tions: 78%", mobility: 43%]). Moreover, we also
provide an extractive QA chatbot (Conneau et al.,
2020; Rajpurkar et al., 2016) for users to interact

6https://github.com/MaartenGr/KeyBERT

and ask any questions related to filtered articles. It
meets interactive needs of the users and provide
more dynamic and responsive way to access crisis-
related information.

3 Implementation and Evaluation

Based on the proposed model MENDEL (cf. Fig-
ure 2), we implemented a newspaper signaling ser-
vice for crisis and risk management 7. The service
architecture has been deployed using Python and
Django while the client side interface has been de-
signed as a web interface using HTML, CSS, and
JavaScript. The system accepts keywords by the
user in the form of plain text along with specific
countries, languages, and time frames. In response,
the system presents domain-specific crisis signals
and highlights the most influential articles. More-
over, it delivers alerts with confidence and severity
levels, along with the relevant keywords8.

3.1 Settings

We evaluated the performance of the signaling ser-
vice in identifying potential signals for economic
recession and energy-related crisis situations (i.e.,
availability and costs of energy like gas, oil, coal,
solar, and wind). Here, we selected a subset of

7Link to GitHub repo: https://github.com/
InformationServiceSystems/pairs-project/tree/
main/Modules/NewspaperSignaling

8Demo video: https://youtu.be/q2UTeQsBnDc
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past and ongoing crises in Germany and repre-
sented with event (E) i.e., economic recession in
mid-20239 (e1), huge increase of energy prices in
202210 (e2), and immense raise of gasoline prices
in 202111 (e3). The objective of the experiment was
the identification of early signals regarding these
crises in newspaper articles with high percentage
and within notable time. We defined three-time
horizons for test runs: four (t−1), eight (t−2), and
twelve (t−3) weeks before the crisis event occurred.
Furthermore, the final set of articles went through
the ’alert and forecasting’ component and calcu-
lated the potential alerts by performing text clas-
sification. To assess the performance of our alert
and forecasting model, we recruited three human
annotators for creating an annotated text corpora
due to the lack of crisis newspaper benchmarks.
We focused on our crisis events (E) and generated
ground truth from annotators. We provided clear
instructions and examples for classification to en-
sure consistent labeling. They classified the articles
into three categories: ’risk and warning’, ’caution
and advice’, and ’safe and harmless’. These cat-
egories were motivated by existing crisis-related
labels used in datasets like CrisisBench (Alam et al.,
2021). The ground truth was then determined by se-
lecting the majority label from the three annotator’s
inputs.

3.2 Data

To conduct the experiment, we collected the news
articles for the three past events (E) using the event
registry news API. The data acquisition module ex-
tracted a total of 18,673 articles in real-time from
01.07.2021 to 31.05.2023 (Table 1 displays arti-
cle counts across different modules). For event
(e1) we input the keyword ’economic recession’
and retrieved 12,265 articles. Following, for the
event (e2) we used the keyword ’high energy prices’
and received 5,839 articles. Lastly, for the event
(e3) we got 569 articles for the keyword ’high gas
prices’. The majority of articles consisted of Ger-
man and English languages, but we also found mul-
tiple other languages such as Russian, Bulgarian,
Spanish, Slovenian, Czech, Indonesian, and Chi-
nese. The processed and parsed articles were fed to

9https://www.dw.com/en/
recession-in-germany-what-does-that-mean/
a-63444401

10https://tradingeconomics.com/germany/
electricity-price

11https://take-profit.org/en/statistics/
gasoline-prices/germany/

the two-stage data filtration, which narrowed down
the relevant articles to a total of 4,002. On average,
67.37% of collected articles were irrelevant to the
selected domains and future signals, highlighting
the importance of the two-stage data filtration.

We also prepared a dataset for testing the perfor-
mance of our ’alert and forecasting’ system. We
took a subset of the output of 2-stage filtered data
for crisis events (E) and created datasets of total of
319 articles (e1: 115, e2: 100, e3: 104) for annota-
tions.

3.3 Results
Table 2 shows the performance of the signaling
service in identifying newspaper signals for time
intervals of 4 (t−1), 8 (t−2), and 12 (t−3) weeks
in advance of crisis events (E). For each point in
time t ∈ T , we examined the monthly growth trend
of risk and warning signals in newspaper articles,
i.e., the Risk and Warning percentage (RW%). It
is defined as the percentage of articles classified
as ’risk and warning’ by our alert and forecasting
module. Results show a generally growing trend
in the frequency of risk and warning signals as
indicators for recession and energy-related crises.

MENDEL was able to detect early signals at all
points in time interval T , i.e., 4, 8, and 12 weeks
before the crisis event. When points in time t ∈ T
are marked bold in Table 2, the signaling service
detected newspaper signals for the respective cri-
sis events e ∈ E. However, for the event e3 at
(t−3) the RW% was weak maybe due to the fact
that raising gasoline prices are quite popular and
volatile compare to e1, e2. As people are familiar
with volatile gasoline prices, the need for commu-
nicating about this issue is lower than with respect
to immensely raising prices for electricity. e1, e2.
Overall, the results of the run-time study indicate
a positive evaluation of the newspaper signaling
service implementing MENDEL.

To verify the quality of the results reported and
to evaluate our alert and forecasting model perfor-
mance we used the generated ground truth data. By
experimenting with multiple state-of-the-art classi-
fication models to identify the most effective model
for crisis signaling. Due to high-class imbalance
in the results of events (e) with ’risk and warn-
ing’ being the dominant class, we adopted the mi-
cro F1 score for the evaluation metric (Takahashi
et al., 2022). Table 3 illustrates the model compari-
son, where the GPT-3.5 model outperformed other
models, while Bart (Lewis et al., 2020) and De-
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Event (E) #articles #language #German #English #data_processing #2-stage_filtration
e1 12265 02 9864 2399 12263 3371
e2 5839 06 5486 298 5836 482
e3 569 06 450 64 564 149

Table 1: Distribution of extracted and processed articles across different stages of MENDEL for all events (E).

Event (E) Date of event (t0) Description t−1 RW% t−2 RW% t−3 RW%

e1 05/23 Economic Re-
cession.

04/23 80.73 03/23 60 02/23 74.44

e2 09/22 Peak in electric-
ity price.

08/22 75.5 07/22 68.42 06/22 66.6

e3 10/21 Peak in gasoline
price.

09/21 73.7 08/21 59.09 07/21 30

Table 2: Results of run-time study for evaluating the performance of MENDEL in identifying newspaper signals for
time intervals of 4 (t−1), 8 (t−2), and 12 (t−3) weeks in advance of economic recession and past energy-related
crisis events E between July 2021 and May 2023 in Germany. Domain-specific keyword: [’Economic recession’,

’High energy prices’, ’High gas Prices’]. (Legend: RW% = risk and warning percentage)

BERTaV3 (Laurer et al., 2024) also demonstrated
promising results. Therefore, we used GPT-3.5
(Brown et al., 2020) for our alert and forecasting
system.

Table 3: Performance of ’alert and forecasting’ model
for classifying the articles in ’risk and warning’, ’caution
and advice’, and ’safe and harmless’ categories. For the
Events (E), numbers reported are micro-averaged f1
scores on different text classification models based on
human-generated ground truth labels.

Model e1 e2 e3
XLM-RoBERTaLarge 0.46 0.37 0.27
DeBERTaV3 0.65 0.58 0.61
BART 0.6 0.68 0.63
GPT3.5 0.75 0.8 0.79

4 Conclusion

We considered real-time newspaper signaling for
detecting crisis-related indicators based on purely
unstructured data. So far, research on detecting
signals in newspaper articles is focusing on struc-
tured data, restricted language settings, and isolated
application domains, giving little attention to the
thereby induced potential biases. We introduced
MENDEL – a model for multi-lingual and open-
domain newspaper signaling for detecting crisis-
related indicators in newspaper articles. The model
works with unstructured data from newspaper arti-
cles and combines multiple transformer-based mod-
els for pre-processing (STANZA) and content fil-

tering (XLM-RoBERTa, GPT-3.5). Embedded in
a question-answering setting, MENDEL supports
multiple spoken languages in the world (>66) and
is able to detect newspaper signals for open do-
mains in real time. We were able to evaluate the
proposed approach by identifying potential signals
for events (E), economic recession, and energy-
related crisis situations. In terms of performance,
we evaluated our alert and forecasting model by
creating human-annotated data and achieved up to
80% average micro-F1 score. We also were able
to identify the potential signals for recession and
energy-related crisis, from four (t−1), eight (t−2),
and twelve (t−3) weeks before the crisis event oc-
curred.

Ethics statement and limitations

MENDEL aims to make it easier to comprehend
news articles about growing and rapidly updating
crises, as it can be challenging for humans to keep
up with emerging issues from extensive unstruc-
tured news data. It is not intended to make pre-
dictions, but rather to offer early warning signs of
impending crises that would take humans too much
time to detect. Verification of crisis warnings is a
task that our system does not undertake and that
we consider for future work. Our approach does
not prove that all crises can be predicted with the
same level of performance. It is highly influential
on the quality and quantity of news articles due to
its capability to deal only with unstructured data.
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Abstract

We present FastFit, a Python package designed
to provide fast and accurate few-shot classifica-
tion, especially for scenarios with many seman-
tically similar classes. FastFit utilizes a novel
approach integrating batch contrastive learning
and token-level similarity score. Compared to
existing few-shot learning packages, such as
SetFit, Transformers, or few-shot prompting
of large language models via API calls, FastFit
significantly improves multi-class classification
performance in speed and accuracy across vari-
ous English and Multilingual datasets. FastFit
demonstrates a 3-20x improvement in training
speed, completing training in just a few sec-
onds. The FastFit package is now available on
GitHub, presenting a user-friendly solution for
NLP practitioners.1

1 Introduction

Few-shot classification presents a unique challenge,
especially when dealing with a multitude of classes
that share similar semantic meanings. Expanding
the training data can be both time-consuming and
costly. To address this challenge, two primary cat-
egories of tools have been developed: few-shot
prompting of large language models (LLMs) via
API calls, or packages designed for fine-tuning
smaller language models using the limited avail-
able data. However, we recognize the drawbacks
of applying both of these approaches in practice.

Few-shot prompting of LLMs leverages their
multitasking abilities to tackle data scarcity. How-
ever, in the presence of many classes, LLMs en-
counter three major challenges: (1) LLMs struggle
to incorporate demonstrations of all classes within
their context window. (2) Utilization of the long
context for the classification task can be challeng-
ing (Liu et al., 2023). (3) Due to the model size,
and prompt length the inference time is slow.

1FastFit GitHub

Figure 1: Training times (sec) for FastFit, SetFit, and
standard classifier with MPNet model. FastFit training
is 3-20x faster.

In contrast, the approach of fine-tuning smaller
language models capitalizes on their adaptability
to specific tasks, as demonstrated to be effective
in recent works. However, these methods can be
challenging to deploy as they require architectural
adjustments (Yehudai et al., 2023) or, like SetFit,
may prove less suitable for classification with many
classes (Tunstall et al., 2022).

In this work, we present FastFit, a fast and ac-
curate method, and a pip-installable Python pack-
age designed for fine-tuning small language mod-
els in few-shot classification tasks involving many
classes. Through various experiments, we demon-
strate that FastFit training is significantly faster,
providing a 3-20x speedup. This enables training
within seconds, as illustrated in Fig. 1. FastFit out-
performs earlier packages, including SetFit, Trans-
former, and multi-task models like FLAN, or larger
LLMs like LLama-70B, in both English and Multi-
lingual settings.

The core contribution facilitating this speedup
and improvement lies in FastFit’s use of batch con-
trastive training, recognized for its efficiency and
effectiveness (Khosla et al., 2021). This technique
brings same-class texts closer while pushing apart
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all other texts. FastFit also incorporates token-level
text similarity measures that leverage fine-grained
information (Zhang et al., 2020; Khattab and Za-
haria, 2020). Additionally, we integrate text aug-
mentation techniques to enhance the robustness of
the training process (Gao et al., 2021).

The FastFit package is easy to install and use,
interfacing with standard training APIs (See §2).
We hope that FastFit will help make text classifica-
tion easier and faster for the benefit of the whole
community.

2 The FastFit API

The FastFit Python package is avail-
able on PyPI and can be installed with:
$ pip install fast-fit

To utilize FastFit, import the FastFit trainer,
which inherits from the Hugging Face (HF) trainer.
This enables FastFit to be customizable, inheriting
all parameters from the HF trainer. FastFit sup-
ports loading datasets either by directly passing the
dataset or providing file paths.

Here is a simple code example of loading and
training FastFit. In App. §A, we provide a com-
plete code example.

• • •
from fastfit import FastFitTrainer

trainer = FastFitTrainer(
model_name_or_path=

"roberta-large",
label_column_name="label_text",
text_column_name="text",
dataset=dataset,

)

model = trainer.train()
results = trainer.evaluate()

As FastFit utilizes example texts and class
names, it expects the data to have text and label
fields or to map the existing fields to them using the
label_column_name and text_column_name pa-
rameters of the FastFitTrainer. Our trainer also
supports training with either CLS or token-level
similarity metrics, set by the sim_rep parameter.
The trainer allows to modify the number of augmen-
tation repetitions with the num_repeats parameter.
Then after training, we can easily save the model:

• • •
model.save_pretrained("fast-fit")

And later load it for inference, See App. §A.

3 Method

Given a few-shot text classification dataset contain-
ing texts and their corresponding classes denoted
as {xi, yi}Ni=1, let C = {cj}Mj=1 represent all pos-
sible classes. Our task is to classify each xi into a
class yi ∈ C. To achieve this goal we aim to encode
both texts and class names into a shared embedding
space, where they are represented closely, accord-
ing to a similarity metric S, when they belong to
the same class and are represented further apart
when they do not. To accomplish this, we optimize
the following batch contrastive loss:

L =
∑

b∈[B]

−1

|P (b)|
∑

p∈P (b)

log
eS(x

b,xp)/τ

∑
a∈[B]\b e

S(xb,xa)/τ

(1)
Here, {xb}Bb=1 represents a batch of B texts, and

P (b) refers to the set of texts in the same class as
b in the batch, given by P (b) = {c ∈ [B], |, yc =
yb}. The function S is the similarity metric, and
τ is a scalar temperature parameter regulating the
penalty for negative texts.

For each text in the batch, we augment the batch
by including its class name as an additional ex-
ample. Additionally, we repeat the texts in the
batch r times as a data augmentation technique,
following Gao et al. (2021) by treating the dropout
as a minimal augmentation at the representation
level. This method has demonstrated significant
success in generating sentence embeddings, and
we leverage it here to enhance representation for
text classification.

In our data-scarce setting, we employ fine-
grained token-level similarity metrics, leveraging
textual details. This approach, successful in works
like BERT-Score and ColBERT, defines the simi-
larity metric between texts xi and xj as the sum of
cosine similarities between xi and the most similar
tokens in xj . Specifically, with tokens denoted as
x1i , . . . , x

n
i and x1j , . . . , x

m
j respectively, the simi-

larity score is computed as follows:

S(xi, xj) =

n∑

k=1

m
max
l=1

Eθ(x
k
i ) · Eθ(x

l
j) (2)
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where Eθ(x
k
i ) is a dense representation of token

xki produced by a parametric encoder model with
parameters θ.

During inference, when provided with a new text,
xu we classify it to the most similar class yi ∈ C
with respect to a similarity metric S. This method
draws inspiration from the way inference is con-
ducted in retrieval systems, eliminating the need
for a classification head and aligning the training
and inference objectives.

4 Experiments

4.1 Datasets

We experiment with three English few-shot text
classification datasets: Hwu64 (Liu et al., 2019a),
Banking77 (Casanueva et al., 2020), and Clinc150
(Larson et al., 2019). The datasets have between
64 and 150 classes. Many classes are semantically
similar, making the classification tasks much harder.
We conduct our experiments in 5/10-shot scenarios
where in the k-shot scenario the training set con-
sisted of k examples per class. See App. §B for
full data statistics.

4.2 Baselines

We compare FastFit with a few classification meth-
ods, including fine-tuning methods, like Standard
and SetFit classifiers, and few-shot promoting of
LLMs including Flan-XXL (Wei et al., 2022), Flan-
ul2 (Tay et al., 2023), llama-2-70b-chat (Touvron
et al., 2023), and Mistral-7b (Jiang et al., 2023).
For all fine-tuning methods, we use small and large
versions, where small is MPNet (110M parame-
ters) (Song et al., 2020), and large is Roberta-large
(355M parameters)(Liu et al., 2019b) or equivalent.

Standard classifier. A simple yet strong base-
line is a standard fine-tuning of an encoder-only
model. Since we assume no validation sets, we
use best practices as described in previous works,
and train for 40 epochs, with a learning rate of
1e− 5, and batch size of 16 (Lin et al., 2023). We
recovered runs that didn’t converge.

SetFit. Sentence Transformer Fine-tuning (Set-
Fit) (Tunstall et al., 2022) is a two-stage method for
training a Sentence Transformer model (Reimers
and Gurevych, 2019), specifically designed for
few-shot classification tasks. In the first stage,
the encoder undergoes fine-tuning using triplet
loss, and in the second stage, the classification
head is trained. For the small model we use

paraphrase-mpnet-base-v22, and for the large
model, we used all-Roberta-Large-v13, both
trained with sentence transformer objective before.
We trained the model with a learning rate of 1e−5,
a batch size of 16, for one epoch, based on the
parameters defined in SetFit’s paper.

Flan. Flan language models are fine-tuned on a
diverse range of NLP tasks and datasets, making
them adaptable for various NLP tasks in a few-shot
manner. Here, we experimented with Flan-XXL
(11B) and Flan-ul2 (20B) models. These models
have a 4K tokens context window.

Llama. Llama-2-chat is a set of large language
models developed for conversational applications
and has strong multi-task few-shot capabilities.
Here, we experimented with a Llama model that
supports a 4K tokens context window.

Mistral. Mistral is a strong 7B open-source
large language model. Here, we used the instruct-
tuned version. Mistral supports an 8K tokens con-
text window.

4.3 Experimental Setup
Training Setup. We fine-tune the FastFit model
with a learning rate of 1e − 5, a batch size of 32,
and a maximum sequence length of 128 tokens,
for 40 epochs. We used AdamW optimizer, 16-
bit floating-point (FP16) precision, and applied 4
batch repetitions that acts as augmentations.

All LLMs, except Mistral, have a context win-
dow of 4K. We were able to fit 1 example into
their context for Clinc150 and Banking77, and 3
examples for Hwu64. Mistral, with an 8K con-
text window allows for 2, 3, and 5 examples from
Clinc150, Banking77, and Hwu64, respectively.

Evaluation Setup. Few-shot evaluations can be
noisy due to variations in the small datasets (Dodge
et al., 2020; Zhang et al., 2021). To address this
challenge, we perform all our experiments using
5 random training split variations and report the
mean results.

4.4 Results
In Table 1, we present the results of FastFit, Set-
Fit, and the standard classifier for three datasets
under 5/10-shot settings. FastFit large outperforms
SetFit by 2.1% and the standard classifier by 3.4%.
FastFit small outperforms SetFit by 3.4% and the
standard classifier by 5.1%, achieving compara-
ble results to SetFit large. Notably, FastFit shows

2ST-MPNet
3ST-Roberta-Large
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Method Size CLINC150 BANKING77 HWU64
Average

5 10 5 10 5 10

FastFit
S 90.2 93.3 80.1 85.4 79.8 84.7 85.6
L 92.2* 94.8* 83.0* 87.9* 82.9* 86.3* 87.9*

SetFit
S 86.9 90.5 74.3 81.9 77.8 81.8 82.2
L 90.7 93.1 79.1 86.4 81.0 84.6 85.8

Classfier
S 86.0 91.4 68.1 80.4 74.4 82.9 80.5
L 89.2 94.0 75.9 86.1 76.3 85.5 84.5

Table 1: Accuracy results of FastFit and baselines on 5/10-shot text classification. Results show that FastFit
outperforms SetFit and standard classfier. Moreover, FastFit small is comparable to SetFit large. Results with * are
statistically significant by t-test (p < 0.05) compared to the large standard classifier.

Model C150 B77 H64 Avg.

Flan-ul2 80.3 71.5 76.2 76.0
Flan-XXL 82.1 72.1 74.9 76.3
Llama-2-13B-chat 53.0 42.6 53.2 49.6
Llama-2-70B-chat 60.8 45.7 62.8 56.4
Mistral-7B 63.5 46.8 71.7 60.7

Table 2: Accuracy results of a few LLMs models. The
Flan models outperform the other LLMs. Llama-70B
scores higher than Llama-13B but less than Mistral,
which has a larger context window.

greater improvement in the 5-shot case compared to
the 10-shot case and for the small model compared
to the large one.

Table 2 displays the results of few-shot prompt-
ing for several LLMs. The Flan models exhibit
higher performance than other LLMs, likely due
to the presence of many classification datasets in
the Flan dataset, which do not include our test
sets. This observation aligns with findings in zero-
shot classification (Gretz et al., 2023). Although
Llama-70B outperforms Llama-13B, it falls short
of Mistral-7B’s performance, possibly due to Mis-
tral’s larger context length, allowing it to incorpo-
rate more examples per class.

The results suggest that in our setting, where
numerous classes are present, even the best-
performing LLMs we tested (Flan’s) underperform
compared to large standard classifiers and face chal-
lenges compared to FastFit. It’s important to note
that, due to the model’s size and the length of the
few-shot prompt, inference time can be slow, with
throughput exceeding 1 second per input, in con-
trast to about 1 millisecond with FastFit.

5 Multilingual Experiments

5.1 Datasets
To evaluate FastFit’s multilingual classification
abilities we adopt Amazon Multilingual MASSIVE
dataset (FitzGerald et al., 2022). From the 51
available languages, we selected six typologically
diverse languages: English, Japanese, German,
French, Spanish, and Chinese. MASSIVE is a
parallel dataset, with 60 classes (See App. §B).

5.2 Baselines
For multilingual training, we utilized paraphrase-
multilingual-mpnet-base-v2 as a small model and
XLM-Roberta-Large as a large model. Both mod-
els underwent pretraining in a large number of
languages. Notably, to the best of our knowl-
edge, there is no multilingual sentence transformer
model equivalent to Roberta-Large for SetFit train-
ing. Monolingual and XLM-Roberta-Large models
were tested, but they yielded lower performance
than the small model; hence, their results are de-
tailed in Appendix §C. In English experiments, we
maintained the use of monolingual models (see
§4.2), conducting training and evaluation with the
same setup outlined in §4.3.

5.3 Results
In Table 3, we present the results on MASSIVE
in 5/10-shot scenarios using FastFit, SetFit, and
the standard classifier. FastFit consistently out-
performs both SetFit and the standard classifier in
both 5-shot and 10-shot settings, across small and
large models. In the 5-shot scenario, FastFit large
achieve an 8% improvement over SetFit small and
a 12.4% improvement over the standard classifier.
Meanwhile, FastFit small shows a 2.7% improve-
ment over SetFit small and a 7.1% improvement
over the standard classifier. In the 10-shot case,
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Method Size En De Ja Es Fr Zh Average

5-shot

FastFit
S 72.3 65.0 68.7 65.9 68.0 68.4 68.1
L 77.6* 70.5* 73.7* 71.7* 73.1* 73.7* 73.4*

SetFit S 67.9 62.2 66.8 64.0 65.0 66.7 65.4

Classfier
S 61.2 56.8 59.7 58.4 59.8 61.4 59.5
L 66.4 56.0 65.3 56.6 60.0 61.9 61.0

10-shot

FastFit
S 77.6 70.5 73.7 71.7 73.1 73.7 73.4
L 79.2* 74.8* 77.4 74.1* 75.7* 74.9* 76.0*

SetFit S 74.7 69.8 73.5 71.4 72.0 72.9 72.4

Classfier
S 72.2 67.7 71.0 68.6 69.7 70.0 69.9
L 77.5 71.2 74.3 71.3 72.5 72.7 73.3

Table 3: Accuracy results for FastFit and baselines across six languages, under 5/10-shot settings. Results show that
FastFit consistently outperforms SetFit and the standard classifier. Notably, FastFit small consistently surpasses
SetFit’s small and standard large classifiers. Results marked with an asterisk (*) are statistically significant according
to t-test (p < 0.05) when compared to the large standard classifier.

FastFit large outperforms SetFit small by 3.6% and
the standard large classifier by 2.7%. Similarly,
FastFit small exhibits improvements of 1.9% and
3.5% over SetFit small and the standard classifier,
respectively.

It is noteworthy that FastFit demonstrates im-
provement when scaling from a small to a large
model, with gains of 5.3% and 2.6% in the 5-shot
and 10-shot settings, respectively. This enhance-
ment highlights the fact that FastFit is not model-
specific and thus is highly flexible for different
sizes and types of models, unlike SetFit. Such flex-
ibility is particularly crucial in few-shot settings
where limited examples are available, highlight-
ing the potential to train enhanced classifiers using
domain- or language-specific models. Moreover, if
unlabeled or pairwise data is available, using it for
pretraining can lead to even further improvement.

Training Times for FastFit, SetFit, and the stan-
dard classifier are illustrated in Figure 1. FastFit ex-
hibits faster training times compared to both SetFit
and the standard classifier, with a 3-20x decrease,
and training ranging between 35-70 seconds (See
more results at App. §D). This can be attributed to
a combination of technical and methodological fac-
tors. The improved implementation includes pre-
training tokenization and FP16 training. Further-
more, the methodological advantage stems from
using batch contrastive training, which leverages
in-batch examples as negatives, in contrast to the
triplet loss utilized by SetFit.

6 FastFit Ablation & Full Training

To further examine the contribution of some of
our method modifications, we compare training
with CLS and token-level similarity metrics, as
well as training with a different number of batch
repetitions. We conduct these experiments on three
datasets: Hwu64, Banking77, and Clinc150, with 5
random splits, and average their results. We assess
the effect of these modifications for both small and
large models, with 5 and 10 shots.

In Table 4, we present the differences in per-
formance caused by our changes; full results are
available in App. §E. The Token-level similarity
metric proves beneficial across all settings, with
a more pronounced effect for smaller models and
when less data is available (5-shot compared to
10-shot). Concerning the number of repetitions,
we observe that, in most cases, adding repetitions
helps. Additionally, it appears that overall, four rep-
etitions are more effective than two. Regarding the
relationship between the number of shots and the
effectiveness of repetition, no clear connection is
apparent. While an increase in the number of shots
enhances effectiveness in small models, the oppo-
site is observed for large models, where the effect
decreases. Nevertheless, it seems that, in general,
larger models benefit more from batch repetition.

Although our primary focus is few-shot classi-
fication, we also wanted to examine the effective-
ness of FastFit when training on the full dataset.
We conducted two sets of experiments. In the first,
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Model Shot Similarity Level Repetitions

Token 2 4

FastFit-S 5 1.33 -0.28 0.09
FastFit-S 10 0.85 0.09 0.24
FastFit-L 5 0.65 0.72 1.04
FastFit-L 10 0.36 0.55 0.78

Table 4: FastFit ablation experiments; Accuracy dif-
ferences in training with token-level versus CLS sim-
ilarity metrics and increasing augmentations repeti-
tions. Token-level enhancements are more prominent in
smaller models, especially in the 5-shot setting.

Model C150 B77 H64 Avg.

Classfier-L 96.8 93.7 92.1 94.2
FastFit-S 97.1 93.8 92.7 94.5
FastFit-L 97.5 94.2 93.0 94.9

Table 5: FastFit accuracy results when training on the
full data.

Model EN DE JP ES FR CN Avg.

Classfier-B 88.3 85.7 83.9 86.9 86.3 84.9 86.0
mT5-B T2T 87.9 86.2 83.5 86.7 86.9 85.2 86.1
mT5-B Enc 89.0 86.8 85.8 86.8 87.2 85.8 86.9

FastFit-S 88.8 87.4 87.0 87.9 87.6 86.7 87.6
FastFit-L 89.5 88.5 88.5 87.4 88.5 86.7 88.2

Table 6: FastFit and baselines accuracy results on MAS-
SIVE with full data training.

we compared FastFit-small, FastFit-large, and a
large standard classifier on Hwu64, Banking77,
and Clinc150. In the second, we compared FastFit-
small and FastFit-large with a few base-sized multi-
lingual baseline models on Msstive, using the set of
six languages mentioned in §5.1. These baselines
are based on the Msstive paper, where Classifier-B
and mT5-B Encoder are standard classifiers based
on XLM-R-BASE and mT5-Base with 270M and
258M parameters, respectively. mT5-B T2T is a
text-2-text classifier with 580M parameters.

Results in Table 5 demonstrate that when train-
ing on all the data, FastFit-Small outperforms the
large Classifier, and FastFit-Large performs even
better. From Table 6, we can see that FastFit-Small
outperforms all other baselines even with fewer
than half the number of parameters. Moreover,
FastFit-Large further improves performances by
0.6% on average. These results indicate that Fast-
Fit is not only a fast few-shot classifier but can also
outperform even larger classifiers when training on
the full dataset.

7 Related Work

For fine-tuning baselines, we focus on readily avail-
able methods. , including SetFit with its pack-
age, a standard classifier accessible through HF
Transformers (Wolf et al., 2019), or LLMs through
API calls. However, there are various few-shot
classifiers, and we will briefly discuss a couple of
them. QAID (Yehudai et al., 2023) proposed pre-
and fine-tuning training stages with unsupervised
and supervised loss, using ColBERT architecture,
achieving SOTA results. T-Few (Liu et al., 2022), a
parameter-efficient fine-tuning method based on T0
(Sanh et al., 2021), claims to be better and cheaper
than In-Context Learning.

Regarding few-shot prompting of LLMs ap-
proaches, a question arises about whether our re-
sults will withstand stronger LLMs or improved
prompting techniques. According to Loukas et al.
(2023) we can deduce that FastFit outperforms
GPT4 (OpenAI et al., 2023) with a fraction of the
cost. Additionally, Milios et al. (2023) demonstrate
that retrieval-based few-shot prompts can lead to
improved results. However, it’s worth noting that
currently, these models remain slow and costly.

8 Conclusions

In this paper, we introduce FastFit, a novel few-
shot text classification method accompanied by
a Python package. Our results demonstrate that
FastFit outperforms large language models (LLMs)
such as Flan-XXL and Llama-2-chat-70B, as well
as fine-tuning methods, including both standard
and SetFit classifiers, readily available in existing
packages. Notably, FastFit exhibits fast training
and inference. We provide evidence that these re-
sults hold for both Multilingual and full-data train-
ing setups. We hope that FastFit’s speed and sim-
plicity will enhance its usability.
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A Full Code Example

Any dataset can be loaded directly from Hugging-
face Hub, For example:

• • •
from datasets import load_dataset
dataset =
load_dataset("mteb/banking77")

Then fast fit library can sample it down to the 5
or 10 shot format:

• • •
from fastfit import sample_dataset

dataset["train"] =sample_dataset(
dataset["train"],
label_column="label",
num_samples=5

)

Then once the data is ready it can be serve as
input to the Fast-Fit trainer together with other im-
portant inputs:

• • •
from fastfit import FastFitTrainer

trainer = FastFitTrainer(
model_name_or_path=

"roberta-large",
label_column_name="label_text",
text_column_name="text",
dataset=dataset,

)

model = trainer.train()
results = trainer.evaluate()

Then we can save the model:

• • •
model.save_pretrained("fast-fit")

And could be loaded for inference with:

• • •
from fastfit import FastFit from
transformers import (

AutoTokenizer,
pipeline

)

model = FastFit.from_pretrained(
"fast-fit"

)
tokenizer =
AutoTokenizer.from_pretrained(

"roberta-large"
)

classifier = pipeline(
"text-classification",
model=model,
tokenizer=tokenizer

)

print(classifier("Hello World!"))

B Data Statistics

In Table 7, we provide the data statistics for the
classification datasets used in our work.

Dataset #Train #Vaild #Test #Intents #Domains

Clinc150 15,000 3,000 4,500 150 10
BankingG77 8,622 1,540 3,080 77 1
Hwu64 8,954 1,076 1,076 64 21
MASSIVE 11,514 2,033 2,974 60 18

Table 7: Data statistics of the few-shot classification
datasets.

C Multilingual Results

In Table 10, we present the experimental results
using various backbone models for SetFit. We
evaluated three models: (1) Monolingual sentence-
transformer (ST) large, referred to as ST-L. (2)
Regular Multilingual RoBERTa-large, denoted as
XLM-R-L or simply L. (3) RoBERTa-Base Mul-
tilingual sentence-transformer model, labeled as
ST-XB.

The results indicate that ST-L encounters diffi-
culties with all non-English datasets, resulting in
overall inferior performance. XLM-R-L exhibits
lower proficiency in English but demonstrates im-
proved results across all other languages. Lastly,
ST-XB, with a comparable size to the small models
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(125M vs. 110M), achieved similar, albeit slightly
lower, results. These findings underscore SetFit’s
dependence on ST pre-trained models and highlight
its limitations when such a model is unavailable, as
in this experiment.

D Training Run Times Results

Here we present more training run time results for
FastFit, SetFit, and a standard classifier. In 2 we
present the run time for the small and large settings.
In Table 9 we show the average training run time
results.

Figure 2: Training times (sec) for FastFit, SetFit, and
standard classifier. FastFit training is faster both for the
small model (top) and for the large model (bottom).

Table 8: Results

Model Small Large

5-shot 10-shot 5-shot 10-shot

FastFit 35.5 73.2 72.7 151.0
SetFit 384.1 1530.5 767.1 3073.7
classifier 112.0 294.8 230.6 606.7

Table 9: Training times (sec) for FastFit, SetFit, and
standard classifier.

E Ablation Results

Here, we present the results for the ablations asso-
ciated with Table 4. The first ablation is designed
to measure the effect of the similarity metrics. Ta-
ble 11 shows the results of the experiments with
both CLS and token-level similarity metrics. In
Table 12, we present the results without augmen-
tation repetitions (1), and with 2 and 4 repetitions.
Both ablations support our claim that the token-
level similarity metric and an increased number of
augmentation repetitions help.

F Short Video

Click here for our short presentation.
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Method Model En De Ja Es Fr Zh Average

5-shot

FastFit
S 72.3 65.0 68.7 65.9 68.0 68.4 68.1
L 77.6* 70.5* 73.7* 71.7* 73.1* 73.7* 73.4*

SetFit S 67.9 62.2 66.8 64.0 65.0 66.7 65.4
ST-L 74.0 50.3 41.3 53.6 52.1 39.6 51.8
L 66.1 60.8 64.8 50.1 61.3 43.6 57.8
ST-XB 74.0 62.3 64.8 62.0 62.3 65.1 65.1

10-shot

FastFit
S 77.6 70.5 73.7 71.7 73.1 73.7 73.4
L 79.2* 74.8* 77.4 74.1* 75.7* 74.9* 76.0*

SetFit S 74.7 69.8 73.5 71.4 72.0 72.9 72.4
ST-L 78.3 61.4 53.4 64.0 63.2 48.3 61.4
L 74.5 69.1 72.5 69.7 70.7 59.2 69.3
ST-XB 78.3 68.7 72.9 70.1 70.5 72.3 72.1

Table 10: Accuracy results for FastFit and baselines across six languages, under 5/10-shot settings. Results with few
SetFit versions but no one surpasses SetFit small. We experimenting here with sentence-transformer (ST) large
monolingual, multilingual base, and non-ST multilingual large.

Method Shots Sim.
metric

C150 B77 H64 Average

FastFit-small

5 CLS 88.9 78.6 78.5 82.0
5 TOK. 90.2 80.0 79.7 83.3
10 CLS 92.4 84.7 83.8 86.9
10 TOK. 93.3 85.4 84.7 87.8

FastFit-large

5 CLS 91.6 81.7 82.4 85.2
5 TOK. 92.3 82.9 82.4 85.9
10 CLS 94.1 87.6 86.3 89.4
10 TOK. 94.8 88.0 86.4 89.7

Table 11: Ablation results with CLS and token-level similarity metrics. The average results that scored the highest
for each model size and shot number are highlighted in bold.

Method Shots Repet. C150 B77 H64 Average

FastFit-small
5 1 90.3 80.3 79.1 83.2
5 2 89.8 79.8 79.2 82.9
5 4 90.2 80.0 79.7 83.3

FastFit-small
10 1 93.3 85.3 84.1 87.6
10 2 93.2 85.3 84.5 87.6
10 4 93.3 85.4 84.7 87.8

FastFit-Large
5 1 91.6 82.0 81.0 84.8
5 2 92.0 82.4 82.3 85.6
5 4 92.3 82.9 82.4 85.9

FastFit-Large
10 1 94.2 87.3 85.2 88.9
10 2 94.6 87.7 86.1 89.5
10 4 94.8 88.0 86.4 89.7

Table 12: Ablation results with varying repetition numbers. The bolded values represent the highest-scoring average
results for each model size and shot number.
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Abstract
The advances made by Large Language Mod-
els (LLMs) have led to the pursuit of LLM
agents that can solve intricate, multi-step rea-
soning tasks. As with any research pursuit,
benchmarking and evaluation are key corner
stones to efficient and reliable progress. How-
ever, existing benchmarks are often narrow
and simply compute overall task success. To
face these issues, we propose AgentQuest1 – a
framework where (i) both benchmarks and met-
rics are modular and easily extensible through
well documented and easy-to-use APIs; (ii) we
offer two new evaluation metrics that can re-
liably track LLM agent progress while solv-
ing a task. We exemplify the utility of the
metrics on two use cases wherein we identify
common failure points and refine the agent ar-
chitecture to obtain a significant performance
increase. Together with the research commu-
nity, we hope to extend AgentQuest further and
therefore we make it available under https:
//github.com/nec-research/agentquest.

1 Introduction

Generative Agents (Kiela et al., 2023) are soft-
ware systems that leverage foundation models like
Large Language Models (LLMs) to perform com-
plex tasks, take decisions, devise multi-steps plans
and use tools (API calls, coding, etc.) to build solu-
tions in heterogeneous contexts (Wang et al., 2023;
Weng, 2023). The potential ability to solve hetero-
geneous tasks with high degrees of autonomy has
catalysed the interest of both research and indus-
trial communities. Nonetheless, it is still unclear
to which extent current systems are successfully
able to fulfil their promises. In fact, methodologies
to benchmark, evaluate and advance these systems
are still in their early days.

We identify a couple of gaps. Firstly, bench-
marking agents requires combining different bench-
mark types (Liu et al., 2023; Chalamalasetti et al.,

1Demo provided at https://youtu.be/0JNkIfwnoak.
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Figure 1: Overview of agent-benchmark interactions in
existing frameworks and in AgentQuest. AgentQuest
defines a common interface to interact with the bench-
marks and to compute progress metrics, easing the ad-
dition of new benchmarks and allowing researchers to
evaluate and debug their agent architectures.

2023). For example, some benchmarks focus on
specific capabilities and provide gaming environ-
ments, which we refer to as “closed-box” – i.e. with
a finite set of actions (Liu et al., 2023; Patil et al.,
2023; Chalamalasetti et al., 2023) – whereas other
benchmarks provide open-ended tasks and access
to general tools, like web browsing (Zhuang et al.,
2023; Zheng et al., 2023; Mialon et al., 2023). As
benchmarks are developed independently, signif-
icant effort goes into custom integration of new
agent architectures with each benchmark.

Secondly, and more critically, existing bench-
marks mostly focus on providing a success rate
measure, i.e. a binary success/fail evaluation for
each of the proposed tasks. While success rate is
helpful to measure overall advances of an agent
technology, it has limited use in guiding improve-
ments for new generative agent architectures. Here,
it is important to consider that generative agents of-
ten combine foundation models with multiple other
components, such as memory and tools. Develop-
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ers can reason about these individual components
in terms of architecture and their inter-dependence,
and could actively change and evolve them using
deeper insights about how an agent performs in a
benchmark. That is, developers need benchmarks
to both evaluate and debug agents.

For example, current benchmarks make it hard
to answer questions like does the agent fail com-
pletely the tasks or does it partially solve them?
Does the agent fail consistently at a certain step?
Would extra run time lead to finding a solution?
Answering these questions would require tracing
and inspecting the execution of the agent. We ar-
gue that providing a more efficient approach that is
consistent over multiple benchmarks is a stepping
stone towards evolving generative agents.

We address these gaps introducing AgentQuest,
a modular framework to support multiple diverse
benchmarks and agent architectures (See Figure 1),
alongside with two new metrics – i.e. progress rate
and repetition rate – to debug an agent architecture
behaviour. AgentQuest defines a standard interface
to connect an arbitrary agent architecture with di-
verse benchmarks, and to compute progress and
repetition rates from them.

We showcase the framework, implementing 4
benchmarks in AgentQuest: ALFWorld (Shridhar
et al., 2020), Lateral Thinking Puzzles (Sloane,
1992), Mastermind and Sudoku. The latter two
are newly introduced with AgentQuest. Additional
benchmarks can be easily added, while requiring
no changes to the tested agents.

Our final contribution is to present our expe-
rience leveraging the proposed metrics to debug
and improve existing agent architectures as imple-
mented in LangChain (Chase, 2022). In particular,
we show that in the Mastermind benchmark the
combination of progress rate and repetition rate
identifies a limitation in the ability of the agent to
explore the full space of potential solutions. Guided
by this insight we could improve the success rate in
this benchmark by up to ≈20%. In Lateral Think-
ing Puzzles we show that partially repeating actions
is part of the agent strategy, whereas in ALFWorld,
we show that monitoring the progress rate makes it
possible to identify that the final success rate is lim-
ited by the allowed runtime of the agent, and that
more steps lead to a better performance. Finally,
in the Sudoku benchmark, we show that the low
success rate is actually paired with low progress
rate, making clear that the tested agent is unable to
solve this type of tasks.

2 Generative AI Agents in a Nutshell

Generative AI agents are automated systems rely-
ing on software components integrated with LLMs
pre-trained on large amount of data for language
understanding and processing. When assigned a
task, an agent engages in a systematic process: it
iteratively formulates self-generated instructions,
executes them, and observes the outcomes until the
ultimate objective is achieved. Next, we showcase
the basic interaction between agents and the en-
vironment in which they operate and describe the
standard benchmarking techniques.

2.1 Agent-Environment interaction
Closely following the terminology in Reinforce-
ment Learning (RL)2 (Sutton and Barto, 2018), the
core elements defining the agent-environment in-
teraction are environment, state, observation and
action (see Figure 1a).

Environment and states. The environment
refers to the external system the agent interacts
with. In this context, we treat the benchmark and
the environment as synonyms. It is typically de-
scribed through a finite set of hidden states, which
are not directly observable by the agent and repre-
sent the benchmark configuration.

Observations and actions. The agent interacts
with the environment for multiple execution steps.
At each step, the environment produces an observa-
tion providing information about its current hidden
state. The agent uses the internal LLM to pro-
cess the received observation. Being pre-trained
on general knowledge data, the LLM engages a
reasoning process generating a thought on the ob-
servation (e.g. the planned strategy to follow in the
current step or the usage of a tool). According to
this thought, the agent provides the environment an
action to modify the current hidden state. 3

The following is an example of an agent in-
teracting with a closed-box environment to solve
a code-breaking challenge, i.e. the Mastermind
game (Stuckman and Zhang, 2005). The agent
is tasked to guess a four-digit code. At each step,
the agent devises a strategy and acts accordingly to
guess the code. The environment provides a feed-
back on the number of guessed digits in correct

2Unlike RL scenarios, the agent does not need a further
training process. It relies on the pre-trained LLM and does
not perform an action under the influence of any reward.

3Unlike RL, the LLM outputs are unconstrained, and any
provided action is considered valid.
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and wrong positions. The process continues until a
stopping condition is met.� �
ENVIRONMENT: Initializing a new environment...
OBSERVATION: Start guessing the 4 digits code.
THOUGHT: I’ll start by guessing 1234 to get an idea of which
of these numbers are in the secret number and if any are in
the correct position.
ACTION: 1234

ENVIRONMENT: Comparing the guessed code with the truth...
OBSERVATION: Your guess has 1 correct numbers in the wrong
position and 0 correct numbers in the correct position.
Keep guessing...
THOUGHT: One of the digits 1, 2, 3, or 4 is correct but in
the wrong position. I’ll try to move each digit to a
different position to see if I can get a correct position.
ACTION: 2143
...� �

2.2 Benchmarking an agent
When evaluating agents performance on a bench-
mark, the following two metrics are commonly
used (Liu et al., 2023): (i) Success Rate (SR), i.e.
the ratio of successful tasks to the total instances;
(ii) Time to Success, i.e. the average time required
to obtain a solution. While important and trending
metrics (Chalamalasetti et al., 2023; Hessel et al.,
2022; Zhang et al., 2020a), they exclusively address
the final success. They cannot measure intermedi-
ate success or failure and therefore make it difficult
to understand why agents might systematically fail
and how they can be improved. In contrast, we
want to define intermediate metrics that allow us
to easily assess and compare the performance of
agents across a wide range of tasks.

3 AgentQuest Overview

We designed AgentQuest as a separation layer be-
tween agent and environment (see Figure 1b). Es-
sentially, it offers (i) a unified interface (i.e. the
driver) ensuring compatibility between different
agent architectures and benchmarks with minimal
programming efforts (Section 3.1); (ii) the imple-
mentation of two metrics beyond task success (i.e.
progress rate and repetition rate) aimed at moni-
toring the agent advancement toward the final goal
and allowing us to understand the reasons behind
failures (Section 3.2); (iii) a unique vantage point
and interface for implementing new metrics to mon-
itoring and measuring the execution (Section 3.3).

3.1 Benchmarks common interface
Different benchmarks require invoking distinct
functions, using specific formats, and performing
parsing and post-processing of observations and
agent actions. To integrate different agent archi-
tectures, the common trend is hardcoding such

benchmark-specific requirements directly in the
framework (Liu et al. 2023; Chalamalasetti et al.
2023, inter alia). This results in many custom in-
terfaces tailored on each environment, making it
difficult to easily move to other benchmarks and
agent architectures.

Instead, AgentQuest exposes a single unified
Python interface, i.e. the Driver and two classes
reflecting the agent-environment interaction com-
ponents (i.e. Observation, Action).

Observations and actions. We provide two sim-
ple classes: Observation and Action. The first
has two required attributes: (i) output, a string
reporting information about the environment state;
(ii) done, a Boolean variable indicating if the final
task is currently accomplished or not. The Action
class has one required attribute, action_value. It
is a string directly output by the agent. Once pro-
cessed and provided to the environment, it triggers
the environment change. To customise the interac-
tions, developers can define optional attributes.

Driver. We provide the Driver class with two
mandatory methods: (i) the reset method ini-
tialises a new instance of the environment and re-
turns the first observation; (ii) the step method
performs one single execution step. It accepts one
instance of the Action class from the agent, pro-
cesses the action (e.g. parses the action_value
string) and uses it to modify the environment state.
It always returns an observation. The driver sup-
ports also the benchmark-specific state attribute,
acting as a simple API. It exposes the environment
state at step t, useful to compute the progress rate.

We here provide an example of the implemented
interaction for Mastermind:� �
from agentquest.drivers import MasterMindDriver
from agentquest.utils import Action
from agentquest.metrics import get_progress, get_repetition

agent = ... # Initialize your agent
actions, progress, repetitions = [], [], []
# Initialize the environment and reset round
driver = MasterMindDriver(truth='5618')
obs = driver.reset()
# Agent loop
while not obs.done:

guess = agent(obs.output) # Get the agent output
action = Action(action_value=guess) # Create action
actions.append(action.action_value) # Store action
obs = driver.step(action) # Execute step
# Compute current progress and repetition
progress.append(get_progress(driver.state, '5618'))
repetitions.append(get_repetitions(actions))
# Extend with your custom metrics here ...

# Compute final metrics
PR = [x/len('5618') for x in progress]
RR = [x/(len(actions)-1) for x in repetitions]� �

187



3.2 Understanding agent advancements

Getting insights on how they tackle a specific task
is key to comprehend agent behaviours, capabili-
ties and limitations. Furthermore, identifying sys-
tematic agent failures allows to pinpoint necessary
adjustments within the architecture to effectively
address the underlying issues.

AgentQuest contributes towards this direction
introducing two cross-benchmark metrics, the
progress rate and the repetition rate. While the
first expresses how much the agent is advancing
towards the final goal, the latter indicates how it is
reaching it, with a specific focus on the amount of
repeated (i.e. similar) actions the agent performs.

Milestones and progress rate. To quantify
the agent advancement towards the final goal,
AgentQuest uses a set of milestones M. In a nut-
shell, we break down the final solution into a series
of environment hidden states the agent needs to
reach to get the final solution of the task, hence,
M ⊆ S, where S is the set of hidden states. The
magnitude of M determines the level of granular-
ity in the evaluation process. Specifically, when
M aligns closely with S, it offers a more compre-
hensive insight into the agent progress, resulting in
finer granularity, whereas for |M| = 1 the evalua-
tion coincides with the success rate.

We assign a score to all the states included in
M through a scoring function f and, at execution
step t, we define the progress rate PRt : S → [0, 1]
dependant of such scoring function, as an indica-
tion of how far the agent is from the goal, allowing
to track agent progress over time. Depending on
the benchmark, the progress rate might also de-
crease during the execution. Milestones can either
be manually annotated, or internally computed.

Repetition rate. The repetition rate RRt is a mea-
sure of the agent tendency of repeating actions.
Depending on the benchmark, we do not consider
repetitions as a limitation, – e.g. solving a maze
requires repetitions, such as going left repeatedly.
See also Section 4 for a positive and negative ex-
ample of repetitions.

At execution step t, we consider the set of unique
actions taken by the agent up to t− 1, At−1. Then,
we compute the similarity function g between the
current action at and all the previous ones in At−1.
As any action generated by the LLM is considered
valid, we consider the action at as repeated if it ex-
ists at least one previous action a ∈ At−1 such that

Table 1: Attributes exposing components of the agent-
environment interaction useful to define new metrics.

Class Attribute Access to

Driver state Hidden states
Observation output Observations
Action action_value Agent actions

g(at, a) ≥ θa, where θa ∈ [0, 1] is the resolution.4

If the action is not repeated, we update the set of
unique actions as At = At−1 ∪ at.

Based on this, we define the repetition rate at
step t as the cumulative number of repeated actions
normalised by the number of execution steps, T ,
except for the first. Formally, RRt =

t−|At|
T−1 .

3.3 Adding new metrics
We rely on the progress and repetition rates to show
how AgentQuest can be extended with new metrics
through a simple function template. We then show
the implementations of the functions adapted to the
considered benchmark.

Metric function template. We use a Python
function template to easily define the elements
of the agent-environment interactions required for
computing a given metric. Table 1 provides a re-
cap of the main attributes and reference classes
that can be used as input for the custom metrics.
Additionally, users can provide external data, like
milestones or action history.

Implement progress rate. Depending on the
benchmark, developers need to implement the cus-
tom scoring function f through the get_progress
function and define the set of milestones M. Mile-
stones can either be user-defined or internally
computed within get_progress. Here, we show
the definition of get_progress to quantify the
achieved milestones for Mastermind. The mile-
stones are the digits of the final solution and the
progress indicates the count of correctly guessed
digits in their positions:� �
def get_progress(state, milestones):

reached_milestones = 0 # Digits in correct position
for i, j in zip(state, milestones):

if i == j: reached_milestones += 1
return reached_milestones

# Usage example. The code to guess is '5618'
progress = get_progress('2318', '5618') # Reached milestones
>>> 2
progress/len('5618') # Compute Progress Rate
>>> 0.5� �

4A higher resolution demands closer matches for classi-
fication as repeated actions, while lower values broaden the
spectrum of qualifying action similarities.
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Table 2: Overview of the benchmarks provided in AgentQuest.

Benchmark Description Milestones

Mastermind Guessing a numeric code with feedback on guessed digits and positions. Digits of the code to guess.

LTP Solving riddles by asking Yes/No questions. Guessed riddle key aspects.

ALFWorld Finding an object in a textual world and using it. Sequence of actions.

Sudoku 9x9 grid puzzle. Digits 1-9 fill each column, row, and 3x3 sub-grid
without repetition.

Total number of correct
inserted digits.

Implement repetition rate. To determine if an
action is repeated, the end user must define the simi-
larity function g according to the considered bench-
mark. We provide the get_repetitions template
function to compute the number of repeated ac-
tions. Here, we illustrate its implementation in
Python and provide a usage example for Master-
mind, where g is the Levenshtein similarity (Lev-
enshtein, 1966).� �
from Levenshtein import ratio as g

def get_repetitions(actions, THETA_A):
unique_act = set() # Initialise unique actions
for i,a in enumerate(actions):

# Check for repetitions
if all([g(a,actions[x])<THETA_A for x in range(i)]):

unique_act.add(a)
return len(actions)-len(unique_act)

# Usage example. The code to guess is '5618'
actions = ['1234', '2143', '1234', '5618'] # Actions history
repetitions = get_repetitions(actions, 1.0)
>>> 1 repeated action
# Compute Repetition Rate
repetitions/(len(actions)-1)
>>> 0.33� �

In other cases, where a can be any text string,
we can use standard metrics, such as BLEU (Pa-
pineni et al., 2002), ROGUE (Lin, 2004) or
BERTScore (Zhang et al., 2020b).

4 Insights via AgentQuest

We investigate agent behaviours in different rea-
soning scenarios by proposing a starting set of four
benchmarks. We implemented from scratch Su-
doku (Felgenhauer and Jarvis, 2006) and Master-
mind (Stuckman and Zhang, 2005) environments,
while ALFWorld (Shridhar et al., 2020) and Lat-
eral Thinking Puzzles (LTP)(Sloane, 1992) are ex-
isting implementations (Liu et al., 2023). Table 2
provides an overview of the benchmarks and their
respective milestones used to measure progress.

We emphasise that this evaluation is not aimed
at providing a thorough evaluation and comparison
of agent architectures, but rather to show how to
use AgentQuest and how monitoring progress and
action repetition can provide relevant insights to
developers, even after a few executions.

Table 3: Average existing and proposed metrics for
the tested benchmarks. We report the metrics, Success
Rate (SR), Steps, Progress Rate at step 60 (PR60) and
Repetition Rate at final step 60 (RR60). We denote
with ∗ the improved results after modifying the agent
architecture.

Existing Metrics AgentQuest
SR Steps PR60 RR60

Mastermind 0.47 41.87 0.62 0.32
LTP 0.20 52.00 0.46 0.81
ALFWorld 0.86 21.00 0.74 0.06
Sudoku 0.00 59.67 0.08 0.22

Mastermind∗ 0.60 39.73 0.73 0.00
ALFWorld∗ 0.93 25.86 0.80† 0.07†

†Metrics referred to the extended runtime up to 120
steps, hence PR120 and RR120.

Experimental setup. We use as reference archi-
tecture the off-the-shelf chat agent provided by
LangChain (Chase, 2022) powered by GPT-4 (Ope-
nAI, 2023b) as LLM because it is intuitive, easy
to extend and open source. We run 15 instances
of the four benchmarks within AgentQuest, setting
the maximum number of execution steps as 605. In
Appendix B we provide examples on how to use
AgentQuest with two additional agent architectures
and GAIA (Mialon et al., 2023) as open-ended en-
vironment.

Experimental results. For Mastermind, Fig-
ure 2a shows the progress rate PRt and repetition
rate RRt. In the first 22 steps, the agent explores
different solutions (RR[0,22] < 5%). This leads to
growing progress towards the final goal, reaching
half of the milestones (PR22 ≈ 55%). Then, the
agent starts performing the same actions, exhibiting
a repetitive pattern (see also Figure 3a rightmost
part) and failing to reach the final goal within the

5We limit the number of instances in our experiments for
two main reasons: (i) the work primarily serves as a demon-
stration of the developed framework itself, rather than an
extensive evaluation of the agent performance; (ii) extensive
tests could have significantly impacted the ability to reproduce
the experiments due to the expensive nature of API calls.
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Figure 2: Average Progress rate PRt and the repetition
rate RRt on Mastermind and LTP. Mastermind: It starts
out with a low RRt but this increases after step 22 while
the progress rate also stall at 55%. LTP: at first a higher
RRt allows the agent to progress by making small varia-
tions that lead to success, but later this plateaus.
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Figure 3: Examples of repeated actions in Mastermind
and LTP. Mastermind: there is a set of unique actions at
first, but then gets stuck repeating the same actions over
and over. LTP: repeated actions are small variations of
the same question that lead to progress.

next 38 steps. This results in a rise of the repetitions
to RR60 = 30% and a saturation of the progress
rate at PR60 = 55%. Hence, AgentQuest offered
us a crucial insights on why the current agent can-
not solve the Mastermind game.

To overcome this agent limitation we incorpo-
rate a memory component (Park et al., 2023) into
the agent architecture. The agent stores the past
guesses in a local buffer. Then, at each step, if
the agent outputs an action already in the buffer,
it is prompted to provide a new one. Table 3
(Mastermind∗) shows that this simple change in
agent architecture has a big impact: the agent
can now solve more instances, increasing the final
SR from 47% to 60% and preventing repetitions
(RR60 = 0%). This highlights how studying the
interplay between progress and repetition rates can
allow us to improve agent architecture, sometimes
even with simple remedies. We support our intu-
ition extending the evaluation to more instances of
Mastermind from 15 to 60 achieving comparable
results – i.e. 43% of SR with the standard archi-
tecture and 62% with the simple memory (19% of
improvement).

For LTP, the AgentQuest metrics reveal a dif-

ferent agent behaviour, where repetitions are part
of the agent reasoning strategy, enhancing the
progress rate (Figure 2b). From the initial steps,
the agent changes aspects of the same questions
until a local solution emerges. This leads to hori-
zontal indicators in Figure 3b and RR20 ≈ 30%.
Despite solving only a few riddles (SR=0.2), these
repetitions contribute to progress, achieving 46%
of the milestones by the end of the execution, with
a final repetition rate of RR60 = 81%. This shows
us how the interplay of progress and repetition rates
provides an insight on how agents behave across
the different time steps.

Consider the benchmark ALFWorld in Table 3
(we report the metrics trend in Appendix A). It re-
quires the exploration of a textual world to locate
an object. While the agent explores the solution
space and limits action repetitions (RR60 = 6%),
it fails to solve all the games (PR60 = 74%). This
discrepancy may arise from the more exploration
steps required to discover the object. We support
this intuition extending the benchmark runtime to
120 steps resulting in a success and progress rates
increase by 6% (ALFWorld∗ in Table 3). This
confirms the usefulness of AgentQuest in under-
standing the agent failures.We support our intuition
also extending the evaluation to more instances of
ALFWorld from 15 to 60 achieving comparable
results – i.e. 83% of SR with 60 steps as limit and
87% with 120 steps as limit (4% of improvement).

Finally, we look at Sudoku, known for its high
level of difficulty (Felgenhauer and Jarvis, 2006).
The low progress and repetition rates achieved after
60 steps (PR60 = 8% and RR60 = 22%) indicate
that the current agent architecture struggles in find-
ing correct solutions solving this task. We report
the metrics trend in Appendix A.

5 Conclusions

AgentQuest allows the research community to keep
track of agent progress in a holistic manner. Start-
ing out with a first set of four benchmarks and
two new metrics, AgentQuest is easily extendable.
Furthermore, the two proposed metrics, progress
and repetition rates, have the great advantage of
allowing to track how agents advance toward the
final goal over time. Especially studying their inter-
play can lead to important insights that will allow
the research community to improve agent perfor-
mance. Finally, we believe that promptly sharing
AgentQuest with the research community will fa-
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cilitate benchmarking and debugging agents, and
will foster the creation and use of new benchmarks
and metrics.

Ethical Considerations

The complexity of LLM agents poses challenges
in comprehending their decision-making processes.
Ethical guidelines must demand transparency in
such systems, ensuring that developers and end-
users comprehend how decisions are reached.

We are not aware of any direct ethical impact
generated by our work. However, we hope that in-
sights into Generative AI agents’ decision-making
processes will be applied to improve and promote
transparency and fairness.
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A Appendix: ALFWorld and Sudoku
benchmarks

In this section we report the detailed metrics for
each step for the ALFWorld and Sudoku bench-
marks, omitted for the sake of brevity from the
main paper.
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Figure 4: Progress rate PRt and the repetition rate RRt

on ALFWorld and Sudoku averaged over 15 runs. ALF-
World: It starts out with a low repetition rate and quick
increase of the progress rate. Then a slow increase of the
repetition rate enables to further increase the progress
rate although less quickly. Sudoku: The progress rate
quickly reaches 8%. The repetition rate then slowly
increases without any positive change in the progress
rate.

Figure 4a reports the progress rate and repetition
rate for ALFWorld. The repetition rate is close to
0% for the first 20 steps, then it slowly increases
up to 6% after 60 steps. The progress rate quickly
reaches over 50% in 10 steps, then keeps increas-
ing, although slowly, up to 74%. The consistent
improvement of the progress rate even for steps
close to 60 together with the low repetition rate
suggests that higher values may be reached by in-
creasing the maximum number of steps. We vali-
date this hypothesis by extending the benchmark
runtime to 120 steps. As previously reported in
Table 3, this results in an improvement of 6 per-
centage points for both the success rate the progress
rate, i.e. SR= 93% and PR120 = 80%.

Figure 4b includes the two metrics for the Su-
doku benchmark. We can observe that the progress
rate quickly reaches a plateau at 8% in very few
steps. The repetition rate is close to 0% for the first
10 steps, then it slowly increases up to 22% after
60 steps without any improvement of the progress
rate.

B Appendix: Additional agents
architectures and benchmarks

In this section we highlight the plug-and-play as-
pect of AgentQuest showing the implementation
of Mastermind with two additional agents archi-

tectures, i.e. ReAct (Yao et al., 2022) as the most
used architecture in literature and OpenAI Assis-
tant (OpenAI, 2023a), as the most recent propri-
etary architecture. Additionally, we show how to
implement the open-ended benchmark GAIA (Mi-
alon et al., 2023) requiring the usage of external
tools. For brevity, in the following snippets we
omit details, like error handling or full agent defini-
tion. The complete code is available in the GitHub
repository.

B.1 ReAct for Closed-box Environments
We show an example of how to execute a closed-
box benchmark (i.e. ALFWorld) with an agent
based on the ReAct architecture (Yao et al., 2022).
Such architecture forces the agent decision making
process to generate both textual reasoning traces
and actions pertaining to a task in an interleaved
manner. Common implementations (Chase, 2022;
Yao et al., 2022) rely on external tools to perform
actions. Here, we ensure compatibility with exist-
ing implementations providing a single tool (i.e.
ProxyTool) that forwards the actions to the driver.
In a nutshell, the agent reflects on the action to take
and invokes the tool. Then, we feed the tool input
to the driver to perform the interaction with the
environment. At each step, we provide the agent
the updated history of the actions and observations
through the intermediate_steps variable.� �
from agentquest.drivers import MasterMindDriver
from agentquest.metrics import ...
from agentquest.utils import Action
...

# Define a dummy tool for closed-box environments
class ProxyTool(BaseTool):

name = "proxytool"
description = "Provide the action you want to perform"
def _run(self):

pass

# Instantiate custom prompt
prompt = CustomPromptTemplate(

template=..., # LLM prompt
tools=[ProxyTool()],
input_variables=["intermediate_steps", ...]

)
# Initialise the agent
agent = create_react_agent(llm, [ProxyTool()], prompt)
intermediate_steps = []
# Initialise the driver
driver = MasterMindDriver(game)
# Get the first observation
obs = driver.reset()
# Agent Loop
while not obs.done:

# Retrieve the agent output
agent_choice = agent.invoke(

{'input':obs.output,
'intermediate_steps':intermediate_steps}

)
action = Action(action_value=agent_choice.tool_input)
# Perform the step
obs = driver.step(action)
# Update intermediate steps
intermediate_steps.append((agent_choice, obs.output))
# Get current metrics ...� �
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B.2 OpenAI Assistant for Closed-box
Environments

The OpenAI Assistant (OpenAI, 2023a) is a pro-
prietary architecture. It allows users to define cus-
tom agents by specifying the tasks to accomplish
and the set of tools the agent can use. While the
decision-making process is not directly accessible
by the end-users (the agent and the LLM are hosted
on the proprietary cloud environment), the tools
can be invoked both remotely or locally. In the
latter, users have control on the tool invocation
managing the agent loop.

Similarly to ReAct, we here rely on the
ProxyTool, acting as a proxy between the agent
and the environment. We invoke the remote agent
with the initial task (e.g. first ALFWorld observa-
tion) and process the output of its decision making
process, i.e. the action to perform provided as tool
input. Then, we bypass the tool invocation, directly
forwarding the action to the driver to perform the
execution step and retrieve the next observation. Fi-
nally, we invoke the agent with the new observation
concluding the execution step.� �
from agentquest.drivers import MasterMindDriver
from agentquest.metrics import ...
from agentquest.utils import Action
...

# Define a dummy tool for closed-box environments
class ProxyTool(BaseTool):

name = "proxytool"
description = "Provide the action you want to perform"
def _run(self):

pass

# Initialise the agent
agent = OpenAIAssistantRunnable.create_assistant(

instructions=... # LLM prompt
tools=[ProxyTool()],
model=... # Chosen LLM
as_agent=True

)
# Initialise the driver
driver = MasterMindDriver(game)
# Get the first observation
obs = driver.reset()
# Get the first action
response = agent.invoke({"content": obs.output})
# Agent Loop
while not obs.done:

# Retrieve the agent output
agent_guess = response[0].tool_input
action = Action(action_value=agent_guess)
# Perform the step
obs = driver.step(action)
# Get current metrics ...
# Manage Proxy Tool output
tool_outputs = [

{"output": obs.output,
"tool_call_id": response[0].tool_call_id}

]
# Invoke the agent to get the next action
response = agent.invoke(

{"tool_outputs": tool_outputs,
"run_id": response[0].run_id,
"thread_id": response[0].thread_id}

)� �

B.3 OpenAI Assistant for Open-ended
Environments

When interacting with an open-ended environment,
the agent is not restricted to the pre-defined actions
of the closed-box environment and it is allowed
to select any user-defined tool (e.g. retrieving in-
formation online or executing code). Hence, we
provide the agent the list of tools via the tool vari-
able. The agent relies on its reasoning process to
choose which tool to invoke. Omitted here for the
sake of brevity, we rely of the manual annotations
of the GAIA questions (Mialon et al., 2023) as
milestones to compute the progress rate.� �
from agentquest.drivers import GaiaDriver
from agentquest.metrics import ...
from agentquest.utils import Action
...

# Define the tools
tools=[

OnlineSearch(), # Retrieve a web page link
WebContentParser(), # Read the web page
FinalAnswerRetriever(), # Provide the final answer
...

]
# Initialise the agent
agent = OpenAIAssistantRunnable.create_assistant(

instructions=... # LLM prompt
tools=tools,
model=... # Chosen LLM
as_agent=True

)
# Initialise the driver
driver = GaiaDriver(question, tools)
# Get the first observation
obs = driver.reset()
# Get the first action
response = agent.invoke({"content": obs.output})
# Agent Loop
while not obs.done:

# Retrieve the agent output
act = f'{response[0].tool}:{response[0].tool_input}'
action = Action(action_value=act)
# Perform the step invoking the local tool
obs = driver.step(action)
# Get current metrics ...
# Manage tool output as observation
tool_outputs = [

{"output": obs.output,
"tool_call_id": response[0].tool_call_id}

]
# Invoke the agent to get the next action
response = agent.invoke(

{"tool_outputs": tool_outputs,
"run_id": response[0].run_id,
"thread_id": response[0].thread_id}

)� �
Here, the driver acts as a wrapper, executing the
tool with the parameters provided by the agent
(tool_input) and forwards the output to the agent
in the correct format:� �
class GaiaDriver():

def __init__(self, question, tools, ...):
# Initialise the tool lookup
self.tool_lookup = {x.name:x for x in tools}

...
def step(self, action):

# Parse the action
tool, tool_input = action.action_value.split(':')
# Invoke the tool
tool_out = self.tool_lookup[tool]._run(tool_input)
# Parse the tool output here ...
return Observation(output=tool_out)� �
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Abstract

The swift advancement in large language mod-
els (LLMs) has heightened the importance of
model evaluations. LLMs have acquired a sub-
stantial amount of knowledge, and evaluating
the knowledge of these LLMs is crucial. To ad-
dress this, we introduce the ZhuJiu-Knowledge
benchmark which carefully considers the fol-
lowing factors: (1) For knowledge scope, we
concentrate on three domains: commonsense
knowledge, world knowledge, language knowl-
edge, which comes from ATOMIC, Concept-
net, Wikidata, and Wordnet. (2) For data con-
struction, to prevent data contamination, we
utilize knowledge derived from corpora and
knowledge graphs to formulate novel questions
that are ensured not to appear in the training
corpus. A multitude of prompts is purpose-
fully devised to mitigate the impact of prompt
design on evaluation and to further analyze
the LLMs’ sensitivity to various prompts. (3)
For evaluation criteria, we propose a novel
voting methodology for assessing generative
text, aligning the model’s evaluation with hu-
man preferences to reduce biases inherent in
individual model assessments. We evaluate
14 current mainstream LLMs and conduct a
comprehensive discussion and analysis of their
results. The ZhuJiu-Knowledge benchmark
and open-participation leaderboard are publicly
released at http://zhujiu-knowledge.top/
and we also provide a demo video at https:
//youtu.be/QJp4qlEHVH8.

1 Introduction

The unprecedented performance of LLMs, such
as GPT4 (Achiam et al., 2023) and Llama2 (Tou-
vron et al., 2023), has garnered significant attention
and made their evaluation a focal point as the field
progresses(Guo et al., 2023; Chang et al., 2023).

1*Co-first authors, they contributed equally to this work.

2†Corresponding author

LLMs have acquired a substantial amount of knowl-
edge, and evaluating the knowledge of these LLMs
is crucial. Existing efforts have focused on evalu-
ating the knowledge stored within the model (e.g.,
Petroni et al., 2019; Yu et al., 2023). However,
these works still face several challenges.

Constructing a reasonable benchmark for evalu-
ating knowledge involves careful consideration of
several key factors: (1) Knowledge Scope. Most
evaluations are limited to world knowledge related
to entities and relations, lacking assessments of
commonsense knowledge and language knowledge
(Liang et al., 2022; Zhang et al., 2023). This limi-
tation arises because these two types of knowledge
are often expressed in the form of events or sen-
tences. Currently, making unbiased evaluations of
the generated sentences is still a difficult problem
for LLMs. (2) Data Constructinon. Most evalu-
ation platforms have limitations on assessing data.
Firstly, the evaluated data usually are leaked and
embedded in the target LLMs in the process of
pre-training or SFT, after such data are released
publicly. As a result, making an evaluation on
such data would be biased (Brown et al., 2020;
Zhou et al., 2023a). Secondly, existing knowl-
edge probing strategies usually relied on the given
prompts heavily. Existing methods only used just
one prompt for each piece of knowledge. If the
target LLM does not understand the given prompt
well, it will not obtain better results (Webson and
Pavlick, 2021; Abdou et al., 2022). (3) Evaluation
Criteria. Evaluating knowledge using multiple-
choice questions and true or false questions may
introduce certain biases obviously. Assessing gen-
erated text with QA questions requires a reasonable
evaluation metric for the generated content. Tra-
ditional evaluation criteria such as GLUE (Wang
et al., 2018), ROUGE (Lin, 2004), and RECALL
have inherent limitations, often leading to a gap
between evaluation results and users’ subjective
experiences. While manual evaluation is highly
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Figure 1: The evaluation process of LLM using ZhuJiu-Knowledge.

reliable, it is time-consuming and labor-intensive
(Karpinska et al., 2021). Therefore, designing a
rational evaluation metric is also a critically impor-
tant issue.

This paper constructs ZhuJiu-Knowledge, a
fairer platform for evaluating multiple Knowledge
types in LLMs, which is designed to assess LLMs’
capabilities in commonsense knowledge, world
knowledge, and language knowledge. During the
construction process, we fully consider the afore-
mentioned three factors.

For Knowledge Scope, we choose to evaluate
commonsense knowledge, world knowledge, and
language knowledge for the following reasons: (i)
Commonsense knowledge is often implicitly em-
bedded in the texts, which presents a challenge
for LLMs to acquire substantially from textual cor-
pora. A proficient understanding of commonsense
is fundamental for LLMs to generate reasonable re-
sponses (Davis, 2023). (ii) World knowledge plays
a critical role in LLMs’ performance. Based on
memory and manipulation for world knowledge,
LLMs can provide more accurate and relevant re-
sponses to user questions (Hendrycks et al., 2020;
Zhong et al., 2023). (iii) A deep understanding of
grammar, semantics, and pragmatics enables LLMs
to grasp language nuances and process text effec-
tively (Chuang et al., 2020; Dentella et al., 2023).

For data construction, we simultaneously ad-
dress data contamination(Zhou et al., 2023b; Sainz
et al., 2023) and prompt sensitivity issues. (i) To
address data contamination, some studies adopt
machine-unreadable (Huang et al., 2023) data or

constantly evolving data. Considering the pressing
demand for high-quality data in the training pro-
cess of LLMs, it can be foreseen that these data
will also be trained by LLMs in the near future.
To overcome this limitation, the paper proposes
to leverage knowledge from existing knowledge
graphs and corpora to construct evaluation ques-
tions. The advantage of this method is to allow for
the automatic generation of questions tailored to the
targeted knowledge domains. (ii) To better assess
LLMs’ prompt sensitivity, we propose designing
multiple prompts for each piece of knowledge. For
each knowledge, we design multiple prompts to
investigate whether an LLM can consistently gen-
erate correct answers when given varying prompts

For evaluation criteria, conventional methods
typically relied on traditional evaluation metrics
or more advanced models. However, these meth-
ods often fail to fully capture LLMs’ comprehen-
sive abilities and users’ subjective experiences (Li
et al., 2023; Chiang and Lee, 2023), while purely
manual evaluations are labor-intensive. To bridge
the gap between objective metrics and subjective
preferences, we propose an innovative approach
integrating human-computer collaboration, which
employs a vote-like evaluation strategy. Multiple
LLMs are employed to evaluate the given answers,
where some pivot LLMs are selected as the evalua-
tion models because they have higher correlations
with human evaluations. The final result is obtained
through voting.

We also release an online evaluation platform
that supports multiple functions including visual-

195



izations of evaluation results and submission of
evaluation models, etc. Moreover, we evaluate 14
publicly available LLMs. Based on the experimen-
tal results, we obtain some intriguing observations
and summarize them in Section 4.

In summary, the contributions of this paper are
as follows:

• We construct ZhuJiu-Knowledge, a fairer plat-
form for evaluating commonsense knowledge,
language knowledge, and world knowledge in
LLMs.

• We present a novel benchmark construction
technique to evaluate LLMs in commonsense
knowledge, world knowledge, and language
knowledge. This benchmark is designed to
reduce data contamination and prompt sensi-
tivity, accompanied by a human-aligned eval-
uation strategy to yield more reliable results.

• Using the ZhuJiu-Knowledge benchmark, we
evaluate 14 current LLMs across three types
of knowledge, providing insights for the im-
provement and enhancement of LLM.

2 ZhuJiu-Knowledge Benchmark

As stated above, the ZhuJiu-Knowledge benchmark
conducts precise evaluations of models across three
knowledge types. This section provides a detailed
introduction to the ZhuJiu-Knowledge benchmark
covering the knowledge selection, task design, data
construction, and evaluation method. We also de-
tailed the process of problem construction in Ap-
pendix A. The Evaluation framework is shown in
Figure 1.

2.1 Knowledge Scope

The remarkable proficiency exhibited by the LLM
has propelled evaluations towards more challeng-
ing and diverse tasks. The excessive pursuit of
broadening task coverage has resulted in the ne-
glect of knowledge itself within the evaluation pro-
cess (Suzgun et al., 2022). To address these chal-
lenges, we advocate for classifying knowledge, de-
signing tasks tailored to different knowledge types,
and evaluating the model’s ability in this knowl-
edge with finer granularity. We have chosen the
following three kinds of knowledge as our focus of
assessment.

2.1.1 Commonsense Knowledge
We start with two commonsense knowledge graphs,
Atomic (Hwang et al., 2021) and ConceptNet
(Speer et al., 2017). (i) Atomic captures diverse
relations on every day and inferences about others’
mental states in symbolic form, it is represented
by triples, e.g., (PersonX adopts a dog, xNeed, to
go to the pet store.) (ii) ConceptNet encompasses
the general attributes of common entities, also rep-
resented as triplets, e.g., (single rose, HasProp-
erty, beautiful). By contextualizing knowledge
from these knowledge graphs, we transform ab-
stract knowledge into specific questions, thereby
assessing the model’s ability to comprehend and
apply this abstract knowledge in a contextualized
manner.

2.1.2 World Knowledge
This paper employs Wikidata1 as the knowledge
source for generating evaluation queries. This
knowledge base is renowned for its high quality
and comprises billions of data triples. Additionally,
we have introduced two refined evaluation metrics
to gauge the model’s knowledge proficiency. (i) To
evaluate the model’s understanding of knowledge
at different frequencies, we have classified knowl-
edge into three categories: (1) High-frequency
Knowledge, characterized by interlinking occur-
rences exceeding 1000; (2) Common-frequency
Knowledge, with interlinking occurrences between
100 and 1000; and (3) Low-frequency Knowledge,
where interlinking occurrences are fewer than 100.
(ii) To access LLMs’ sensitivity to timeliness, tem-
porally relevant knowledge triples are selected.

2.1.3 Language Knowledge
Our evaluation of language knowledge is divided
into three aspects: semantics evaluation, syntax
evaluation, and pragmatics evaluation, with Word-
Net (Miller, 1995) serving as the knowledge corpus
for language knowledge. WordNet, a comprehen-
sive English lexical database, organizes vocabulary
based on sense and establishes a semantic network
through word relationships (Miller et al., 1990).
Given the extensive scope of syntax, semantics,
and pragmatics, we have designed four knowledge
corpus-based tasks (tasks 1-4) and four combined
natural language understanding (NLU) and natu-
ral language generation (NLG) tasks (tasks 5-8)
for the knowledge capability evaluation of large

1https://www.wikidata.org
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language models (LLMs). (i) For semantics eval-
uation, we establish (1) Semantic Selection Task
to choose or provide sentences that contain a spe-
cific meaning of a polysemous word. (2) Similar
Words Task to provide near-synonyms for a par-
ticular sense of a word. (3) Idiom Explanation
Task to explain the meanings of idioms. (ii) For
syntax evaluation, we establish (4) Part-of-speech
Analysis Task to analyze the parts of speech and
meanings of words within sentences. (5) Grammat-
ical Correction Task to correct grammatical errors
in sentences. (iii) For pragmatics evaluation, we
establish (6) Specialized Formats Task, which en-
tail completing writing tasks in specific formats.
(7) Sentiment Analysis Task to analyze the emo-
tions of characters in sentences. (8) Writing Style
Task to complete text generation following specific
stylistic writing guidelines.

2.2 Data Construction

Ensuring fairness and objectivity is paramount in
constructing reliable evaluation methods for LLMs.
Our approach to data construction addresses two
critical issues: data leakage and prompt sensitivity.

2.2.1 Knowledge-based Question Generation
Previous research has highlighted the severity of
data contamination, where models answer ques-
tions through memorization rather than genuine
knowledge mastery (Marie, 2023; Li, 2023; Sainz
et al., 2023). Many existing benchmarks, e.g.,
CLEVA (Li et al., 2023), keep the evaluation data
confidential from users during the assessment pro-
cess. However, with the abundance of training
data for LLMs, such practices cannot guarantee
that the data has not been exposed during training.
Kola (Yu et al., 2023) addresses this issue by em-
ploying continuously evolving data. However, it is
foreseeable that such data will soon be utilized in
training large models, potentially diminishing this
approach’s effectiveness.

We propose a knowledge-based question con-
struction method using knowledge from the afore-
mentioned knowledge bases, wherein the knowl-
edge is typically formulated as triplets, denoted as
<head, relation, tail>. We design question templates
for relation, into which we insert heads from the
triplets, thereby creating questions with answers.
Additionally, recognizing the unsuitability of this
approach for evaluating certain specialized tasks,
such as some pragmatic tasks in language knowl-
edge, we use GPT-4 to customize evaluation ques-

tions specifically for these types of tasks.

2.2.2 Prompt-based Question Expansion
An ideal large language model should be able to
comprehend various prompts for the same knowl-
edge. Nevertheless, current research indicates that
the sensitivity of LLMs to prompts significantly
influences their performance (Wei et al., 2022). It
is reasonable to assert that evaluating LLMs using
a single prompt may introduce bias in the evalua-
tion results due to the sensitivity of different LLMs
to the prompt. However, most current evaluation
methods have not taken this issue into considera-
tion.

To address the aforementioned issues, we pro-
pose a prompt-based question expansion method.
This method involves the augmentation of a set of
question prompts through the utilization of four
advanced models, namely Llama-2-70B, Claude-
instant, GPT3.5-turbo2, and GPT-4. For each
prompt set, we manually selected 20 prompts that
are both universal and diverse. By utilizing the gen-
erated prompts, we construct a variety of questions
targeting the same knowledge. A detailed descrip-
tion of the question construction process is shown
in Appendix A. Furthermore, we explore which
models exhibit heightened robustness in respond-
ing to prompts based on their performance on these
questions.

To assess the sensitivity of different models to
various prompts, we computed the entropy for
each LLM’s responses to different prompts for
the same knowledge. Specifically, upon complet-
ing multiple-choice questions, we obtained Ω =
{. . . , ωj , . . . , ωk} clusters for the n responses and
the number of each cluster ωk is c(ωk). We calcu-
late the entropy of the answer distribution as:

entropy(R(q)) =
∑

j

c(ωj)

n
log

(
c(ωj)

n

)
(1)

The entropy measures the degree of divergence be-
tween the responses for different prompts of the
same knowledge. A higher entropy value indi-
cates greater randomness in the answering process,
which is associated with the model’s uncertainty
regarding that particular knowledge.

2.3 Evaluation Criteria
To alleviate biases from individual model evalu-
ations and align assessment results more closely

2https://platform.openai.com/overview
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with human perception, our evaluation system in-
tegrates two key components: multi-model voting
evaluation and manual alignment.

2.3.1 Multi-model Voting Evaluation

Owing to the variations in knowledge scope among
different models, evaluating results outside a
model’s knowledge range can introduce biases
(Zhao et al., 2023).

We advocate the adoption of collaborative eval-
uation involving multiple LLMs to mitigate such
potential biases. Specifically, the responses from
different models to the same question form a
set of answers A = {ai}|A|

i=1 for a question and
an evaluation model ensemble M = {mj}|M |

j=1,
we can obtain a set of evaluation results R =
{(mi

1), (m
i
2), . . . , (m

i
j)}

|A|
i=1 for each answer. Then

the final evaluation result of each answer is F =
argmax(R).

Considering the ultimate goal of LLMs is to cater
to human needs, ensuring the generation of evalua-
tion that aligns with human preferences becomes
a paramount expectation. We incorporate a man-
ual alignment step into the model evaluation pro-
cess to achieve this. Specifically, for each type of
knowledge, we selected some questions for manual
evaluation. Subsequently, we adopt Pearson corre-
lation coefficients between the manual evaluation
results set and model evaluation results set R to
measure the evaluation performance of different
models. Considering that different LLMs excel in
different types of knowledge, we selected the top
five models of each knowledge type that are most
closely aligned with manual evaluation results. The
outcome will be determined by a voting process
involving these five models. This approach aims to
enhance the model’s ability to produce evaluations
that resonate more closely with human preferences
and expectations.

2.4 Scoring Method

Each knowledge has different target views to
evaluate LLMs’ performance. For example, we
have common-frequency, high-frequency, low-
frequency, and timeliness to evaluate world knowl-
edge. Since the metrics of different tasks are incom-
parable and differently sensitive, different results
cannot be directly merged. Therefore, we propose
to introduce Min-Max normalization to get a uni-
fied ranking of LLMs. Specifically, given a model
set M = {mj}|M |

j=1 and the task set D = {dj}|D|
j=1,

we get accuracy matrix aij . We first compute the
Min-Max normalization of aij as zij .

zij = 100
aij −min(aj)

max(aj)−max(aj)
(2)

Then the standardized score S can be calculated
as:

Si = avg(zi) (3)

We use SQA to represent the QA question score,
and SCQ to represent the Choices Question score.

3 Platform

We have developed an online platform that offers
a diverse array of services to the community, as
outlined below:

Evaluation process and questions We provide
a detailed introduction for our evaluation process
in Figure 5 and present a subset of evaluation ques-
tions in Figure 7.

Visualizations of evaluation results We show
the overall scores (detailed in Figure 6) and metric
scores of LLMs across three knowledge assess-
ments (detailed in Figure 2.4), comprehensively
analyzing the LLMs’ strengths and weaknesses of
each type of knowledge.

Submission of Evaluation Model We also in-
vite all participants to engage actively in our evalu-
ations and contribute to the leaderboard.

4 Experiment

4.1 Evaluated Models

In order to promote the development of LLMs,
our primary focus for evaluation lies in open-
source models with a parameter scale of ap-
proximately 10 billion, including ChatGLM3-
6b, Baichuan2-13B-Chat (Yang et al., 2023),
Baichuan-13B-Chat, Baichuan2-7B-Chat, Qwen-
7B-Chat (Bai et al., 2023), Qwen-14B-Chat, Yi-6B-
Chat (AI et al., 2024), WizardLM-13B-V1.2 (Xu
et al., 2023), Vicuna-7b-v1.5 (Zheng et al., 2024),
Vicuna-13B-v1.5 (Zheng et al., 2024), LLaMa2-7b-
Chat, LLaMa2-13b-Chat, Mistral-7B-Instruct-v0.2
(Jiang et al., 2023), Mistral-7B-Instruct-v0.1.

4.2 Overall Performance

We report the overall performance in Table 1. SCQ

and SQA represent the Choices question score and
the QA question score respectively, which are de-
fined in Section 2.4. H represents prompt sensitiv-
ity, which is defined in Equation 1. A more detailed
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LLMs
Metrics Knowledge

Commonsense Knowledge World Knowledge Language Knowledge

SCQ SQA H SCQ SQA H SCQ SQA H

Yi-6B-Chat 85.54 19.62 0.49 87.53 50.62 0.34 70.65 92.45 0.21
ChatGLM3-6b 38.88 77.4 0.55 46.63 19.21 0.55 58.56 71.07 0.22

WizardLM-13B-V1.2 24.11 90.59 0.45 27.06 67.13 0.70 71.64 94.5 0.30
Baichuan-13B-Chat 16.38 88.84 0.47 12.96 64.7 0.85 59.78 80.61 0.27
Baichuan2-13B-Chat 43.28 57.32 0.53 54.79 47.84 0.58 72.02 69.11 0.25
Baichuan2-7B-Chat 41.95 93.21 0.53 68.95 50.53 0.87 71.21 15.17 0.27

Vicuna-13b-v1.5 72.08 24.72 0.44 87.66 78.06 0.42 73.02 93.98 0.25
Vicuna-7b-v1.5 64.78 47.41 0.46 52.01 59.25 0.61 51.8 89.67 0.27

LLaMa2-13b-chat 22.3 67.76 0.43 79.6 37.75 0.43 64.2 89.02 0.24
LLaMa2-7b-chat 25.85 65.77 0.47 6.32 0 0.87 52.28 54.16 0.30

Mistral-7B-Instruct-v0.1 68.63 21.01 0.42 27.4 36.71 0.67 62.82 61.67 0.24
Mistral-7B-Instruct-v0.2 78.85 68.99 0.47 96.64 74.38 0.31 86.81 89.57 0.22

Qwen-14B-Chat 96.78 42.06 0.48 91.44 51.54 0.37 93.62 91.61 0.18
Qwen-7B-Chat 54.1 15.49 0.48 68.68 46.67 0.46 80.36 89.05 0.22

Table 1: The overall performance based on three knowledge abilities of the LLMs participating in the ZhuJiu-
Knowledge evaluation. SCQ: multiple choice question score, SQA: QA question score, H: entropy.

assessment result can be found on our platform.
The results reveal several noteworthy findings:

(1) Evaluating with QA questions is fairer: We
compare the results of model responses to multiple-
choice questions and QA questions across three
knowledge abilities, revealing a significant differ-
ence. This suggests that LLMs may make correct
choices through random selection or co-occurrence
frequency calculation, which does not indicate that
the LLM has mastered the knowledge. Employing
multiple-choice questions as the evaluation method
for models can lead to bias.

(2) LLMs exhibit a preference for their own
generated text: We compare the evaluation results
that the model assigned to itself with the evalua-
tions from other LLMs. The specific calculation
method and results can be found in Appendix B.
The experimental results indicate that the model’s
self-assigned evaluations are significantly better
than the evaluations it receives from other models.
This suggests that models exhibit a clear prefer-
ence for the text they generate, emphasizing the
importance of using a voting mechanism for a fair
evaluation.

(3) LLMs is more prompt sensitive to hard
question: Entropy score represents prompt sensi-
tivity, with higher entropy indicating greater model
sensitivity. Table 1 shows that LLMs are most sen-
sitive to world knowledge, followed by common-
sense knowledge and then language knowledge.
This sensitivity ranking aligns with the difficulty
of the tasks, as depicted in Figures 2, 3, and 4.
LLMs perform the poorest in the world knowledge

task, followed by commonsense knowledge and
language knowledge. This suggests that prompt
sensitivity is higher in challenging tasks, empha-
sizing the need for carefully designed prompts to
improve performance.

5 Conclusion and Future Work

In this work, we presented ZhuJiu-Knowledge, a
fairer benchmark for evaluating multiple knowl-
edge types of LLMs. Zhujiu-Knowledge extends
the current knowledge evaluation scope to common-
sense knowledge, language knowledge, and world
knowledge. We introduce a novel data construction
methodology that mitigates the risks of data con-
tamination and prompt sensitivity and proposes a
novel voting methodology to evaluate generative
text. Our comprehensive evaluation of 14 main-
stream LLMs provides significant insights into their
performance, revealing the strengths and weak-
nesses of each model of various knowledge abili-
ties. Finally, we provide a comprehensive knowl-
edge evaluation platform for LLMs in the ZhuJiu-
Knowledge.

In the future, our objectives include: (1) broaden-
ing the scope of the ZhuJiu-Knowledge benchmark
to cover a wider array of knowledge assessment
dimensions; and (2) enhancing our evaluation plat-
form by integrating more features and improving
the user interface, which will facilitate more effi-
cient and user-friendly assessments.
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A Data construction

A.1 Prompt construction

We use GPT-4, GPT3.5, LLaMa70B, and Claude
instance to build prompts. The specific instructions
are as follows:

Now I would like you to provide me with some templates,
and I will give you some examples to illustrate my requirements:
OWant represents, as a result, Y or others want

For relationships<Event, oWant, Result>,
construct the following question:
What do PersonalY or others want to do next?

<Event, oWant, Result>can be:
PersonX admissions PersonY’s work, oWant, to be acknowledged
PersonX admissions PersonY was wrong, oWant, to apologize
PersonX options a child, oWant, to decorate room
Please provide me with more questions

Table 2: An example of building multiple prompts

A.2 ConceptNet Question Construction

Table 3 displays a prompt for formulating an LLM
query derived from a ConceptNet triple.
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Triplet <hammer , AtLocation , tool box>

Prompt Where is typically located?

Question Where is hammer typically located?

Answer Tool box

Table 3: ConceptNet data construction process

LLMs

Metrics Knowledge
Conceptnet

ACQ AQA H

Yi-6B-Chat 43.47 71.29 0.40
TChatGLM3-6b 38.17 73.59 0.63

WizardLM-13B-V1.2 39.62 74.18 0.48
Baichuan-13B-Chat 35.43 74.23 0.54

Baichuan2-13B-Chat 38.21 73.7 0.65
Baichuan2-7B-Chat 39.26 74.85 0.61

Vicuna-13b-v1.5 43.18 73.05 0.50
Vicuna-7b-v1.5 42.13 72.59 0.53

LLaMa2-13b-chat 37.94 73.75 0.49
LLaMa2-7b-chat 39.8 74.69 0.55

Mistral-7B-Instruct-v0.1 42.58 72.41 0.47
Mistral-7B-Instruct-v0.2 44.12 73.28 0.57

Qwen-14B-Chat 43.56 72.33 0.57
Qwen-7B-Chat 38.62 72.05 0.56

Table 4: The specific performance of the LLMs in
ConceptNet. ACQ: multiple choice question accuracy,
AQA: QA question accuracy, H: entropy.

A.3 ATOMIC Question Construction

During the process of constructing questions, we at-
tempted to replace person variables (e.g., PersonX,
PersonY) from ATOMIC with common human
names. However, this led the model to treat them
as real individuals and refuse to answer. Therefore,
we directly use person variables in the questions
to refer to human beings, thereby obtaining more
objective answers.

Triplet <PersonX accepts thanks , xReact , happy>

Prompt . How does PersonX feel?

Question PersonX accepts thanks. How does PersonX feel?

Answer happy

Table 5: ConceptNet data construction process

B Model self-preference value

To measure whether the model exhibits a pref-
erence for its own generated results, we use
rank(i, j) to represent the ranking assigned by
evaluation model i to evaluation model j. We calcu-
lated the P as the self-preference value and G(P )
as the global self-preference value of models for
their generated results in each knowledge domain

LLMs

Metrics Knowledge
Conceptnet

ACQ AQA H

Yi-6B-Chat 51.68 48.96 0.40
Chatglm3-6b 45.52 51.66 0.44

WizardLM-13B-V1.2 36.69 52.18 0.33
Baichuan-13B-Chat 42.95 51.92 0.37

Baichuan2-13B-Chat 47.11 49.71 0.45
Baichuan2-7B-Chat 44.30 41.46 0.43

Vicuna-13b-v1.5 47.19 46.88 0.35
Vicuna-7b-v1.5 46.71 49.97 0.37

LLaMa2-13b-chat 39.69 50.4 0.34
LLaMa2-7b-chat 36.96 48.79 0.38

Mistral-7B-Instruct-v0.1 47.19 47.44 0.33
Mistral-7B-Instruct-v0.2 47.71 51.23 0.40

Qwen-14B-Chat 55.77 49.79 0.39
Qwen-7B-Chat 50.33 47.39 0.39

Table 6: The specific performance of the LLMs in
ATOMIC. ACQ: multiple choice question accuracy,
AQA: QA question accuracy, H: entropy.

and present the top five results in Table 7.

P (i) =
1

k − 1

k∑

j=1
j ̸=i

(rank(j, i)− rank(i, i)) (4)

G(P ) =
1

k

k∑

i=1

(P (i)) (5)

C The Performance of LLMs in World
Knowledge and Language Knowledge

We conducted a detailed analysis of the perfor-
mance of LLMs on world knowledge. As illus-
trated in Figure 2, the models exhibit significantly
better performance on high-frequency knowledge
compared to low-frequency knowledge, indicat-
ing a certain challenge in mastering low-frequency
world knowledge. Additionally, the models exhibit
low sensitivity to time-sensitive knowledge, imply-
ing a potential confusion of temporal occurrence
times.

We also conducted a detailed analysis of the per-
formance of LLMs in the scope of language. As il-
lustrated in Figure 4, compared to other tasks, these
models exhibit significantly better performance in
pos-analysis tasks, indicating that the models are
well-versed in more traditional natural language
processing tasks like POS analysis. However, they
exhibit lower proficiency in reverse tasks and tasks
requiring deeper understanding and application of
the knowledge corpus.
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Figure 2: The performance of LLMs on common-frequency, high-frequency, low-frequency, and timeliness in world
knowledge.

Figure 3: The performance of LLMs on ConceptNet in commonsense knowledge.
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Figure 4: The four knowledge corpus-based tasks performance of LLMs in language knowledge.

Figure 5: The introduction page of Zhujiu-knowledge platform.
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Figure 6: Overview Performance: The total score of LLMs in QA question and Choice question.

Figure 7: The dataset demonstration page.
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evalmodel commonsense world lanauage

top-model1 -3.2 -8.6 6.6
top-model2 0.2 4.4 4.4
top-model3 4.6 0.6 -6.2
top-model4 0.4 -0.75 0.4
top-model5 -1.4 6.8 -1.8

global-self-preference 0.1 0.5 0.6

Table 7: The self-preference value of the top five LLMs
in three knowledge evaluations
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Abstract

In the dynamic landscape of generative NLP,
traditional text processing pipelines limit re-
search flexibility and reproducibility, as they
are tailored to specific dataset, task, and model
combinations. The escalating complexity, in-
volving system prompts, model-specific for-
mats, instructions, and more, calls for a shift to
a structured, modular, and customizable solu-
tion. Addressing this need, we present Unitxt,
an innovative library for customizable textual
data preparation and evaluation tailored to gen-
erative language models. Unitxt natively inte-
grates with common libraries like HuggingFace
and LM-eval-harness and deconstructs process-
ing flows into modular components, enabling
easy customization and sharing between practi-
tioners. These components encompass model-
specific formats, task prompts, and many other
comprehensive dataset processing definitions.
The Unitxt Catalog centralizes these compo-
nents, fostering collaboration and exploration
in modern textual data workflows. Beyond be-
ing a tool, Unitxt is a community-driven plat-
form, empowering users to build, share, and
advance their pipelines collaboratively. Join
the Unitxt community;
Project: https://github.com/IBM/unitxt.
UI: https://bit.ly/unitxt-explore
Video: https://bit.ly/unitxt-video

1 Introduction

Textual data processing has always been at the heart
of NLP, but in the current landscape it has taken
on new roles. A prominent one comes from LLMs’
role as general interfaces, that receive an exam-
ple, but also the task they should perform, general
system instruction and other specifications, all in
natural language. Thus, the inputs – or prompts –
that a model receives now consist of many compo-
nents, that can be combined in different ways: task
instructions (Wei et al., 2022), in-context demon-
strations (Brown et al., 2020), system prompts and
more. At the same time, for text generation models,

model outputs are themselves rich textual data, and
thus can be processed and evaluated with a range
of different approaches and paradigms. Therefore,
textual data processing for LLMs is growing in-
creasingly complex. It incorporates a large number
of non-trivial design choices and parameters, which
pose new challenges for maintaining flexibility and
reproducibility in LLM research.

Broadly, research in computer science, and in
particular within NLP, thrives on that combination
of flexibility and reproducibility. On the one hand,
it should be simple to try new ideas: to compare
different approaches, choose parameters, and eas-
ily switch out one workflow or architecture with
another. On the other hand, the results of these
explorations must be shared in such a way that
others are able to – and crucially, are likely to –
reproduce and try them. To enable the above, code
reuse, a well-defined API and ease of use are piv-
otal, ensuring reproducibility and applicability in
practice. How such traits allow for widespread
adoption is epitomized by the Hugging Face trans-
formers library (Wolf et al., 2020). Today, a modest
set of hyperparameters is sufficient to reproduce
a training or inference workflow. This has had an
undeniable and dramatic impact on the ability to
make progress in the field.

Such is not the case, however, for textual data
pipelines. Unfortunately, data-preparation for
LLMs has no standards, Processing model inputs or
outputs of the same data often comes with rewriting
the code, leading to mismatches in reported values
(Post, 2018), unanswerable examples and hidden
bugs (Fourrier et al., 2023) and general time waste.
Crucially, the additional components beyond tra-
ditional processing, such as in-context demonstra-
tions, have no canonical API. This prevents fair
comparisons between different studies, discourages
exploring combinations, hinders integrating a par-
ticular approach (say, a new type of system prompt)
into an existing NLP system, and prevents major
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scale-ups in terms of datasets, tasks and metrics.

To address these gaps, we introduce a new collab-
orative framework for unified textual data process-
ing named Unitxt. This new Python library sup-
ports multilingual textual data processing through
flexible pipelines called recipes. A recipe (see §4.1
and examples in §3) is a sequence of textual data
processing operators, including, among others, op-
erators that load data, pre-process it, handle the
preparation of different parts of a prompt, or evalu-
ate model predictions (see Figure 1).

Aiming for reuse, Unitxt ships with a catalog
containing a wide variety of pre-defined recipes for
various tasks. These are all based on a diverse set of
built-in operators that are also shared in the catalog.
Having a centralized location for these components,
where anyone can add new ingredients (such as
recipes or operators), or share existing ones, fosters
collaboration, transparency and reproducibility.

As fitting a Recipe, the modularity of Unitxt en-
ables mixing and matching of ingredients to create
new recipes. This ability to mix and match in-
gredients enables Unitxt to support 100K+ recipe
configurations, allowing users to experiment with a
large set of such recipes by to obtain multiple con-
figurations of tasks, datasets and new formatting
(see §3 for example).

Changing libraries is always a nuisance; there-
fore, Unitxt is designed to seamlessly integrate
with preexisting code, offering a hassle-free ex-
perience without even needing a pip install. For
instance, Unitxt can load HuggingFace datasets
and produce outputs that adhere to the same format,
allowing it to integrate seamlessly with other parts
of your codebase (§4.4.1). Demonstrating this, in-
corporating Unitxt, with all its tasks, datasets, tem-
plates and metrics into LM-eval-harness (Gao et al.,
2023) required only 30 lines of code, while pre-
serving the current API and ensuring a smooth tran-
sition and compatibility with existing workflows
(App. A).

Unitxt, an open-source library, is under ac-
tive development by IBM and the community.
The code and documentation are available on
GitHub at: https://github.com/IBM/unitxt,
the UI, at https://bit.ly/unitxt-explore
while the demo video is at https://bit.ly/
unitxt-video.

2 Use cases

Unitxt for evaluation: The increasing capabilities
of LLMs require evaluation frameworks that test
models over an unprecedented number of datasets,
tasks and configurations (Liang et al., 2022; Gao
et al., 2023; Contributors, 2023). Unitxt can serve
as the backbone of such evaluation efforts, by sup-
porting easy changes across multiple important
axes, including tasks, languages, prompt struc-
ture (e.g. instructions, verbalizations, etc.), aug-
mentation robustness and more. Moreover, with
the Unitxt Catalog, different distinct projects
can share their full evaluation pipelines, making
their data-preparation and evaluation metrics repro-
ducible.
Unitxt for training: Modern LLM training

frameworks have extensive data requirements to at-
tain state-of-the-art performance. Multiple datasets
across diverse domains and languages need to be
leveraged to impart broad capabilities; Various
prompt formulations and verbalizations are neces-
sary to enable instruction-following, where verbal-
izations are the final text form. However, combin-
ing heterogeneous data sources and textual repre-
sentations poses significant engineering challenges.
Without a common underlying framework, data
augmentation, multitask learning and few-shot tun-
ing become prohibitively complex. This is where
Unitxt steps in, as an indispensable data backend.
Unitxt enables seamless fusion of diverse

datasets. Moreover, the standardized format also
facilitates changes to the datasets, dynamic prompt
generation, data augmentations and model-specific
format, to name just a few. By handling the
data wrangling complexity, Unitxt empowers re-
searchers to focus on creating performant, robust
and safe LLMs.

For both evaluation and training, Unitxt has al-
ready been adopted as a core utility for LLMs in
IBM by multiple teams working on various NLP
tasks, including classification, extraction, summa-
rization, generation, question answering, code, bi-
ases and more. In total, the open source catalog
contains more than 100K possible pipeline config-
urations.

3 Unitxt: Library Tour

To introduce unitxt, we begin with a tour of the li-
brary, and specifically, with the creation of a recipe.
A recipe contains all the data-processing and met-
ric configurations needed, including the data, task,
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Figure 1: Unitxt flow: The upper section illustrates the data-preparation pipeline §4.4.1, encompassing raw dataset
loading, standardization according to the task interface, verbalization using templates, and application of formatting.
The lower section showcases the evaluation pipeline §4.4.2, involving de-verbalization operations and output
standardization before performance evaluation with task-defined metrics. All components are described in §4.2.

template and formatting (see details in §4). Here
we define a recipe that loads the STS-B dataset for
a sentence similarity task:

1 recipe = """
2 card=cards.stsb , # dataset info card
3 template=templates.text_similarity ,
4 sys_prompt=prompts.helpful ,
5 format=formats.user_agent ,
6 num_demos =1
7 """

With a recipe, a concrete dataset can be loaded:
dataset = unitxt.load_dataset(recipe)

Importantly, every data instance in a dataset loaded
with a unitxt recipe contains a fully prepared source
text, which can be directly passed as input to the
model. For example, here is such source text for
one sentence-similarity data instance, integrated
with three formatting decisions, a “helpful model”
system-prompt, a user-agent response schema and
one demonstration:
[System] you are helpful model [/ System]
[User]: for the following texts rank the

similarity between 1 to 5.
Text 1: "i love ice cream"
Text 2: "i like ice cream"

[Agent ]: 4.8
[User]: Text 1: "i hate pizza"

Text 2: "i like pizza"
[Agent ]:

Loading a dataset with a unitxt recipe also adds
a metric-ready target text (created from the origi-
nal target) to each data instance. To Evaluate the
model’s textual predictions, we call:
results = unitxt.evaluate(

dataset ,
predictions=predictions ,

)

The evaluation results are a dictionary of task de-
fined metric names and the values computed for
them.

4 Design

In this section we outline the design of Unitxt.
Unitxt processes data by applying a modular se-
quence of operators, which are segmented into 5
key ingredients (§4.2) color-coded as in Fig. 1:
■ Resources, ■ Task, ■ Template, ■ Format and
■ Extensions. These ingredients are then used to
build the data preparation (§4.4.1) and evalua-
tion (§4.4.2) pipelines.

4.1 Unitxt Building Blocks

When loading a dataset (as demonstrated in §3),
the Unitxt ingredients are retrieved based on a
Data-Task Card and a Recipe.

■■ Data-Task Card Defines how raw data (in-
puts and targets) are standardized for a certain task.
Typically, this includes data wrangling actions, e.g.
renaming fields, filtering data instances, modifying
values, train/test/val splitting etc. It also describes
the resource from which the data is loaded.

■■■■■ Recipe A Recipe holds a complete
specification of a Unitxt pipeline: including the
Resources, Task, Template, Format and Extensions.
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4.2 Unitxt Ingredients

■ Resources Raw data and metrics are external
resources utilized by Unitxt. Unitxt implements
several APIs for raw-data and metric loading (e.g.,
from Huggingface Hub, local files, and cloud stor-
age).

■ Task A Unitxt Task follows the formal defi-
nition of an NLP task, such as multi-label classi-
fication, named entity extraction, abstractive sum-
marization or translation. A task is defined by its
standard interface – namely, input and output fields
– and by its evaluation metrics. Given a dataset, its
contents are standardized into the fields defined by
an appropriate task by a Data-Task Card (§4.1).

As an example of a defined task, consider sen-
tence similarity: it has two input fields (named
“sentence1” and, “sentence2”), one output field
(named “label”) and the conventional metric is
Spearman correlation (Spearman, 1904).

■ Template A Unitxt Template defines the ver-
balizations to be applied to the inputs and targets,
as well as the de-verbalization operations over the
model predictions. For example, in Fig 2, applying
the template to I like toast verbalizes it into
classify the sentence: “I like toast”.

In the other direction, template de-verbalization
involves two steps. First, a general standardization
of the output texts: taking only the first non-empty
line of a model’s predictions, lowercasing, strip-
ping whitespaces, etc. The second step standard-
izes the output to the specific task at-hand. For
example, in Sentence Similarity, a prediction may
be a quantized float number outputted as a string
(e.g “2.43”), or a verbally expressed numeric ex-
pression (e.g “two and a half”). This depends on
the verbalization defined by the template and the
in-context demonstrations it constructs. Both types
of outputs should be standardized before evaluation
begins – e.g. to a float for sentence similarity. Hav-
ing the de-verbalization steps defined within the
template enables templates reuse across different
models and datasets.

Crucially, in contrast to existing solutions (e.g.,
Bach et al., 2022) the templates, datasets and tasks
in Unitxt are not exclusively tied. Each task can
harness multiple templates and a template can be
used for different datasets. Thus, the modularity of
Unitxt allows mixing and matching, significantly
enhancing re-usability and flexibility.
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following categories: positive, negative

User: classify this sentence: ‘I like pizza’
Agent: positive

User: classify this sentence: ‘I hate pizza’
Agent: negative

User: classify this sentence: ‘I like toast’
Agent:

Figure 2: Illustration of the data preparation pipeline
(§4.4.1), depicting the transformation from raw data and
formatting specifications to the final text output. Com-
ponents include Resources (raw data), Format (model-
specific formatting requirements), and Template (ver-
balization).

■ Format A Unitxt Format defines a set of ex-
tra formatting requirements, unrelated to the under-
lying data or task, including those pertaining to sys-
tem prompts, special tokens or user/agent prefixes,
and in-context demonstrations. Continuing the ex-
ample from Figure 2, the Unitxt format receives
the text produced by the template classify the
sentence: “I like toast”, and adds the system
prompt <SYS>You are a helpful agent</SYS>,
the Instruction-User-Agent schema cues, and the
two presented demonstrations.

■ Extensions Unitxt supports Extensions such
as input-augmentation (for example, adding ran-
dom whitespace, introducing spelling mistakes, or
replacing words with their synonyms) or label-
noising (replaces the labels in the demonstrations
randomly from a list of options). Such extensions
can be added anywhere in the data-preparation
pipeline between any two operators, depending on
the desired logic (see Fig. 1). Unitxt supports
the addition of custom extensions to the Catalog.
Each extension is an independent unit, reusable
across different datasets and tasks, templates and
formats.

4.3 Unitxt Catalog

All Unitxt artifacts – recipes, data-task cards, tem-
plates, pre-processing operators, formats and met-
rics – are stored in the Unitxt Catalog. In addi-
tion to the open-source catalog, that can be found in
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the documentation, users can choose to define a pri-
vate catalog. This enables teams and organizations
to harness the open Unitxt Catalog while uphold-
ing organizational requirements for additional pro-
prietary artifacts.

4.4 Unitxt Pipelines

4.4.1 Data Preparation Pipeline
The data preparation pipeline (top part ot Fig. 1) be-
gins with standardizing the raw data into the task in-
terface, as defined in the data-task card (§4.1). The
examples are then verbalized by the template, and
the format operator applies system prompts, special
tokens and in-context learning examples (§4.2), as
illustrated in Figure 2. To maintain compatibility,
the output of this pipeline is an HF dataset, that can
be saved or pushed to the hub.

4.4.2 Evaluation Pipeline
The evaluation pipeline (bottom part of Fig. 1) is
responsible for producing a list of evaluation scores
that reflect model performance. It includes a de-
verbalization of the model outputs (as defined in
the template, see §4.2), and a computation of per-
formance by the metrics defined in the task. The
standardization of the task interface, namely, hav-
ing fixed names and types for its input and output
fields, allows the use of any metric that accept such
fields as input. In addition to the computed eval-
uation scores, Unitxt metrics supports a built in
mechanism for confidence interval reporting, using
statistical bootstrap (Perlitz et al., 2023).

5 Unitxt UI: Explore & Preview

The objective of the user interface is to guide users
through the essential steps of recipe creation, il-
lustrated with pertinent examples. Additionally,
it allows for catalog exploration. The UI comple-
ments the experience with the option to execute
the examples on some pre-set model (e.g., flan-t5-
base), get the predictions and associated scores.

The interaction entry point is the tasks. Upon
clicking, the tasks taxonomy is presented, and the
users have the option to choose the applicable task
type. Selecting a task results in showing only the
relevant datasets and templates. Once the user se-
lects a dataset, and a template, and presses “Gener-
ate Prompts” a random example enhanced with the
template is loaded. If the user wants to augment
the input with system prompt, or response-schema
those will be instantly added when opted for. As

in-context learning evaluations are supported, the
user can select the preferred number of shots. Once
satisfied with the example, the user has the option
to proceed with executing it on a model, wherein
the predictions and corresponding scores will be
displayed for this specific example. Further, going
to the code tab, the user can copy the associated
code into a notebook and run. Users have the op-
tion to explore various examples, enhancing their
comprehension and confidence in the chosen con-
figuration.

6 Related work

Standardized data processing for evaluation and
training has been a longstanding need in the NLP
community and has been repeatedly addressed in
the past. Datasets (Lhoest et al., 2021) and Eval-
uate1 are community-driven libraries, providing a
standardized interface to diverse corpora and met-
rics, as well as supporting many data processing
operations. These packages, however, fall short
of providing a standardized, shareable and repro-
ducible framework to cast the raw data into textual
prompts and cast them back from text to a metric
digestible format. The lack of such a framework
hinders reproducibility, as often slight variations in
ad-hoc text processing code may yield significantly
different evaluation scores. Moreover, it also pre-
vents users from easily scaling up their experiment,
as each task and dataset often requires specific code
for processing and evaluation. Unitxt builds on
top of these frameworks, harnessing them as re-
sources (§4.1) to produce a full data-preparation
and evaluation framework.

While several existing frameworks have con-
tributed to data pipeline management workflows, a
common drawback, for those we are aware of, is the
absence of a well-defined and flexible modularity
in their design, such as the ability to define specific
components for system prompts, task instructions
and model-specific formats. This absence of clearly
defined components makes it challenging to share
and customize such pipelines effectively, across
different datasets and tasks.

Like Unitxt, Tasksource (Sileo, 2023) supplies
tools for consistent preprocessing over different
datasets, simplifying their usage. However, it is
primarily designed for discriminative tasks, uses
fixed formats and lacks a modular design that en-
ables sharing, mixing and matching, and overall

1https://github.com/huggingface/evaluate/
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Figure 3: Exploration UI showcasing configuration options for model input creation on the left, including param-
eters such as task, dataset card, template, system-prompt, response-schema, number of examples, and optional
augmentations. The resulting model input is displayed in the prompt window.

flexibility in processing steps. Promptsource (Bach
et al., 2022) focuses on making and sharing natural
language prompts but doesn’t handle other types
of data processing. Each prompt is tied to just one
dataset, making it hard to reuse and share. Further-
more, prompts aren’t split into system, instruction,
and format parts, limiting options for flexibility
and reuse. SeqIO (Roberts et al., 2022), offers
task-based pipelines encompassing pre-processing,
post-processing, and handling metrics. However, a
structured breakdown of these processing steps is
absent, limiting the creation of shareable catalogs
within the community. In this framework, each pro-
cess is a generic function and specialized steps are
missing, like those designed for system prompts.

A different branch of solutions are language
model evaluation frameworks such as OpenCom-
pass (Contributors, 2023), HELM (Liang et al.,
2022) and LM-eval-harness (Gao et al., 2023) also
implement their own standardized data processing
pipelines in order to obtain verbalized prompts for
LMs. These, however, are highly coupled with the
inference engine and cannot be used as standalone
data-processing pipelines or integrated into other
code bases.

7 Conclusion

In this paper, we have introduced Unitxt, an open-
source Python library aimed at unifying textual
data processing pipelines for large language mod-
els. Unitxt provides a modular, flexible frame-
work that enables mixing and matching of vari-
ous pipeline components like loaders, templates,
formats and metrics. Unitxt key capabilities are,
standardization, flexibility, collaboration and scale.
Unitxt has already been successfully deployed

for large language model evaluation and training
within IBM. As the library matures through open-
source community involvement, we hope its adop-
tion will grow to push the frontiers of textual data
processing for LLMs. We believe Unitxt has the
potential to significantly impact research and de-
velopment of large language models by unifying
textual data processing. Through its emphasis on
flexibility, reproducibility and collaboration, unitxt
can help drive progress towards more capable, safer
and trustworthy LLMs.

8 Limitations

While unitxt makes significant progress towards
unified textual data processing for LLMs, some
limitations still remain:

• The Unitxt Catalog, while already substan-
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tial in coverage, needs expansion to encom-
pass more datasets, languages, and niche tasks.
Community contributions will be key to en-
hancing catalog diversity.

• Coverage of evaluation metrics, especially for
generative tasks, needs improvement. We plan
to incorporate more reference-free and LLM-
based metrics going forward.

• Training data augmentation abilities, while
flexible currently, can be expanded further
with techniques like back-translation for mul-
tilinguality.

• While using Unitxt recipes is as simple as
specifying the recipe ingrediants, adding new
datasets or operators requires learning the
Unitxt operator language. Additional doc-
umentation, examples and IDE support could
help alleviate this.

Addressing these limitations through open-
source community involvement is the major focus
going forward. By tapping into collective expertise,
we envision unitxt becoming an indispensable tex-
tual data processing backbone for the responsible
development, evaluation and deployment of large
language models.
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A LM Eval Harness Integration

LM-eval-harness (Gao et al., 2023) is one of the
most commonly used open source evaluation frame-
works. It leverages a yaml-based declarative lan-
guage which defines loading of the dataset, the
dataset splits, the prompt used and the metrics in a
single file for each task. Many tasks are supported,
including multi-class classification, multiple choice
question answering, and generation tasks. Unitxt
was integrated into LM-eval-harness to extend LM-
eval-harness to support new tasks and metrics that
currently are not supported, including multi-label
classification, named entity extraction, and target
sentiment analysis.

Since Unitxt recipes can be loaded as standard
HF datasets, no code changes were required to add
the Unitxt data preparation pipeline to LM-eval-
harness. Adding a Unitxt recipe requires only
one line change in a LM-eval-harness yaml (see
Figure 4 in Appendix). Adding the Unitxt met-
rics required about 30 lines of code, to register
the Unitxt metrics to the LM-eval-harness metrics
registry.
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1 group: glue
2 task: unitxt_unfair_tos
3 dataset_path: unitxt/data
4 dataset_name: card=cards.unfair_tos ,template_card_index=templates.classification.

multi_label.default ,format=formats.user_agent
5 output_type: generate_until
6 training_split: train
7 validation_split: validation
8 doc_to_text: "{{ source }}"
9 doc_to_target: target

10 generation_kwargs:
11 until:
12 - "</s>"
13 metric_list:
14 - metric: unitxt_f1_micro_multi_label
15 metadata:
16 version: 1.0

Figure 4: Unitxt and LM-eval-harness integration. A Unitxt recipe can be integrated as an LM-eval-harness task,
by setting the dataset_path (line 3) to unitxt/data and the setting the recipe in the dataset_name (line 4). Unitxt
metrics can be used like any other metric (line 14).
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