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Abstract

In this paper, we present RTSUM, an unsuper-
vised summarization framework that utilizes
relation triples as the basic unit for summariza-
tion. Given an input document, RTSUM first
selects salient relation triples via multi-level
salience scoring and then generates a concise
summary from the selected relation triples by
using a text-to-text language model. On the
basis of RTSUM, we also develop a web demo
for an interpretable summarizing tool, provid-
ing fine-grained interpretations with the output
summary. With support for customization op-
tions, our tool visualizes the salience for textual
units at three distinct levels: sentences, relation
triples, and phrases. The code1 and video2 are
publicly available.

1 Introduction

Text summarization has emerged as a critical tool
in the era of information overload, enabling users
to quickly understand the essence of long text.
Among various summarization techniques, abstrac-
tive summarization has gained significant attention
due to its ability to generate fluent and concise sum-
maries that capture the main ideas of the source text
(Nallapati et al., 2016; See et al., 2017; Tan et al.,
2017; Cohan et al., 2018; Xu et al., 2020a; Koh
et al., 2022). Nevertheless, despite their advantages
in flexibility and reduced redundancy compared to
extractive methods, abstractive methods inherently
lack interpretability. That is, the absence of a direct
link to the source text can make it difficult to trace
back the source of information, which makes the
summary lack interpretability.

Interpretability in summarization is important to
provide users a way to cross-check that the gener-
ated summary is factually consistent, and to pro-
vide more context to dive into if one wants to know

∗Corresponding author
1https://github.com/seonglae/RTSum
2https://youtu.be/sFRO0xfqvVM

more about the summarized content. To generate an
interpretable summary, extractive summarization
techniques can offer advantages. As they directly
extract sentences from the text, the sentences them-
selves serve as the source of information (Xu et al.,
2020b; Padmakumar and He, 2021). However, a
significant drawback of many extractive methods
lies in their sentence-level operation, which limits
their ability to extract fine-grained key information
(Zheng and Lapata, 2019; Liu et al., 2021). In many
cases, a single sentence describes multiple diverse
pieces of information that should be treated as dis-
tinct facts for summarization. By selecting entire
sentences, these methods may include unnecessary
or redundant information in the summary, reducing
both its efficiency and readability.

To enhance the interpretability of the summa-
rization process by incorporating fine-grained key
information, our focus lies on leveraging relation
triples as the basic unit for summarization. A rela-
tion triple in the form of (subject, predicate, object)
concisely describes a single piece of information
corresponding to its relation (i.e., predicate) be-
tween two entities (i.e., subject and object), and it
can be effectively identified from a source docu-
ment by using open information extraction (Ope-
nIE) systems (Angeli et al., 2015; Mausam, 2016).

Using relation triples, our main idea embodies
selection-and-sentencification, which achieves a
combination of extractive and abstractive summa-
rization methods. Specifically, we first select only a
few relation triples according to their importance –
salience – within the document for summarization,
and then reassemble the selected relation triples
into the final output summary. This two-step ap-
proach enhances the interpretability of the sum-
marization by providing clear explanations for the
salience scores of relation triples and their contri-
butions to the final summary. This clarity allows
users to understand the crucial elements driving the
summarization process effectively.
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Formally, we present an unsupervised Relation
Triple-based Summarization framework, named
RTSUM. For relation triple selection, RTSUM

identifies heterogeneous textual information units
with various granularity, which are (1) sentences,
(2) relation triples, and (3) phrases, to utilize their
own salience all together. Under the principle that
more salient textual units are much more relevant
to other units semantically and lexically, it mod-
els the multi-level salience from the three distinct
textual units. Then, it selects the K most salient
relation triples based on the multi-level salience
scores. For relation triple sentencification, RTSUM

employs a neural text-to-text architecture as a re-
lation combiner to transform the relation triples
into the summary sentences. The relation com-
biner is effectively optimized in a self-supervised
manner by using source sentences (sampled from
training documents) and their relation triples (ex-
tracted from the sampled sentences) as targets and
inputs, respectively, while not requiring any refer-
ence summaries of its training documents.

Building upon the RTSUM framework, we de-
velop an online demo to showcase an interpretable
text summarization tool. Given an input document,
our tool generates a concise summary, while simul-
taneously offering fine-grained interpretations by
visually depicting the multi-level salience of tex-
tual units within the source document. For clarity
in visualization, the tool highlights text spans (i.e.,
textual units) based on their salience score, with
numerical ranks provided as annotations. Further-
more, our tool offers customization options, allow-
ing users to personalize the visualization according
to their preferences and specific purposes.

Our multi-level salience visualization empowers
users to easily identify the textual units that mostly
influence the final summary; it also provides valu-
able insights into the salient semantic structure of
the document at a glance, enhancing users’ overall
understanding of the summarization process.

2 Preliminary

Textual Information Units. We utilize three dif-
ferent types of textual information units with var-
ious granularity: sentences, relation triples,3 and
phrases. All sentences and relations are extracted
from a source document by using open informa-
tion extraction (OpenIE) systems. Among several

3For brevity, we use the terms “relation triples” and “rela-
tions” interchangeably, in the rest of this paper.

implementations, we employ OpenIE 54 (Mausam,
2016) released by UW and IIT Delhi. Similarly, all
noun and verb phrases in the document are iden-
tified based on POS labels tagged by the Spacy
library. Table 1 shows an example of the three
textual information units in a single sentence.

Sentence
Hugh Laurie joins the cast and Julia Louis-Dreyfus
is now the president of the United States on HBO’s
hit comedy.

Relation
(S: Hugh Laurie, P: joins, O: the cast)
(S: Julia Louis-Dreyfus, P: is, O: now the president
of the United States on HBO’s hit comedy)

Phrase
Hugh Laurie, joins, cast, Julia Louis-Dreyfus, is,
president, United States, HBO’s, hit comedy

Table 1: An example of textual information units.

Relation Triples. Each relation triple, denoted
by r = (sub, pred, obj), represents a relation (i.e.,
predicate) between two text spans (i.e., subject and
object), and it corresponds to a single piece of in-
formation in terms of the relation. The three com-
ponents are described in natural language, and this
allows us to treat them as the sequence of tokens
in the vocabulary, similar to sentences and phrases.
Thus, we consider the concatenated text of its sub-
ject, predicate, and object as the textual description
of a relation triple, i.e., desc(r) = [sub∥pred∥obj].
Problem Definition. Given a source document D
and its information units, including sentences S =
{s1, . . . , sNs}, relation triples R = {r1, . . . , rNr},
and phrases P = {p1, . . . , pNp}, the goal of our
relation triple-based summarization task is (1) to
select the relation triples based on their salience
within the document, and (2) to generate a concise
summary from the selected salient relation triples.
In this paper, we mainly focus on the unsupervised
setting where the annotated text-summary pairs are
not available for training a summarization model,
since such reference summaries are usually noisy,
expensive to acquire, and hard to scale.

3 RTSUM: Relation Triple-based
Summarization Framework

Our summarization framework, named RTSUM,
consists of the two steps: (1) information selection
for identifying the salient relation triples based on
multi-level salience from various textual informa-
tion units (Section 3.1), and (2) information senten-
cification for combining the selected relation triples

4https://github.com/dair-iitd/OpenIE-standalone
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Figure 1: The overall process of the RTSUM framework. RTSUM selects salient relation triples and then generates
the plausible sentences from the selected relation triples.

into plausible sentences with the help of a neural
text generator (Section 3.2). Figure 1 illustrates the
overall process of our RTSUM framework.

3.1 Information Selection
For the selection of relation triples that would be in-
cluded in the summary, RTSUM models the multi-
level salience for each relation triple by leveraging
heterogeneous textual information units. Specif-
ically, it figures out how significant a relation
triple is within the document from the perspec-
tive of (1) the sentence that the relation triple is
extracted from, (2) the relation triple itself, and (3)
the phrases that the relation triple contains. In the
end, RTSUM selects the most K salient relation
triples based on their multi-level salience scores.5

3.1.1 Sentence-level Salience Score
The sentence-level salience considers the signifi-
cance of the sentence that each relation triple is
extracted from. Following previous studies (Zheng
and Lapata, 2019; Liu et al., 2021), we infer the
sentence-level salience by utilizing sentence order
(i.e., a preceding sentence is more likely to contain
salient information) and semantic similarity (i.e.,
the sentence that is more semantically relevant to
other sentences is likely to contain salient infor-
mation). Thus, we construct a sentence-level text
graph Gs = (S, Es) with a directed edge from a
former sentence node si to a latter sentence node sj ,
and the edge weight Es

ij is the semantic similarity
between the two sentences.

Es
ij =

{
sim(si, sj) if si precedes sj
0 otherwise.

(1)

5The selection (or ranking) strategy based on multi-level
salience can be implemented in various ways (Section 3.1.4).

sim(si, sj) is defined by the cosine similarity be-
tween two sentence representations from a sentence
encoder, specifically fine-tuned for the semantic
textual similarity (STS) task (Gao et al., 2021).

From the sentence-level text graph, the sentence-
level salience is defined by the degree-based cen-
trality (Zheng and Lapata, 2019). In other words,
this centrality is equivalent to the sum of semantic
similarities with all of its subsequent sentences.

Ss(si) =
∑

sj∈S
Es

ij . (2)

3.1.2 Relation-level Salience Score
The relation-level salience focuses on the meaning
of each relation itself in that the semantic simi-
larity among the relation descriptions implies the
salience; that is, a relation description that is more
relevant to other relation descriptions is more likely
to contain salient information. In this sense, we
build a relation-level text graph Gr = (R, Er),
whose nodes represent the relation triple and the
undirected edge has the weight of the semantic sim-
ilarity between relation descriptions. Similar to
Equation (1), the cosine similarity between relation
representations is calculated, and the salience score
is also modeled as the degree-based centrality.

Er
ij = sim(desc(ri), desc(rj)),

Sr(ri) =
∑

rj∈R
Er

ij .
(3)

Note that the sequential order of relations is not
clearly presented unlike the sentences, because mul-
tiple relations are extracted from the same sentence.

3.1.3 Phrase-level Salience Score
The phrase-level salience measures the salience
of phrases included in each relation triple, and it
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captures the phrase frequency and co-occurrence
in the document. As presented in previous work on
keyphrase extraction (Mihalcea and Tarau, 2004;
Bougouin et al., 2013), we build a phrase-level text
graph Gp = (P, Ep) whose nodes are the noun and
verb phrases extracted from the source document
based on POS tags (e.g., Noun, Proper Noun, and
Verb). The undirected edges model the weight as
how many times two phrases locally co-occur (i.e.,
within a sliding window) in the sentences S, and
then run the TextRank (Mihalcea and Tarau, 2004)
on the graph to compute salience of phrase nodes.

E
p
ij = co-occur(pi, pj ;S),

Sp(pi) = (1− d) + d ·
∑

pj∈P

E
p
ji∑

pk∈P E
p
jk

Sp(pj),

(4)

where d ∈ [0, 1] is the damping factor that indi-
cates the transition probability from one node to
another random node. Starting from initial values
of Sp usually set to 1.0 for all the nodes, the final
salience of each phrase is obtained through iterative
computation of Equation (4) until convergence.

3.1.4 Salient Relation Triple Selection
The remaining challenge here is to select relation
triples by integrating multi-level salience scores.
To this end, RTSUM first identifies the textual in-
formation units relevant to each relation triple ri, in-
cluding its source sentence sj and its phrases pk(∈
Pri), and then transforms their salience scores for
the relation triple by Ss(ri) := Ss(sj), Sr(ri) :=
Sr(ri), and Sp(ri) := 1/|Pri | ·

∑
pk∈Pri

Sp(pk).
The most straightforward strategy to select a

small number of salient relation triples is to calcu-
late the final score of each relation triple based on
weighted summation of its three distinct scores and
to select the top-K relation triples:

S(ri) = α · Ss(ri) + Sr(ri) + β · Sp(ri). (5)

Another selection strategy is to adopt cascade
filtering that excludes less salient relation triples by
using the sentence-level, relation-level, and phrase-
level salience in a serial order (i.e., Ss → Sr →
Sp). The key principle of this filtering process is to
keep only the relation triples extracted from the key
sentences, and among them, to selectively collect
the relation triples that are semantically relevant to
the others, and finally, to exclude the ones that do
not include many salient phrases.

3.2 Information Sentencification
For the generation of sentences from the selected re-
lation triples (i.e., sentencification), RTSUM builds
a relation combiner based on a pretrained text-to-
text language model, such as BART (Lewis et al.,
2020) and T5 (Raffel et al., 2020). Using the rela-
tion combiner, RTSUM can perform the abstractive
summarization by sentencifying the selected rela-
tion triples.
Relation Combiner Training. The relation
combiner is effectively optimized with the self-
supervised objective for the sentencification task.
To be specific, we collect training pairs of (relation
triples, sentences) by randomly sampling a couple
of sentences from source documents and extract-
ing the relation triples from the sentences. Then,
we train the relation combiner based on Maximum
Likelihood Estimation (MLE) to generate the sen-
tences by taking the concatenated text of all the
extracted relation triples. As a result, it is expected
to learn how to introduce linking words, place each
component in order considering their relation, and
remove duplicated phrases or entities, for plausi-
ble sentence generation. To eliminate redundancy,
we apply a lightweight string similarity algorithm,
Gestalt pattern matching (Ratcliff and Metzener,
1988), as a filter before merging relation triples.
Training Pair Filtering. Despite the benefits of
self-supervised training, the relation combiner still
has a risk of introducing information that is not
presented in a source document (i.e., extrinsic hal-
lucinations) or factual errors against the document
(i.e., intrinsic hallucinations) into its output sum-
mary. Since the extracted relation triples are not
guaranteed to perfectly cover all the information of
their source sentences, some training pairs might
guide the combiner to generate missing information
that does not exist in the input relation triples. To
alleviate these hallucinations, we selectively collect
the training pairs whose extracted relation triples
fully cover the content of the source sentences. Pre-
cisely, the pairs of (relation triples, sentences) are
excluded from the training set, in case that some of
the semantic tokens (i.e., nouns, proper nouns, and
verbs) in the source sentences do not appear in the
extracted relation triples.

4 Demo: Interpretable Summarizing Tool

Based upon our RTSUM framework, we build an
interpretable summarizing tool that provides not
only the final summary of an input document but
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Figure 2: Our interpretable summarizing tool features multi-level salience visualization. Sentences, relation triples,
and phrases with a high score are highlighted in yellow, red, and green, respectively. The saliency of each unit is
denoted by its opacity. Within each triple, the subjects, predicates, objects, and adverbs are distinguished.

also its fine-grained interpretations.

4.1 Multi-level Salience Visualization
For interpretation of final summaries, our tool pro-
vides salience visualization for textual information
units with different granularity (Figure 2). It high-
lights the text spans that correspond to each infor-
mation unit according to its salience score. For
enhanced insights, the salience rank is explicitly
annotated next to each span, providing users with
a clear understanding of the relative importance of
each information unit within the document. This
feature allows users to grasp the significance of the
textual content and gain a more nuanced and de-
tailed understanding of the document’s key points.

Users can personalize the salience visualization
based on their unique preferences and specific
needs, including customization options as follows:

• Type of textual units: Users have the flexibil-
ity to choose whether to highlight each type of
textual unit. They can opt to further dissect the
highlight for a relation triple, differentiating
its subject, predicate, and object components.

• Number of textual units: Users can manually
adjust the number of highlighted instances for

each type of textual unit.

4.2 Implementation Details

Text graph construction. For more reliable sum-
marization, our RTSUM implementation filters out
less confident relation triples among the ones ex-
tracted from the OpenIE 5 system; only the relation
triples of which confidence is larger than 0.7 is
considered as valid units. To construct sentence-
level and relation-level text graphs, RTSUM utilizes
General Text Embeddings (GTE)6 as the sentence
encoder, which is trained on a large-scale corpus
of relevance text pairs covering a wide range of
domains and scenarios. Cosine similarity between
two sentence (or relation description) embeddings
is used for the edge weight in the graphs.
Relation triple selection. RTSUM in our tool
simply ranks relation triples by their final salience
scores, which are calculated by summing three dis-
tinct salience scores (i.e., Ss, Sr, Sp) with the same
weight, and then chooses top-K ones. The number
of relation triples to be selected is set to K = 3.
Relation combiner training. To build a rela-
tion combiner, we fine-tune BART7 (Lewis et al.,

6https://huggingface.co/thenlper/gte-large
7https://huggingface.co/facebook/bart-base
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2020) to generate source sentences from the rela-
tion triples extracted from the sentences. We use
a text corpus in the news domain, CNN/DM (Nal-
lapati et al., 2016) which contains 287,113 news
articles available for training. To reduce the risk
of hallucination, we filter out the cases that the
amount of information in an input text (i.e., a
set of relation triples) is shorter than that in an
output text (i.e., sentences), as explained in Sec-
tion 3.2. In addition, we use three special tokens,
<subject>, <predicate>, and <object>, to sep-
arate three components of each relation triple in
an input text, which effectively provides structured
information about each triple to the model.
Relation combiner alternatives. While our sum-
marizing tool provides the fine-tuned text-to-text
language model as a default relation combiner,
it also provides an option to employ instruction-
following language models, such as Instruct-
GPT (Ouyang et al., 2022) and ChatGPT. These
models can reconstruct plausible sentences from
a set of relation triples, when being asked with a
proper prompt written in natural language; they
can be beneficial in that domain-specific or task-
specific fine-tuning process is not required.

5 Related Work

5.1 Unsupervised Extractive Summarization

The most popular approach to unsupervised extrac-
tive summarization is to identify key sentences by
using a text graph that represents the semantic (or
lexical) relationship among text units in a source
document. TextRank (Mihalcea and Tarau, 2004)
is the first work to adopt a graph-based ranking
algorithm (Brin and Page, 1998) to calculate the
centrality of sentences in the graph, whose node
represents each sentence and edge is modeled as
the similarity between two sentences. Several vari-
ants of TextRank have been implemented by uti-
lizing symbolic sentence representations (e.g., TF-
IDF) (Barrios et al., 2016) or distributed sentence
representations (e.g., skip-thoughts) (Kiros et al.,
2015) for computing the sentence similarity.

Most recent studies have employed pretrained
language models (PLMs), such as BERT (Devlin
et al., 2019), to effectively model the salience of
each sentence. Zheng and Lapata (2019); Liu et al.
(2021) used the degree-based node centrality of
the position-augmented sentence graph where the
sentence similarity is calculated by PLMs, and Pad-
makumar and He (2021) defined the selection cri-

terion by using PLM-based pointwise mutual infor-
mation. Xu et al. (2020b) considered the sentence-
level self-attention score as the salience, after opti-
mizing PLMs via masked sentence prediction. Nev-
ertheless, all of them regard a sentence as the basic
unit for summarization, so they cannot exclude un-
necessary information from each selected sentence.

5.2 Unsupervised Abstractive Sumamrization

To train a neural model for abstractive summariza-
tion without using human-annotated text-summary
pairs, most existing methods have adopted the auto-
encoding architecture whose encoder compresses a
source text into a readable summary (i.e., a few sen-
tences) and decoder reconstructs the original text
from the summary (Wang and Lee, 2018; Baziotis
et al., 2019; Chu and Liu, 2019). Another line of
research has focused on zero-shot abstractive sum-
marization, which takes advantage of large-scale
PLMs trained on massive text corpora. Their mod-
els are optimized with a self-supervised objective
(e.g., gap sentence generation) (Raffel et al., 2020;
Zhang et al., 2020) or heuristically-generated ref-
erences (e.g., lead bias) (Yang et al., 2020; Fang
et al., 2022). However, the well-known caveat of
abstractive summarization is poor interpretability,
which is also related to the hallucination problem;
their output summaries mostly contain factual er-
rors or misinformation against the source docu-
ment (Kryscinski et al., 2020; Maynez et al., 2020).

6 Conclusion

In this paper, we introduce a summarization frame-
work, called RTSUM, which leverages relation
triples as the basic units for summarization. Build-
ing upon this framework, we have developed a web
demo for an interpretable summarizing tool that
effectively visualizes the salience of textual units
at three distinct levels. Through our multi-level
salience visualization, users can easily identify tex-
tual units impacting the summary and gain insights
into the document’s salient semantic structure.

Our RTSUM framework and its user-friendly
tool can effectively capture the essence of a doc-
ument while maintaining interpretability. The fu-
sion of extractive and abstractive approaches, cou-
pled with intuitive multi-level visualization, holds
promise for applications requiring succinct, accu-
rate, and interpretable summaries.
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7 Limitations

Our study has the following limitations: Firstly,
compared to single-step summarization approaches,
our framework is relatively slower due to its multi-
step process. Secondly, the current implementa-
tion relies on English-specific tools for sentence
splitting and relation extraction, limiting its appli-
cability to only English inputs. Lastly, while our
research focuses on summarizing news articles ef-
fectively, the robustness and performance of our
approach on longer or differently formatted text
genres, such as books or research papers, has not
been comprehensively evaluated.
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