
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 3: System Demonstrations), pages 128–136

June 16-21, 2024 ©2024 Association for Computational Linguistics

DOCMASTER: A Unified Platform for Annotation,
Training, & Inference in Document Question-Answering

Alex Nguyen♢ Zilong Wang♢ Jingbo Shang♢,♡,♠ Dheeraj Mekala♢,♠

♢University of California San Diego
♡ Halıcıoğlu Data Science Institute, University of California San Diego

{atn021, zlwang, jshang, dmekala}@ucsd.edu

Abstract

The application of natural language processing
models to PDF documents is pivotal for vari-
ous business applications yet the challenge of
training models for this purpose persists in busi-
nesses due to specific hurdles. These include
the complexity of working with PDF formats
that necessitate parsing text and layout informa-
tion for curating training data and the lack of
privacy-preserving annotation tools. This paper
introduces DOCMASTER, a unified platform
designed for annotating PDF documents, model
training, and inference, tailored to document
question-answering. The annotation interface
enables users to input questions and highlight
text spans within the PDF file as answers, sav-
ing layout information and text spans accord-
ingly. Furthermore, DOCMASTER supports
both state-of-the-art layout-aware and text mod-
els for comprehensive training purposes. Impor-
tantly, as annotations, training, and inference
occur on-device, it also safeguards privacy. The
platform has been instrumental in driving sev-
eral research prototypes concerning document
analysis such as the AI assistant utilized by
University of California San Diego’s (UCSD)
International Services and Engagement Office
(ISEO) for processing a substantial volume of
PDF documents.

1 Introduction

Documents and forms are omnipresent within en-
terprises encompassing financial bills like invoices,
purchase records, financial statements, and offi-
cial communications such as notices and announce-
ments. The application of machine learning for
automating document processing stands to sig-
nificantly accelerate processing times (Tan et al.,
2023).

Visually rich document understanding has re-
cently attracted much attention from researchers. A

♠ Corresponding Authors

Figure 1: DOCMASTER supports annotation, model
training, and inference functionalities for document
question-answering in a single platform.

simple approach involves parsing text from PDFs
and leveraging established Natural Language Pro-
cessing (NLP) models (Devlin et al., 2019; Liu
et al., 2019; Brown et al., 2020). However, these
methods overlook the valuable layout information
embedded within PDFs. A series of works have
been done to incorporate the layout features into
the pre-training framework. LayoutLM (Xu et al.,
2020) first proposes to encode the spatial relation-
ships of words by embedding their position coor-
dinates in an embedding layer. Following this di-
rection, Xu et al. (2021); Huang et al. (2022) move
beyond basic embedding techniques and specifi-
cally adapt the attention layers of the Transformer
architecture to model the relative positional rela-
tionships within the 2D space of document pages.
Gu et al. (2021); Wang et al. (2022), on the other
hand, purse a more comprehensive understanding
of the layout structure. They achieve this by encod-
ing the hierarchical relation in the documents.

Despite the availability of these models, the per-
sistent challenge lies in training them with custom
business data due to particular obstacles. Firstly,
working with the intricacies of the PDF format
proves to be a nontrivial task (Lo et al., 2023).
PDFs store text as character glyphs along with their
positions on a page, necessitating complex opera-
tions to convert this data into usable text for NLP

128

models. Operations like inferring token boundaries
and managing white spacing are error-prone and
add to the complexity. Secondly, organizations fre-
quently handle sensitive documents that demand
in-house tools for annotating and curating training
data.

Addressing these obstacles, we introduce
DOCMASTER, a unified platform designed for an-
notating PDF documents, model training, and in-
ference for the question-answering (QA) task, as
shown in Figure 1. The annotation interface is
designed to maintain the layout integrity, requir-
ing users to upload PDFs, provide questions, and
highlight their specific text spans as answers in
the PDFs. Once identified, it processes the PDF
content, saving both textual and layout details. Pri-
vacy measures involve on-device processing, elim-
inating reliance on third-party services, and se-
curely storing annotations within a local database.
DOCMASTER accommodates an extensive array of
models, encompassing both layout-aware models
like LayoutLM (Xu et al., 2020) and text-only ones
such as RoBERTa (Liu et al., 2019). The inference
interface is user-friendly and accepts a PDF docu-
ment and a trained model. It simplifies the task of
locating answers to specific questions by highlight-
ing relevant spans within the PDF document.

We deployed DOCMASTER in a practical sce-
nario within the ISEO at UCSD, addressing the
processing of hundreds of supporting documents
for students to issue their work permits. Previ-
ously, staff members engaged in the manual review
of each document before approving work permits.
Through DOCMASTER, they annotated and trained
a QA model seamlessly, leading to a remarkable
seven-fold increase in the average number of docu-
ments processed per hour.

We present video demonstration, live demo web-
site, and code on the project webpage.1.

2 Related Work

Language Modeling with PDFs PDFs are
widely used in daily life. It is trivial to resort to
traditional language models, such as BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019), and
T5 (Raffel et al., 2020), to automatically under-
stand the document contents. However, unlike the
pure-text documents (Mekala et al., 2022a), PDFs
carry rich information not only through the tex-

1
https://alextongdo.github.io/

doc-master-webpage/

tual contents but also via the rich layout structure,
presenting challenges for language models to com-
prehensively understand their contents. Xu et al.
(2020); Hong et al. (2022); Garncarek et al. (2021)
propose to use the coordinates of words in the page
as the representation for the layout structure. They
embed the coordinates in the embedding layer and
add relative weights in the self-attention layers. Xu
et al. (2021); Huang et al. (2022) incorporate the
visual features from the document images. Follow-
ing the previous works, Tang et al. (2023); Lv et al.
(2023); Perot et al. (2023) enlarge the scale of pre-
training and improve language models capability
in understanding PDFs of various formats.

Systems for Document AI Document AI is draw-
ing significant interest from both academia and in-
dustry. In addition to various language modeling
techniques, major companies have also launched
their proprietary Document AI services, includ-
ing Google Cloud 2, Microsoft Azure 3, Amazon
Web Services 4, etc. Although proprietary systems
offer convenient and stable services, they are pri-
marily business-oriented and lack transparency for
those outside the company. Additionally, there
are non-commercial Document AI systems avail-
able, such as Lo et al. (2023); Bryan et al. (2023).
However, none of these systems comprehensively
enable users to combine annotation, training, and
inference within a single system. In contrast,
DOCMASTER allows users to navigate the entire
pipeline of Document-QA task, successfully elim-
inating programming barriers that hinder general
users from utilizing Document AI tools.

3 DOCMASTER: Design

This section delves into the design aspects of our
platform. DOCMASTER has three interfaces: (1)
The Annotation interface, which processes a zip
file containing PDF documents, enabling user anno-
tation through text highlighting. (2) The Training
interface, facilitating the training of both layout-
aware and text models. (3) The Inference interface,
which accepts a set of documents as input, allows
users to select their trained model and highlights
predictions on the PDFs. The DOCMASTER ap-
plication is intended to run on the organization’s

2
https://cloud.google.com/document-ai

3
https://azure.microsoft.com/en-us/products/

ai-services/ai-document-intelligence
4
https://aws.amazon.com/machine-learning/

ml-use-cases/document-processing/fintech/

129

https://alextongdo.github.io/doc-master-webpage/
https://alextongdo.github.io/doc-master-webpage/
https://cloud.google.com/document-ai
https://azure.microsoft.com/en-us/products/ai-services/ai-document-intelligence
https://azure.microsoft.com/en-us/products/ai-services/ai-document-intelligence
https://aws.amazon.com/machine-learning/ml-use-cases/document-processing/fintech/
https://aws.amazon.com/machine-learning/ml-use-cases/document-processing/fintech/

Figure 2: Training and inference with layout-aware models requires a bounding box for each word. PDF.js cannot
reliably provide this data because of its phrase-level bounding boxes instead of word-level and empty bounding
boxes. PyMuPDF solves this issue, but the text parsed by PDF.js and PyMuPDF can differ. DOCMASTER uses
PDF.js for frontend rendering and PyMuPDF in the backend and provides a robust method for mapping a PDF.js
selection to the PyMuPDF context.

Figure 3: The annotation interface of DOCMASTER.
The users upload a PDF/a zip of PDFs, input their ques-
tions and highlight the answers in each PDF.

servers. As such, it is configured to automatically
set up and run multiple Docker containers, enabling
portability across environments.

3.1 Annotation
The annotation interface streamlines the user pro-
cess of uploading PDFs, and inputting questions
and their corresponding answers, achieved through
highlighting relevant text spans within the PDF. For
layout models, it is essential to capture the layout
information of the highlighted span. Consequently,
the annotation interface must fulfill three essential
requirements: (1.) accurately display the PDF, (2.)
enable text highlighting, and (3.) collect layout
information of the highlighted span.

We utilize Mozilla PDF.js5 to embed the input
document as a canvas onto the webpage, providing
an engaging frontend experience. PDF.js incorpo-

5
https://mozilla.github.io/pdf.js/

rates an invisible textlayer, enabling selectable text
on the canvas, enhancing the user interface. De-
spite its advantages, the textlayer’s bounding box
information, which offers layout details, presents
several challenges. Firstly, it provides bounding
box information primarily for spans determined
by PDF.js, often encompassing entire lines and
phrases but not consistently individual words. For
example, in Figure 2, the user selects "services and
hardware" and PDF.js provides bounding box infor-
mation for "leader in software, services" and "and
hardware that deliver new" separately, making it
challenging to obtain the bounding box informa-
tion for the selected text. Secondly, it occasionally
detects empty spans and provides irrelevant bound-
ing box information as shown in Figure 2. Finally,
the accuracy of highlighted text detected through
PDF.js is not always reliable and is susceptible to
whitespace errors, as illustrated by the user selec-
tion of "services and hardware" in Figure 2, where
spaces in the middle were not accurately preserved.

To address these limitations, we employ
PyMuPDF6 on the backend, a Python library that
consistently provides word-level bounding boxes
with accuracy. While PyMuPDF excels in pro-
viding accurate bounding box information, it can-
not render PDFs on the webpage, hindering user-
friendly text highlighting. Consequently, we inte-
grate PDF.js in the frontend and PyMuPDF in the
backend, leveraging the strengths of both. How-
ever, this integration introduces a compatibility
challenge, requiring the conversion of user selec-

6
https://pymupdf.readthedocs.io/en/latest/

130

https://mozilla.github.io/pdf.js/
https://pymupdf.readthedocs.io/en/latest/

Figure 4: In training interface, the users can select one
of the base models and train it using the previously
annotated documents. Each row in the table indicates an
annotation session and shows the number of documents
annotated during that session.

tions from PDF.js context to the corresponding se-
lections in the PyMuPDF context.

If the user-selected text is uniquely identifiable
within the PDF.js context, locating its position in
the PyMuPDF context is straightforward. How-
ever, when dealing with non-unique selections, we
encounter the challenge of distinguishing among
multiple substrings in the PyMuPDF context that
could potentially represent the desired selection. To
address this, we leverage the bounding box informa-
tion provided by PDF.js, which often corresponds
to the sentence or phrase containing the selected
text. This allows us to narrow down the search
area and focus specifically on that text for accurate
identification. An example annotation interface is
shown in Figure 3.

3.2 Training

After annotating their desired PDFs, users can pick
and choose which annotations they would like to
include as training data. To manage the potential
high influx of PDFs, DOCMASTER organizes doc-
uments into sessions, affording users the choice
to either fully include or exclude entire sessions.
A new session is generated each time a user logs
in, consolidating all annotations made during the
active browsing window. Should modifications be
necessary for an already annotated document, re-
uploading a previously annotated PDF retrieves and
removes its data from the prior session, enabling
the updated data to be stored in a new session.

The training interface is shown in Figure 4. In
the training interface, all sessions are presented,
showcasing the number of annotated documents
and the corresponding times of annotation. This
display streamlines the data selection process, pro-
viding transparency and accessibility. This infor-
mation is shared publicly on the locally hosted

DOCMASTER platform, fostering collaborative ef-
forts within a team. Consequently, any user can
leverage annotations performed by others to train a
model, promoting team-wide collaboration.

DOCMASTER uses the transformers library from
Huggingface (Wolf et al., 2019) for in-house train-
ing and inference. Annotations and trained model
weights are saved in a local SQL database, elimi-
nating dependence on third-party services and pre-
serving data privacy.

3.3 Inference

The inference interface enables users to choose
their preferred trained model and submit a set of
documents for predictions. As DOCMASTER al-
ready leverages layout information in the annota-
tion interface, we extend this approach to enhance
user experience in the inference interface. Specif-
ically, when users upload a new set of PDFs and
questions to their QA model, DOCMASTER not
only provides the inferred text but also a copy of
the input PDF with highlighted bounding boxes cor-
responding to the inference. This highlighting aids
users in pinpointing the location of their answers
and any relevant surrounding context. Additionally,
users can conveniently download the highlighted
PDFs for future reference.

4 DOCMASTER: Building YOUR
Document QA System

How can an organization utilize DOCMASTER to
implement a document QA system tailored to their
use case? In this section, we illustrate a hypo-
thetical scenario where the HR department of a
company seeks to improve its onboarding process
through the integration of a QA system.

Privacy-preserving Shang Data Lab, Inc. has
an HR team aiming to implement a QA system
for new hires to address queries related to various
onboarding documents. However, due to the sen-
sitive nature of these documents, the HR team is
cautious about utilizing third-party services con-
sidering potential data leakage (Nasr et al., 2023).
Their preference is to ensure internal documents
never leave their servers. Recognizing the open-
sourced system DOCMASTER for its emphasis on
privacy, Shang Data Lab, Inc. finds it to be a suit-
able solution meeting their specific requirements.

Ease of Deployment Setting up DOCMASTER

is straightforward, involving the cloning of source

131

code and the execution of a single command:
“docker compose up”. Leveraging Docker, a
widely adopted containerization software, Shang
Data Lab, Inc. can swiftly have their own
DOCMASTER operational within a few minutes.

Parallel Annotation Intending to train a QA
model to aid in comprehending onboarding doc-
uments, the HR team at Shang Data Lab, Inc. allo-
cates tasks to each team member, requiring them
to generate questions for a subset of documents
to curate training data. Utilizing DOCMASTER,
each team member logs in and uploads a few on-
boarding PDFs to the annotation interface. Within
this interface, they can annotate the answers to
their questions by highlighting relevant text in the
PDF. Working concurrently, the HR team success-
fully compiles a training dataset containing multi-
ple questions and corresponding answers relevant
to each onboarding document.

Training & Inference With the newly curated
dataset, Shang Data Lab, Inc. initiates the train-
ing of QA models seamlessly through the training
interface. Utilizing the platform’s features, they
have the flexibility to opt for training either a text-
only or layout-aware model. Once the model is
trained, they can deploy it using the inference inter-
face, enabling new hires to leverage its capabilities.
New hires can easily upload a PDF and input a set
of questions, receiving not only accurate answers
but also benefiting from the ability to precisely
locate the answers within the document through
highlighted references.

This scenario highlights the versatility of
DOCMASTER and its aptitude to address specific
needs within the AI-as-a-service ecosystem.

5 Public Deployment: Takeaways &
Testimonials

The ISEO at UCSD7 oversees immigration services
for international students. This responsibility en-
compasses tasks such as certifying students’ admis-
sion to full-time study programs, issuing work per-
mits, and managing various other related processes.
Each certification request undergoes a meticulous
manual review of its accompanying supporting doc-
uments. During peak periods, the volume of appli-
cations can reach into the thousands.

Presently, each request is processed manually,
involving a staff member who reviews supporting

7
https://ispo.ucsd.edu/

Microsoft Corporation is an equal opportunity employer. CID: CAS-450528-S7L8X1

January 12, 2022

University of California San Diego
9500 Gilman Drive, Mail Code 0018
La Jolla, CA 92093

RE: Internship Offer for

To Whom It May Concern:

Founded in 1975, Microsoft Corporation is the worldwide leader in software, services and hardware
that deliver new opportunities, greater convenience, and enhanced value to people’s lives. Microsoft
Corporation develops, licenses, and supports a wide range of software products and services, by
designing and selling hardware, and by delivering relevant online advertising to a global customer
audience. The corporation produces software in over 40 languages and has operations in more than
100 countries. Microsoft employs approximately 182,268 individuals worldwide, including about
103,894 US workers, primarily at its corporate headquarters in Redmond, Washington. Revenues for
the most recent fiscal year were $168.1 Billion with net earnings of $61.3 Billion.

The purpose of this letter is to confirm Microsoft Corporation’s offer to of a full-time
position as a Research Intern, beginning 6/6/2022 and ending 9/2/2022. is scheduled
to work approximately 40 hours a week during this internship period. For this employment,

will be paid a total of $122,136.00 per annum.

During the internship, will work under the supervision of Microsoft Senior
Researcher, job duties and
responsibilities will include a focus on analyzing and improving performance of advanced algorithms
on large-scale datasets and cutting-edge research in machine intelligence and machine learning
applications. Implementing prototypes of scalable systems in AI applications will be a part of his job
duties. He will be expected to collaborate closely with team members on developing systems from
prototyping to production level. His duties will involve developing solutions for real world, large-
scale problems.

will be located at 3455 Lebon DR, San Diego, CA 92122. Microsoft is offering
this internship position for one period, and, at this time, we do not anticipate the training

period will be extended. Microsoft is aware that work will be performed in pursuit of
degree requirements for an academic program at University of California San Diego.

Figure 5: Highlighted answers for questions asked by
ISEO office staff on a supporting document. The ques-
tions are: “What is the job title?” (red), “What are the
work hours per week?” (orange), “What is the salary or
hourly rate?” (blue), “Where is the internship address?”
(green). Private information is redacted.

documents, communicates with relevant sub-teams
for additional assessment, and ultimately electroni-
cally approves or declines the request. The manual
nature of this process is labor-intensive and de-
mands significant human effort. Furthermore, any
delay in processing requests poses potential chal-
lenges for international students, including leaving
the country or delays in commencing employment.

To tackle this issue, we deployed DOCMASTER

to streamline the review process, focusing on a spe-
cific scenario: the issuance of work permits for
internships, as a prototype use case. Traditionally,
ISEO staff manually verifies essential fields and
grants approval for work permits upon the submis-
sion of supporting documents by students. The
eight key fields subject to review include employer
details, salary information, job description, super-
visor name & email address, weekly work hours,
internship location, and start & end dates.

We formulate this as a QA task and train a
model to extract necessary fields (Mekala et al.,
2022b). To generate training data, four individu-
als without a machine learning background utilize
DOCMASTER’s annotation interface to annotate
five documents each. Each annotator formulates a
question for every required field and highlights the
relevant answer span within the PDF (Mekala et al.,
2023). The collected annotations, encompassing
both text and layout information, are aggregated.
Subsequently, we train two models, RoBERTa-base
and LayoutLM-base, for three epochs using this
annotated dataset. During the inference phase, new
student documents are uploaded to the interface,
and the staff member inputs questions correspond-
ing to the required fields. The user then selects the
trained model, and answers for each field are high-

132

https://ispo.ucsd.edu/

Table 1: Performance Results on 128 applications test
set in %.

Model Acc F1 Corr Dist

RoBERTa-base 76.23 83.77 93.56 1.13
LayoutLM-base 75.98 83.07 93.36 1.86

lighted within the PDF, as illustrated in Figure 5.
Our test set comprises 128 applications, encom-

passing a total of 1024 questions. After consulting
with the ISEO staff, we learned that traditional QA
task metrics such as exact match accuracy (Acc), f1-
score (F1) alone are not sufficient; the most crucial
metric for them is the average processing time of a
document. The more easily identifiable the fields
are, the quicker the document processing time be-
comes. Consequently, we tailored our automated
metrics to account for this priority.

We define our correctness (Corr) metric as fol-
lows to consider partial overlaps with the ground
truth. More precisely, we calculate the length of
the longest contiguous matching subsequence and
define a prediction as correct when the overlapping
subsequence length exceeds 20% of the predic-
tion’s total length. In cases where there is no over-
lap, we utilize Python’s difflib SequenceMatcher8

to compute the longest contiguous matching sub-
sequence between P and T , excluding any “junk”.
A prediction is considered correct if the computed
score is greater than 0.5; otherwise, it is deemed
incorrect. Mathematically,

Corr(P, T) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if len(Pindexes∩Tindexes)

max(len(P), len(T)) > 0.2

1 else if SequenceMatcher(P, T) > 0.5

0 else

We additionally incorporate the Euclidean dis-
tance between the predicted bounding box and the
ground truth bounding box (Dist) as a performance
metric. Recognizing the challenge posed by raw
distance interpretation, we opt for a relative dis-
tance measurement, specifically, the distance nor-
malized by the diagonal length of the page. A
shorter distance indicates an easier identification of
ground truth, leading to reduced processing time.

The performance results for RoBERTa-base and
LayoutLM-base are detailed in Table 1. Notably,
both models exhibit a similar performance on the
test set, achieving a correctness score of approxi-
mately 94%. The disparity between exact match

8
https://docs.python.org/3/library/difflib.

html

accuracy and correctness scores underscores the
inadequacy of standard academic evaluation met-
rics, prompting the need for a reevaluation of met-
rics tailored to real-life deployment scenarios. Fur-
thermore, we compute average bounding box dis-
tance for incorrect predictions alone, revealing val-
ues of 19.57% for RoBERTa-base and 24.39% for
LayoutLM-base. This implies that when predic-
tions are inaccurate, they tend to be in close prox-
imity, typically within 20% of the page size, indicat-
ing correct localization despite incorrect answers.

We also measure throughput on the test set by
deploying DOCMASTER on an AMD EPYC 7453
28-Core Processor (56 CPUs, base frequency of
2.75 GHz, boost frequency of up to 3.45 GHz). We
prioritize the lightweight nature of the RoBERTa-
base model over LayoutLM-base and consider it for
practical deployment. Leveraging DOCMASTER,
the ISEO experienced a sevenfold enhancement in
the number of supporting documents that can be
reviewed per hour, escalating from 15 to 100.

Considering the sensitivity of the information
contained in supporting documents, encompassing
details like home and work addresses, salary in-
formation, and supervisor details, DOCMASTER

stands out as a fitting solution, guaranteeing the
privacy of confidential data with on-device com-
puting. Offering both high performance and con-
venience, with the ability to annotate data, train
models, and make predictions all within a unified
platform, DOCMASTER emerges as the optimal
open-sourced platform for such use cases.

6 Conclusion

This work introduces DOCMASTER, a unified
Document-QA platform designed for annotation,
training, and inference while prioritizing privacy
preservation. DOCMASTER aims to empower
users to train and deploy their models for document
QA purposes. Despite the availability of various
models, there is a scarcity of open-sourced annota-
tion platforms. Addressing this gap, DOCMASTER

is presented as an open-source solution where users
can annotate PDFs effortlessly by simply highlight-
ing relevant text. The platform has demonstrated its
efficacy in constructing UCSD ISEO’s AI assistant,
contributing to a noteworthy seven-fold reduction
in document processing time. The open-sourcing of
DOCMASTER is intended to empower businesses
that necessitate in-house document QA platforms.

133

https://docs.python.org/3/library/difflib.html
https://docs.python.org/3/library/difflib.html

7 Ethical Considerations

We introduce a privacy-preserving document-QA
platform and identify no ethical concerns associ-
ated with its use.

8 Acknowledgments

The authors thank Bryant Tan, Gilen Wu-hou, Jinya
Jiang, Khai Luu for their valuable contributions.
We also thank Pauline DeGuzman and Emily Stew-
art for their support. Finally, we thank Vaidehi
Gupta and Mai ElSherief for their guidance.

134

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Tom Bryan, Jacob Carlson, Abhishek Arora, and
Melissa Dell. 2023. Efficientocr: An extensible,
open-source package for efficiently digitizing world
knowledge. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 579–596.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In North American Chapter of the Association
for Computational Linguistics.

Łukasz Garncarek, Rafał Powalski, Tomasz
Stanisławek, Bartosz Topolski, Piotr Halama,
Michał Turski, and Filip Graliński. 2021. Lambert:
Layout-aware language modeling for information ex-
traction. In International Conference on Document
Analysis and Recognition, pages 532–547. Springer.

Jiuxiang Gu, Jason Kuen, Vlad I Morariu, Handong
Zhao, Rajiv Jain, Nikolaos Barmpalios, Ani Nenkova,
and Tong Sun. 2021. Unidoc: Unified pretraining
framework for document understanding. Advances in
Neural Information Processing Systems, 34:39–50.

Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok
Hwang, Daehyun Nam, and Sungrae Park. 2022.
Bros: A pre-trained language model focusing on text
and layout for better key information extraction from
documents. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pages 10767–
10775.

Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, and
Furu Wei. 2022. Layoutlmv3: Pre-training for doc-
ument ai with unified text and image masking. In
Proceedings of the 30th ACM International Confer-
ence on Multimedia, pages 4083–4091.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Kyle Lo, Zejiang Shen, Benjamin Newman, Joseph Z
Chang, Russell Authur, Erin Bransom, Stefan Can-
dra, Yoganand Chandrasekhar, Regan Huff, Bailey

Kuehl, et al. 2023. Papermage: A unified toolkit for
processing, representing, and manipulating visually-
rich scientific documents. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing: System Demonstrations, pages
495–507.

Tengchao Lv, Yupan Huang, Jingye Chen, Lei Cui,
Shuming Ma, Yaoyao Chang, Shaohan Huang, Wen-
hui Wang, Li Dong, Weiyao Luo, et al. 2023.
Kosmos-2.5: A multimodal literate model. arXiv
preprint arXiv:2309.11419.

Dheeraj Mekala, Chengyu Dong, and Jingbo Shang.
2022a. LOPS: Learning order inspired pseudo-label
selection for weakly supervised text classification.
In Findings of the Association for Computational
Linguistics: EMNLP 2022, pages 4894–4908, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Dheeraj Mekala, Tu Vu, Timo Schick, and Jingbo Shang.
2022b. Leveraging QA datasets to improve gen-
erative data augmentation. In Proceedings of the
2022 Conference on Empirical Methods in Natu-
ral Language Processing, pages 9737–9750, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Dheeraj Mekala, Jason Wolfe, and Subhro Roy. 2023.
ZEROTOP: Zero-shot task-oriented semantic parsing
using large language models. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 5792–5799, Singapore.
Association for Computational Linguistics.

Milad Nasr, Nicholas Carlini, Jonathan Hayase,
Matthew Jagielski, A Feder Cooper, Daphne Ippolito,
Christopher A Choquette-Choo, Eric Wallace, Flo-
rian Tramèr, and Katherine Lee. 2023. Scalable ex-
traction of training data from (production) language
models. arXiv preprint arXiv:2311.17035.

Vincent Perot, Kai Kang, Florian Luisier, Guolong Su,
Xiaoyu Sun, Ramya Sree Boppana, Zilong Wang, Ji-
aqi Mu, Hao Zhang, and Nan Hua. 2023. Lmdx: Lan-
guage model-based document information extraction
and localization. arXiv preprint arXiv:2309.10952.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

QiuXing Michelle Tan, Qi Cao, Chee Kiat Seow, and
Peter Chunyu Yau. 2023. Information extraction
system for invoices and receipts. In International
Conference on Intelligent Computing, pages 77–89.
Springer.

Zineng Tang, Ziyi Yang, Guoxin Wang, Yuwei Fang,
Yang Liu, Chenguang Zhu, Michael Zeng, Cha
Zhang, and Mohit Bansal. 2023. Unifying vision,
text, and layout for universal document processing.

135

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://aclanthology.org/2022.findings-emnlp.360
https://aclanthology.org/2022.findings-emnlp.360
https://aclanthology.org/2022.emnlp-main.660
https://aclanthology.org/2022.emnlp-main.660
https://doi.org/10.18653/v1/2023.emnlp-main.354
https://doi.org/10.18653/v1/2023.emnlp-main.354

In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 19254–
19264.

Zilong Wang, Jiuxiang Gu, Chris Tensmeyer, Nikolaos
Barmpalios, Ani Nenkova, Tong Sun, Jingbo Shang,
and Vlad Morariu. 2022. Mgdoc: Pre-training with
multi-granular hierarchy for document image under-
standing. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 3984–3993.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu
Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha
Zhang, Wanxiang Che, et al. 2021. Layoutlmv2:
Multi-modal pre-training for visually-rich document
understanding. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 2579–2591.

Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu
Wei, and Ming Zhou. 2020. Layoutlm: Pre-training
of text and layout for document image understanding.
In Proceedings of the 26th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data
Mining, pages 1192–1200.

136

