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Abstract

Automatic correction of errors in Handwritten
Text Recognition (HTR) output poses persis-
tent challenges yet to be fully resolved. In
this study, we introduce a shared task aimed
at addressing this challenge, which attracted
271 submissions, yielding only a handful of
promising approaches. This paper presents the
datasets, the most effective methods, and an ex-
perimental analysis in error-correcting HTRed
manuscripts and papyri in Byzantine Greek,
the language that followed Classical and pre-
ceded Modern Greek. By using recognised and
transcribed data from seven centuries, the two
best-performing methods are compared, one
based on a neural encoder-decoder architecture
and the other based on engineered linguistic
rules. We show that the recognition error rate
can be reduced by both, up to 2.5 points at the
level of characters and up to 15 at the level of
words, while also elucidating their respective
strengths and weaknesses.

1 Introduction

The digitisation of ancient texts plays a crucial role
in both analysing ancient corpora and preserving
cultural heritage. However, transcribing ancient
handwritten text using optical character and text
recognition methods remains a challenging task.
Handwritten text recognition (HTR) concerns the
conversion of scanned images of handwritten text
into machine-readable text. In contrast to recently
printed materials, the analysis of images contain-
ing handwritten documents presents more intricate
difficulties, particularly when dealing with histori-
cal and premodern manuscripts. These challenges
may result in recognised text containing numerous
errors or, at times, a complete inability to recog-
nise the text. This is especially true when there is a
low availability of suitable training data for specific
scripts, such as medieval scripts.

1

1.1 Motivation

Natural language processing (NLP) can assist with
the task of detecting and correcting erroneous text.
When errors come from human learners of well-
resourced languages, the task is undoubtedly chal-
lenging, yet notable advancements have been doc-
umented in recent research (Bryant et al., 2017,
2022). In the case of low-resource languages, how-
ever, the task can be more difficult and expensive,
posing an additional hurdle not only to experts but
also to systems. An example is the correction of
recognition errors in historical newspapers, where
recognition error rates of 10% (Chiron et al., 2017)
have been reported. In this study, we escalate the
difficulty by concentrating on the task of rectifying
recognition errors in handwritten text. These errors
tend to pose a greater challenge compared to those
in printed text, primarily owing to the diversity in
letter shapes and the distinct scripts employed by
scribes. Error correction algorithms are applicable
to HTRed material, benefiting macro-analytical ap-
plications, such as collation (Perdiki, 2022). They
also concern transcribed text, e.g. by proposing
corrections arising, for instance, due to distraction
or fatigue during the annotation process.

1.2 Background

The written language of the Byzantine manuscripts
and papyri,! such as the ones we shared with the
challenge (see Section 3.2.3), reflects the language
of the Byzantine times, following classical Greek
and preceding the modern Greek language. Within
these texts, morphological categories such as the
optative, the pluperfect, and the perfect have disap-
peared, while others, such as the dative case have
gradually decreased. Infinitives and participles are
still there in the texts, serving as remnants of the

'We refer to Byzantine Greek, also known as Medieval or
Middle Greek.
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classical tradition, prompting one to regard the lan-
guage as a distinct variant, separate from modern
Greek. There are several spelling conventions that
deviate from the older orthographic rules while the
ancient punctuation signs are still in use, albeit
not always with the same function. A more de-
tailed description of this language is available in
Papaioannou (2021).

1.3 Contributions

We study the benefits of error-correcting HTRed
Byzantine text from the 10th to the 16th cent. CE.
To conduct our research, we utilised a collection
of transcribed images of Byzantine papyri and
manuscripts documented by Platanou et al. (2022).
For recognition, we used Transkribus (Kahle et al.,
2017) to train an HTR model on seven images,
one per century, and we used the trained model to
recognise approx. one hundred pages. By using the
recognised and transcribed images,” we introduced
and successfully ran a shared task, challenging sys-
tems to correct errors in HTRed material (Fig. 1).
Here:

* we present an overview of this challenge,
which attracted 271 submissions, discussing
the timeline, the evaluation, and the task dif-
ficulty that was introduced by a recognition
error rate that varied across centuries;

* we introduce and publicly release a machine-
actionable dataset for the correction of errors
in HTRed Byzantine text.> Additionally, we
offer three other resources: a synthetic dataset
for evaluating error correction algorithms, and
two corpora created specifically for this chal-
lenge, which we also make publicly available;

* by benchmarking the two best ap-
proaches—one based on engineered
linguistic rules and the other on deep
learning (the developers are co-authors)—we
demonstrate that both effectively reduce the
recognition-error rate, also outlining and
analysing the merits of each approach.

2 Related work

Most studies approach the task of post-correction
by focusing on printed text and by employing

*To distinguish between the two, we will refer to ‘tran-
scribed’ when the text is generated by a human expert and to
‘recognised’ when it is generated by a system.

3https ://github.com/htrec-gr/challenge.

encoder-decoder architectures (Chiron et al., 2017;
Rigaud et al., 2019; Schaefer and Neudecker, 2020;
Lyu et al., 2021). The underlying idea is to encode
the recognized erroneous text and then decode it
into the corrected text, frequently employing meth-
ods from machine translation (Nguyen et al., 2020;
Amrhein and Clematide, 2018).

2.1 Error correction

Error-correcting recognised text is a common ap-
proach when working with printed text (Schulz and
Kuhn, 2017), where techniques such as spell check-
ing, edit distance from lexicons, and the output
of a statistical machine translation (SMT) model
(Koehn et al., 2007) have been employed. A lan-
guage model (i.e., the SMT decoder) decides the
most probable correction, and to prevent the false
alteration of a correct word, the authors introduce
an additional input feature to the decision module.
This feature indicates whether a word was found
in a corpus alongside the preceding or following
word. More generally, SMT is preferred in error
correction while neural machine translation (NMT)
has been reported advantageous in error detection
(Amrhein and Clematide, 2018). More recently, an
encoder-decoder model has been used to correct
recognised printed text (on a character level) from
historical books in German (Lyu et al., 2021). All
the aforementioned studies pertain to printed text,
where a recognition error rate of 10% is deemed
challenging (Chiron et al., 2017). While we also
experiment with statistical and neural error correc-
tion methods, our primary focus is on handwritten
text, where the error rate is often higher (Figure 4).

2.2 Error detection for error correction

Error detection benefits error correction (Pavlopou-
los et al., 2023). In 2017, ICDAR organised a com-
petition focused on post-correcting recognised out-
put (Chiron et al., 2017). The competition used a
dataset comprising 12 million characters of printed
text in English and French, and consisted of two
subtasks. The first concerned error detection, aim-
ing at the accurate identification of the position and
the length of the errors. The second concerned error
correction, where the errors were already provided
to the participants (Chiron et al., 2017; Rigaud
et al., 2019). The organisers noted 35 registrations,
indicating a substantial interest from the commu-
nity. However, it was also noted that only half of
the submissions were deemed successful, under-
scoring the challenging nature of the task.
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Figure 1: Overview of the organised shared task (details hidden to preserve anonymity)

In 2019, the competition was repeated, and the
dataset’s size was doubled, with the introduction of
ten European languages (Rigaud et al., 2019). The
texts used in both competitions were sourced from
collections of national libraries or universities and
encompassed a variety of formats, such as news-
papers, historical books, and shopping receipts. In
the 2017 edition, the most effective error correc-
tion method consisted of an ensemble combining
statistical and neural machine translation models.
In contrast, in the 2019 competition a character-
level neural encoder-decoder took the top position,
based on BiLSTM (Hochreiter and Schmidhuber,
1997) and BERT (Devlin et al., 2018).

BERT, fine-tuned on a named entity recognition
task, was also used to perform error detection at
the token level (Nguyen et al., 2020). After the
subtoken tokenisation, the authors obtained GloVe
or fastText word embeddings; combined with seg-
ment and positional embeddings, these were given
as input to BERT. The hidden states were fed to
a dense layer on top that classified each token as
erroneous or not. Error correction, then, followed
with a character-based NMT model. Error detec-
tion has been considered a reasonable first step to
avoid the false alteration of already correctly recog-
nised lines (Schaefer and Neudecker, 2020). The
authors used a recurrent neural network (RNN) as a
first step to detect erroneous characters in the recog-
nised printed text. Then, a neural encoder-decoder
translation model was fed only with sentences that
comprised (detected) erroneous characters. Their
two-step post-correction resulted in an 18.2% rela-
tive improvement in the recognition error rate.

3 The Shared Task

We used a dataset (§3.2) to set up a shared task
on error-correcting the HTR output of Byzantine
papyri and manuscripts. The challenge lasted from
May 1st to July 1st, 2022, counting one hundred
thirty-six registered participants from around the
world,* and 271 submissions.

3.1 The language

We used images from Byzantine papyri and
manuscripts from seven centuries (10th-16th c.
CE). As was discussed already (§1.2), the written
text reflects the language of the Byzantine times, a
language during an intermediary phase of linguistic
evolution between Classical and Modern Greek.
We employed the Handwritten Paleographic
Greek Text Recognition (HPGTR) dataset (Pla-
tanou et al., 2022), comprising images from the
digitised Barocci manuscript collection of the
Bodleian Library that display text dating back from
10th to 17th c. CE. The scripts found in the respec-
tive manuscripts are the Greek minuscule script
and the cursive style of the minuscule script, an ex-
ample of which is shown in Figure 2(a). As shown
in Figure 2(b), characters may join each other, dis-
allowing empty space between words and leading
to joined words that often characterise the cursive
style. Also, joined characters can form ligatures, as
shown in Figure 2(c), while the character position
is not strict, as is shown with the character ‘o’ at
the end of the word ‘tdAowve’ in Figure 2(d).
Figure 2 also shows that lowercase and upper-
case letters appear interchangeably in the text.
Scriptura continua exists (not consistently) along

*India had the most participants (26), followed by the
United States (7), Russia (6), Greece (6), and Japan (3).
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Figure 2: Visual examples of the language in the
HPGTR dataset. An example of the cursive style of
the minuscule script (a). The words ‘mtoAA&’ and “yi-
veoUou’ are joined, leaving no empty space between
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them (b). In the word ‘®ote’, the characters ‘c’, ‘T
and ‘e’ are combined to form the ligature ‘cte’ (c). The
words ‘x\bouca’ and “tdAouve’ are shown in (d), with
the final ‘o’ written above the latter.

with abbreviations. Furthermore, characters of vari-
ous sizes may appear regardless of their neighbour-
ing ones, such as in Figure 2(d) where the bigger
letter “T” is written between two small letters ‘o’.

3.2 The dataset

The dataset of the challenge comprises texts that are
recognised (HTRed) and transcribed, with the latter
serving as ground truth (hidden during evaluation).

3.2.1 The HTR model

To recognise text from images of handwritten
Byzantine papyri and manuscripts, we opted for
Transkribus (Kahle et al., 2017).> This is an in-
dustrial platform that encompasses a wide range
of functions (e.g., layout analysis, transcription,
HTR training/prediction). To yield a rich ma-
terial for our task and, hence, a diversity of
recognition errors, we trained our model only on
seven randomly-selected images (and transcrip-
tions) from the HPGTR dataset, one per century.
The centuries from 11th to 13th are better supported
when counting words compared to the next three
centuries, with the 16th being the least supported.

3.2.2 Training data

We used the lines from ninety-eight HPGTR im-
ages. Each was transcribed by both a human expert,
yielding the ground truth, and by our HTR network,
yielding the input (see Fig. 1). To ensure a balanced
representation across centuries, we randomly se-
lected ten images per century (from the 10th to
the 16th c. CE). However, the images from the
16th century contained fewer lines compared to
other centuries, which we addressed by including

Shttps://readcoop.eu/transkribus, Version 1.15.1.

additional images from that period. Overall, the
training dataset comprises a (parallel) corpus of
1,800 lines (see also Table 5 in Appendix A).
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Figure 3: CER of recognised lines per century

CER per century When we group the character
error rate (CER) by century, we notice that the rate
tends to be higher for lines originating from the
three most recent centuries (Fig. 3). This trend is
consistent with findings from recognition systems
trained on larger datasets (Platanou et al., 2022).
Here, however, it is worth noting that lines with
low CER present a more manageable correction
task, whereas those with high CER pose greater
challenges for parsing and correction.

HTR error analysis A common error in lines
with a low CER is mistaken word division (i.e.,
space mistakenly added, e.g., by pushing away the
final “s” of a word) and merging. Figure 4 shows
that approx. 200 lines have a CER that is lower
than 10% (fifty of which have less than 5%), while
500 have less than 20%. Further, approximately
400 lines have a CER of 50% or higher.

Figure 4: Number of recognised lines per CER
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3.2.3 Evaluation data

For evaluation purposes, a held-out test set was
created, comprising 180 recognised lines but ex-
cluding their respective 180 transcriptions (hidden
ground truth). These lines were taken from seven
randomly selected HPGTR images, one per cen-
tury, different from the ones used for creating the
training set.

Synthetic data The test set comprised also syn-
thetic recognised lines, designed by “attacking” hu-
man transcriptions of seven randomly selected im-
ages (153 lines), one per century (synthetic test
set), as outlined in Table 5. Synthetic data had been
shared also with the participants to serve validation
purposes while avoiding overfitting the evaluation
data. Our error-introducing attacks are based on
five categories, shown in Table 1. We remove (I)
or add (IT) words in the text; add (IIT) or swap (IV)
characters, and merge consecutive words (V). Al-
though different in nature when compared to data
coming from an HTR system, we opt for this syn-
thetic dataset to unlock a detailed error analysis.

Error type | Example

I. Remove randomly selected | this is a test > this

words isa__
I1. Add random words at random | this is a test > this
positions is word a test

III. Add random characters at | this is a test > this

random positions is a teskt

IV. Swap random characters this is a test > thiis
__satest

V. Merge random consecutive | this is a test > this

words is atest

Table 1: Types of errors introduced (attacks) to yield
the synthetic dataset. Instead of transcriptions, the same
example sentence is shown to highlight the error types.

3.3 The evaluation metric

For evaluation we employ relative error reduction
(ERr), which is applicable to CER and WER. We
consider a (human) transcription tZD for line 7 in
document D; the recognised text r” for the same
line, and the corrected text C(r?), assuming the
application of an error correction system. Then,
assuming an error rate method F'R (e.g., CER), we
define E'Rr for line 7 of D as:

ERr(i,D) = ER(tP ,+P) — ER(tP,C(rP))
(1)

SThe positions of the attacks are selected randomly.

A positive ZRr means that the error rate is reduced
and that the applied correction (by C') yields a text
that is closer to the human transcription. Negative
values, on the other hand, mean that errors are
introduced, increasing the edits needed to reach the
transcribed text.

3.4 Leaderboard

A leaderboard was set up using the character er-
ror rate reduction (CERTr) as the official evaluation
metric but also reporting the word error rate reduc-
tion (WERT). The scores of the leaderboard were
computed on the whole evaluation set, comprising
system and synthetic transcriptions. The official
ranking, however, ignores the synthetic transcrip-
tions. We opted for adding instead of hiding data
(i.e., using only a small part of the data for the
leaderboard), for two reasons. First, synthetic er-
rors provide valuable information regarding the
generalisation ability of systems. Second, a small
evaluation set is easier to overfit, which could yield
a deceiving leaderboard.

4 Methods

For our error correction task, which aims to push
the system transcription closer to the respective
human transcription, we opted for three baselines
(§4.1), which were shared with the participants
of the challenge. Upon the evaluation of all the
submissions, using the system and the synthetic
transcriptions as input, we investigate further the
two best-performing submitted approaches: one
based on predefined rules and the other utilising a
text-to-text Transformer.”

4.1 Baselines

We considered three baselines, which were based
on edit distance (EDDI), a language model (LAMO),
and linguistic rules (LMR).
EDDI replaces unknown words in the text by using
the edit distance and a lexicon. Tokens that are
not in the lexicon are replaced by the word in the
lexicon with the lowest edit distance. As a lexicon,
we use all the words of the training set.?
LAMO is similar to EDDI in that it uses a lexicon
"The developers of these two algorithms are co-authors of
this paper. Other submissions were excluded due to their lower
performance and a lack of accompanying system descriptions.
8The method returns the input text when the count of un-
known words is larger than three, and only lexicon entries
with low distance (lower than twenty-five) are considered for

replacements. Thresholds are based on preliminary experi-
ments.



to recognise unknown words in the text. However,
word replacement is performed by a word-based
statistical language model. We use a window of
three words for the language model.

LMR is the third baseline, which is based on lin-
guistic rules. Specifically, it focuses on the final “s”
letter that is frequently the subject of wrong word
division. Then, a character-based statistical lan-
guage model decides whether it would be deleted
(i.e., assuming it was mistakenly added) or merged
with the previous word (a mistaken word division).

4.2 Deep learning with ByT5

ByT5 (Xue et al., 2022) is a byte-level pre-
trained text-to-text Transformer (Raffel et al., 2020;
Vaswani et al., 2017) that allows fine-tuning on vari-
ous downstream tasks. For small model sizes, it out-
performs MTS5, which is the multilingual version
of TS (Xue et al., 2020) °. We fine-tuned the ByT5
“large” model variant by feeding it with recognised
and transcribed texts, in order for it to learn to en-
code the former and decode the latter. We used
a gradient accumulation of four steps, a standard
cross-entropy loss, and the efficient Adafactor opti-
miser (Shazeer and Stern, 2018). At inference time,
we used greedy decoding as it produced the best
results. More details can be found in Appendix B.

4.3 Linguistic engineering with RBS

The rule-based correction system (RBS) is designed
by making use of different rules, derived based on a
qualitative analysis of what kind of errors typically
occur in hand-written text recognition of Greek
texts. These rules are described in more detail
below (the algorithm is provided in Appendix C).

Word subset (R1): Any token comprising a word
in a lexicon (formed by the transcriptions) is di-
vided into two tokens with a white space.!”

Edit distance (R2): Tokens that had an edit dis-
tance of one with (a) any possible valid alternation
of the conjunction “xot”, and (b) a term in the lex-
icon (R1), are replaced with these two terms. For
tokens of eight characters or more, not affected by
this rule, we use an edit distance of two.

Word bigrams (R3): Recognition often produces
white spaces at the wrong positions (e.g., “Ouxou
ovrepl” instead of “Ouxonov mept”). To address such

°In preliminary experiments, MT5 performed considerably
worse than ByT5.

19A more strict version of this rule uses a list of pronouns
(e.g., autou) and conjunctions (e.g., xou), testing if the token
concatenates words from the two resources.

errors, any bigram in the text is merged (removing
the white space) and passed to R1.
Single-character tokens (R4): Single-character
tokens that weren’t known articles are merged with
the end of the previous token, if the merged token
exists in the lexicon, and with the start of the next
token otherwise.

Duplicate characters (RS): Tokens comprising
two (or more) identical consecutive characters, and
that are not present in the lexicon, are collapsed to a
single character (e.g., “cectiv” becomes “cotiv”).
Misspelled pronouns (R6): Character order issues
of pronouns are fixed by specific replacements. For
example, “tvw” is replaced by “twv’.

Joint pronouns (R7): Pronouns merged with the
next token (e.g., “tnvxopdiay”) are searched and
replaced by two words (e.g., the previous token
would become “tnv xopEdiay”).

Main prepositions (R8): Words beginning with
specific prefixes (e.g., “cwvtoc”, “evroc”, “nx-
Toc”, “extne”) can bypass the previous rules.
Hence, a mapping is used to address such tokens.

S Empirical analysis

5.1 Error rate reduction results

In Table 2, we present the ERr for characters
(CERr) and words (WERr), achieved by error-
correcting the HTR output or synthetic data. EDDI
and LAMO display negative scores in both metrics
on both input types. This means that such - rather
simplistic - baselines introduce new errors instead
of addressing existing ones. The third baseline,
LMR, reduces slightly the CER and WER of the
HTR output. The focus of this baseline is on a
single letter (final “s”), which is a common recog-
nition error, though not the only one. The attacks
that are used to create the synthetic data, on the
other hand, are applied to random text positions
(see §4), none of which concerns this letter. Hence,
no correction is made and both scores are zero.
BYTS and RBS achieve a positive reduction in
both metrics. RBS scores higher than LMR when
the input is the HTR output. Also, it achieves a pos-
itive reduction when the input is synthetic (0.10 in
CERr and 1.29 in WERr). Obviously, this method
handles many error types, covering more than typi-
cal HTR mistakes. BYTS is the best overall when
applied to HTR output. It is more than five times
better in terms of CER and more than eight times
better in terms of WER compared to RBS. When
evaluated on synthetic input, however, the error



HTR OuTPUT SYNTHETIC
CERrt WERrt CERrt WERrt

EDDI -0.19 -0.29 -0.54 -2.48
LAMO -5.88 -0.80 -5.95 -3.13
LMR 0.02 0.06 0.00 -0.00
RBS 0.44 1.82 0.10 1.29
BYTS 2.53 14.97 -7.72 -23.14

Table 2: CERr and WERTr scores of the baselines (top
three rows), of the neural encoder-decoder (BYT5), and
the rule-based error correction approach (RBS).

rates increase considerably, displaying a lower per-
formance than RBS and all three baselines, most
probably because the model is not trained on syn-
thetic data. This is an indication that the synthetic
data may not be very natural, and that rule-based
systems are less useful in ‘real-world’ situations.

5.2 Inter-corrector agreement

In order to investigate closer the relationship be-
tween BYTS and RBS, we compute the CER be-
tween the two corrected texts, one per system, of
each recognised line. Low scores reflect a high
agreement between the two approaches while high
scores indicate very different outputs. By sorting
the lines based on this score, we can assess the two
approaches in different agreement zones. Figure 5
presents these results. Overall, BYTS is more of-
ten above zero and bars are also much higher than
RBS. When we look at the left of the diagram, there
are almost no differences between the two in their
performance, which is reasonable given that the
two approaches agree (i.e., they will both be cor-
rect or they will both be wrong). As we move to
the right, however, we can see that BYTS achieves
more and deeper negative bars. On the other hand,
RBS follows a low-risk, low-gain strategy.

Manual investigation of the best and worst han-
dled lines per method (Table 3) reveals that in the
worst-case scenario per method (line 8 for RBS, hal-
lucination in 15 for BYTS), the corrections of the
other method were minimal (lines 7 and 16, resp.).

5.3 Sensitivity analysis on synthetic data

As was shown in Table 2, RBS achieves a positive
CERr in the synthetic data while BYT5 underper-
forms in this setup. To explore the performance of
the two methods further, we computed the mean
CERr per attack type (Table 4). For all attack types,

B CERr(neural)
CERr(rule-based)

=20

Figure 5: CERr (moving average for better readability
with a window of size 5) of BYTS5 and RBS per line.
Lines have been sorted from the least (left) to the highest
(right) agreement (CER) between the two.

BYTS yields a negative average CERr, with its
weakest performance observed when characters are
added (Type I1I), and relatively better results when
words are merged (Type V). On the other hand, RBS
also struggles with two attack types, specifically
when words are removed (Type I) and added (Type
II). Its performance remains relatively consistent
for the remaining three types of attack.

5.4 Enhanced HTR vs. post-correction

Enhancing HTR with more training data can allow
a direct comparison between the performance gains
from neural error correction and from increasing
the HTR training data.

For the purposes of this experiment, we trained a
new HTR model. To avoid the financial cost of train
multiple instances, we opted for an open-source
alternative to Transkribus. For the experiment de-
scribed in §5.4, our HTR model achieved a similar
performance with Transkribus on the same seven
training pages. We release this model publicly at:
https://github.com/htrec-gr/htr. The archi-
tecture of this HTR model is a Swin (Liu et al.,
2021) encoder with a BERT-based decoder (Devlin
et al., 2019). For the experiment we used a sin-
gle GPU card, i.e., NVIDIA Tesla V100 (16GB),
and the model had 142 million parameters. It was
trained for 75 epochs (12 hours). We used as seed
42, batch size of 48, AdamW optimizer, and Trans-
formers V4.25.1. For language generation, we used
a max-length of 200 characters, early stopping and
a greedy decoding strategy.

Figure 6 shows the CERr and WERTr as we tran-
sition from 7 pages of training data (our baseline)
to 70 pages overall. When training with 28 (+21)
pages, CERr goes up to 9.73 and WERr to 12.62.
This means that the WERr of BYTS (correcting the
errors of a 7-page-trained HTR model) is better by
two points (14.97; Table 2). When training with
more pages (e.g., 70), however, CERr and WERr
reach up to 15.72 and 27.15 respectively, outper-
forming the gains from error correction. It is worth
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Transcribed, Recognised, or Corrected line CERr
Human: ocwUOTOC XPELTTWY TOGOUTOV TV yenuact Bon
HTRed:  0UATOC XPELTYWY TOGOUTOV TV XenUactBor
BYTS: EWUATOC XPELTOL TO GOUTOV TWV -4.88
RBS: PELTYWY TOGOUTOV TWV 4.88
Human: Aevtiov dielwoev savtov
HTRed: Jevtiov dielwoeveautdv
BYTS: Aevtiov delwoey cauTov 0.00
W  RBS: Aevtiov dielwoeve auTtdv -4.37
Human:  (extee Toloucty eaUTouS Gopxol
HTRed:  {ixe xté¢ moL ouoty eadtolc o8Ap xo
BYTS: TOLOVGLY EAUTOLS 17.24
RBS: Yxe xTHES TOL OLGLY EAVTOLE GEAE XAt 0.00
Human:  &v 8¢ cuvemivooupevny €xwyv Tf Unoapiet
HTRed: ®&v 8¢ cuvemivoouuevny oéywy i) UnaEeget
W BYTS: GUVETILVOOUUEVNY GUVETLVOOUUEVNV GUVETLVOOUUEVT...  -108
RBS: &GV 88 ouvemvoouuevny d€ywyv TH drakpget 0.00

Table 3: Error analysis by focusing on the best (B) and worst (W) correction per method based on the achieved
CERr. The first two rows per quadruplet show the respective transcription and recognition.

Type of attack BYT5 RBS
L Remove words -6.36  0.00
1L Add words =795 -0.06
III. Add characters  -12.28 0.18
IV. Swap characters -8.42  0.21
V. Merge words -3.54  0.18

Table 4: Average CERTr per attack type.

¢ CERr » WERr

30 2715

10 20 30 40 50 60 70

Training Pages #

Figure 6: CERr and WERTr scores (vertically) when the
HTR model is trained on more pages (horizontally).

noting that this improvement requires a substantial
increase of HTR training material, which may not
be available (e.g., lack of images or transcriptions),
making error correction a promising alternative.

6 Discussion

The challenge in error-correcting the HTR output
of Byzantine manuscripts and papyri has attracted a
significant number of registrations and submissions
(83.2.3), the best of which were discussed in this
work. Characteristics of Byzantine Greek and the

respective scripts have been discussed in §3.1, in
order to highlight the difficulties that recognition
and error-correction algorithms need to tackle. The
variety of scripts and scribes in this language, along
with its evolution, is likely to have caused a varying
recognition error rate over time (Figure 3). This
error rate variety poses a significant challenge to
post-correction methods, which should be able to
handle lines that comprise from few to many errors
(different types).

When assessing error correction in recognized
printed and handwritten material, it’s crucial to con-
sider the error rate. As detailed in §2, prior studies
have predominantly focused on printed material,
characterised by relatively low recognition error
rates. However, our findings illustrate a significant
variation in the error rate for HTR output, encom-
passing both accurate recognitions and those with
numerous errors (Fig. 4).

We also show that a rule-based approach out-
performs the baselines (Table 2), or even a neural
encoder-decoder in the case of synthetic data (Ta-
ble 4). Therefore, error-correcting the HTR output
can also be seen as a knowledge-intensive NLP
task, for which knowledge-based approaches can
be successful (Lewis et al., 2020).

The experimental results presented in Table 2,
show that post-correcting the HTR output for
Byzantine Greek can reduce the error rate by ap-
proximately 2.5 units at the character and 15 units
at the word level. This means that error correc-
tion can be employed during the recognition of
the text in the images of Byzantine manuscripts
and papyri, to facilitate human experts with the



tedious semi-automated transcription task (i.e., cor-
recting the HTR output). This gain is recorded by
post-correcting errors, but the encoding-decoding
of BYTS could possibly be integrated also into the
HTR pipeline, incorporated as one of the tasks in a
multitask approach (i.e., image to text to text).

7 Conclusions

We presented a challenge of error-correcting HTR
output for Byzantine Greek, publicly releasing data
with both synthetic and actual HTR errors. A pre-
trained BYTS encoder-decoder model, fine-tuned
on recognised (input; encoded) and transcribed
(output; decoded) texts, achieves a notably high
performance, effectively reducing errors. A compa-
rable reduction of errors could have been achieved
if the HTR model had been trained on approxi-
mately 30 additional pages. However, generalisa-
tion remains a concern, as evidenced by the model’s
performance on synthetic data, where errors were
introduced instead of corrected. A rule-based ap-
proach, on the other hand, showed promise by well
performing on synthetic data but not on real-world
data. Future work will focus on challenging error-
correction systems based on HTR models trained
on data from specific centuries, aiming to address
the diverse range of errors encountered.
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Limitations

* As observed in the results, the performance
of the systems varies significantly across cen-
turies, suggesting that century-specific factors
need to be considered when designing effec-
tive error-correcting systems.

It’s evident that post-correction is often hin-
dered by the low quality of the HTR output.
Therefore, there is a need for more advanced
approaches that incorporate error detection
(Pavlopoulos et al., 2023) and correction be-
fore the output is generated, possibly in con-
junction with a post-correction module.

While the results demonstrate the potential of
error-correcting systems for some Byzantine

Greek corpora, the generalisation potential in
the context of low-resource data remains to be
explored. This can be achieved by extending
this approach to additional corpora and other
languages, allowing for a more comprehen-
sive understanding of its effectiveness across
different linguistic domains. Still, we hope
that this study will be beneficial for the de-
velopment of new error-correction strategies
aimed at improving the quality of recogni-
tions, especially in scenarios with limited data
availability.
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A Dataset configuration

As is shown in Table 5, we compiled a parallel
corpus of 1,800 lines for training purposes. Each
line comprises a transcription (ground truth) and a
recognition, resulted from an under-trained HTR
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model (trained on the transcriptions of seven held-
out pages). Evaluation was performed on synthetic
(153 lines) and actual (180 lines) data, resulting to
a parallel corpus of 2,133 lines, overall, which we
publicly release, along with the HTR model that
we used to produce the recognitions.

Purpose | # Pages | # Lines | Dataset
Training 98 1800 HPGTR
Evaluation 8 180 HPGTR
Evaluation 7 153 Synthetic
Total 113 2,133 —

Table 5: Data configuration for the challenge. Each
page comprises several lines (texts) and each line has
been transcribed and recognised. The transcription of
lines used for evaluation was kept hidden from the par-
ticipants during the testing phase.

B ByTS

We (i.e., a participant at the time of the challenge)
opted for a batch size of 1 (i.e., a single line) and a
learning rate of le-4. Optimum performance was
achieved at one and a half epochs. As is shown
in Table 6, BYTS was trained for more epochs but
results deteriorated.

Table 6: CERr and WERr of ByT5 when it was trained
for more epochs.

HTR OUTPUT SYNTHETIC
EPOCHS CERrt WERr? CERr1 WERr?
5 253 1497 772 -23.14
3 291 862  -1541  -36.05
12 -8.45 6.08  -18.85  -43.40
C RBS

Algorithm 1 presents the pseudocode for RBS. A
rule based system, however, is only as good as the
corpus size it has access to. We hypothesize that the
system’s performance would improve with a bigger
corpus. To that end, we provide over 100 books of
text in ancient Greek !! and Byzantine '2, scraped
from various online sources. Due to time con-
straints, these were not utilized by RBS, a task that
will be explored in future work. The biggest col-
lection, titled "X 0voig Iotopudyv’ from 1.Skylitzis

llhttp: //users.uoa.gr/~nektar/history/tributes/
ancient_authors/index.htm
12https ://byzantium.gr/keimena/keimena.php

totals 5 books, 153,709 words and 885,259 char-
acters 3. Furthermore, we provide a lexicon '# of
over 42,107 ancient Greek words independent of
the collection of books, which was also not utilized
by RBS.

Bhttps://wordcounter. tools/

14https: //www.greek-1language.gr/
digitalResources/ancient_greek/tools/
liddel-scott/search.html?start=20&1lqg=
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Algorithm 1 Rule-Based System (RBS)

Require: corpus < list(words) > 0
for sent < example_system_transcr do
sent <+ drop_duplicate_char(sent)
for token <+ sent do
for gold + corpus_1 do
if token in gold then
gold, subtoken <+ split_token(token)

sent —
replace_token_in_sentence(token, [gold, subtoken])
end if
end for

list[(goldy, golds)]  create_pairs(corpus)
for pair « list[(gold:, gold2)] do
combination < pair[0] + pair[l]
if token in combination then

gold, golda —
split_combination(token)
sent —
replace_token_in_sentence(token, [goldi, golds))
end if
end for

token < replace_freq_tokens(token)
list_and < ["xow’, *xod’, “xal’]
for gold < corpus + list_and do
if edit_distance(gold, token) == 1 and (to-
ken not in list_and) then
if gold in list_and) then
if gold not in
(begin/end_of_the_sentence) then
token < gold
end if
else if IV is odd then
token < gold
end if
end if
if edit_distance(gold, token) == 2 and
length(token) > 8 then
token < gold
end if
end for
list_articles < [tv’, "o, "1, *t&v’]
if token in list_articles then
if position(token,gold) in
begin_or_end_of_token then
gold, subtoken <+ split_article(token)

sent —
replace_token_in_sentence(token, [gold, subtoken)])
end if

end if
if length(token)==1 then
sent < drop_token(token)
end if
for i < range(0, len(sent_tokens)—1) do #R3
wl, w2 « sent_tokens[i], sent_tokens[i +
1
bigram = wl 4 w2 # no white space between
the consecutive words
for g < corpus do # for each gold word in the
corpus
if edit_distance(g, bigram) == 1 & wl
notin {’0’,;n’, o’ ta’ } then
token <—g+*’+w2
end if
end for
end for
end for
end for
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