Converso: Improving LLLM Chatbot Interfaces and Task
Execution via Conversational Forms

Gianfranco Demarco®, Nicola Fanelli®"{, Gennaro Vessio©? and Giovanna Castellano "

aDepartment of Computer Science, University of Bari Aldo Moro, Italy

Abstract. Recent advancements in large language models (LLMs)
have enabled more autonomous conversational Al agents. However,
challenges remain in developing effective chatbots, particularly in
addressing LLMs’ lack of “statefulness”. This paper presents Con-
verso, a novel chatbot framework that introduces a new conversa-
tion flow based on stateful conversational forms designed for nat-
ural data acquisition through dialogue. Converso leverages LLMs,
LangChain, and a containerized architecture to provide an end-to-
end chatbot system with Telegram as the user interface. The key in-
novation in Converso is its implementation of conversational forms,
which guide users through form completion via a structured dialogue
flow. Converso’s chatbots can be linked with multiple forms that are
automatically triggered based on the user’s intent. Our forms are fully
integrated into the LangChain ecosystem, allowing the LLM to use
tools for form completion and dynamic validation. Evaluations show
that this approach significantly improves task completion rates com-
pared to LLMs alone. Converso demonstrates how specifically de-
signed conversational flows can enhance the capabilities of LLM-
based chatbots for practical data collection applications. Our im-
plementation is available at: https://github.com/gianfrancodemarco/
converso-chatbot.

1 Introduction

Chatbots have emerged as one of the most widely adopted applica-
tions of artificial intelligence (AI) in consumer products and services.
These conversational agents directly interact with end users through
natural language interfaces, serving various domains such as enter-
tainment, education, information retrieval, e-commerce, and more
[L]. Since the early conceptualization of chatbots in the 1960s, nu-
merous approaches have been explored to enhance their capabilities,
transitioning from basic pattern-matching techniques to leveraging
advanced machine learning algorithms and language models.
Recent advancements in large language models (LLMs) have led
to a significant shift, advancing chatbots to new levels of indepen-
dence and conversational ability [2]. LLMs are complex neural net-
work architectures with billions of parameters, trained on extensive
text corpora. The extensive data on which these models are trained,
along with additional techniques like reinforcement learning from
human feedback (RLHF) [14], enables them to generate natural lan-
guage responses that closely resemble human communication. How-
ever, LLMs still face limitations, including a lack of access to up-to-
date knowledge, an inability to perform complex reasoning, and diffi-
culties interacting with external environments [13]]. Researchers have

* Corresponding author. Email: nicola.fanelli@uniba.it.

developed techniques such as retrieval-augmented generation (RAG)
[8] and model-calling capabilities [[15] to address these challenges,
allowing LLMs to leverage external data sources and tools during
inference. Furthermore, open-source frameworks like LangChain [3]
have emerged to streamline the development of LLM-based appli-
cations, including chatbots. LangChain provides a comprehensive
suite of libraries, tools, and templates that facilitate the integration
of LLMs, RAG techniques, and external tools, enabling the creation
of context-aware and reasoning-capable chatbot systems.

This paper explores the design and implementation of modern
chatbot systems leveraging LLMs, the LangChain ecosystem, and re-
lated techniques. It introduces Converso, a novel chatbot framework
that incorporates a conversation flow based on conversational forms,
enhancing traditional web forms for data acquisition through natural
language interactions. The paper discusses Converso’s system archi-
tecture, conversational flow, and use cases, highlighting the benefits
of integrating LLMs and the LangChain ecosystem. Additionally, an
evaluation protocol is presented to assess the effectiveness of conver-
sational forms in improving task completion rates.

The rest of this paper is structured as follows: Section 2] discusses
related work, Section E] presents the Converso framework, Section
H] describes our experimental use cases and presents the results ob-
tained, and Section 5| concludes the paper.

2 Related Work

Chatbots have been an active area of research for a long time, with
early systems like ELIZA [18]] and PARRY [6] employing pattern-
matching techniques with pre-defined rules and responses. Subse-
quent work incorporated machine learning algorithms for intent clas-
sification and entity extraction [1]], leading to more advanced chat-
bots capable of understanding user intents and relevant context.

With recent developments in LLMs like GPT-3 [2] and PaLM [3]],
there has been renewed interest in leveraging these powerful mod-
els for building conversational Al systems. LLMs have demonstrated
impressive emergent abilities in few-shot prompting settings [2]] and
can engage in substantive multi-turn dialogues by conditioning on
previous conversation history [[17]].

However, LLMs still face limitations such as hallucinating incor-
rect facts [[12]], being confined to their training data distributions, and
lacking mechanisms to interact with external tools or information
sources. Several techniques have been proposed to overcome these
limitations. For instance, retrieval-augmented generation (RAG) [8]
integrates external data retrieval into the language model’s genera-
tion process to enhance factual accuracy and access to up-to-date
information. Tool calling [15} [19]] allows LLMs to call and receive

https://orcid.org/0009-0008-6044-8196
https://orcid.org/0009-0007-6602-7504
https://orcid.org/0000-0002-0883-2691
https://orcid.org/0000-0002-6489-8628
https://github.com/gianfrancodemarco/converso-chatbot
https://github.com/gianfrancodemarco/converso-chatbot

Interface
Telegram

)

Large Language Model

User K ‘%)
Send/Ffeceive MeSﬁages Lane%ham
Yo
Speech—t%text (optional) AP! call——| Telegram Bot Publish/Consume. > Engine
penAl @ ¢ Python P Python "'
N\ _J
Get/Set
(
) Message Queue Data Store
Publish/Consume————— > Rabbit MQ Redis
b x S
A 7 N J
@r Orchestrated Containers

Figure 1: Overview of the system architecture of a chatbot implemented using the Converso framework. The user interacts through Telegram
as the interface. User messages are written to the message queue by the Telegram bot, which also consumes the LLM messages to send chatbot
responses back to the interface. We also allow for vocal user inputs via OpenAl speech-to-text APIs. The engine is responsible for providing
prompts to the LLM via LangChain and maintaining the conversation history in a Redis data store. We use a fully containerized architecture,
implementing our components inside Docker containers orchestrated by Kubernetes.

results from external tools/APIs, enabling capabilities beyond pure
text generation, like mathematical reasoning [16] and real-world in-
teractions [[10].

Such advancements, combined with the ability to influence the be-
havior of LLMs through prompt engineering [4]], have opened a wide
range of applications for chatbot systems, such as data acquisition.
For example, Hakimov et al. [9] proposed a modular system based on
LLMs for form filling, creating a method to evaluate dialogues using
user simulation with an LLM. Additionally, some simple (usually
closed-source) implementations of forms for data acquisition with
LLMs have emerged online.

In contrast to these approaches, we propose a framework for cre-
ating chatbots that is fully integrated with the LangChain ecosystem.
Our innovative approach does not tie the LLM to a specific form, al-
lowing chatbot developers to specify an arbitrary number of forms
that can be invoked based on user intents. This flexibility enables
users to interact with the chatbot for various goals beyond executing
actions requiring form completion. Furthermore, with Converso, we
propose a fully containerized architecture streamlining the chatbot
creation process.

3 Our Framework: Converso

In this section, we present Converso, a framework developed as an
extension of LangChain that enables building conversational forms
for goal-oriented interactions. Converso introduces stateful conversa-
tional forms that guide users through structured data collection pro-
cesses, reducing reliance on lengthy conversation histories and miti-
gating hallucinations or deviations from the intended goals. Converso
facilitates the creation of fully containerized chatbot applications,
leveraging Kubernetes for container orchestration, an event manager
for asynchronous communication, and a Telegram bot interface as
the front end. This enables a production-ready, scalable implementa-
tion of conversational chatbots that can be seamlessly integrated into
existing systems.

3.1 System Architecture

Converso implements a fully functional chatbot system composed of
several components. An overview of the system architecture of the
Converso project is presented in Fig.[T]

All components of the Converso chatbot are created as Docker
containers orchestrated by Kubernetes. Users can interact with the
LLM via a Telegram bot interface. RabbitMQ is used as a message
broker to enable decoupling and asynchronous request processing.
Finally, Redis stores conversation history and other data, such as user
credentials.

3.2 Conversation Flow

The conversation flow generates a textual response starting from the
user’s input. This flow is constructed as a graph using LangGraph,
a library for multi-actor interactions within LangChain. The primary
components of our conversation flow are the Base Agent and the Er-
ror Agent. The Base Agent is responsible for conducting the conver-
sation with the user, while the Error Agent assists by correcting any
errors that may occur during the interaction. Agents are specific in-
stances of the LLM, each equipped with unique system prompts that
guide their behavior.
The conversation flow consists of the following steps:

1. The user’s input and conversation history are injected into a
prompt template to create the final input for the model.

2. The chosen LLM, instantiated as the Base Agent, is called with
the rendered prompt as input.

3. The model’s output is evaluated, with three possible outcomes:

e The model produces an error, typically a formatting issue for
structured outputs. In this case, a new prompt is constructed
that includes the conversation history and the error. The Error
Agent is then responsible for correcting the error.

e The model produces the final answer, which is then sent back
to the user, concluding the flow.

GoogleCalendarCreator

Description
Useful for creating events, memos, and reminders on
Google Calendar

Arguments
summary (string) Title of the event
description (string) Description of the event

start (datetime) Start date of the event

Options

return_direct False
skip confirm False

(a) GoogleCalendarCreator for the Personal Assistant use case

OnlinePurchase

N

item (string) Item to purchase. One between "watch", "shoes", "phone", "book"
ebook (boolean) If true, the book will be sent as an ebook, if false it will be sent
as a physical copy. Required if item is book

gscription

Purchase an item from an online store

Arguments

email (string) Email address to send the ebook to

quantity (number) Quantity of items to purchase, between 1 and 10
region (string) Region to ship the item to

province (string) Province to ship the item to

address (string) Address to ship the item to

Options

return_direct False

Qconflrm False J

(b) OnlinePurchase for the Shopping Assistant use case

Figure 2: FormTools examples designed for our use cases and implemented using Converso. A FormTool includes a description, a set of
arguments for the user to complete when prompted by the LLM during the conversation, and options regarding the return mode. The return
mode can be either direct, where the result is given directly to the user without further interaction with the LLM, or indirect, where additional
processing by the LLM is required. Additionally, the FormTool specifies whether a confirmation step is needed.

e The model requests a tool execution. If the execution results in
an error, the error is handled as in the first case. Otherwise, the
result can be sent directly to the user or modified by the LLM
before being sent. The creator of the specific conversation flow
can choose the best option.

3.3 Conversational Forms

A key contribution of Converso is the introduction of a multi-agent
conversation flow based on conversational forms, where the latter
are represented as FormTools within the LangChain framework. We
implement FormTools to encapsulate user intents that require gather-
ing structured data through a multi-turn conversation. This novel ap-
proach addresses the limitations of existing chatbots that rely solely
on the current message and conversation history, which can lead to
hallucinations or goal deviations, especially as the history becomes
long [L1].

The conversation flow in Converso is extended to recognize user
intents that map to specific FormTools. When such an intent is de-
tected, the corresponding FormTool is activated, and all other Form-
Tools are temporarily inhibited. At this point, the Base Agent is
replaced by the Form Agent, which uses specifically engineered
prompts to drive the conversation to fill the form, prompting the
user to provide the required information fields through natural lan-
guage interactions. The activation mechanism for FormTools is in-
spired by the concept of semantic frame evocation [1|], where key
expressions trigger the activation of the appropriate frame. In Con-
verso, the LLM’s recognition of user intents serves as the triggering
mechanism, dynamically activating the corresponding FormTool and
its associated conversational form.

FormTools maintain an internal state that tracks the progress of
the data collection process. This state can be inactive (initial state),
active (collecting data from the user), or filled (all required data has

been provided). The collected data is stored in an internal form object
within the FormTool.

To enhance user experience, FormTools support dynamic valida-
tion of user inputs. For example, in a purchase scenario, the available
shipping regions can be dynamically updated based on the user’s se-
lections, ensuring only valid options are presented. FormTools allows
developers to define custom logic for form compilation, enabling
them to determine the order in which fields should be filled, the ac-
tions to be taken based on the values provided, and to implement
complex inter-field validation logic. Once all required data has been
collected, the FormTool can execute its associated action, such as
making an API call or performing a specific task. Before execution,
if the developer of the specific tool requires the confirmation step,
the user is presented with a summary of the collected information
for confirmation, ensuring transparency and control over the process.
Examples of FormTools are presented in Fig. 2]

The conversational forms approach, coupled with the stateful na-
ture of FormTools, reduces the dependence on lengthy conversation
histories, mitigating the risk of hallucinations or deviations from the
intended goals. By abstracting the data collection process into struc-
tured forms, Converso simplifies the development of goal-oriented
conversational applications while leveraging the power of LLMs.

4 Experiments
4.1 Use Cases

To showcase the functionalities of our framework and provide an im-
plementation guide for developers, we implemented two use cases
using Converso.

The first use case involves creating a chatbot as a Personal Assis-
tant. The chatbot is implemented using the containerized system ar-
chitecture illustrated in Fig.[T} What distinguishes different use cases
in the Converso framework is the definition of the tools to use for the
specific application, which in the case of the Personal Assistant are:

e The PythonCodelnterpreter, GoogleSearch, and GmailRetriever
tools, which are BaseTools and take a single argument from the
LLM to perform an operation with it (for example, the Python-
Codelnterpreter takes in a valid Python script expressed as a string
and executes it, returning the result to the LLM).

e The GoogleCalendarRetriever, GoogleCalendarCreator, and
GmailSender tools which are implemented as FormTools to illus-
trate our conversational forms (Fig. 2a).

The second use case developed using Converso involves the cre-
ation of a Shopping Assistant. This example demonstrates how the
framework can be used to enhance the shopping functionality of an e-
commerce platform. The use case includes dynamic data validation:
for instance, only certain regions are available, and once a region is
selected, only the provinces within that region are shown. A single
FormTool, named OnlinePurchase (Fig.[2b), is implemented for this
use case. Figure [3]illustrates chat examples for both use cases.

4.2 Evaluation Protocol

In this section, we present our evaluation protocol for assessing Con-
verso’s performance. Specifically, our evaluation focus is not on the
underlying LLM, which can be selected by the developer of a specific
chatbot based on its use case. Instead, we aim to determine whether
the conversation flow incorporating conversational forms introduced
with Converso performs better in real-world scenarios than the basic
conversation flow.
Our evaluation framework consists of three main components:

o The Task Generator, which uses predefined templates and instruc-
tions to create real-world scenarios.

e The User Simulator, an LLM that carries out the generated tasks
by interacting with the Converso chatbot under evaluation.

e The Converso System, which implements either the basic conver-
sation flow or the conversation flow with conversational forms.

Table 1: Prompt guidelines provided to the User Simulator for the
evaluation protocol.

Task Type

Prompt

All the information contained in
the first message (AFM)

State your intent to the system, and
then follow its instructions to com-
plete the task. Provide all the nec-
essary data to the system in your
first message.

No information contained in the
first message (NFM)

State your intent to the system
without providing any data, and
then follow its instructions to com-
plete the task. For example, “I
want to create an event” or “I want
to buy something.”

Main information contained in the
first message (MFM)

State what you want to do, pro-
viding only the main information,
and then follow its instructions
to complete the task. For exam-
ple, “I want to create an event
called Meeting” or “I want to buy
a watch.”

Confused user (CU)

State your intent to the system
without providing any data, and
then follow its instructions to com-
plete the task. Act like a very naive
user who doesn’t know what to do:
misspell words, give incorrect in-
formation, and then correct it.

Table 2: System prompts given to the different types of agents em-
ployed in Converso’s chatbots. Information between curly braces is
dynamically populated.

Agent Prompt

You are a personal assistant trying to help the
user. You always answer in English. The cur-
rent datetime is {datetime}. Don’t use any of
your knowledge or information about the state
of the world. If you need something, ask the
user for it or use a tool to find or compute it.

Base Agent

Error Agent [Base Agent prompt] + There was an error with
your last action. Please fix it and try again. Er-

ror: {error}.

Form Agent (informa- | Help the user fill data for form
tion needed) {form_tool.name}. Ask to provide the
needed information. Now you must update the
form with any information the user provided
or ask the user to provide a value for the field
{information_to_collect}. You MUST use the
form {form_tool.name} tool to update the
stored data every time the user provides one or
more values.

Help the user fill data for {form_tool.name}.
You have all the information you need. Show
the user all of the information using bullet
points and ask for confirmation: {informa-
tion_collected}. If the user agrees, call the
{form_tool.name} tool one more time with
confirm=True. If the user doesn’t want to
change something, call it with confirm=False.

Form Agent (confir-
mation needed)

An evaluation task consists of the following:

e A user guideline, selected from the four listed in Table [I] which
provides the User Simulator with instructions on how to behave as
a user.

e A target tool, chosen from GoogleCalendarCreator, Google-
CalendarRetriever, GmailSender, GmailRetriever, or OnlinePur-
chase as defined in Section[d.1] These tools are adapted to imple-
ment the FormTool interface for evaluating the conversation flow
with conversational forms.

o A target input, selected from 20 randomly generated payloads.

This setup brings to a total of 400 generated evaluation tasks. A
task’s execution is considered successful if the correct tool is in-
voked and filled with the correct inputs. In this case, the execution
is stopped, and the run is marked as successful. The task is consid-
ered unsuccessful if the maximum number of iterations is reached or
the models reach a stale phase (typically because the correct tool was
called with the wrong inputs).

4.3 Implementation Details

The implementation of the conversation flows is based on
LangChain. The Base Agent, Error Agent, and Form Agent are im-
plemented as LangChain agents and connected using LangGraph. We
report the system prompts used to tune each agent in Table 2] Form-
Tools are implemented as subclasses of BaseTool. For all evaluation
experiments, we use gpt-3.5-turbo-0125 via OpenAl APIs, both as
the User Simulator and the LLM chatbot. The target tools for eval-
uation are implemented as StructuredTools to assess the basic con-
versation flow and as FormTools, managed by the Form Agent, to
evaluate our conversation flow with conversational forms. The max-
imum number of iterations is set to 25.

Hi! | want to buy a
@ book

It seems that for purchasing a book,
we need to specify whether it should
be sent as an ebook or a physical
copy. Could you please let me know
if you prefer to receive the book as
an ebook or a physical copy?

@ \/ ebook

Great! You've chosen to receive the
book as an ebook. The next piece of
information | need is your email
address. Could you please provide
your email so we can sen you the
ebook?

Find the current value of Nvidia
stocks. Select a random day next
month. Set a reminder on that
day to check Nividia stock. Add
@ the current price to the title

I've set the reminder title and date.
Now, could you please provide a
description for the event?

V Check if it is good to buy Nvidia's
@ stocks

The description has been updated to
"Check if it is good to buy Nvidia's
stocks". Please confirm if the
information is correct so that | can
finalize the reminder.

V yes

@ \/ john@doe.com @
The event has been created
Here is the information you provided successfully. You will be reminded to
for purchasing the ebook: check Nvidia's stock price on a
random day next month.

- Item: Book
- Ebook: Yes V
- Email: john@doe.com
Please confirm if the details are correct Activates OnlinePurchase O]
so we can proceed with the purchase.

\/ Updates field "item" to "book" and ebook to True @

that's correct
@ Updates field "email" to "john@doe.com" @
The purchase has been successfully
finalized. You will receive the ebook at Executes the tool's action @
the email address provided. If you
need further assistance, feel free to let
me know! Executes GoogleSearch with query: current value of Nvidia stocks
\/ Executes Codelnterpreter to calculate a random day of the next month @
Starts GoogleCalendarCreator tool and updates the form with the given data

Executes GoogleCalendarCreator tool to update the form with the provided summary @

Executes GoogleCalendarCreator's action @)

Figure 3: Two examples of chat illustrating our use cases. The chat on the left demonstrates the Shopping Assistant use case, while the chat
on the right demonstrates the Personal Assistant use case. Orange messages with the tail pointing to the right represent user messages, while
blue messages with the tail pointing to the left represent the chatbot. Actions executed by the chatbot using the connected tools are displayed
inside yellow rectangles, which are numbered and connected to the corresponding points in the conversation. Notably, the agent can work with
multiple tools simultaneously, allowing it to perform complex combinations of actions.

4.4 Results

Table |§| presents the results obtained using our evaluation protocol.
The percentage of tasks executed correctly is 75.7% when using

Table 3: Evaluation results, with scores expressed as percentages of
success for the evaluation tasks defined in Section[#.2}

Conversation Flow

Tool Basic Ours

GmailRetriever 75.00 100.00
GmailSender 77.50 81.25
GoogleCalendarCreator 81.25 90.00
GoogleCalendarRetriever | 90.00 95.00
OnlinePurchase 55.00 96.25
Task Type Basic Ours
AFM 91.00 99.00
NFM 73.00 93.00
MFM 62.00 89.00
CU 77.00 89.00
Total Basic Ours
75.7 92.5

the basic conversation flow. It rises to 92.5% when employing the
conversational forms, with a consistent 16.8% increase, showing the
overall effectiveness of using FormTools with the Form Agent.

Analyzing the results from the perspective of tool usage, we ob-
serve that implementing conversational flows improves the use of
every tool. Notably, the improvements are nearly double for the On-
linePurchase tool, which requires the most significant number of pa-
rameters and is, therefore, the most complex. This suggests a correla-
tion between tool complexity and the benefits of using conversational
forms. This outcome was expected, as more complex tools require
keeping more detailed information in the conversation history, which
can lead to goal deviation or hallucinations.

Considering the task type, we observe that the most challenging
situation for the basic conversation flow occurs when the User Sim-
ulator’s first prompt contains only the primary information for using
the tool. We investigated this situation qualitatively (Fig.). In this
case, the Base Agent invokes the correct tool but fills in the remaining
information with hallucinated data without confirmation. This poses
a risk for real-life applications, where actions could be executed with

| want to create an event titled
"Skill sometimes oil leader" on
Google Calendar

Executes GoogleCalendarCreator with
inputs:

- Summary: Skill sometimes oil leader

- Description: Event for skill development
- Start: 2024-03-20T00:00:00

- End: 2024-03-20T23:59:59

The event titled "Skill sometimes oil leader"
has been created on you Google Calendar
for today.

4

Figure 4: Chat example for an MFM task using the basic conversation
flow (chatbot’s response is in the gray box). The correct tool is ex-
ecuted but with incorrect inputs (highlighted in red), demonstrating
the hallucination problem that occurs when conversational forms are
not used.

incorrect inputs without the user’s awareness. Conversely, conversa-
tional forms address this issue by querying the user for the missing
information and requesting confirmation before executing any action.

5 Conclusion

Our work demonstrates the significant advancements in chatbot sys-
tems by integrating large language models and modern frameworks
like LangChain. The proposed Converso framework, which incorpo-
rates conversational forms, showcases the potential to enhance user
interactions by transforming traditional data acquisition methods into
dynamic, interactive conversations. The evaluation results indicate a
marked improvement in task success rates when using conversational
forms, particularly with complex tools requiring detailed input.

By addressing the limitations of basic conversation flows—such
as the hallucination of data and lack of confirmation—Converso im-
proves accuracy and ensures a safer and more reliable user experi-
ence. This is especially crucial in real-world applications where in-
correct data could lead to unintended and potentially harmful actions.

Furthermore, the Converso framework’s robustness, demonstrated
by its ability to handle diverse and complex use cases in the evalu-
ation experiments, underscores its versatility. The consistent perfor-
mance improvements, nearly doubling success rates in some cases,
highlight the effectiveness of integrating stateful interactions and
form-based data gathering.

Our work contributes to conversational Al by providing a practi-
cal and scalable solution for developing sophisticated chatbot appli-
cations. The insights gained from this research pave the way for fu-
ture innovations in chatbot design, aiming to bridge the gap between
human-like interactions and automated systems.

Acknowledgements

The research of Nicola Fanelli is funded by a PhD fellowship within
the framework of the Italian “D.M. n. 118/23” - under the National
Recovery and Resilience Plan, Mission 4, Component 1, Investment
4.1 - PhD Project “Analisi e valorizzazione del patrimonio artis-
tico digitalizzato mediante tecniche di Intelligenza Artificiale” (CUP
H91123000690007).

10

References

[1] E. Adamopoulou and L. Moussiades. An Overview of Chatbot Technol-
ogy. In I. Maglogiannis, L. Iliadis, and E. Pimenidis, editors, Artificial
Intelligence Applications and Innovations - 16th IFIP WG 12.5 Interna-
tional Conference, AIAI 2020, Neos Marmaras, Greece, June 5-7, 2020,
Proceedings, Part I1, volume 584 of IFIP Advances in Information and
Communication Technology, pages 373-383. Springer, 2020.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhari-
wal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M.
Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,
I. Sutskever, and D. Amodei. Language Models are Few-Shot Learners.
In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, ed-
itors, Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurlPS
2020, December 6-12, 2020, virtual, 2020.

H. Chase. LangChain, Oct. 2022.

B. Chen, Z. Zhang, N. Langrené, and S. Zhu. Unleashing the potential
of prompt engineering in Large Language Models: a comprehensive re-
view. CoRR, abs/2310.14735, 2023.

A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts,
P. Barham, H. W. Chung, C. Sutton, S. Gehrmann, P. Schuh, K. Shi,
S. Tsvyashchenko, J. Maynez, A. Rao, P. Barnes, Y. Tay, N. Shazeer,
V. Prabhakaran, E. Reif, N. Du, B. Hutchinson, R. Pope, J. Bradbury,
J. Austin, M. Isard, G. Gur-Ari, P. Yin, T. Duke, A. Levskaya, S. Ghe-
mawat, S. Dev, H. Michalewski, X. Garcia, V. Misra, K. Robinson,
L. Fedus, D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph, A. Spiri-
donov, R. Sepassi, D. Dohan, S. Agrawal, M. Omernick, A. M. Dai,
T. S. Pillai, M. Pellat, A. Lewkowycz, E. Moreira, R. Child, O. Polo-
zov, K. Lee, Z. Zhou, X. Wang, B. Saeta, M. Diaz, O. Firat, M. Catasta,
J. Wei, K. Meier-Hellstern, D. Eck, J. Dean, S. Petrov, and N. Fiedel.
PalLM: Scaling Language Modeling with Pathways. J. Mach. Learn.
Res., 24:240:1-240:113, 2023.

K. M. Colby, F. D. Hilf, S. Weber, and H. C. Kraemer. Turing-like
Indistinguishability Tests for the Calidation of a Computer Simulation
of Paranoid Processes. Artif. Intell., 3(1-3):199-221, 1972.

C. J. Fillmore and C. Baker. 313 A Frames Approach to Semantic Anal-
ysis. In The Oxford Handbook of Linguistic Analysis. Oxford University
Press, 12 2009. ISBN 9780199544004.

Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun, Q. Guo,
M. Wang, and H. Wang. Retrieval-Augmented Generation for Large
Language Models: A Survey. CoRR, abs/2312.10997, 2023.

S. Hakimov, Y. Weiser, and D. Schlangen. Evaluating Modular Dia-
logue System for Form Filling Using Large Language Models. In Pro-
ceedings of the 1st Workshop on Simulating Conversational Intelligence
in Chat (SCI-CHAT 2024), pages 3652, 2024.

B. Hu, C. Zhao, P. Zhang, Z. Zhou, Y. Yang, Z. Xu, and B. Liu. En-
abling Intelligent Interactions between an Agent and an LLM: A Rein-
forcement Learning Approach. CoRR, abs/2306.03604, 2023.

N. F. Liu, K. Lin, J. Hewitt, A. Paranjape, M. Bevilacqua, F. Petroni,
and P. Liang. Lost in the Middle: How Language Models Use Long
Contexts. Trans. Assoc. Comput. Linguistics, 12:157-173, 2024.

J. Maynez, S. Narayan, B. Bohnet, and R. T. McDonald. On Faith-
fulness and Factuality in Abstractive Summarization. In D. Jurafsky,
J. Chai, N. Schluter, and J. R. Tetreault, editors, Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, ACL
2020, Online, July 5-10, 2020, pages 1906—1919. Association for Com-
putational Linguistics, 2020.

S. Minaee, T. Mikolov, N. Nikzad, M. Chenaghlu, R. Socher, X. Am-
atriain, and J. Gao. Large Language Models: A Survey. CoRR,
abs/2402.06196, 2024.

L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kel-
ton, L. Miller, M. Simens, A. Askell, P. Welinder, P. F. Christiano,
J. Leike, and R. Lowe. Training language models to follow instruc-
tions with human feedback. In S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Infor-
mation Processing Systems 35: Annual Conference on Neural Informa-
tion Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022, 2022.

T. Schick, J. Dwivedi-Yu, R. Dessi, R. Raileanu, M. Lomeli, E. Hambro,
L. Zettlemoyer, N. Cancedda, and T. Scialom. Toolformer: Language
Models Can Teach Themselves to Use Tools. In A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in
Neural Information Processing Systems 36: Annual Conference on Neu-

(2]

(3]
(4]

[5

—

(6]

[7

[

[8

—

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

ral Information Processing Systems 2023, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023, 2023.

K. Wang, H. Ren, A. Zhou, Z. Lu, S. Luo, W. Shi, R. Zhang, L. Song,
M. Zhan, and H. Li. MathCoder: Seamless Code Integration in LLMs
for Enhanced Mathematical Reasoning. CoRR, abs/2310.03731, 2023.

J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yo-
gatama, M. Bosma, D. Zhou, D. Metzler, E. H. Chi, T. Hashimoto,
O. Vinyals, P. Liang, J. Dean, and W. Fedus. Emergent Abilities of
Large Language Models. Trans. Mach. Learn. Res., 2022, 2022.

J. Weizenbaum. ELIZA - a computer program for the study of natural
language communication between man and machine. Commun. ACM,
9(1):36-45, 1966.

S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. R. Narasimhan, and Y. Cao.
ReAct: Synergizing Reasoning and Acting in Language Models. In The
Eleventh International Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.

11

	Introduction
	Related Work
	Our Framework: Converso
	System Architecture
	Conversation Flow
	Conversational Forms

	Experiments
	Use Cases
	Evaluation Protocol
	Implementation Details
	Results

	Conclusion

