
Proceedings of the Fourth Workshop on Language Technology for Equality, Diversity, Inclusion, pages 41–51
March 21, 2024 ©2024 Association for Computational Linguistics

Towards Content Accessibility Through Lexical Simplification for Maltese
as a Low-Resource Language

Martina Meli
Department of CIS

Faculty of ICT
University of Malta

martina.meli.18@um.edu.mt

Marc Tanti
Institute of Linguistics and Language Technology

Faculty of Media and Knowledge Sciences
University of Malta

marc.tanti@um.edu.mt

Chris Porter
Department of Computer Information Systems

Faculty of ICT
University of Malta

chris.porter@um.edu.mt

Abstract
Natural Language Processing techniques have
been developed to assist in simplifying online
content while preserving meaning. However,
for low-resource languages, like Maltese, there
are still numerous challenges and limitations.
Lexical Simplification (LS) is a core technique
typically adopted to improve content accessi-
bility, and has been widely studied for high-
resource languages such as English and French.
Motivated by the need to improve access to Mal-
tese content and the limitations in this context,
this work set out to develop and evaluate an LS
system for Maltese text. An LS pipeline was
developed consisting of (1) potential complex
word identification, (2) substitute generation,
(3) substitute selection, and (4) substitute rank-
ing. An evaluation data set was developed to
assess the performance of each step. Results are
encouraging and will lead to numerous future
work. Finally, a single-blind study was carried
out with over 200 participants, where the sys-
tem’s perceived quality in text simplification
was evaluated. Results suggest that meaning is
retained about 50% of the time, and when mean-
ing is retained, about 70% of system-generated
sentences are either perceived as simpler or of
equal simplicity to the original. Challenges re-
main, and this study proposes a number of areas
that may benefit from further research.

1 Introduction
Lexical Simplification (LS) is a technique through
which complex words are replaced with simpler
alternatives while aiming to retain meaning and
contextual validity. Although this has been the sub-
ject of various studies (Alarcon et al., 2021; Qiang
et al., 2021, 2020), it is more often adopted within
high-resource languages, such as English or French
(Rolin et al., 2021). On the other hand, low-resource

languages, such as Maltese, lack sufficient high-
quality resources (Hedderich et al., 2020) required
for robust natural language processing (NLP).

Reading difficulties are widely acknowledged as
a barrier to information access (Mutabazi and Wal-
lenhorst, 2020). For this reason, LS techniques can
be adopted at the core of language-based assistive
technologies (ATs) to enhance content accessibility
(Rolin et al., 2021). Such ATs could benefit dif-
ferent groups of people, from non-native speakers
to persons with low literacy levels and individuals
with learning difficulties, among others (Alarcon
et al., 2021). Unfortunately, limited research exists
for low-resource languages, particularly for Mal-
tese. To the best of our knowledge, the state-of-the-
art with respect to automated text simplification
for Maltese is a 2014 study based on unsupervised
lexical substitution (Tanti, 2014). However, Tanti
(2014) argues that due to a lack of resource avail-
ability as well as choice of techniques, especially at
the time, his work produces unsatisfactory results.

With this in mind, the primary objective of this
work is to leverage existing NLP techniques as well
as arising linguistic resources for Maltese to de-
velop an effective LS system that is capable of sim-
plifying complex words in Maltese news articles,
which is an easy domain for collecting high quality
data.

This study makes several contributions, includ-
ing (1) evidence-based insights on the various LS
pipeline steps and on the system overall (including
perceived quality), (2) an annotated data set based
on content derived from online Maltese news por-
tals in collaboration with a Maltese language expert,
as well as (3) a framework for implementing an LS
system for low-resource languages. An AT in the
form of a browser extension was also developed

41

as a reference implementation based on the arising
framework; however, this is considered out of scope
for this paper.

This paper is based on the primary author’s post-
graduate research at the Faculty of ICT, University
of Malta. This research is in conformity with the
University of Malta’s Research Code of Practice
and Research Ethics Review Procedures.

The rest of the paper is organised as follows.
Section 2 presents a summary of related work, fol-
lowed by a discussion of the data set generated for
this study in Section 3. Section 4 describes the de-
veloped framework and evaluation of the pipeline,
while results are then presented in Section 5. Sec-
tion 6 presents concluding remarks and limitations.
2 Related Work
Several LS systems exist for various high resource
languages, including English (Qiang et al., 2021),
Turkish (Uluslu, 2022), French (Rolin et al., 2021),
Spanish (Alarcon et al., 2021), and Chinese (Qiang
et al., 2020), among others. To our knowledge, the
only prior work that performs LS for Maltese is by
Tanti (2014), a system that makes use of n-grams
and bag of words vectors to determine which words
can substitute a target word. The system has some
issues such as a small data set that was developed
exclusively by the author and a poorly performing
system that only produces acceptable substitutes
5% of the time. Since then, new resources became
available that would allow us to make a much better
system.

Our work is mostly inspired by LSBert (Qiang
et al., 2021). This system is adequate for low re-
source languages as it does not require a training
set, only a pre-trained masked language model like
BERT (Devlin et al., 2019). It makes use of BERT
predictions, token vector similarity, and word fre-
quency to determine which words can substitute
a target word. It achieves state-of-the-art results
for substitute generation and outperforms baseline
systems with commonly-used data sets, attaining
the highest accuracy. We adapt this system for the
Maltese language and improve upon it in order to
achieve better results.
3 Data set
To evaluate and tune the individual modules and
the LS system as a whole, a data set1 was manually

1https://osf.io/kx5yd/?view_only=
f1020fdbb8904eaa96968df7a0f046ca

compiled for Maltese as the data set made by Tanti
(2014) was not satisfactory. To create this data set,
we scraped sentences (with permission) from four
popular Maltese news portals2 relating to articles
of different news categories. In this way, the data
set contains sentences typically viewed by target
users of the LS system. This text-scraping approach
is commonly used when compiling such a data set
(McCarthy and Navigli, 2007; Horn et al., 2014).

The sentences were stratified by news category
and number of (word level) tokens. The categories
were determined by extracting the top-level cate-
gory from the news web page and manually de-
termining which category names across different
websites were equivalent. Only categories that were
common across all websites were used, which gave
us five categories across four websites: commerce,
sports, lifestyle, politics, and general. Four sen-
tences per category per website were extracted, re-
sulting in 20 sentences per website, or 80 sentences
in total. This is suitable for system evaluation, as it
has the same size as NNSeval3, and is a manageable
workload for manual annotation.

The chosen sentences also had to meet sentence
length requirements to avoid unusually long or short
sentences. The lengths of all the sentences in the
news websites formed a unimodal distribution with
a peak centred between lengths 10 and 25. The
sentences sampled from the categories had to fit
within this range to ensure that they have a typical
sentence length for news articles.

Once the 80 sentences were sampled, they were
evenly split into two (stratified by website and cate-
gory): the dev and test set. The former is used to
determine the optimal system hyperparameters and
the latter to evaluate the tuned system and report
results.

The target words that were used in the data set
were selected automatically as described in Sec-
tion 4 (content words that are not entity names or
English words). Since the target words could be
either complex (and thus could be simplifiable) or
already simple, we refer to them as potentially com-
plex words. This allows the data set to include
instances where (i) a target word has substitutes,
some of which are simpler, (ii) a target word has
substitutes but none of them are simpler, or (iii) a
target word does not have any viable substitutes.

2The websites were https://tvmnews.mt/, https://
newsbook.com.mt/, https://one.com.mt/ and https://
www.illum.com.mt/.

3http://ghpaetzold.github.io/data/NNSeval.zip

42

https://osf.io/kx5yd/?view_only=f1020fdbb8904eaa96968df7a0f046ca
https://osf.io/kx5yd/?view_only=f1020fdbb8904eaa96968df7a0f046ca
https://tvmnews.mt/
https://newsbook.com.mt/
https://newsbook.com.mt/
https://one.com.mt/
https://www.illum.com.mt/
https://www.illum.com.mt/
http://ghpaetzold.github.io/data/NNSeval.zip

This is preferred over other data sets such as NN-
Seval which only presents complex words and their
simpler substitutes since it is more representative
of what the system will encounter in practice.

Two annotators worked to manually annotate
candidate words for each target word by using a
Maltese thesaurus (Serracino-Inglott, 2016) and a
Maltese Word2Vec model (w2v_cc_300d)4 to as-
sist in finding candidates. Using a Word2Vec model
was favoured over BERT-based models since the
latter would produce words that our system would
produce which would be a bias in our favour. Anno-
tators were allowed to include candidates that are
not suggested by these resources or to not use any
candidates at all if necessary (in which case, the
system should not substitute the target word).

We recruited a professional proofreader for Mal-
tese to review and edit the manually annotated sub-
stitutes. This allows us to be more confident in the
accuracy and correctness of the substitutes. The
proofreader was asked to only review the substi-
tutes in terms of meaning and context, and not sim-
plicity, as the simplicity component is evaluated
in a subsequent stage. Moreover, unlike for the
FrenLyS data set (Rolin et al., 2021), hypernyms
or hyponyms were not considered as correct candi-
date substitutes for most cases since these would
result in changing the original sentence’s meaning.
Moreover, the proofreader was instructed to disre-
gard the pro-clitic5 preceding the target words when
checking candidates. Pro-clitics change according
to the word they are attached to (e.g. ‘the sun’, ‘the
sand’ and ‘the boy’ in Maltese become ‘ix-xemx’,
‘ir-ramel’, and ‘it-tifel’) and so need to be fixed if
the latter is substituted.

The next step was selecting which candidates
were simpler than the target word. This was a more
subjective task, so all annotators were tasked with
annotating all the sentences in order to aggregate
their annotations and be able to calculate an inter-
annotator score. The number of annotators typically
recruited varies across studies: some recruit 5 per
50 sentences (Kajiwara and Yamamoto, 2015) and
some recruit 50 per sentence (Horn et al., 2014).
We recruited 4 native Maltese speakers as annota-
tors of varying backgrounds. We deem the task as
a binary annotation task rather than a scoring task,
such that annotators had to only mark which candi-

4https://sparknlp.org/2022/03/16/w2v_cc_300d_
mt_3_0.html

5A pro-clitic is a clitic attached to the beginning of another
word such as the Maltese determiner ‘il-’ in ‘il-kelb’ (the dog).

dates they deemed simpler than the target word (or
none at all if none are simpler). We then needed
to aggregate the annotations to handle disagree-
ments. Some researchers used pairwise agreement
(McCarthy and Navigli, 2007; Kajiwara and Ya-
mamoto, 2015) while others used the kappa index
(Rolin et al., 2021; Specia et al., 2012). We adopted
a simpler approach: every annotation was tallied
and normalised by the number of annotators (divid-
ing by 4), generating scores for the candidates and
target word. The target word would also get a score
according to how many annotators considered none
of the candidates to be simpler. Candidates with
higher scores than the target word were deemed
simpler substitutes. If the highest-scoring candi-
date and the target word had identical scores, both
are listed as simpler substitutes.

An analysis of the dev set revealed that out of
280 target words: 228 included the target word
among the simpler substitutes and 52 did not (one
of the sentences didn’t have a single target word and
was ignored). Since the dev set would be used to
tune the system, it was important to balance these
two cases to avoid biasing the model. The test set
doesn’t need to be balanced as it is meant to be rep-
resentative of news content. To balance the dev set,
we under-sampled the majority class by randomly
sampling 52 target words and discarding the anno-
tation of the rest of them (on the dev set, the system
does not attempt to identify target words automati-
cally but only works with what is annotated).

Apart from the Maltese data set, we also wanted
to test our system on an English data set that has
been used to evaluate other systems in order to com-
pare our performance. For substitute generation,
we selected NNSeval for this purpose due to its
similar size to our data set and also due to it also
being split with a 50:50 ratio, ensuring comparable
results. We did not find any lexical simplification
systems or data sets that are compatible with the
way we select simple substitutes (as a binary clas-
sification task that includes the target word itself),
so we were not able to evaluate our system on an
English data set.

4 LS Framework - Pipeline Design
To meet the study’s objectives, the system uses a
four-step pipeline: Potential Complex Word Identi-
fication (PCWI), Substitute Generation (SG), Sub-
stitute Selection (SS), and Substitute Ranking (SR).

Some of these modules have hyperparameters
43

https://sparknlp.org/2022/03/16/w2v_cc_300d_mt_3_0.html
https://sparknlp.org/2022/03/16/w2v_cc_300d_mt_3_0.html

that needed to be tuned, which are provided in
Appendix A. Unless otherwise specified, we per-
formed this tuning using grid search (evaluating on
the dev set) on each module separately. Below, we
give a description of each module and the respective
hyperparameters.
4.1 Potential Complex Word Identification

(PCWI)
Typically, CWI is the first pipeline step, but this is a
complex and subjective task (Rolin et al., 2021), so
we perform CWI implicitly, with potentially com-
plex words, also known as target words, that are
deemed generally unsimplifiable being disregarded
in the rest of the pipeline steps (Shardlow, 2014).
The advantage of having this step is that it reduces
computation time and resource usage since fewer
words are considered.

We filtered words using POS (part of speech) and
NER (named entity recognition) tags, honorifics,
and English words. We used BERTu-uPOS6 and
BERTu-NER7 for POS and NER tags respectively.
Only verbs, adjectives, adverbs, and nouns were
considered as potentially complex (Ortiz-Zambrano
and Montejo-Ráez, 2021; Finnimore et al., 2019)
and entity names were ignored, including honorifics
such as ‘Mrs.’ or ‘Dr.’. Moreover, since the system
is intended for Maltese, untranslated English words
(common in Maltese) are also filtered out. We used
pyenchant8 to detect English words. Since some
Maltese words have equivalent spelling to their En-
glish counterpart (e.g., ‘bank’), we resolve such
ambiguity by checking if another English word is
found next to it (e.g., ‘blood bank’), and, if not,
assume that it is a Maltese word.

Note that we only use this module to construct the
data set and when simplifying sentences at produc-
tion time. It also does not have any hyperparameters
and so is not tuned or evaluated.
4.2 Substitute Generation (SG)
The outputs from the PCWI module are fed as in-
put into the SG module, which outputs the most
probable words to replace the target words. For
Maltese, we use the Maltese monolingual BERT
model BERTu9 (Micallef et al., 2022) similarly to
how Qiang et al. (2021) used BERT. For English,
we use one of 3 English BERT models, BERT base

6https://huggingface.co/MLRS/BERTu-upos/
7https://huggingface.co/MLRS/BERTu-ner/
8https://pypi.org/project/pyenchant/
9https://huggingface.co/MLRS/BERTu/

model (uncased)10, BERT large model (uncased)11,
and BERT large model (uncased) whole word mask-
ing12. Note that these masked language models
(MLMs) were not fine-tuned and used as-is.

We use these MLMs to predict candidate sub-
stitutes by replacing the target word with one or
multiple mask tokens. The target word is typically
replaced with one mask token in LS systems, but
this forces candidate words to be made up of a single
sub-word token. Given that Maltese is a language
with complex morphology, we consider multi-token
prediction. We use a beam search algorithm that
is adapted to MLMs to search for the most proba-
ble sequence of tokens to fill a sequence of masks,
from one mask up to a maximum number of masks.
We only tried up to 3 masks since candidates are
unlikely to be simple if they contain more tokens.
Each number of masks requires a separate beam
search. Top candidates in the beam are selected
based on their pseudo log-likelihood (PLL) scores
by summing the log probabilities of the tokens that
replace the masks (these tokens form the whole
word) (Salazar et al., 2020). Furthermore, we want
to avoid filling multiple masks multiple words in-
stead of one multi-token word. We avoid this by
making use of the fact that BERT vocabularies con-
sist of front-of-word and rest-of-word tokens, such
as “gidem” (he bit) being split into “gid” (front-of-
word) and “##em” (rest-of-word), and simply avoid
front-of-word tokens being used anywhere except
for the first mask in the sequence (and vice-versa
for the first mask). This could force the system to
construct non-sense words, since there might not be
a longer word starting with a particular token, but
the fact that we are using a beam of token sequences
helps avoid this. An illustration of the beam search
algorithm used is shown in Figure 1. We tested
beam sizes between 3 and 5.13

Given that pro-clitics need to be fixed after sub-
stituting the word they are attached to and given that
it would unnecessarily eliminate possible valid sub-
stitute tokens when included in the MLM’s input
(for example, if a mask is preceded by the pro-clitic
‘ix-’, the masks can only be filled by a noun start-
ing with ‘x’) we try masking the pro-clitic in front
of the target word if there is one. The ‘-’ of the

10https://huggingface.co/bert-base-uncased/
11https://huggingface.co/bert-large-uncased/
12https://huggingface.co/

bert-large-uncased-whole-word-masking/
13Preliminary tests on Maltese indicated that beam sizes

smaller than 5 produced inferior results due to the complex
morphology and so this was fixed to 5 when tuning for Maltese.

44

https://huggingface.co/MLRS/BERTu-upos/
https://huggingface.co/MLRS/BERTu-ner/
https://pypi.org/project/pyenchant/
https://huggingface.co/MLRS/BERTu/
https://huggingface.co/bert-base-uncased/
https://huggingface.co/bert-large-uncased/
https://huggingface.co/bert-large-uncased-whole-word-masking/
https://huggingface.co/bert-large-uncased-whole-word-masking/

Figure 1: Beam Search with beam size |𝐵| and number
of masks set to 3, adapted from Nikishina et al. (2022).
Note how only front-of-word tokens are considered for
the first mask, and only rest-of-word tokens are consid-
ered for the other masks.

pro-clitic, which is a separate BERTu token, is left
unmasked so that the model is forced to predict
a pro-clitic in that particular mask. For example,
the phrase ‘ix-xita’ (the rain) would be masked as
‘[MASK]-[MASK]’. The pro-clitic mask is always
the last mask to be filled by the model in order to
allow more freedom in the selection of the actual
substitute word.

Given that the beam search fills multiple masks
one mask at a time, there was a question about
whether these should be filled left-to-right (LTR) or
right-to-left (RTL). We decided to leave this as a hy-
perparameter. We also try using cross-sentence re-
lationship (CSR) where the original sentence (with
the target word) is concatenated to the end of the
sentence containing the mask tokens, as was done
by Qiang et al. (2021).

These hyperparameters were tuned by maximis-
ing the F-score on the manually selected candidates
in the dev set.
4.3 Substitute Selection (SS)
The candidates produced by the SG module are only
valid in terms of fitting the context of the target
word. The next step is to filter out the candidates
that are semantically different from the target word.
We consider two approaches: POS tag filtering and

semantic similarity filtering.
POS tag filtering is the simplest. It just checks

what the POS tag of the candidate word is after
replacing the target word and removing all candi-
date words that have a different tag from the target
word’s. Similarity filtering uses a similarity met-
ric to measure the similarity between the MLM’s
context vector of the candidate word when in the
sentence and the context vector of the target word.
Candidate words whose similarity is less than a
threshold are discarded. As similarity metrics, co-
sine similarity and word mover’s distance (WMD)
were attempted. Cosine similarity is widely used for
SS (Rolin et al., 2021; Paetzold and Specia, 2017a),
but it only calculates the similarity between indi-
vidual vectors, and thus, when the target or can-
didate word is a multi-token word, the individual
token vectors need to be averaged. On the other
hand, WMD gives the distance between two sets
of vectors and so can work directly on the multi-
token words. Since WMD is a distance function,
we first convert it into a similarity function as fol-
lows: 1

WMD+1 . We use the Word Mover’s Distance
library14 to calculate WMD.

As for the similarity threshold, rather than us-
ing a heuristic threshold of 0.5 as used by Rolin
et al. (2021), a number was optimised using the
dev set as follows. A set of candidates is produced
for each target word (using SG), which are sorted
by their similarity, which are labelled according to
whether the candidate is correct. A threshold is
then optimised to maximise the F-score of candi-
dates whose similarity is greater than the threshold
(via an exhaustive search among the mid-points be-
tween adjacent similarity scores). This threshold
was kept fixed once found. We also attempted to
scale these similarities such that the similarities of
the candidates of each target word would have a
mean of 0 and a variance of 1 to make them easier
to compare to a single threshold.

As with SG, these hyperparameters were tuned
by maximising precision on the manually selected
candidates in the dev set. We use precision rather
than F-score to focus on the filtering aspect and
have more correct substitutes.
4.4 Substitute Ranking (SR)
Having selected the candidates that can replace the
target words, the next step is to find which candi-

14https://pypi.org/project/
word-mover-distance/

45

https://pypi.org/project/word-mover-distance/
https://pypi.org/project/word-mover-distance/

dates are simpler than their respective target word.
We did not make a version of this for the English
MLM, only for the Maltese one. The first question
to ask is whether the SS filter is necessary or not.
Even if it returns a better set of candidates than SG
according to the precision score, it could be that
this new list excludes simple candidates. For this
reason, we include a hyperparameter on whether to
use the output of SG or SS as input to SR.

The SR module works by calculating a simplic-
ity score for each candidate. Following literature
(Qiang et al., 2021; Uluslu, 2022; Rolin et al., 2021;
Qiang et al., 2020), we attempted using the follow-
ing features to do this: relative frequency, character
count, semantic similarity, and MLM probability.

Single-word frequencies are widely used (Qiang
et al., 2021; Uluslu, 2022; Rolin et al., 2021; Qiang
et al., 2020) since a higher frequency implies sim-
plicity (Rolin et al., 2021). These were generated us-
ing Korpus Malti15 and the Maltese Simplification
Corpus16. These frequencies were made relative to
each corpus (by dividing the word frequency17 by
the total number of words in the respective corpus)
to ensure comparable values since the corpora vary
in size. Only the Shuffled, Press MT and EU sub-
sets from Korpus Malti were considered, as these
encompass words and sentences from various do-
mains, with the latter two consisting of news arti-
cles, matching the domain of our data set and sys-
tem’s purpose18. Simple and complex texts from
the Maltese Simplification Corpus were used, com-
puting relative frequencies using Equation (1). 𝑓𝑠
and 𝑓𝑐 are the word frequencies in the simple and
complex Maltese Simplification Corpus, respec-
tively, whilst 𝑡𝑠 and 𝑡𝑐 denote the total word counts
of the simple and complex corpora.

relative frequency =
𝑓𝑠
𝑡𝑠

𝑓𝑠
𝑡𝑠
+ 𝑓𝑐

𝑡𝑐

(1)

The word character count was chosen to reflect
simplicity, as longer words tend to be more complex.
We make the character count relative to the data
set by dividing a character count by the character

15https://mlrs.research.um.edu.mt/
16https://github.com/mtanti/

maltese-simplification-corpus/
17Words are POS tagged when counting their frequency

such that it is the frequency of a word-tag pair that is counted.
18The news articles found in the Korpus Malti were not the

same as the articles used to make our data set, which was made
with articles that came out after the corpus was compiled.

count of the longest word in the data set. Seman-
tic similarity, also widely used (Qiang et al., 2021,
2020; Uluslu, 2022), was chosen to reduce the rank
of any wrong candidates that make it through the
SS/SG module. Similar to similarity filtering in
the SS module, it measures the similarity between
the target word and the candidate using the MLM
context vectors. Moreover, rather than the typically-
adopted sentence probability (Uluslu, 2022; Qiang
et al., 2021, 2020), the probability of a word fit-
ting into a sentence is applied, using pseudo log-
likelihood scores, where the log-probabilities gen-
erated by the MLM are summed.

Given that some features have a large range of
possible values, we try normalising each feature
using L2 normalisation such that the vector formed
from a particular feature across all candidates has a
magnitude equal to 1. SR generally entails averag-
ing individual scores from candidate word features
(Qiang et al., 2021, 2020; Uluslu, 2022), or em-
ploying ML models tailored for SR (Rolin et al.,
2021). We opted to optimise simple machine learn-
ing (ML) models. The classifier models considered
were logistic regression, naïve Bayes, XGBoost,
and LightGBM, chosen mainly for their ability to
handle tabular (Shwartz-Ziv and Armon, 2022) and
small data sets (Liang et al., 2020; Sathyaraj and
Sevugan, 2015). To train these models, we labelled
the candidates in the dev set according to whether
they were simpler than the target word. Simpler
candidates are labelled with a 1, the rest with a 0.
If none of the candidates are simpler than the tar-
get word, then they are all labelled 0. The target
word is also labelled such that it is only given a
1 when none of the candidates are simpler. The
model would then be trained to give a score to the
candidate and target words that comes as close as
possible to the label.

Hyperparameter tuning was also used in this
module, but due to the linear models needing to
be tuned as well, which can be numerous (see Ap-
pendix B), grid search was used in combination
with Optuna19 which uses search space pruning to
obtain the best-performing hyperparameters effi-
ciently.

The objective function was set to maximise all
the evaluation metrics discussed in Section 5 using
multi-objective optimisation. We used the default
search algorithm, Tree-structured Parzen Estimator.

19https://optuna.org/

46

https://mlrs.research.um.edu.mt/
https://github.com/mtanti/maltese-simplification-corpus/
https://github.com/mtanti/maltese-simplification-corpus/
https://optuna.org/

5 Results and Evaluation
We automatically evaluated each step in the pipeline
after tuning the hyperparameters. We also con-
ducted a human evaluation of the full system
through a single-blind study.

The automatic evaluation metrics are just differ-
ent ways of comparing the generated substitutes
with the correct substitutes (where correct substi-
tutes are either the set of substitutable words or the
set of simple words). The precision metric is the
percentage of correctly generated substitutes out of
all generated substitutes. The recall metric is the
percentage of correctly generated substitutes out of
all correct substitutes. The accuracy metric is the
percentage of generated substitutes that are correct.
The precision@1 metric is the percentage of target
words with a correct highest-scoring generated sub-
stitute. Finally, the F-score metric is the harmonic
mean of precision and recall. Different subsets of
these metrics are used to evaluate different modules.

When evaluating the SG and SS modules, we
selected the evaluation metrics precision, recall,
and F-score. These are the most widely used for SG
(Alarcon et al., 2021; Qiang et al., 2020; Paetzold
and Specia, 2017a).

Hyperparameter tuning the SG module on the
Maltese dev set revealed that it performs best (F-
score 0.169) with pro-clitic consideration, right-to-
left mask filling, use of CSR, 1 mask, and a beam
size of 5. The fact that 1 mask was better is surpris-
ing given the complex morphology of Maltese and
the small number of generated substitutes (1 mask
× beam size 5 = 5 candidates). This is evidence
in favour of BERTu’s performance which is sug-
gesting good substitutes with just one token. On
English using the English dev set, hyperparameter
tuning revealed that the best performing parame-
ters (F-score 0.196) were the same as for Maltese,
but using up to 3 masks instead of 1, and using
bert-large-uncased.

Hyperparameter tuning the SS module on the
Maltese dev set revealed that it performs best (pre-
cision 0.188) with Cosine similarity filtering, with-
out scaling, using a similarity threshold of 0.85
and no POS tag filtering. Surprisingly, POS tag
filtering actually lowered both precision and recall,
which probably means that the Maltese POS tagger
used could be improved. We opted to just reuse the
hyperparameters for English as well rather than per-
forming tuning again since there were no language
specific hyperparameters like in the SG module.

The results on the Maltese and English test sets
are shown in Table 1, where we quoted the re-
sults obtained by Qiang et al. (2021) where they re-
implemented a number of LS systems and evaluated
them on NNSeval (we only include the results of
some top performing models, which include those
developed by Paetzold and Specia (2016, 2017b);
Gooding and Kochmar (2019)). We can see that
the SG module by itself does not beat the system
produced by Qiang et al. (2021) but when the addi-
tional filtering of the SS module is used, then we
double our F-score, which gives us the best results
in the table for English. For Maltese we see that SS
does not improve our F-score, only the precision.

When evaluating the SR module, we selected
the evaluation metrics accuracy, precision, recall,
F-score, and precision@1.

Hyperparameter tuning the SR module on the
Maltese dev set revealed that it performs best with
SG as a source for candidate words, Cosine simi-
larity for similarity scoring, no normalisation, and
LightGBM as an ML model. The model gives im-
portance to all features, but mostly to the similarity
and pseudo log-likelihood scores, as shown in Ta-
ble 2. The feature importance scores show that
the frequency of the words in the general corpus is
twice as important as the frequency of words in the
domain-specific corpora, probably because the size
of the corpus matters more.

We compared the results of the SR module when
using the candidates provided by the SG module
with the results of the SR module when using the an-
notated candidates in the data set. This is to see how
the performance of the SR module would change if
the SG module was perfect. The results on the Mal-
tese test sets are shown in Table 3. We can see that,
while the normal system suggests a correct simpler
word as the highest scoring word (precision@1)
72% of the time, a perfect SG module would bump
this up to 81%. The difference in performance on
the rest of the metrics is not as drastic.
5.1 Human Evaluation
A within-subjects single-blind study was carried
out with 207 volunteer participants. Participants
were given 16 sentence pairs (i.e., the original ver-
sion and the system-generated lexically simplified
version) selected from a pool of 1 000 sentences.
Both sentence selection and pair-wise presentation
were randomised to avoid patterns and bias. These
sentences were separately scraped from Maltese
news portals following the same method outlined in

47

Data set System Precision Recall F-score
NNSeval Paetzold-CA 0.118 0.161 0.136

Paetzold-NE 0.186 0.136 0.157
REC-LS 0.103 0.155 0.124
LSBert 0.194 0.260 0.222
Our system (SG) 0.218 0.190 0.203
Our system (SG+SS) 0.319 0.560 0.406

Our Maltese data set Our system (SG) 0.153 0.449 0.228
Our system (SG+SS) 0.167 0.340 0.224

Table 1: SG and SS results compared with other systems in literature (best results in bold).

Feature Importance
Similarity score 3039
PLL score 3031
Shuffled corpus frequency 2057
Character count 1145
Simplification corpus frequency 1082
Press corpus frequency 806

Table 2: Feature importance for simplification score
according to the LightGBM model (using split feature
importance).

Metric SG+SR Gold+SR
Accuracy 0.886 0.766
Precision 0.628 0.768
Recall 0.711 0.709
F-score 0.667 0.737
Prec.@1 0.724 0.814

Table 3: Our SR results on the Maltese data set (best
results in bold). ‘Gold’ refers to the annotated substitutes
in the data set.

Section 3. Participants had to blindly select the sen-
tence they deemed simpler, along with whether the
two sentences had the same meaning. Participants
were asked about sentences that the system deemed
as already in their simplest form - and whether these
could be simplified further (and how).

With regards to meaning preservation, partici-
pants indicated that the two sentences had the same
meaning 44% of the time, and that, of those sen-
tences, 53% thought that the generated sentence
was simpler, 29% thought that the original sentence
was simpler, and 18% were unsure about which was
simpler. Further analysis showed that in most cases
where the meaning was changed, this was due to a
single substituted word within the sentence.

A demographic analysis showed that younger par-
ticipants and persons with lower levels of education

perceived the system to be more effective. Simi-
lar views were provided by individuals whose first
language was not Maltese. Of the sentences the sys-
tem deemed as unsimplifiable, 73% of participants
agreed that this was so.

This is an encouraging step for a low-resource
language like Maltese, which only required 40 an-
notated sentences in the dev set to tune the system’s
hyperparameters.
6 Conclusion
We developed and evaluated an LS pipeline for Mal-
tese, together with the compilation of a Maltese LS
data set that was used throughout the process. The
various pipeline steps were individually evaluated,
with promising results. Our approach also produced
significant improvements over the results obtained
in the unsupervised lexical substitution system de-
veloped for Maltese (Tanti, 2014).

The overall system was also evaluated through
a single-blind study with 207 individuals. This
was done to determine the overall perceived qual-
ity of the system-generated simplified text, and en-
couraging results were obtained as outlined in Sec-
tion 5.1. Furthermore, participants generally con-
curred when presented with sentences that the sys-
tem determined as already in their simplest form.

Arising from this work, a browser extension was
also developed (MaltEasy), acting as a reference
implementation of an LS-based AT for Maltese on-
line content accessibility. Although not presented
in this paper, MaltEasy provides the team with a
first-cut design that motivates the need for further
framework improvements and user studies, clearly
informing the future of this work.
6.1 Limitations and Future Work
This work presents a promising framework for de-
veloping an LS system for Maltese but has some

48

limitations that can be addressed in future work.
Despite efforts to compile a new comprehensive
data set for the task, the Maltese LS data set used
for training and evaluation may benefit from further
expansion. Moreover, the system was limited to
using BERTu (Micallef et al., 2022), the only avail-
able Maltese BERT model, which is only available
with a base architecture. The LS system would ben-
efit from using a larger architecture, as shown by
the fact that the BERT-large model gave the best
results for English. It would also be interesting to
determine whether the system developed can be ap-
plied to other low-resource languages (after adapt-
ing the language specific elements like pro-clitic
handling). Furthermore, the proposed LS system
focuses on simplification at word level, overlook-
ing multi-word expressions where individual words
should not be substituted, a problem that could be
solved by a more sophisticated PCWI module the in-
cludes multi-word expression detection. Addition-
ally, further filtering might be implemented such
that ambiguous sentences are skipped from sim-
plification to avoid unintentionally changing the
author’s intended meaning.
Acknowledgements
This project was partially funded by the Malta Dig-
ital Innovation Authority AI Scholarship.

References
Rodrigo Alarcon, Lourdes Moreno, and Paloma

Martínez. 2021. Lexical Simplification System to
Improve Web Accessibility. IEEE Access, 9:58755–
58767.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proc. of the 2019 NAACL-HLT., Vol-
ume 1 (Long and Short Papers), pages 4171–4186,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Pierre Finnimore, Elisabeth Fritzsch, Daniel King, Al-
ison Sneyd, Aneeq Ur Rehman, Fernando Alva-
Manchego, and Andreas Vlachos. 2019. Strong Base-
lines for Complex Word Identification across Multiple
Languages. In Proc. of the 2019 NAACL-HLT, pages
970–977, Minneapolis, Minnesota. Association for
Computational Linguistics.

Sian Gooding and Ekaterina Kochmar. 2019. Recur-
sive context-aware lexical simplification. In Proc.
of the 2019 Conf. on Empirical Methods in Natural
Lang. Proc. and the 9th Int. Joint Conf. on Natural
Lang. Proc. (EMNLP-IJCNLP), pages 4853–4863,

Hong Kong, China. Association for Computational
Linguistics.

Michael A. Hedderich, Lukas Lange, Heike Adel, Jannik
Strötgen, and Dietrich Klakow. 2020. A Survey on
Recent Approaches for Natural Language Processing
in Low-Resource Scenarios. arXiv e-prints, page
arXiv:2010.12309.

Colby Horn, Cathryn Manduca, and David Kauchak.
2014. Learning a lexical simplifier using Wikipedia.
In Proc. of the 52nd Annu. Meeting of the Assoc. for
Comput. Linguistics (Volume 2: Short Papers), pages
458–463, Baltimore, Maryland. Association for Com-
putational Linguistics.

Tomoyuki Kajiwara and Kazuhide Yamamoto. 2015.
Evaluation dataset and system for japanese lexical
simplification. pages 35–40.

Weizhang Liang, Suizhi Luo, Guoyan Zhao, and Hao
Wu. 2020. Predicting hard rock pillar stability using
gbdt, xgboost, and lightgbm algorithms. Mathemat-
ics, 8(5).

Diana McCarthy and Roberto Navigli. 2007. Semeval-
2007 task 10: English lexical substitution task. In
Procs. of the 4th Int. Workshop on Semantic Eval.,
SemEval ’07, page 48–53, USA. Association for Com-
putational Linguistics.

Kurt Micallef, Albert Gatt, Marc Tanti, Lonneke van der
Plas, and Claudia Borg. 2022. Pre-training Data Qual-
ity and Quantity for a Low-Resource Language: New
Corpus and BERT Models for Maltese. In Proc. of
the Third Workshop on Deep Learn. for Low-Resour.
Natural Lang. Proc., pages 90–101, Hybrid. Associa-
tion for Computational Linguistics.

Eric Mutabazi and Nathanaël Wallenhorst. 2020. Une
citoyenneté de seconde classe? n’ayons pas peur des
mots! bildungsforschung, (1):1–13.

Irina Nikishina, Alsu Vakhitova, Elena Tutubalina, and
Alexander Panchenko. 2022. Cross-Modal Contextu-
alized Hidden State Projection Method for Expanding
of Taxonomic Graphs. In Proc. of TextGraphs-16:
Graph-based Methods for Natural Lang. Process.,
pages 11–24. Association for Computational Linguis-
tics.

Jenny Ortiz-Zambrano and Arturo Montejo-Ráez. 2021.
SINAI at SemEval-2021 Task 1: Complex word iden-
tification using Word-level features. In Proc. of the
15th Int. Workshop on Semant. Eval., pages 126–129,
Bangkok, Thailand.

G. H. Paetzold and L. Specia. 2016. Unsupervised
Lexical Simplification for non-native speakers. In
AAAI’16: Proc. of the Thirtieth AAAI Conf. on AI,
pages 3761–3768.

Gustavo H. Paetzold and Lucia Specia. 2017a. A Sur-
vey on Lexical Simplification. J. Artif. Intell. Res.,
60:549–593.

49

https://doi.org/10.1109/ACCESS.2021.3072697
https://doi.org/10.1109/ACCESS.2021.3072697
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1102
https://doi.org/10.18653/v1/N19-1102
https://doi.org/10.18653/v1/N19-1102
https://doi.org/10.18653/v1/D19-1491
https://doi.org/10.18653/v1/D19-1491
https://doi.org/10.48550/arXiv.2010.12309
https://doi.org/10.48550/arXiv.2010.12309
https://doi.org/10.48550/arXiv.2010.12309
https://doi.org/10.3115/v1/P14-2075
http://sourceforge.jp/projects/ipadic/releases/24435/
http://sourceforge.jp/projects/ipadic/releases/24435/
https://doi.org/10.3390/math8050765
https://doi.org/10.3390/math8050765
https://doi.org/10.18653/v1/2022.deeplo-1.10
https://doi.org/10.18653/v1/2022.deeplo-1.10
https://doi.org/10.18653/v1/2022.deeplo-1.10
https://aclanthology.org/2022.textgraphs-1.2
https://aclanthology.org/2022.textgraphs-1.2
https://aclanthology.org/2022.textgraphs-1.2
https://doi.org/10.5555/3016387.3016433
https://doi.org/10.5555/3016387.3016433
https://doi.org/10.1613/JAIR.5526
https://doi.org/10.1613/JAIR.5526

Gustavo Henrique Paetzold and Lucia Specia. 2017b.
Lexical Simplification with Neural Ranking. In Proc.
of the 15th Conf. of the Eur. Chapter of the Assoc.
for Comput. Linguistics: Volume 2, Short Papers,
volume 2, pages 34–40.

Jipeng Qiang, Yun Li, Yi Zhu, Yunhao Yuan, Yang Shi,
and Xindong Wu. 2021. LSBert: Lexical Simplifi-
cation Based on BERT. IEEE/ACM Trans. on Audio
Speech and Lang. Process., 29:3064–3076.

Jipeng Qiang, Xinyu Lu, Yun Li, Yunhao Yuan, and
Xindong Wu. 2020. Chinese Lexical Simplification.
IEEE/ACM Transactions on Audio Speech and Lan-
guage Processing, 29:1819–1828.

Eva Rolin, Quentin Langlois, Patrick Watrin, and
Thomas François. 2021. FrenLyS: A Tool for the Au-
tomatic Simplification of French General Language
Texts. In RANLP 2021, pages 1196–1205. INCOMA
Ltd.

Julian Salazar, Davis Liang, Toan Q. Nguyen, and Katrin
Kirchhoff. 2020. Masked language model scoring.
In Proc. of the 58th Annu. Meeting of the Assoc. for
Comput. Linguistics. Association for Computational
Linguistics.

R. Sathyaraj and Prabu Sevugan. 2015. An approach
for software fault prediction to measure the quality
of different prediction methodologies using software
metrics. Indian J. of Sci. and Tech,, 8.

Mario Serracino-Inglott. 2016. Id-Dizzjunarju Malti, 4
edition. Merlin Publishers.

Matthew Shardlow. 2014. A Survey of Automated
Text Simplification. Int. J. Adv. Comput. Sci. Appl.
(IJACSA) Spec. Issue Nat. Lang. Process., 4(1).

Ravid Shwartz-Ziv and Amitai Armon. 2022. Tabular
data: Deep learning is not all you need. Information
Fusion, 81:84–90.

Lucia Specia, Sujay Kumar Jauhar, and Rada Mihal-
cea. 2012. Semeval-2012 task 1: English lexical
simplification. In SEM 2012: The First Joint Conf.
on Lexical and Comput. Semantics – Vol. 1: Proc.
of the main conf. and the shared task, and Vol. 2:
Proc. of the Sixth Int. Workshop on Semantic Eval
(SemEval 2012), pages 347–355, Montréal, Canada.
Association for Computational Linguistics.

M. Tanti. 2014. Unsupervised lexical substitution for
Maltese: steps toward lexical simplification. Ph.D.
thesis, M.S. thesis, Dept. Intellig. Comput. Syst.,
Univ. of Malta, Msida, Malta.

Ahmet Yavuz Uluslu. 2022. Automatic Lexical Simpli-
fication for Turkish.

Parameter Values
SG module

Max. masks 1, 2, 3
Beam size 3, 4, 5
Pro-clitic mask* yes, no
Mask fill order LTR, RTL
Use CSR yes, no

SS module
POS tag filtering yes, no
Similarity filtering yes, no

Similarity method cosine, WMD
Scaling yes, no

SR module
Candidate words source SS, SG
Similarity method cosine, WMD
Feature norm. yes, no
ML model logistic reg., XGBoost,

LightGBM, Naïve
Bayes

Table 4: Hyperparameter search space used when tuning
the separate modules.
*Only for the Maltese data set.

A Hypermarameter search space for
separate modules

B SR module hyperparameters for ML
models

The best hyperparameters of the LightGBM model,
which was the best performing model, were
max_depth set to 7, n-estimators to 600, and learn-
ing_rate to 0.0149.

50

https://aclanthology.org/E17-2006
https://doi.org/10.1109/TASLP.2021.3111589
https://doi.org/10.1109/TASLP.2021.3111589
https://doi.org/10.48550/arxiv.2010.07048
https://aclanthology.org/2021.ranlp-1.135
https://aclanthology.org/2021.ranlp-1.135
https://aclanthology.org/2021.ranlp-1.135
https://doi.org/10.18653/v1/2020.acl-main.240
https://doi.org/10.17485/ijst/2015/v8i35/73717
https://doi.org/10.17485/ijst/2015/v8i35/73717
https://doi.org/10.17485/ijst/2015/v8i35/73717
https://doi.org/10.17485/ijst/2015/v8i35/73717
https://doi.org/10.14569/SPECIALISSUE.2014.040109
https://doi.org/10.14569/SPECIALISSUE.2014.040109
https://doi.org/https://doi.org/10.1016/j.inffus.2021.11.011
https://doi.org/https://doi.org/10.1016/j.inffus.2021.11.011
https://aclanthology.org/S12-1046
https://aclanthology.org/S12-1046
https://www.um.edu.mt/library/oar/handle/123456789/78359
https://www.um.edu.mt/library/oar/handle/123456789/78359
https://doi.org/10.48550/arxiv.2201.05878
https://doi.org/10.48550/arxiv.2201.05878

Parameter Values
Logistic regression

solver liblinear, saga
c_value 0.1 - 5 (uniform)

XGBoost
learning rate 0.01 - 0.3 (uniform)
maximum depth 3 - 9 (integer)
n estimators 100 - 1000 (uniform),

with a 100 step
LightGBM

learning rate 0.01 - 0.3 (uniform)
maximum depth 3 - 9 (integer)
n estimators 100 - 1000, with a 100

step (uniform)
Naïve Bayes

var_smoothing 1E-12 - 1E-3 (log uni-
form)

Table 5: Hyperparameters used for the ML models in
the SR module.

51

