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Abstract
This paper introduces two new OCR models for the Irish language, a BART-based OCR post-correction model, and
the core dataset on which they were trained: a monthly bilingual Irish-English newspaper named An Gaodhal that
was produced from 1881 to 1898 by an Irishman living in Brooklyn, New York.
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1. Introduction

This paper introduces the An Gaodhal project,
which aims to serve the historically under-
resourced and endangered language of Irish1

(known as Gaeilge) by providing new digital tools
and resources.

The initial goal of the project was the extraction
of full text of An Gaodhal, a monthly bilingual Irish-
English newspaper produced from 1881 to 1898
by an Irishman living in Brooklyn, New York, to
the highest possible degree of accuracy via Optical
Character Recognition (OCR), with a view to mak-
ing its printed content searchable. The methodol-
ogy applied toward achieving this goal yielded ad-
ditional digital outputs including:

• a new OCR model for the Irish language as
printed in Cló Gaelach type;2

• a new OCR model for bilingual Irish-English
content printed in Cló Gaelach and Roman
types respectively;

• a BART-based OCR post-correction model for
historical bilingual Irish-English data;

• a historical Irish training set for Named Entity
Recognition (NER);

All but the first of these four additional outputs
appear to be the first of their kind. Each of the
project outputs is set for public release to enable
open-access research.

This paper also identifies the challenges histori-
cal Irish data poses to Natural Language Process-
ing (NLP) in general and OCR in particular, and

1Moseley (2010) lists Irish as ‘definitely endangered’.
2Cló Gaelach – a typeface widely used for Irish until

the 1960s when it was replaced by Roman type.

reports on project results and outputs to date. Fi-
nally, it contextualises the project within the wider
field of NLP and considers its potential impact on
under-resourced languages worldwide.

2. Related Work

2.1. OCR
In December 2022, the Irish government launched
a roadmap document titled Digital Plan for the Irish
Language: Speech and Language Technologies
2023-2027, which “provides an overview of the re-
search required to make Irish-language linguistic
resources available in the coming years” (Govern-
ment of Ireland, 2022). This digital plan acknowl-
edges the need for a diverse ecosystem of Irish-
language corpora and identifies a significant num-
ber already extant for Irish. To date, only one
of these corpora — Corpas Stairiúil na Gaeilge
1600 – 1926 (Acadamh Ríoga na hÉireann, 2017)
— has been produced using OCR. To the best of
our knowledge, the relevant OCR work was out-
sourced to a third-party, and any models deployed
in that work were not available publicly.

At the outset of the present project in January
2023, there were no publicly available OCR mod-
els attuned to Cló Gaelach and pre-standardised
spelling of the Irish language, in either monolin-
gual or multilingual contexts.3 The only related
project in existence was a Cló Gaelach training
dataset for Tesseract OCR software,4 published
by Scannell et al. (2020). In November 2023, an

3In a bilingual / multilingual context, Irish appears
most frequently alongside English, reflecting their co-
existence in Ireland for centuries.

4https://github.com/tesseract-ocr/
tesseract

https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
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Irish-only model for texts in either Cló Gaelach or
Roman typefaces was made public on the Tran-
skribus OCR platform (Farrell, 2023). The method-
ology that produced this model differs considerably
from the approach discussed herein in respect of
the treatment of different typefaces, the treatment
of individual printed glyphs, and the broader span
of centuries represented in the corpus upon which
the model was trained.

OCR models vary enormously, ranging from be-
spoke monolingual models, some of them read-
ing individual handwritten scripts, to large-scale
models incorporating multiple languages. Tran-
skribus Team (2021) created the multilingual multi-
typeface print model Transkribus Print M1, “includ-
ing antiqua and blackletter prints, typewriter, com-
puter print outs and decorative fonts” and support-
ing Dutch, English, Finnish, French, German, Ital-
ian, Latin, Swedish, Portuguese, Spanish, Polish,
Flemish, Czech, Slovak, Slovenian, and Castilian.
Currently, Transkribus features 147 publicly avail-
able models for print and handwritten text recog-
nition,5 including Devanagari, Hebrew, Ethiopian
script, 14th and 15th century Spanish Gothic script,
14th century cursive Dutch charters, 16th century
Balinese palm-leaf manuscripts, Serbian and Rus-
sian Church Slavonic, Ottoman Turkish written in
Arabic script, 19th century Danish handwriting, and
multiple varieties of Fraktur6 to name but a few.

Some OCR models focus on individual ancient
and historical languages (Furrer and Volk, 2011;
Bukhari et al., 2017; Springmann et al., 2018; Reul,
2020; Reul et al., 2021; Martínek et al., 2020;
Dölek and Kurt, 2022; Ma et al., 2024). Others
address multilinguality in a historical context: a
team at Cornell University developed a trilingual
handwritten text recognition (HTR) model for An-
cient Greek, Latin, and German (Rusten, 2020);7
and Capurro et al. (2023) are testing the viability of
different approaches to building multilingual OCR
models for HTR. A significant share of research
on pre-modern OCR draws on historical newspa-
per corpora (Drobac et al., 2017; Koistinen et al.,
2020; Drobac, 2020; Kettunen et al., 2020), which
are readily accessible thanks to trends in early in-
stitutional digitisation.

Predictably, OCR datasets that predate the
emergence of more advanced technologies regis-
ter higher error rates. Moreover, source images
are not always retained. The resulting impossibil-
ity or cost of re-extracting text prompts researchers
to explore OCR post-correction as a discrete task

5https://readcoop.eu/transkribus/
public-models/

6Fraktur denotes the German blackletter, or ‘Gothic’,
fonts that derive from medieval handwriting.

7The authors could not locate this model on Tran-
skribus, and assume it has not been made public.

(Reynaert, 2008; Vobl et al., 2014; Reynaert, 2016;
Afli et al., 2016; Schulz and Kuhn, 2017; Richter
et al., 2018; Dong and Smith, 2018; Dannélls and
Persson, 2020; Duong et al., 2021; Soper et al.,
2021; Rijhwani et al., 2021; Besnier and Mattingly,
2021; Lyu et al., 2021; Suissa et al., 2022). OCR
post-correction is also applied to critically endan-
gered languages where a scarcity of data would
otherwise impede the building of a targeted OCR
model. In such cases, scholars train a correction
model to transform outputs of an OCR model un-
familiar with the target language (Rijhwani et al.,
2020), a method that ultimately aims to obtain the
best OCR results for the target language.

The capacity of OCR to inspire “new kinds of re-
search on previously inaccessible sources” in hu-
manities and social sciences is driving unprece-
dented growth in this domain and scholars con-
tinue to explore ways of improving OCR outputs
(Smith and Cordell, 2018).

2.2. NER
Like OCR, NER work around the globe reflects
a wide variety of approaches, some of which are
discussed in an extensive survey on NER in his-
torical documents published last year (Ehrmann
et al., 2023). To date, two shared tasks on “iden-
tifying historical people, places and other enti-
ties (HIPE)” have been organised (Ehrmann et al.,
2020, 2022). Some NER work focuses on in-
dividual historical languages, including 19th cen-
tury French (Tual et al., 2023), 8th century Arme-
nian (Tambuscio and Andrews, 2021), and Ancient
Greek (Yousef et al., 2023); some aims at devel-
oping multilingual NER models (Neudecker, 2016;
Boros et al., 2020; Dekhili and Sadat, 2020; Prova-
torova et al., 2020; Schweter et al., 2022). Like the
An Gaodhal project, some teams combine OCR,
OCR post-correction, and NER in historical texts
(Todorov and Colavizza, 2020). As with OCR, his-
torical newspaper data is well-represented in NER
research (Hubková, 2019; Schweter and Baiter,
2019; Hubková et al., 2020),

NER for the Irish language, whether modern or
historical, represents uncharted territory. Accord-
ing to the Government of Ireland (2022): “To date,
there is no named-entity recognition system avail-
able for Irish. There are some basic resources
(lists of named entities) available through the part-
of-speech tagger technology, and place names at
logainm.ie but much work is required to extend
this research into a comprehensive NER tool.”

3. Historical Context

Historically, the Irish language has been printed in
two different orthographies: Irish or Gaelic type,

https://readcoop.eu/transkribus/public-models/
https://readcoop.eu/transkribus/public-models/
logainm.ie


67

known as Cló Gaelach, which originated in the
scribal tradition (see Figure 1); and Roman type
(McGuinne, 1992). Its corresponding Unicode
characters draw on Roman (Latin) script. Cló
Gaelach uses two kinds of diacritics: acute ac-
cents on vowels (ÁáÉéÍíÓóÚú); and dotted conso-
nants (ḂḃĊċḊḋḞḟĠġṀṁṖṗṠṡṪṫ), the dots indicat-
ing a grammatical feature called lenition. Where
Irish appears in Roman type, dotted consonants
are replaced by Bh, Ch, dh, fh, etc.

Figure 1: The Irish alphabet.

Although the quantity of printed material in Irish
in the centuries prior to the appearance of An
Gaodhal in October 1881 was small in compari-
son to many languages, a recent cataloguing of
titles published in Irish between the 16th and 19th

centuries (Sharpe and Hoyne, 2020) lists over a
thousand entries, several of them with multiple edi-
tions. Prior to the 1880s, the most common gen-
res for printing in Irish were religious texts (both
Catholic and Protestant), academic texts, and so-
called Gaelic columns in otherwise English-only
newspapers in which a relatively small amount
of content (usually letters, songs, or poetry) was
printed in Irish. An Gaodhal thus appeared at a
time when printing in Irish was taking place, but
not on a mass scale, so the newspaper’s produc-
tion represented an energetic undertaking in the
face of headwinds.

An Gaodhal was established and edited by
Micheál Ó Lócháin (also known as Michael J. Lo-
gan).8 It is regarded as the world’s first serial ded-
icated to providing content to an Irish-language
readership. The first four issues of the newspa-
per were printed commercially and at a loss. To
save the enterprise, Logan took on the task of
typesetting and printing the newspaper himself,
most likely in his own home in Brooklyn. Over the

8See https://www.ainm.ie/Bio.aspx?ID=
347 (Irish) and https://www.dib.ie/biography/
logan-michael-j-o-lochain-micheal-a4873
(English) for Michael J. Logan’s biographies.

next 17 years, Logan continued to issue the pa-
per, supported by a transnational network of con-
tributors. His commitment combined with the ap-
petite among readers to achieve 1,200 subscrip-
tions within the first year, growing to 3,000 at its
peak, five times the number achieved by the con-
temporaneous Dublin-based Irisleabhar na Gaed-
hilge, also known as The Gaelic Journal (Uí Fh-
lannagáin, 1990).

As one might expect from an ethnic newspaper
emerging in a diasporic setting, contributors to An
Gaodhal and its readers welcomed the arrival of
a new forum in which to identify their community
of ‘Éire Mhór’ (Greater Ireland) and celebrate it
(Knight, 2021). Nationalist politics at home in Ire-
land amplified that sense of pride, which extended
to the use of Cló Gaelach throughout the newspa-
per to distinguish Irish expression from the English
nation, its language and Roman type, and British
imperialism. Indeed, the Irish type used in the
newspaper, modelled on Watts type, was newly
cast in the United States to avoid purchasing a set
cast in a London foundry.

There is a palpable sense of energy and excite-
ment in the newspaper as many of its contributors
and readers were then gaining literacy in Irish for
the first time. The standard of written Irish varied
accordingly, as did the spelling, which had yet to
be standardised. Add to this the use of three dif-
fering dialects and the emerging corpus of texts —
however small at 1.86 million tokens — yields a
welcome diversity in the prospective training data.
To date, the adaptability of the OCR models devel-
oped by the project team supports this inference.

The challenges An Gaodhal faced were var-
ied. The economics of audience size over print-
ing costs, particularly for a newspaper printed for
a transatlantic audience, drove its founder and edi-
tor to forgo any income from his work on the paper.
The debate over the choice of type, whether Ro-
man or Cló Gaelach, had long been a heated one;
for those who insisted that Cló Gaelach was the
only proper type for expressing Irish, there was the
immediate challenge of procuring such a unique
typeface — a matter of availability, not cost, as it
could be purchased for the same price as Roman
type. Even where Roman type was selected, any
printer choosing to produce Irish texts in the nine-
teenth century or earlier faced difficulties in find-
ing a sufficiently large, paying audience and, in
a diasporic context, sufficiently fluent typesetters
or compositors. The absence of mass literacy in
Irish prior to the twentieth century combines with
these challenges for printing to make the appear-
ance of An Gaodhal and of similar undertakings in
its aftermath9 especially notable: they represent

9See, for example, Knight (2021) on the Irish-
language column in New York Irish-American, 1857 –

https://www.ainm.ie/Bio.aspx?ID=347
https://www.ainm.ie/Bio.aspx?ID=347
https://www.dib.ie/biography/logan-michael-j-o-lochain-micheal-a4873
https://www.dib.ie/biography/logan-michael-j-o-lochain-micheal-a4873
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the first steps in creating a media landscape in the
Irish language, an impact foretold in the ambition
expressed by Logan in An Gaodhal “to have the
‘million’ readers yet.”10

4. Data

The only complete series of An Gaodhal span-
ning 1881 to 1898 survives in the James Hardi-
man Library at the University of Galway. This
set was compiled, bound, and annotated by the
Philadelphia-based scholar of Irish folklore and
sean-nós song, Rev. Daniel J. Murphy, and forms
part of his manuscript archive, which is also held
in Galway (Ní Chonghaile, 2015). Since Rev. Mur-
phy’s volumes of An Gaodhal were digitised in
2021 (University of Galway, 2021), the newspaper
has been openly accessible as high resolution im-
ages via the University of Galway Library’s Digital
Collections and Archives.11 While the current inter-
face provides searchable metadata, extending its
functionality to include full-text searchability repre-
sents one of the ambitions of the present project,
which aims to build a digitally enhanced edition of
An Gaodhal.

As a monthly newspaper, An Gaodhal contained
12 numbers per volume. The corpus totals 147 is-
sues from Vol. 1, No. 1, to Vol. 13, No. 3, and
is complete and intact at 2,290 pages i.e. there
are no missing pages. Most issues contain 16
pages; some contain 14, 12 or 8 pages. Page
tears, ink spots, and blemishes are rare. Where
such characteristics impair the legibility of text, hu-
man review relied on consulting the printed arte-
fact or other extant samples of the relevant text.

The following list of key characteristics of the An
Gaodhal corpus will help determine the relevance
of the current project to the efforts of those seeking
to apply OCR to other historical data:

• pages feature Irish mostly (381), English
mostly (896), or both languages together
(1,019);

• the use of two different typefaces through-
out — Cló Gaelach and Roman — with infre-
quent changes of font and sometimes using
Cló Gaelach for English content and Roman
letters for Irish content (see Figures 2 and 3);

• the pre-standardised spelling of the Irish lan-
guage in the late 19th century;

1896, and Lyons (2021) on the Irish language revival,
media and the transatlantic influence in 1857 – 1897.

10An Gaodhal, Vol. 9, No. 8 (January 1893):
236, accessible here: https://digital.library.
universityofgalway.ie/p/ms/asset/16459

11https://digital.library.
universityofgalway.ie/

• variations in spelling and vocabulary reflecting
the three major dialects of Irish;

• variations in spelling reflecting the language
aptitude of each contributor, many of whom
were learners of the language or were gaining
literacy in Irish for the first time;

• layout conventions reflecting the artisanal
nature of the letterpress printing operation,
which was small and domestic in scale and
style, produced by the founder and editor
Michael J. Logan entirely on a pro bono ba-
sis, and funded chiefly by subscriptions and
advertisements.

4.1. Types, fonts, and marginalia

Figure 2: Example of mixed type usage in An
Gaodhal.

The set of Cló Gaelach type used by Logan ap-
pears complete. A contemporary New York news-
paper edited by Irish-born printer James Haltigan,
Celtic Monthly (1879 – 1884), used a set of type
that appears identical; however, the characters Ḃ,
Ċ, Ḋ, Ḟ, Ġ, Ṁ, Ṗ, Ṡ, and Ṫ are applied variably
therein (Knight, 2021). In lieu of dotted capital con-
sonants, Haltigan and his colleagues sometimes
rendered Ḃ, Ċ, and Ḋ as Bh, Ch, Dh, etc., a com-
mon substitution at this time and later where ac-
cess to Cló Gaelach type was not guaranteed. To
ensure that such nuances of contemporary type-
setting and spelling conventions in a given printed
artefact are preserved in the text extraction, the
two new OCR models were trained to match a sin-
gle Unicode character to each printed glyph; man-
ually substituting Ḃ, Ċ, and Ḋ with Bh, Ch, and Dh,
etc. was eschewed. Logan rarely adopted such
substitutions and, in Irish-language texts, chose

https://digital.library.universityofgalway.ie/p/ms/asset/16459
https://digital.library.universityofgalway.ie/p/ms/asset/16459
https://digital.library.universityofgalway.ie/
https://digital.library.universityofgalway.ie/
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Figure 3: Example of different Latin fonts and pica
sizes in An Gaodhal.

to adhere to the relevant orthography, spelling
some English words phonetically e.g. ‘Nuaḋ Ġorc’
for New York. In the present text extraction, the
selected Unicode characters do not replicate ex-
actly the design of the Cló Gaelach type such
as Gaelchló12 provides; rather, in deference to
long-standing practice, Roman typeface charac-
ters — including those with diacritics (dots or ac-
cents) above the x-height or cap height e.g. ú or
Ṁ — were chosen, thus ensuring interoperability
between this dataset and others.

Printing errors are uncommon. Sometimes in-
dividual pieces of moveable type were placed in
the printer’s composing stick in the wrong order or
upside-down, or supplies of particular letters e.g. a,
á, e, é, ran short and were substituted with alterna-
tives from either of the two orthographies. On oc-
casion, insufficient ink or loose type rendered gaps.
Corrections arising were tagged as ‘supplied’ or
‘unclear’ or ‘gap’ as appropriate to the word or line
in question. Smaller pica sizes, which occurred
only in the English-language fonts and most of-
ten in advertisements, proved challenging to the
OCR software and thus prompted occasional man-
ual text entry.

Handwritten marginalia corresponding to
Rev. Murphy’s handwriting occur on 495 of the
2,290 pages and were included in the OCR run.
Appearing in black, blue, and red ink and in pencil,
Rev. Murphy’s annotations supply additional data
including references to published books, journals,
and newspapers; identify alternate song titles and
associated song airs or melodies; and suggest
corrections to the printed text content.

Abbreviations reflecting conventions of the pe-
riod occur throughout, many of them serving to

12https://www.gaelchlo.com/

conserve space and type in printed matter, e.g. in
English, ‘Jas.’ for ‘James’ and ‘Patk.’ for ‘Patrick’.
The names of American states are frequently ab-
breviated, with and without period marks and/or
spacing, e.g. ‘RI’ and ‘R. I.’ for Rhode Island. In
Irish, Logan frequently abbreviated ‘agus’ (‘and’) to
the digit 7 in lieu of the Tironian symbol for the Latin
‘et’ (⁊). In correcting text extraction, human review
reverted to the ampersand symbol (&) instead to
avoid confusion with the digit 7.

5. OCR Workflow

The software selected for this process was READ-
COOP’s Transkribus (Kahle et al., 2017; Colutto
et al., 2019), and the workflow included the follow-
ing steps:

1. Automating identification of predomi-
nantly Irish-language lines on pages. This
was done using Amazon’s Textract soft-
ware,13 which could quickly and accurately
produce token-detection and line segmenta-
tion regardless of language. The resulting
OCR outputs were then categorised into Irish
and non-Irish texts on a line-by-line basis
by evaluating the dictionary-word accuracy
of each line output. Pages scoring high as
containing properly spelled English words
were deemed ‘non-Irish,’ leaving a clear cor-
pus of predominantly Irish-language pages
to train an initial model. The team ‘masked’
English-language lines occurring in the
pages of the selected corpus using overlaid
opaque rectangles, enabling the creation of
monolingual Irish-only page images.

2. Training an OCR model for Irish-only
pages. From the masked Irish-only pages,
the team selected 60 pages at random and,
after excluding pages dominated by images
or advertisements, a total of 57 proved viable
for training. The team transcribed the texts
on these pages manually and then used those
transcriptions to create a model in Transkribus
named An Gaodhal Irish Model v. 1 for Cló
Gaelach Irish-language detection (ID 50036),
which incorporated 18,533 tokens.

3. Training an OCR model on bilingual Irish-
English pages. The team selected 100
pages randomly from the entire collection, re-
moving all masks to present fully bilingual
texts. The language profile of each page de-
termined which of the three selected OCR
models ought to be applied. Pages predom-
inantly in Irish were run through the Irish-only
model (ID 50036); and pages predominantly

13https://aws.amazon.com/textract

https://www.gaelchlo.com/
https://aws.amazon.com/textract
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in English were run using Transkribus Print M1
(ID 39995), which has been trained on over
5 million tokens and which also reflects the
historical typographical conventions of the cor-
pus. The resulting pages were then corrected
manually, which provided the necessary con-
tent to train a bilingual OCR model. This bilin-
gual model titled An Gaodhal Irish / English
Bilingual Model v. 1 (ID 51080) incorporated
54,406 input training tokens and achieved a
character error rate (CER) close to 0 on the
validation set.

4. Correcting the outputs. The team ran three
different OCR models on the full 2,290 pages
of the newspaper as appropriate to the lan-
guage profile of each page: Transkribus Print
M1 on English-only or English-mostly pages;
An Gaodhal Irish Model v. 1 on the Irish-only
or Irish-mostly pages; and An Gaodhal Irish
/ English Bilingual Model v. 1 on bilingual
pages. To date, half of these pages have been
corrected by human review, including: all of
the Irish-only pages; 41.9% of bilingual Irish-
English pages; and 37.8% English-only pages
(see Section 6.2 for more detail). With all 381
Irish-only or Irish-mostly pages corrected, a
second Irish-only OCR model — An Gaodhal
Irish Model v. 2 (ID 61350) — was trained.
It incorporated 164,015 words and achieved
1.4% CER on the validation set.

5. Collecting supplementary page-level infor-
mation. The team reviewed and recorded key
attributes of each page and presented the re-
sults of this review in the CSV file published
together with the dataset. It lists: the pres-
ence of a table, advertisement, or image on
each page; the language profile of the page —
Irish, English, or bilingual; and the occurrence
of verse (song or poem) or letters. This de-
tail provides scope for further analysis of the
content of the corpus (see Section 7 for the
dataset description and reference).

6. OCR Post-Correction

6.1. Automatic correction
Whilst developing the bilingual OCR model, the
team experimented with automatic OCR post-
correction. The training set for OCR post-
correction models included 103 pages from the 1
– 200 range; all of these pages had been manually
corrected after the first application (as appropriate
to the language profile of each page) of one of the
project’s chosen OCR models as outlined above.
This dataset amounted to 9,994 lines of text and
had 2.95% CER and 9.29% WER before manual

correction. It was split into train and validation sub-
sets with 0.9 : 0.1 ratio. The test set consisted of
235 lines from pages 10, 37 and 97 that were not
used in the OCR model training. The test set CER
and WER were 3.47% and 11.92% respectively.

The team decided to attempt fine-tuning state-
of-the-art (SOTA) transformer models pre-trained
for sequence-to-sequence tasks. In order to select
the best transformer model for further experiments,
we compared BART-base (Lewis et al., 2020), T5-
base (Raffel et al., 2020), FLAN-T5-base (Chung
et al., 2022), a BART-based English spellchecker
(Guhr, 2023), and a T5-based spellchecker (Kun-
dumani, 2022) by fine-tuning them with An Gaod-
hal data along with their default tokenisers. BART
models performed significantly better than T5 mod-
els, as shown in Table 1.

Model Test CER, % Test WER, %

OCR output 3.47 11.92

BART-base 3.65 10.37
BART English spellchecker 3.40 10.50
T5-base 7.71 26.73
FLAN-T5-base 7.88 26.94
T5 English spellchecker 7.74 26.87

Table 1: Fine-tuning large language models on An
Gaodhal data for OCR post-correction with default
parameters.

The next step was to compare the performance
of BART-base and BART-large models. Surpris-
ingly, they demonstrated similar results: BART-
base yielded 3.65% CER and 10.71% WER; and
BART-large scores were 3.57% CER and 10.64%
WER. As BART-large did not demonstrate a sig-
nificant improvement compared to BART-base,
the team proceeded with the smaller and less
computationally-demanding BART-base model.

The team then measured how different tokenis-
ers commonly used with transformer models14

might influence performance. The standard to-
keniser that comes with the BART-base model
uses byte-level Byte-Pair Encoding, or BPE (Sen-
nrich et al., 2016), and treats spaces like parts of
the tokens. We trained three other tokenisers with
slightly different architectures — SentencePiece
(Kudo and Richardson, 2018), byte-level BPE, and
character-level BPE — on bilingual Irish-English
data from An Gaodhal and compared them to the
standard BART tokeniser (see Table 2). BART-
base performed best with our custom byte-level
BPE tokeniser, achieving 3.33% CER and and
10.10% WER. This tokeniser was used in all sub-
sequent experiments and is further referred to as
‘custom tokeniser’.

14https://huggingface.co/docs/
transformers/en/tokeniser_summary

https://huggingface.co/docs/transformers/en/tokeniser_summary
https://huggingface.co/docs/transformers/en/tokeniser_summary
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Tokeniser Test CER, % Test WER, %

OCR output 3.47 11.92

Standard (BART-base) 3.65 10.71
Custom SentencePiece 3.63 10.37
Custom byte-level BPE 3.33 10.10
Custom char-level BPE 3.44 11.58

Table 2: The influence of different tokenisers
on BART-base performance. The best result is
marked in bold.

Finally, the team applied three data enhance-
ment / fine-tuning techniques:

1. Masking. In large language models, it is com-
mon to mask 15% of tokens (Wettig et al.,
2023) during pre-training to make the model
more robust. The same strategy is recom-
mended for BART fine-tuning.15 Unfortu-
nately, randomly masking 15% of words in our
dataset at the pre-tokenisation stage did not
yield better scores.

2. Balancing the dataset. The number of cor-
rect sentences in the training set for OCR
post-correction outnumbered sentences con-
taining OCR errors by a factor of 2.5. As such
a class imbalance was likely to impede the ef-
forts of a model to learn to correct errors, the
team experimented with alternative ratios. We
reduced the number of correct examples to a
ratio of 1 : 1; and, in another set, to a slightly
imbalanced ratio of 1 : 1.5, an adjustment
that might mitigate the risk of over-correction.
Though the model’s performance improved in
both settings, the difference between the 1 : 1
and 1 : 1.5 ratios was negligible.

3. Data augmentation. As the team aimed at
training the model to correct very specific er-
rors whilst also trying to avoid over-correction,
it was decided to forgo introducing artificial
noise. Instead, to augment the data, we
elected to repeat every line in the dataset.
However, the results revealed no improve-
ment in the model’s performance, either with
1 : 1 balancing or without.

The results are described in greater detail in
Table 3. Analysing individual examples from the
test set, we noted that models excel in correcting
punctuation errors — such as an unnecessary or a
missing space before/after a punctuation mark —
or noise, usually in the form of dashes and square
brackets. However, they are not as successful with
incorrectly recognised letters, which is most likely

15https://huggingface.co/docs/
transformers/model_doc/bart

due to the limited number of relevant examples in
the training set.

All models were fine-tuned and tested with the
help of the ‘transformers’ Python library (Wolf et al.,
2020), and the best one is available on the Hug-
gingFace model hub (Dereza, 2024) along with the
corresponding dataset (Dereza et al., 2024).

6.2. Manual correction
The approach to correcting OCR output was cura-
torial, not editorial. As the newspaper was edited
by the same individual from start to finish and
printed under his guidance, there is a notable con-
sistency of style throughout. Corrections were ap-
plied rarely and only then in the interests of ensur-
ing discoverability. Non-standard forms of Irish-
language spellings throughout prompted a strict
adherence to the printed artefact as did printer’s
abbreviations — both conventional and idiosyn-
cratic — that represent efforts to maximise space
or optimise readability.

Punctuation and typographical conventions are
generally preserved. However, some commas
were inserted where printing rendered a period
mark in the middle of a sentence; tilde marks
(≈) used in hyphenated compound words were re-
placed with a standard n-dash (–) to avoid confu-
sion with the mathematical sign ‘equal to’ (=); and
spaces were inserted on either side of m-dashes
(—) to ensure that words on either side were recog-
nised as separate entities. Some lines of text were
justified from time to time but many more end with
a word that is split between the end of that line and
the start of the next, reflecting the physical restric-
tions of manual type-setting. In the printed artefact,
the split is bridged by a n-dash (–). Excluding hy-
phenated compound words, we replaced such ex-
amples with the character ¬ (called a ‘soft hyphen’
or ‘optional hyphen’). Such amendments aim to fa-
cilitate comprehension and deliver consistency for
machine-reading tasks.

The bilingual Irish-English model (ID 51080) per-
formed best when the content featured almost
equal quantities of both languages and when the
languages were confined to separate sections.
Where the languages were intermixed in individual
lines — in lists of translated Irish vocabulary or lan-
guage instructional texts, for instance — the OCR
output required more correction where the model
failed to adjust to the rhythm of the orthographic
exchanges on the page. Pages featuring a major-
ity of English content required text entry for any
Irish content therein where the English-only OCR
model failed to render the Irish orthography. Like-
wise, pages featuring a majority of Irish content
required text entry for any English content therein
where the Irish-only OCR model failed to render
the English orthography.

https://huggingface.co/docs/transformers/model_doc/bart
https://huggingface.co/docs/transformers/model_doc/bart
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Configuration Train + valid data Test CER, % Test WER, %

OCR output – 3.47 11.92

BART-base + standard tokeniser 9994 lines 3.65 10.71
BART-large + standard tokeniser 9994 lines 3.57 10.64
BART-base + custom tokeniser 9994 lines 3.33 10.10
BART spellchecker + custom tokeniser 9994 lines 3.40 10.24
BART-base + custom tokeniser + masking 9994 lines 3.60 10.91
BART-base + custom tokeniser + data balanced 50:50 5734 lines 3.29 9.83
BART-base + custom tokeniser + data balanced 40:60 7154 lines 3.29 9.83
BART-base + custom tokeniser + data augmented x2 19988 lines 3.39 10.24
BART-base + custom tokeniser + data augmented x2, balanced 50:50 11468 lines 3.27 10.17

Table 3: Comparison of different BART fine-tuning configurations. Improvements in CER / WER on the
test set are marked in bold, and the best result is underlined.

Where OCR failed to render complete lines or
word boxes, these were entered manually. Lines
were sometimes joined or split to maximise com-
prehensibility of the extracted text. Corrections
were provided at word-level, not simply at line-
level, to enable future application of language-
based technologies.

As is common in OCR workflows, layout de-
tection was important to overall accuracy, espe-
cially given that columns and paragraph structures
were used by the printers throughout. To yield
workable baseline recognition, print block detec-
tion and layout analysis models offered by Tran-
skribus were applied — at default settings — con-
secutively to each page. The occurrence of two
columns on most pages, tables, advertisements,
images, marginalia, and fine print demanded care-
ful review of the page layout and sometimes re-
quired manual treatment including adjusting base-
lines and box boundaries and hand-drawing base-
lines for vertical text and marginalia.

7. Output

The work described above resulted in the machine-
readable full text of An Gaodhal published on the
NYU UltraViolet platform (Ní Chonghaile et al.,
2023). The data constitute direct exports from
Transkribus of the resulting full text. The files are
presented in two forms:

1. Alto-format XML files that provide bounding
box regions for text locations (at the individual
token level) of separately tokenised pages,

2. Page-format XML files, which are comparable
to Alto files but use a specific output format for
Transkribus software.

XML files are internally self-describing, with
tags providing names of fields. ‘Page’ Tran-
skribus output format files are organised on a
per-page basis into regions (<TextRegion>) or ta-
bles (<TableRegion>), lines (<TextLines>) or ta-
ble cells (<TableCell>) respectively, and words

(<Word>). Regions are also labeled accord-
ing to a structure type: paragraph (<TextRe-
gion type=‘paragraph’>), page-number (<TextRe-
gion type=‘page-number’>), or marginalia (<Tex-
tRegion type=‘marginalia’>). These distinguish
between the standard printed newspaper text, a
page number printed on the page, and handwritten
marginalia added to the original printed artefact.

Each structural element maps to the image up-
loaded to the software, reading each of the news-
paper’s two columns left to right from top to bottom.
Exceptions arise where the usual layout deviates
according to the printer’s prerogative; for instance,
when a reader’s eye moves at intervals over and
back between the two columns. In such rare
cases, human review prompted the re-ordering of
the sequence to ensure the extracted text output
was as logical and comprehensible as the experi-
ence of reading the printed artefact.

Each region, line, and word has a unique identi-
fier derived from its logical sequence on the page.
Thus, for example, word id ‘r5l1w2’ refers to re-
gion 5, line 1, word 2. Tables, table cells, and
words conform to the same style of sequencing
e.g. region id ‘tbl_4_4’ refers to a table appearing
between Regions 3 and 4 of standard text areas,
and the relevant word id entries appear per line
and word (left to right) as ‘r_4_1_1’ and ‘r_4_1_2’.

Additional identifiers indicating separators
(<Separator>) are retained in the data. The
separator ID numbers do not conform to the
sequence of identifiers mapping all other page
elements; rather, they retain the identifiers gen-
erated automatically by the initial layout analysis.
Hence, they appear somewhat random — two
consecutive separators might appear as ‘r_25’
and ‘r_39’ — and are typically grouped together
at the end of the page metadata. Each separator
corresponds to a decorative hairline rule or border
demarcating different elements of the printed
page, separating articles or advertisements from
each other. Such decorative elements aid the
reader’s navigation of a printed page. In a digital
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environment, an equivalent distinction is provided
by the structural tags applied during text extrac-
tion. As such, separators were deemed surplus
to the requirements of text extraction. In addition,
such was the quantity of separators throughout,
time did not allow for the re-sequencing of each
individual separator between different text regions
as they appear on each page.

Bounding coordinates for polygons and loca-
tions of points making up text baselines are ori-
ented to an origin point (0,0) at the top left of the
page, mapping each element to the image in ques-
tion. X,Y coordinates are given as pairs in the form
x1,y1; x2,y2; etc.

ALTO output format files follow the XML
stylesheet maintained by the Library of
Congress.16 These files follow a similar re-
gion, line, string format, with the token provided at
<string CONTENT>.

The accompanying CSV17 provides additional
metadata on a per-page basis that were recorded
in the course of page layout review. Page meta-
data appear in rows with columns distinguishing
between the following elements: page filename;
the language profile of the page — Gaeilge (Irish),
English, or Bilingual; presence of skew or tight gut-
ters; and whether or not a page contains margina-
lia, images, advertisements, verse, or letters. Vari-
ables include:

• pageFilename: XML OCR output to which row
data refer

• skew_gutter_fallaway: Yes/No on presence of
a skew, gutter, or fallaway on digitised page
that might affect OCR quality

• hasTable: Yes/No on presence of a table or
table-like arrangement of tokens on page (in-
cludes list and list-like structures)

• language: Gaeilge/English/Mix, predominant
language on page

• isCover: Yes/No on whether this page is the
issue start (i.e. cover) page

• hasMarginalia: Yes/No on whether handwrit-
ten margin notes are present

• hasSong_Poem: Yes/No on whether a song
or poem, or part thereof, is present

• hasAdvert: Yes/No on whether an advertise-
ment is present

• hasLetter: Yes/No on whether a letter, or part
thereof, is present

16Version 4.4 is the most current at the time of
submission: https://www.loc.gov/standards/
alto/v4/alto-4-4.xsd

17https://ultraviolet.library.nyu.edu/
records/5ya5n-mc504/files/AnGaodhal_
pageMetadata.csv

• hasImage: Yes/No on whether an image is
present

8. Future Work

The team has begun working on Named Entity
Recognition (NER) for Irish toward automatically
extracting references to people, events, locations,
dates, creative works, and more from the text. For
this purpose, a dataset of 11,000 words was la-
beled manually according to IOBES annotation
scheme to train / fine-tune a deep learning model
for historical Irish NER in future. To the best of our
knowledge, this attempt is the first of its kind for
the Irish language. As for the English-language
content from An Gaodhal, we applied NER to it
separately using en_core_web models trained on
large English-language corpora available through
Python NLP framework spaCy (2023).

The team is also identifying corpora suitable for
future applications of these new OCR and NER
tools, e.g. the bilingual Irish-English newspaper
An Stoc, 1917-1931 (University of Galway, 2022).

9. Conclusion

The project has presented its team with a unique
set of challenges, some of which have been ex-
plored previously by only a handful of initiatives.

All project outputs will be made publicly accessi-
ble and available for further application in the field
of computational linguistics. Creating an open in-
terface enabling searches of the bilingual content
of An Gaodhal will reveal to a wider public the vi-
tality of Irish language practice in a diasporic con-
text and reflect its co-existence alongside English.
This new resource will enable historians to better
contextualise the multilingual heritage of the Irish
diaspora. The specificity of the newspaper’s con-
tent and readership will be a particular boon to ge-
nealogists.

The OCR, OCR post-correction and NER tools
produced by this project represent welcome ad-
ditions to the digital tool-kit serving the Irish lan-
guage into the future. Finally, the methodologies
described here may come to inform and so serve
other under-resourced and endangered languages
worldwide.
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