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Abstract
We present LatinPipe, the winning submission to the EvaLatin 2024 Dependency Parsing shared task. Our system
consists of a fine-tuned concatenation of base and large pre-trained LMs, with a dot-product attention head for
parsing and softmax classification heads for morphology to jointly learn both dependency parsing and morphological
analysis. It is trained by sampling from seven publicly available Latin corpora, utilizing additional harmonization of
annotations to achieve a more unified annotation style. Before fine-tuning, we train the system for a few initial epochs
with frozen weights. We also add additional local relative contextualization by stacking the BiLSTM layers on top of
the Transformer(s). Finally, we ensemble output probability distributions from seven randomly instantiated networks
for the final submission. The code is available at https://github.com/ufal/evalatin2024-latinpipe.
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1. Introduction

In this paper, we describe our entry to the EvaLatin
2024 Dependency Parsing shared task (Sprugnoli
et al., 2024). Our system is called LatinPipe to
resemble its predecessors, UDPipe (Straka and
Straková, 2017) and UDPipe 2 (Straka, 2018). We
submitted two variants, called ÚFAL LatinPipe 1
and ÚFAL LatinPipe 2, placing 1st and 2nd in the
shared task evaluation, respectively.

Our system is an evolution of UDPipe 2 (Straka,
2018). LatinPipe is a graph-based dependency
parser which uses a deep neural network for scor-
ing the graph edges. Unlike UDPipe 2, the neural
network architecture of LatinPipe is a fine-tuned
pre-trained language model, with a dot-product at-
tention head for dependency parsing and softmax
classification heads for morphological analysis to
learn both these tasks jointly.

We provide an extensive evaluation of the ap-
proaches used in LatinPipe: a comparison of mono-
lingual and multilingual pre-trained language mod-
els and their concatenations; initial pretraining on
the frozen Transformer weights; adding two BiL-
STM layers on top of the Transformers; and using
the gold UPOS from the shared task data on the
network input. A considerable focus is directed at
multi-treebank training, as well as the harmoniza-
tion of annotation styles among the seven publicly
available Latin treebanks.

2. Related Work

The EvaLatin 2024 Dependency Parsing shared
task (Sprugnoli et al., 2024) builds upon the two pre-
vious editions of EvaLatin, which focused respec-
tively on lemmatization and POS tagging (Sprugnoli
et al., 2020) and lemmatization, POS tagging, and

features identification (Sprugnoli et al., 2022). UD-
Pipe 2 won the EvaLatin 2020 shared task (Straka
and Straková, 2020); previously, it participated in
the 2018 CoNLL Shared Tasks on Multilingual Pars-
ing from Raw Text to Universal Dependencies (Ze-
man et al., 2018), which encompassed also Latin,
and placed among the winning systems (Straka,
2018).

Latin Dependency Parsing In recent years,
Nehrdich and Hellwig (2022) developed a graph-
based dependency parser specifically for Latin.
Their approach modifies the architecture of the
biaffine parser proposed by Dozat and Manning
(2017) by incorporating a character-based convo-
lutional neural network (CharCNN), and exploits
Latin BERT embeddings (Bamman and Burns,
2020).

Fantoli and de Lhoneux (2022) trained a POS
tagging and parsing model using the deep bi-
affine parser (Dozat and Manning, 2017) imple-
mentation of MaChAmp (van der Goot et al., 2021)
and exploiting treebank embeddings in the en-
coder.

Karamolegkou and Stymne (2021) explored Latin
parsing in a low-resource scenario and found an-
cient Greek to be most effective as transfer lan-
guage, likely due to its syntactic similarity with
Latin.

3. Data

Latin Treebanks We train LatinPipe on the train-
ing portions of the following seven publicly available
Latin corpora:

• ITTB of UD 2.13 (Passarotti, 2019);
• LLCT of UD 2.13 (Cecchini et al., 2020a);

https://github.com/ufal/evalatin2024-latinpipe
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Corpus Training tokens
ITTB 391K
LLCT 194K
PROIEL 178K
UDante 31K
Perseus 18K
Sab 11K
Arch 1K
UD 2.13 812K
UD 2.13+Sab+Arch 824K

Table 1: Training data sizes in tokens.

• PROIEL in either of these two versions: UD
2.13 (Haug and Jøhndal, 2008), and a UD-
style harmonized version (Gamba and Zeman,
2023a,b);1

• UDante of UD 2.13 (Cecchini et al., 2020b);
• Perseus of UD 2.13 (Bamman and Crane,

2011);
• UD-style annotated text of De Latinae Linguae

Reparatione by Marcus Antonius Sabellicus
(Gamba and Cecchini, 2024);

• Archimedes Latinus UD-style treebank (Fantoli
and de Lhoneux, 2022), based on the Latin
translation of the Greek mathematical work
The Spirals of Archimedes;2

where UD 2.13 stands for the Universal Depen-
dencies project (Nivre et al., 2020), version 2.13
(Zeman et al., 2023). We denote the former five
corpora distributed by UD 2.13 as UD 2.13 and all
seven corpora including additionally Arch and Sab
as UD 2.13+Arch+Sab in our experiments. The
treebank training data sizes are presented in Ta-
ble 1.

For the shared task, we train in multi-treebank
setting, in which the examples from the abovemen-
tioned corpora are sampled into training batches
proportionally to the square root of the number
of their sentences, similarly to van der Goot et al.
(2021).

Harmonization of Annotation Styles We no-
ticed that the PROIEL treebank stands out most
in terms of annotation style from the rest of the
other treebanks, so much so that the differences
in annotation style result in varying performance.
We therefore experimented with the following three
settings:

1Available for download at https://
github.com/fjambe/Latin-variability/
tree/main/morpho_harmonization/
morpho-harmonized-treebanks.

2Available at https://github.com/mfantoli/
ArchimedesLatinus.

• training with a harmonized version of PROIEL
by Gamba and Zeman (2023a,b), submitted
as ÚFAL LatinPipe 1;

• training without PROIEL altogether, submitted
as ÚFAL LatinPipe 2;

• training with the original PROIEL annotation
by Haug and Jøhndal (2008), not submitted
due to the two-runs-per-team limit.

The harmonized version of PROIEL resulted
from the harmonization carried out by Gamba and
Zeman (2023a,b), who observed persisting differ-
ences in the annotation scheme of the five Latin
treebanks, annotated by different teams and in dif-
ferent stages of the development of UD guidelines.
Divergences were observed at all annotation lev-
els, from word segmentation to lemmatization, POS
tags, morphology, and syntactic relations. The im-
plemented harmonization process led to substantial
improvements in parsing performances, confirm-
ing the need for a truly standardized annotation
style. Notably, among the five treebanks, in the
case of PROIEL a lower degree of accordance with
the UD guidelines was observed. For instance, in
compound numerals like viginti quattuor ‘twenty-
four’ the second number is attached to the first one
through a fixed relation; in the harmonized ver-
sion, such dependencies are reannotated as flat.
Moreover, PROIEL makes use of the dep relation,
intended for cases where a more precise deprel
cannot be assigned. Through POS tags and mor-
phology, in the harmonized version dep is replaced
with a more appropriate one.

4. Methods

LatinPipe is a graph-based dependency parser.
First, a deep learning neural network is used to
score the graph edge values, and then a global op-
timization Chu-Liu/Edmonds’ algorithm (Chu and
Liu, 1965; Edmonds, 1967) for finding the minimum
spanning tree problem is run on the graph.

For scoring the graph edge values, LatinPipe
pursues a deep learning approach and consists of
a fine-tuned pre-trained LM (or a concatenation of
them) with a dot-product parsing attention head. In
addition, morphology softmax classification heads
are also used, so LatinPipe jointly learns both de-
pendency parsing and morphological analysis.

The general overview of the architecture is given
in Figure 1 and the details are outlined in the fol-
lowing paragraphs.

Pre-trained LMs Our baselines are either fine-
tuned LaBerta or PhilBerta, the Latin monolin-
gual RoBERTa base language models by Riemen-
schneider and Frank (2023); or the fine-tuned
XLM-RoBERTa large (Conneau et al. (2020);
355M parameters), which was pretrained on 390M

https://github.com/fjambe/Latin-variability/tree/main/morpho_harmonization/morpho-harmonized-treebanks
https://github.com/fjambe/Latin-variability/tree/main/morpho_harmonization/morpho-harmonized-treebanks
https://github.com/fjambe/Latin-variability/tree/main/morpho_harmonization/morpho-harmonized-treebanks
https://github.com/fjambe/Latin-variability/tree/main/morpho_harmonization/morpho-harmonized-treebanks
https://github.com/mfantoli/ArchimedesLatinus
https://github.com/mfantoli/ArchimedesLatinus
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Figure 1: LatinPipe architecture overview.

Latin tokens among other languages. Apart
from using the single fine-tuned PLMs, we also
experimented with a concatenation of the con-
textualized embeddings yielded by multiple fine-
tuned encoders: LaBerta+PhilBerta and XLM-R
large+LaBerta+PhilBerta.

Frozen Pretraining Before fine-tuning the PLMs’
weights, we can optionally freeze the pre-trained
Transformer weights, and optimize solely the re-
maining weights of the architecture for a few initial
epochs, namely the heads and the stacked BiL-
STM layers. The objective of frozen pretraining is
to facilitate the commencement of the fine-tuning
optimization from a favorable starting point.

Adding LSTMs We incorporate two bidirectional
LSTM layers (Hochreiter and Schmidhuber, 1997;
Gers et al., 2000) on top of the Transformer(s) to
enhance the modeling of relative short-distance re-
lationships between the tokens and to contextualize
the embedded UPOS tags.

Gold UPOS on Input We leverage the gold mor-
phological analysis provided in the shared task data
as an additional input to the neural network. The
trainable word embeddings of UPOS are concate-
nated with the contextualized embeddings yielded
from the fine-tuned PLM(s), and together, the con-
catenation of embeddings is processed by the
LSTM layers.

Ensembling For the final submission, we ensem-
ble output probability distributions from seven ran-
domly instantiated networks by averaging the prob-
abilities in the corresponding dimensions.

Handling punctuation The shared task test data
do not contain punctuation. This causes concern in
settings when training without PROIEL, which is the
only representative of a treebank without punctua-
tion. Training solely on data containing punctuation
is expected to lead to inferior performance on test
data without it. Therefore in this particular setting,
we artificially add punctuation to the test data by
appending periods at sentence ends, and after the
model prediction, we remove the dummy punctua-
tion again.3

Architecture Details In the LatinPipe architec-
ture (Figure 1), every classification layer and com-
putation of queries and keys is preceded by a hid-
den layer of size 2 048 with ReLU activation. The
dimensionality of the queries and keys is 512, and
the LSTM dimensionality is 256. When predict-
ing dependency relations, we also concatenate
the LSTM-generated representation of the most
likely dependency head according to the predicted
scores (which is not necessarily the one chosen by
the Chu-Liu/Edmonds’ algorithm).

Training Details The model is trained with the
Adam optimizer (Kingma and Ba, 2015) for 30
epochs, each comprising 1 000 batches with a
batch size of 32. The learning rate is first linearly
increased from 0 to 2e-5 in the first two epochs and
then decays to 0 according to the cosine sched-
ule. Optionally, we perform 10-epoch pretraining
with frozen Transformer weights utilizing a constant
learning rate of 1e-3. On a single A100 GPU with
40GB, the training takes 9 hours. The exact training
configuration, including the exact command used to
train the models, is available in the released source
code.

5. Results

We present the evaluation on the UD 2.13 test data
in Tables 2 and on the EvaLatin 2024 test data in
Table 3. All the results are averages of three runs.

Table 2.A evaluates the baseline fine-tuned
PLMs on the UD 2.13 test sets. Increasing PLM
size from base to large clearly improves the results
across the board and on average, even if the large
model is not a monolingual but a multilingual one.

3Obviously, the other option would be to remove the
punctuation from the training data and retrain the models,
an expensive and unavailable option due to the restricted
time span of the shared task testing period.
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Experiment Avg ITTB LLCT PROIEL UDante Perseus
A) PLMs Evaluation
LaBerta 83.20 90.91 94.54 86.75 66.71 77.08
PhilBerta 82.87 91.09 94.19 86.13 66.42 76.51
LaBerta+PhilBerta 83.99 91.31 94.74 87.29 68.18 78.42
XLM-R large 84.19 91.60 95.33 87.18 71.17 75.67
XLM-R large+LaBerta+PhilBerta 84.67 91.78 95.35 87.57 71.95 76.70

B) Incremental Architecture Improvements w.r.t. the Previous Row
+ Frozen training for 10 epochs 86.09 92.29 95.34 88.64 74.20 79.98
+ Two bidirectional LSTM layers 86.33 92.81 94.70 89.05 74.78 80.32
+ Gold UPOS on parser input 86.97 93.18 95.64 89.78 74.99 81.28

C) Multi-treebank Training w.r.t. the Previous Row
Single-treebank training 86.97 93.18 95.64 89.78 74.99 81.28
UD 2.13 training 88.05 92.25 95.60 88.74 79.84 83.84
UD 2.13+Sab+Arch training 88.09 92.18 95.44 88.43 80.56 83.81

D) Ensembles of the Models in the Previous Section
Single-treebank training, 7 models 87.31 93.38 95.78 90.23 75.51 81.66
UD 2.13 training, 7 models 88.51 92.65 95.89 89.10 80.91 84.02
UD 2.13+Sab+Arch training, 7 models 88.63 92.45 95.78 89.23 81.47 84.22

E) Previous work
UDPipe 2 (Straka, 2018), UD 2.12 89.35 94.39 79.55 68.65 71.91
MaChAmp (van der Goot et al., 2021), UD 2.8 92.45 95.41 86.97 74.01 74.67
Nehrdich and Hellwig (2022), UD 2.8-2.9 92.99 — 86.34 — 80.16

Table 2: UD 2.13 test sets LAS evaluation. Avg denotes the LAS macro average over the UD 2.13 corpora.
Section E shows previous work on older UD versions.

Experiment Avg Poetry Prose
A) Single-treebank Training
ITTB 59.96 57.84 62.08
LLCT 47.93 45.12 50.74
PROIEL original 68.87 68.47 69.26
PROIEL harmonized 73.88 72.37 75.40
UDante 60.23 59.11 61.36
Perseus 59.22 58.43 60.02
B) Multi-treebank with PROIEL Versions
UD 2.13, original 72.31 72.10 72.52
UD 2.13, none 66.16 64.03 68.29
UD 2.13, harmonized 75.22 74.65 75.78
UD 2.13+Sab+Arch, original 72.75 72.35 73.14
UD 2.13+Sab+Arch, none 66.64 64.50 68.79
UD 2.13+Sab+Arch, harmo. 75.48 74.52 76.43
C) Multi-treebank w/ and wo/ Gold UPOS
w/ gold UPOS 75.48 74.52 76.43
wo/ gold UPOS 74.19 73.28 75.09
D) Ensembles of 7 Models
UD 2.13+Sab+Arch, original 73.76 73.57 73.95
UD 2.13+Sab+Arch, none 68.16 65.71 70.60
UD 2.13+Sab+Arch, harmo. 76.58 75.75 77.41
E) Adding Punctuation Before Prediction
UD 2.13+Sab+Arch, none 71.87 70.68 73.07

Table 3: EvaLatin 2024 test set LAS evaluation.
Avg denotes the LAS macro average over Poetry
and Prose.

The only exception is Perseus, on which we sus-
pect the XLM-R large to overtrain due to the small
size of the corpus (see Table 1). Finally, a con-
catenation of models yields further gains over their
single components in all cases.

Table 2.B shows a notable macro average gain of
+1.42 percent points when pretraining with frozen
weights for initial 10 epochs before fine-tuning. Also
the addition of the two bidirectional LSTM layers
helps marginally on average by +0.24. Unsurpris-
ingly, the addition of gold UPOS on input brings
+0.64 percent points in the UD 2.13 macro average,
as well as it improves performance in all single UD
2.13 treebanks. On the EvaLatin test set, the addi-
tion of the gold UPOS straightforwardly improved
the results by +1.2 on Poetry and +1.3 on Prose,
as measured on the non-ensembled model (Ta-
ble 3.C).

Table 2.C compares multi-treebank training vs.
single-treebank training. In accord with previous lit-
erature (Nehrdich and Hellwig, 2022), we observed
the greatest benefits from the multi-treebank train-
ing for the smaller datasets (UDante and Perseus),
indecisive results for the middle-sized datasets
(LLCT and PROIEL), and a decrease for the largest
dataset (ITTB). However, in macro average, we
gained +0.51 percent point by multi-treebank train-
ing. While the addition of the two new small
datasets, the Sab and Arch, is indecisive on the
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Experiment Avg ITTB LLCT PROIEL UDante Perseus
A) Best Single-model Results
Single-treebank training 97.33 99.37 99.77 98.32 93.61 95.55
UD 2.13 training 97.23 99.25 99.77 98.10 93.18 95.85

B) Best 7-Model Ensemble Results
Single-treebank training, 7 models 97.43 99.39 99.78 98.47 93.61 95.89
UD 2.13 training, 7 models 97.42 99.33 99.79 98.31 93.58 96.09

C) Previous work
UDPipe 2 (Straka, 2018), UD 2.12 99.03 99.75 97.02 92.95 91.18
MaChAmp (van der Goot et al., 2021), UD 2.8 98.62 99.68 97.84 91.44 90.46
Nehrdich and Hellwig (2022), UD 2.8-2.9 97.3 — 94.2 — 90.8
Bamman and Burns (2020), UD 2.6 98.8 — 98.2 — 94.3

Table 4: UD 2.13 test sets UPOS evaluation, with Avg denoting the UPOS macro average.

Experiment Avg ITTB LLCT PROIEL UDante Perseus
A) Best Single-model Results
Single-treebank training 92.45 98.57 97.33 94.68 83.06 88.61
UD 2.13 training 93.68 98.26 97.36 94.05 88.27 90.49

B) Best 7-Model Ensemble Results
Single-treebank training, 7 models 92.68 98.62 97.42 95.04 83.37 88.94
UD 2.13 training, 7 models 94.19 98.45 97.52 94.56 89.16 91.24

C) Previous work
UDPipe 2 (Straka, 2018), UD 2.12 97.12 97.16 91.43 84.38 84.65
MaChAmp (van der Goot et al., 2021), UD 2.8 96.95 96.79 92.56 69.72 84.32

Table 5: UD 2.13 test sets UFeats evaluation, with Avg denoting the UFeats macro average.

UD 2.13 macro average in Table 2.C, which is
in alignment with their modest size (Table 1), on
EvaLatin 2024 (Table 3.B), we observed a marginal
improvement when incorporating Sab and Arch,
which might probably be attributed to similarity of
the EvaLatin test data to these treebanks.

Table 3 shows the evaluation on the EvaLatin test
data, both Poetry and Prose, and their LAS macro
average; with focus on the effect of data harmo-
nization. In all paired experiments, the harmonized
PROIEL version clearly improved results over the
version with the original PROIEL dataset from UD
2.13, when evaluated on the EvaLatin 2024 test
data. However, using at least the original PROIEL
dataset in the multi-treebank training is still better
than excluding the PROIEL treebank altogether.

As evidenced by both Table 2.D and Table 3.D,
an ensemble is always stronger than its individual
components. Ensembling adds on average +0.45
percent points on the UD 2.13 LAS macro average
over three experimental settings (compare sections
C and D in Table 2). In the shared task, ensem-
bling adds +1.26 percent points (compare sections
B and D in Table 3). Our best entry, submitted
as ÚFAL LatinPipe 1, corresponds to the row UD
2.13+Sab+Arch, harmo. in Table 3.D.

Finally, when training without PROIEL in a multi-

treebank setting, we have to mitigate the punctua-
tion mismatch between the training and the shared
task test data, as described in Section 4. Row UD
2.13+Sab+Arch in Table 3.E shows our second
submission to the shared task, ÚFAL LatinPipe2,
in which we corrected for missing punctuation in
the shared task test data.

UPOS and UFeats Tagging Since our model per-
forms full morphosyntactic analysis, we present
also the accuracy of UPOS tagging and UFeats
tagging in Tables 4 and 5, respectively. LatinPipe
surpasses the previous systems and sets new state-
of-the-art results for all treebanks.

6. Conclusion

We described LatinPipe, the winning entry to the
EvaLatin 2024 Dependency Parsing shared task,
and we provided the evaluation and rationale be-
hind our system design choices. The source code
for LatinPipe is available at https://github.com/
ufal/evalatin2024-latinpipe. Our future work
will entail drawing insights from the methodologies
presented in this context for the development of
UDPipe 3.

https://github.com/ufal/evalatin2024-latinpipe
https://github.com/ufal/evalatin2024-latinpipe
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