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Abstract
General-Purpose language models have changed the world of natural language processing, if not the world itself.
The evaluation of such versatile models, while supposedly similar to evaluation of generation models before them, in
fact presents a host of new evaluation challenges and opportunities. This tutorial welcomes people from diverse
backgrounds and assumes little familiarity with metrics, datasets, prompts and benchmarks. It will lay the foundations
and explain the basics and their importance, while touching on the major points and breakthroughs of the recent era
of evaluation. We will contrast new to old approaches, from evaluating on multi-task benchmarks rather than on
dedicated datasets to efficiency constraints, and from testing stability and prompts on in-context learning to using the
models themselves as evaluation metrics. Finally, we will present a host of open research questions in the field of
robsut, efficient, and reliable evaluation.
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1. Tutorial Description - Introduction

1.1. Background and Goals

Evaluation benchmarks have been a cornerstone
of machine learning progress for years now. How-
ever, the introduction of pretrained models has pro-
foundly altered the way benchmarks are used. In-
stead of focused questions, benchmarks now re-
quire assessing a vast and general set of abilities,
for which diverse samples are collected (Liang et al.,
2022; Gao et al., 2021). This is a first of many
changes that are transforming the field of model
evaluation, and that entail increasingly complex
evaluation endeavours, compared to traditional
single-task evaluation efforts.

On the other hand, the new era offers advan-
tages in evaluation, requiring less data for training
and better, flexible metrics. Evaluation is no longer
done through fine-tuning, i.e. training on a train set
for every task to be evaluated, but relies entirely
on zero-shot or in-context learning. In that manner,
instead of supplying training, the benchmark is a
test set only. Another advantage of current models
is that they can serve to evaluate other models, fol-
lowing the assumption that error detection is easier
than generation. This approach offers a way to
test answers in areas where it was hardly possible
before.

With all of those changes, also comes great com-
pute. Evaluating on a broad range of datasets, with
more models, and with long and complex tasks, all
brought growing compute needs, sometimes more
costly than the model pretraining (Biderman et al.,
2023).

This tutorial aims to introduce the still relevant

concepts of evaluation (e.g., evaluation goals or N-
gram based reference metrics) and contrast those
with the new and changing needs of the general
models we employ today. Such needs include lever-
aging another language model as an evaluator, a
language model based metric, taking inference
costs into account, evaluating each model on a
diverse set of tasks, evaluating on diverse prompts,
and more.

A complementary goal of the tutorial is to provide
a structured and organized view of LLMs’ bench-
marking. Such a view is largely missing in the
academic literature, where each paper typically ad-
dresses a specific problem in isolation, normally
in an ad-hoc manner. This view is also missing
from the practical solutions presented by the indus-
try, where different decisions are taken without a
proper explanation which might cause some vague
or incomplete understanding by the community. We
present a complete pipeline of LLMs benchmarking,
and discuss decisions that need to be considered
throughout the pipeline. We will also share our
experience and lessons learned from evaluating
LLMs. Finally, the tutorial will discuss future chal-
lenges of LLMs benchmarking.

1.2. Tutorial type
This is a cutting-edge tutorial that aims at bridging
the gaps in this emerging field. The need for timely
discussions of LLM benchmarking is ever more
pressing in light of the rapid advancement in the
field that has caused great shifts in benchmarking
such as new evaluation paradigms (e.g., ICL), and
ever growing benchmarks aiming to validate un-
precedented amounts of new abilities. Specifically,
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this tutorial differs from recent performance bench-
marking tutorials (Coleman et al., 2019) that mainly
deal with evaluations of training and inference per-
formance for hardware, software, and services as
opposed to our focus on quality. Others like (Boyd-
Graber et al., 2022) focus on human evaluation and
explainability of LLMs or NLG metrics (Khapra and
Sai, 2021) which covers a small section of overall
benchmarking considerations.

2. Target Audience

While the tutorial will present the current state of
the art and cutting-edge research, it should accom-
modate entry-level audience. The tutorial assumes
little to no knowledge about evaluation, merely ex-
pecting some understanding of what Language
Models are currently capable of and why they are
useful. Thus, the tutorial is the best fit for peo-
ple who have worked on a specific aspect of eval-
uation, but are less familiar with the big picture,
researchers who are new to evaluation, and re-
searchers who are less familiar with new challenges
specific to large language models, such as bench-
marking across many datasets, evaluating in open-
domain tasks and prompting.

3. Outline

Part 1: Introduction (35 min)
Part 1.1: Introduction to Benchmarking

• What are the goals of model evaluation?

• Benchmarking building blocks- task, dataset,
and metric

Part 1.2: Introduction to LLM Benchmarking

• Models: what do we evaluate?

• What are the main challenges? or, why it is
not trivial?

• Common and important tasks

• Measurements - automatic metrics and human
evaluation

• Benchmarking paradigms - fine-tuning, zero
shot learner, few shot leaner

• Other important hyperparameters, instructions,
prompts matter

• Reviewing general benchmarks

• Reviewing specific downstream tasks

• How do objectives and considerations (what,
when, and whom) affect benchmarking deci-
sions?

Part 2: Framework for Benchmarking (10 min)

• What are the requirements from the frame-
work?

• Open source frameworks (e.g., HELM, OpenAI
Evals, LM-evaluation-harness)

• Business frameworks

Part 3: Metrics (45 min)

• Classic N-gram based metrics

• Language Model based metrics

• Reference-less Metrics

• Language models as evaluators

• Fine-grained and specialized metrics

• Challenge sets, perturbation and data-based
metrics

Part 4: Prompts (45 min)

• The importance of prompts

– Who writes the prompts? What goals do
they serve?

• Overview of evaluation protocol for prompts

– Typically, a single prompt is used to eval-
uate across models

• Prompt banks

• Different desiderata for different use-cases

– LLM developers
– Developers for targeted downstream ap-

plications
– Developers of open-ended user-facing ap-

plciations

Part 5: Efficient Benchmark Design (45 min)

• Benchmarks Objectives

• Benchmarks Compute (survey)

• Benchmark decisions, or, common ways to
reduce compute (survey)

• What makes a good benchmark (validity, relia-
bility)

• Best practices for compute reduction in LLM
benchmarks

Part 6: Manual Evaluation Efforts (30 min)

• Is human evaluation being abandoned?

• The alignment paradigm

• LLM-Human feedback loops
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4. Diversity Considerations

The tutorial promotes a variety of topics related
to diversity and fairness including efficient bench-
marking to enable fair evaluation for low-resource
groups, and reducing energy consumption. In ad-
dition, some of the topics are directly related to
increasing transparency around model evaluation.

The presenters are diverse in terms of gender,
age, background, location and affiliation.

5. Reading List

1. Surveys on evaluation of LLMs (Chang et al.,
2023; Ziyu et al., 2023; Gehrmann et al., 2023)

2. Pre-training paradigms (Min et al., 2023)

3. Current benchmarks: HELM (Liang et al.,
2022), big-bench (Srivastava et al., 2022), LM-
evaluation-harness (Gao et al., 2021)

4. Prompts: creating paraphrases (Lester et al.,
2021; Gonen et al., 2022; Honovich et al.,
2022), robustness to paraphrases (Gu et al.,
2022; Sun et al., 2023; Mizrahi et al., 2024)

5. Metrics: survey (Sai et al., 2022), models as
evaluators (Zheng et al., 2023)

6. Efficient-benchmarking: (Perlitz et al., 2023a;
Vivek et al., 2023; Liang et al., 2022),

7. Manual Evaluation: survey (Bojic et al., 2023),
reproducibility (Belz et al., 2023)

6. Presenters

Leshem Choshen
leshem.choshen@mail.huji.ac.il
Leshem Choshen is a postdoctoral researcher at
MIT/IBM, aiming to collaboratively pretrain through
model recycling (Don-Yehiya et al., 2022b; Yadav
et al., 2023), efficient evaluation (Choshen et al.,
2022b; Perlitz et al., 2023a), and manageable
pretraining research (e.g., co-organizing the
babyLM shared task (Warstadt et al., 2023)).
Before leading a small research group at IBM, he
received the postdoctoral Rothschild and Fulbright
fellowships as well as IAAI and Blavatnik best Ph.D.
awards. With broad NLP and ML interests, he also
worked on Reinforcement Learning, and Under-
standing of how neural networks learn (Choshen
et al., 2022a; Din et al., 2023), with a specific
interest in evaluation (Choshen and Abend, 2019;
Choshen et al., 2020), evaluation of evaluation
(Choshen and Abend, 2018b,a), reference-less
metrics (Choshen and Abend, 2018c; Honovich
et al., 2021), quality estimation (Don-Yehiya
et al., 2022a) and related topics. In parallel,

he participated in Project Debater, creating a
machine that could hold a formal debate, ending in
a Nature cover and live debate (Slonim et al., 2021).

Ariel Gera
ariel.gera1@ibm.com
Ariel is a research scientist at IBM Research
AI, with diverse interests in both NLG and text
classification. Ariel is currently pursuing research
on utilizing the outputs of different model lay-
ers (Gera et al., 2023) and on efficient and reliable
evaluation for NLG tasks. Following his research
on argumentation (Bilu et al., 2019) as part of
Project Debater (Slonim et al., 2021), he has
worked on numerous threads related to training
models with limited supervision. These include
studies of active learning (Ein-Dor et al., 2020;
Perlitz et al., 2023c), few-shot (Shnarch et al.,
2022a) and zero-shot (Gera et al., 2022), as
well as development of the Label Sleuth platform
for building text classifiers with a human in the
loop (Shnarch et al., 2022b). Ariel has an MSc in
Cognitive Science from the Hebrew University, for
psychological studies of emotion perception.

Yotam Perlitz
yotam.perlitz@ibm.com
Yotam Perlitz is an AI Research scientist at IBM
Research AI, advocating for more transparent
and efficient LLM benchmarks (Perlitz et al.,
2023a; Bandel et al., 2024), factually correct
Data-to-text generation (Perlitz et al., 2023b, 2022)
and data-efficient LLM training (Gera et al., 2022;
Perlitz et al., 2023c). Previously, Yotam had
investigated coarse to fine methods for objects
detection (Dana et al., 2021) as well as exotic
transmission phenomena through various phases
of matter (Perlitz and Michaeli, 2018) as part of his
M.Sc at the Weizmann institute of Science.

Michal Shmueli-Scheuer
shmueli@il.ibm.com
Michal is a principal researcher in the Language
and Retrieval research group in IBM Research
AI. Her area of expertise is in the fields of NLG
and NLP including data to text, conversational
bots, summarization of scientific documents, and
affective computing. Michal is leading the work
of LLMs Evaluation in IBM. She has published
in leading NLP and AI conferences and journals,
including ACL, EMNLP, NAACL, AAAI, and IUI. She
regularly reviews for top NLP and AI conferences.
She was an organizer of the 1st and 2nd Scientific
Document Processing (SDP) workshops at 2020
(EMNLP) and 2021 (COLING), and co-organized
shared tasks for Scientific document summariza-
tion in those workshops. Michal received her
PhD from the University of California, Irvine in 2009.



22

Gabriel Stanovsky
gabriel.stanovsky@mail.huji.ac.il
Gabriel Stanovsky is a senior lecturer (assistant
professor) in the school of computer science and
engineering at the Hebrew University of Jerusalem,
and a research scientist at the Allen Institute for
AI (AI2). He did his postdoctoral research at the
University of Washington and AI2 in Seattle, work-
ing with Prof. Luke Zettlemoyer and Prof. Noah
Smith, and his PhD with Prof. Ido Dagan at Bar-
Ilan University. He is interested in developing nat-
ural language processing models which deal with
real-world texts and help answer multi-disciplinary
research questions, in archaeology, law, medicine,
and more. His work has received awards at top-tier
venues, including ACL, NAACL, and CoNLL, and
recognition in popular journals such as Science
and New Scientist, and The New York Times.

7. Ethics Statement

During the tutorial, we will emphasize the impor-
tance of being aware of and addressing biases in
benchmarks and frameworks. We will advocate for
transparency in benchmark creation and evaluation
methodologies. In addition, we will acknowledge
the environmental impact of large-scale models by
discussing efficient benchmarking approaches. Fi-
nally, we will highlight the importance of community
engagement and collaboration for the benefit of
diverse perspectives and the benefit of science.
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