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Abstract
Given the long textual product information and the product image, Multi-modal Product Summarization (MPS) aims to
increase customers’ desire to purchase by highlighting product characteristics with a short textual summary. Existing
MPS methods can produce promising results. Nevertheless, they still 1) lack end-to-end product summarization, 2)
lack multi-grained multi-modal modeling, and 3) lack multi-modal attribute modeling. To improve MPS, we propose
an end-to-end multi-grained multi-modal attribute-aware product summarization method (MMAPS) for generating
high-quality product summaries in e-commerce. MMAPS jointly models product attributes and generates product
summaries. We design several multi-grained multi-modal tasks to better guide the multi-modal learning of MMAPS.
Furthermore, we model product attributes based on both text and image modalities so that multi-modal product
characteristics can be manifested in the generated summaries. Extensive experiments on a real large-scale Chinese
e-commence dataset demonstrate that our model outperforms state-of-the-art product summarization methods
w.r.t. several summarization metrics. Our code is publicly available at: https://github.com/KDEGroup/MMAPS.
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1. Introduction

With the development of the Internet, online shop-
ping has become an integral part of people’s daily
life. Unlike brick-and-mortar stores, where cus-
tomers can interact face-to-face with salespeople,
people mainly learn about products through textual
and pictorial descriptions in online stores. A prod-
uct is typically described with a product title, one or
a few product images and a long product descrip-
tion in the online store. For instance, Fig. 1 pro-
vides an example of a portable massage sticker
sold in a Chinese online store.

However, long product descriptions increase the
cognitive load and hurt the shopping experience.
Hence, informative product summaries are critical
for online stores to provide a better shopping expe-
rience and boost product sales. As new products
emerge rapidly, manual summarization becomes
cost prohibitive, leaving alone that it requires a
certain level of expertise to write accurate and
attractive product summaries. To overcome this
problem, much effort has been devoted to design-
ing product summarization methods (Chen et al.,
2019; Li et al., 2020a; Song et al., 2022) that auto-
matically summarizes product information to high-
light product’s characteristics and advantages.

Early methods (Wang et al., 2017; Khatri et al.,
2018; Chen et al., 2019; Daultani et al., 2019)

* Corresponding Author.

mainly focus on leveraging product’s textual infor-
mation, such as descriptions and attributes. How-
ever, they ignore the product’s visual modality
which can provide rich information for product sum-
marization. Recently, some works (Zhang et al.,
2019; Li et al., 2020a; Song et al., 2022) consider
multi-modal product information in product sum-
marization, i.e., Multi-modal Product Summariza-
tion (MPS). As illustrated in Fig. 1, both the text
modality and the visual modality are presented
on product’s web page and they convey cues re-
garding key product characteristics which are help-
ful information for generating eye-catching product
summaries. Existing MPS methods have achieved
promising performance. Nevertheless, they still
suffer from several problems:
• P1: Lack end-to-end product summariza-

tion. State-of-the-art MPS approaches (Li et al.,
2020a; Song et al., 2022) treat product attribute
modeling and product summarization genera-
tion as two separate phases and train them inde-
pendently, making it difficult to train and tune the
complete process. Moreover, the error from the
two phases is accumulated, negatively affecting
the summarization.

• P2: Lack multi-grained multi-modal model-
ing. Existing MPS methods (Li et al., 2020a;
Song et al., 2022) fuse the global information
(e.g., sentence-level representation and image-
level representation) from different modalities,

https://github.com/KDEGroup/MMAPS
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Product Title

NetEase Intelligent Portable Low-frequency
Massage Sticker

Product Long Text Description

No ultraviolet rays, no damage to the skin, can be 
washed and used many times. Enjoy private 
massage anytime and anywhere, with curved 
design, silky touch, and low-frequency therapy 
principle.

Japanese high-quality silica gel is selected, 5 kinds of 
massage techniques, 7 levels of intensity adjustment, and 
wireless remote control by mobile phone. Multi-
directional flexible massage, the massager can be put into 
the pocket, convenient and quick to use, customized for 
professionals.

During relaxation, a large amount of blood is input; 
during contraction, blood containing metabolites is sent 
out. This movement goes back and forth, which is good 
for muscle relaxation, simulating the kneading effect of a 
real person, and master-level comfortable massage 
techniques to meet the needs of different parts of the 
body.

Product Image

Product Summary

TENS低频技术，震动幅度小但紧凑，可以让身体更加放松，app无线控制，让你的使用更加方
便快捷，再加上7档调节功能，这款按摩贴让你随时随地进行舒适的按摩。

(TENS low-frequency technology, the vibration range is small but compact, which can 
make the body more relaxed, and the app wireless control makes your use more 
convenient and quick. With the 7-level adjustment function, this massage sticker allows 
you to perform a comfortable massage anytime, anywhere.)

网易智造 随身低频按摩贴

无紫外线，不伤肌肤，可多次水洗使用。
随时随地享受私人按摩，曲线设计，丝滑
手感，采用低频治疗原理。 

选用日本优质硅胶，5种按摩手法，7档强
度调节，手机无线遥控。多方位灵活按
摩，能装进口袋里的按摩器，使用时方便
快捷，为职场人士定制。

松弛时，血液大量输入；收缩时，含有代
谢物的血液被送出。这种动作循环往复，
利于肌肉放松，模拟真人揉捏效果，大师
级舒适按摩手法，满足身体不同部位需
求。

Figure 1: An example of a product in the CEPSUM
dataset (Li et al., 2020a). Product attributes are
shown in red.

i.e., coarse-grained fusion. They neglect the
importance of fine-grained multi-modal model-
ing (e.g., token-level and region-level represen-
tations alignment and fine-grained multi-modal
product attribute modeling), which can improve
the quality of generated product summaries.

• P3: Lack multi-modal attribute modeling.
Product attributes describe key product charac-
teristics (e.g., design and functionality) which
help MPS models better understand products.
However, existing works only model attributes
from one modality, leading to inferior results.
For instance, V2P (Song et al., 2022) models
product attributes by extracting features from
product images, while MMPG (Li et al., 2020a)
considers attribute features from text.
To address the above issues, we propose an

end-to-end Multi-Grained Multi-modal Attribute-
aware Product Summarization method (MMAPS).
Our contributions are summarized as follows:
• To deal with P1, we design an end-to-end multi-

modal product summarization method MMAPS,
which jointly models product attributes and sum-
mary generation. MMAPS can attend to the
product characteristics from multiple modalities,
helping generate coherent product summaries.
The end-to-end learning process also reduces
the difficulty of training and tuning.

• To remedy P2, we propose several multi-grained

multi-modal tasks to guide MMAPS. We de-
sign a coarse-grained dual-encoder contrastive
learning task to align cross-modal coarse-
grained information coarsely. Additionally, we
design the fine-grained multi-modal alignment
task and the fine-grained product attribute pre-
diction task to endow MMAPS with the ability to
capture fine-grained cross-modal product infor-
mation.

• To handle P3, in the fine-grained product at-
tribute prediction task, MMAPS models prod-
uct attributes based on both text and image
modality, which helps MMAPS understands
multi-modal product characteristics and guides
MMAPS to pay more attention to the significant
features when generating product summaries.

• We conduct extensive experiments on a large-
scale Chinese e-commerce dataset. Experi-
mental results demonstrate that MMAPS out-
performs state-of-the-art product summarization
methods.

2. Related Work

2.1. Product Summarization

E-Commerce product summarization aims to gen-
erate text summaries that provide customers with
the most valuable information about the product,
increasing their desire to purchase the product.

Traditional works only take the long textual de-
scriptions of the products as input. For exam-
ple, Yuan et al. (Yuan et al., 2020) propose to
use a dual-copy mechanism to generate faithful
product summaries, which can selectively copy
tokens from both product descriptions and at-
tributes. EPCCG (Guo et al., 2022) utilizes Trans-
former (Vaswani et al., 2017) to summarize con-
trollable product copywriting from product title, at-
tributes, and OCR text in different aspects.

Despite their promising performance, earlier
methods do not incorporate the products’ visual
signal in the text generation. The visual modality
can help customers discriminate essential product
characteristics and thus improve the quality of the
generated summaries.

Recently, a few works resort to multi-modal prod-
uct summarization which considers multi-modal in-
formation. For example, MMPG (Li et al., 2020a)
introduce a multi-modal pointer-generator network
to generate an aspect-aware textual summary for
Chinese e-commerce products by integrating tex-
tual and visual product information.

V2P (Song et al., 2022) unifies the heteroge-
neous multi-modal data in the same embedding
space by converting the vision modality into se-
mantic attribute prompts.
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2.2. Multi-Modal Self-Supervised
Learning

Self-supervised learning has been widely used in
pre-trained models (Liu et al., 2023). In multi-
modal learning, many works (Li et al., 2021b;
Sheng et al., 2021; Lin et al., 2020) have exploited
contrastive learning, a type of self-supervised
learning, to model the correspondence among dif-
ferent modalities. For instance, Oscar (Li et al.,
2020b) learns cross-modal representations by pre-
dicting whether the image-text pair contains the
original image representation or any polluted one.
ALBEF (Li et al., 2021a) learns a similarity func-
tion such that parallel image-text pairs have higher
similarity scores. Based on the learned func-
tion, ALBEF enforces the representations of an
image and a text in a pair close to each other.
AVTS (Korbar et al., 2018) leverage the consis-
tency of videos and audios to train the deep en-
coder. MMV (Alayrac et al., 2020) further consid-
ers the consistency among video, audio and text.

3. Our Method MMAPS

In this section, we illustrate the details of our pro-
posed MMAPS. Fig. 2 provides an overview of
MMAPS. MMAPS takes the product information
X, which contains the title and the long descrip-
tion of a product, and the product image I as input,
and it generates a product summary that is much
shorter than the product description.

3.1. Architecture Design
The architecture of MMAPS consists of four com-
ponents. We directly use the design of BART de-
coder as the decoder in MMAPS to decode sum-
maries. Text encoding and image encoding com-
ponents are used for encoding textual features and
visual features, respectively. The text-image fu-
sion component is designed for fusing multi-modal
representations that are prepared for the product
summarization. In the following, we illustrate the
details of text encoding, image encoding and text-
image fusion component.

3.1.1. Text Encoding

The product information X is tokenized and a
special token [CLS] is appended to the token se-
quence in order to represent the overall, sequence-
level information after text encoding. Then, we
use the pre-trained BART encoder as the text en-
coder in MMAPS and the token sequence is fed
into it. The output encoded token representation
sequence is denoted as Z = {z1, z2, · · · , zL, z<cls>}
where L is the length of the sequence, zi is the en-
coded representation of i-th token, and z<cls> is the

representation of [CLS]. z<cls> is inferred by all to-
kens in the sequence and it can be regarded as
the sequence-level representation.

3.1.2. Image Encoding

We use the Faster R-CNN (Ren et al., 2015) pre-
trained on Visual Genome (Krishna et al., 2017)
to extract region representations. Specifically, we
feed the input image I to the pre-trained Faster R-
CNN and extract all the detected objects. We only
retain m objects with the highest confidence. To
keep the spatial information of the image, each im-
age region i is encoded as the sum of three types
of features (Cho et al., 2021):
1. RoI (Region of Interest) object feature vi;

2. RoI bounding box coordinate feature ebox
i ,

which is encoded with a linear layer;

3. Region id feature ereg
i , which is encoded by the

embedding layer in the text encoder.
The final region representation oi of i can be ob-
tained as follows:

vi, ci, ri ∈ Faster R-CNN(I)

ebox
i = [ci, si]We + Be, oi = vi + ebox

i + ereg
i

(1)

where ci is a 4-dimensional normalized position
vector indicating the coordinates of the top-left and
bottom-right corners, si ∈ R1 indicates the corre-
sponding area of ci, ri is the class distribution of
region i which is later used in the Masked Region
Modeling task introduced in Sec. 3.2.2, [·, ·] repre-
sents the concatenation operation, and We and Be

are learnable parameters. Faster R-CNN(I) out-
puts m triples {v, c, r} and each of them corre-
sponds to an image region. If an image has less
than m detected regions, we use vectors with all
zeros as o to pad region representations to have
m region representations for that image.

o is only position-based region representation.
To further model the context of the region, we
subsequently feed o into a Transformer-based uni-
modal encoder. For an image, we construct a
region representation sequence with its m region
representations: O = {o<cls>,o1,o2, · · · ,om}.
Similar to the [CLS] token used in text encoding,
we prepend a learnable parameter o<cls> to O to
represent the global representation of the image.
The image encoder consists of H stacked layers
and each layer includes two sub-layers: 1) Multi-
Head Attention (MHA) and 2) a position-wise Feed-
Forward Network (FFN). Finally, we obtain the out-
put visual features G = {g<cls>,g1,g2, ...,gm}:

Sh
V = MHA(Uh−1

V )+Uh−1
V , Uh

V = FFN(Sh
V )+Sh

V (2)

where U0
V is the input region representations O.
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Figure 2: Overview of MMAPS. Chinese product information has been translated into English.

3.1.3. Text-Image Fusion

MMAPS contains a multi-modal fusion compo-
nent. It receives the encoded text features Z and
image features G from the text and image encod-
ing component and outputs fused, multi-modal fea-
tures containing related information derived from
textual and visual modality, aiming to complement
the information of textual modality while potentially
removing noisy information.

The process of the multi-modal fusion is shown
as follows:

Q = ZWq, K = GWk, V = GWv

C = CMA(Q,K,V), F = σ([Z,C]Wf + Bf )

Z
′
= [Z,F ⊗ C]Wz

′ + Bz
′

(3)

where CMA(·) indicate the cross-modality atten-
tion layer using the Multi-Head Attention mecha-
nism (i.e., MHA(·) in Eq. 2 using different input as
query, key and value), σ(·) refers to the Sigmoid
function, W∗ and B∗ are learnable parameters, and
⊗ is element-wise vector multiplication. Specifi-
cally, the textual features Z are linearly projected
into queries Q and the visual features G are lin-
early mapped to key-value pairs K and V. Next, to
retain the pre-trained text features from BART and
overcome the noise brought by the visual modality,
we apply a forget gate F. Finally, we concatenate
the textual features Z and the result of F ⊗ C to
generate the multi-modal features Z′ .

3.2. Multi-Modal Multi-task Learning
We design several tasks to guide the multi-modal
learning of MMAPS:

3.2.1. Product Summarization

To supervise the product summarization task,
given input text X and image I, we fulfill the output-
level supervision by minimizing the negative log-
likelihood:

LPS = −
∑
y∈Y

|y|∑
t=1

log
(
p(yt|I,X, y1, ..., yt−1)

)
, (4)

where yt is the t-th token in the ground truth sum-
mary y, |y| is the number of tokens in y and Y is
the ground truth summary set.

3.2.2. Masked Region Modeling

We adopt the Masked Region Modeling task to im-
prove the performance of the image encoder For
input images, MMAPS samples S image regions
with a probability of 15% and masks the sampled
regions. Then, we train the model to predict the
class of the masked regions. For the s-th masked
region, we use gs and rs to denote the visual fea-
ture output by the image encoder and the class
distribution detected by Faster R-CNN (i.e., r in
Eq. 1), respectively. MMAPS minimizes the KL di-
vergence of the predicted class distribution and rs:

LMRM =

S∑
s=1

DKL

(
rs∥MLP(gs)

)
, (5)
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where MLP(·) is a two-layer perception for classifi-
cation.

3.2.3. Multi-grained Multi-modal Modeling

As product summarization involves two corre-
lated modalities, modeling the correlation between
the text modality and the image modality will
help MMAPS generate expressive text that cor-
responds to the product image. Moreover, both
coarse-grained information (sentence-level rep-
resentation and image-level representation) and
fine-grained information (token-level representa-
tion and region-level representation) from the two
modalities are related to depicting the product
and their cross-modal correlation affects the qual-
ity of the generated product summaries. Conse-
quently, we design coarse-grained modeling and
fine-grained modeling to help MMAPS better cap-
ture the cross-modal correlation.
Coarse-grained Multi-modal Modeling. We de-
sign a coarse-grained dual-encoder contrastive
learning task to jointly optimize the image encoder
and the text encoder by contrasting the text-image
pairs against others in the same batch. Specifi-
cally, for each image-text pair (positive pair) in a
batch of B image-text pairs, we use its image and
all the text in the remaining B − 1 pairs to form
B − 1 negative image-text pairs. Then, the image
encoder and the text encoder are trained to maxi-
mize the similarity between the image-level repre-
sentation (g<cls>) and the sentence-level represen-
tation (z<cls>) for a positive pair and minimize the
similarity of representations corresponding to the
B(B−1) negative pairs. The loss of the contrastive
learning is shown as follows:

gi
norm = Wggi

<cls>
/∥∥∥Wggi

<cls>

∥∥∥
2

zj
norm = Wzzj

<cls>
/∥∥∥Wzzj

<cls>

∥∥∥
2

Li2t = − 1

B

B∑
i

log
exp(gi⊤

normzi
norm

/
τ)∑B

j=1 exp(gi⊤
normzj

norm
/
τ)

Lt2i = − 1

B

B∑
i

log
exp(zi⊤

normgi
norm

/
τ)∑B

j=1 exp(zi⊤
normgj

norm
/
τ)

LCMM = Li2t + Lt2i

(6)

where gi
norm and zjnorm are normalized representa-

tions of the image in the i-th pair and the text in
the j-th pair, respectively. Wg and Wz are weights
and τ is a learnable temperature parameter.
Fine-grained Multi-modal Modeling. The
coarse-grained multi-modal modeling improves
the quality of sequence-level representations and
image-level representations via aligning global se-
mantic information. Besides, product attributes,
which depict the key product characteristics that
customers are most concerned with, also require
fine-grained multi-modal modeling to better model

attributes from two modalities. Therefore, we fur-
ther propose two fine-grained multi-modal model-
ing tasks to enhance MMAPS.
1. Fine-grained Multi-modal Alignment. We de-

sign a fine-grained multi-modal alignment task
to train MMAPS to model the semantic correla-
tion between the text modality and the image
modality by inspecting individual regions and
tokens. This way, MMAPS can capture the
salient information that appears in both modal-
ities. To do this, we use Hausdorff distance,
which can measure the similarity between two
sequences of different features, to align textual
and visual features:

d(G,Z) = max
i

min
j

∥∥∥∥ MLP(gi)

∥MLP(gi)∥2
− zj

∥zj∥2

∥∥∥∥
2

d(Z,G) = max
j

min
i

∥∥∥∥ MLP(gi)

∥MLP(gi)∥2
− zj

∥zj∥2

∥∥∥∥
2

dH(G,Z) = max
{
d(G,Z), d(Z,G)

}
LHD = d2H

(7)

In Eq. 7, we use a two-layer perception MLP(·)
to map the encoded visual features into the
text representation space. The above Haus-
dorff Loss can capture the local boundary in-
formation and enforce multi-modal alignment,
making features in different modalities that cor-
respond to the same characteristics getting
closer in the common semantic space.

2. Fine-grained Multi-Modal Product Attribute
Prediction. Each product in e-commerce plat-
form is typically described by some product at-
tributes. For instance, Fig. 2 shows that the
product attribute “shirt top” is manifested in
both the text and the image. Including the de-
scriptions of product attributes in the generated
text improves the quality of product summaries
and makes the summaries eye-catching. More-
over, they help customers quickly understand
and distinguish the bright spots of different
products. Therefore, we design a multi-modal
product attribute prediction task, which trains
MMAPS to predict product attributes, to en-
dow MMAPS with the ability of understanding
multi-modal product characteristics and guide
MMAPS to pay more attention to the significant
features when generating product summaries.
For a product in the dataset, we assign a multi-
hot vector as the ground-truth attribute vector,
denoted as ya = (ya

1 , · · · , ya
N ), where ya

l = 1
denotes the product has the l-th attribute, ya

l =
0 otherwise. N is the total number of the at-
tributes. To predict product attributes, we feed
the text representation Z and the multi-modal
representation Z′ into a feed-forward layer to
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Category Home Appliances Clothing Cases & Bags
#Train Sample 437,646 790,297 97,510
#Valid Sample 10,000 10,000 5,000
#Test Sample 10,000 10,000 5,000

Avg. Length of Input 335 286 299
Avg. Length of Output 79 78 79

Table 1: Statistics of data. The unit of the average
length of input/output is one Chinese character.

predict the attribute vector:

ŷa =σ
(
W(1)

y (W(2)
y

L∑
i=1

z
′
i + W(3)

y

L∑
j=1

zj + W(4)
y z<cls>)

+ By

)
,

(8)
where W and B are trainable weights, and ŷa

indicates the predicted attributes. We use a
binary cross entropy loss for the multi-modal
product attribute prediction task:

LATT = min
Θa

−
B∑(

yaln(ŷa) + (1 − ya)ln(1 − ŷa)
)
,

(9)
where 1 ∈ RN is a vector with all elements be-
ing one, and Θa stands for corresponding to-be-
learned parameters.

3.3. Putting All Together
In summary, training MMAPS involves optimizing
four parts and the overall objective is defined as
follows:

L = LPS + λ1LMRM + λ2LCMM + λ3LFMM, (10)

where LFMM = LHD + LATT and λ∗ are pre-defined
loss weights.

4. Experiment

In this section, we report and analyze the experi-
mental results in order to answer the following re-
search questions:
• RQ1. Does MMAPS outperform state-of-the-art

product summarization methods w.r.t. to differ-
ent summarization metrics?

• RQ2. Does each component in MMAPS con-
tribute to its overall performance?

• RQ3. Is MMAPS sensitive to the setting of task
weights in Eq. 10?

• RQ4. Can MMAPS generate more coherent and
descriptive summaries than baselines?

4.1. Experimental Settings

Dataset. We use the CEPSUM dataset1 (Li et al.,
2020a), which is collected from an e-commerce

1https://github.com/hrlinlp/cepsum

platform in China. It includes around 1.4 million
products covering three categories: Home Appli-
ances, Clothing, and Cases & Bags. Each product
in CEPSUM contains a long product description, a
product title, a product image, and a high-quality
summary written by humans. Tab. 1 provides the
data statistics.

For the multi-modal product attribute prediction
task, we construct the pre-defined attribute vocab-
ulary following V2P (Song et al., 2022). Specifi-
cally, we use Jieba2 to tokenize the dataset and
then perform the part-of-speech tagging. The at-
tribute vocabulary for each category consists of
adjectives and nouns with more than one Chinese
character and have appeared in more than a pre-
defined number of products’ summaries. Accord-
ing to the scale of different product categories,
the pre-defined number threshold for Home Appli-
ance, Clothing, and Cases & Bags categories are
set to 5, 000, 10, 000, and 1, 000, respectively.
Implementation Details. We use the pre-trained
bart-base-chinese3 to construct the text encoder,
which has six layers. For the image encoder, we
stack 4 layers (i.e., H in Sec. 3.1.2) with 8 atten-
tion heads and the hidden dimensionality is 2, 048.
The parameters of the image encoder are initial-
ized randomly. The batch size B of Eq. 6 is 16.
The dropout rate is 0.1. The maximum length L of
the text sequence is set to 400, and the retained
number M of regions per image is set to 36. We
conduct a grid search for task weights λ1, λ2 and
λ3 in Eq. 10. The default λ1, λ2 and λ3 are set to
0.8, 0.05 and 0.3, respectively. We also report the
impact of performance when using different task
weights in Sec. 4.4. The models are optimized
using Adam (Kingma and Ba, 2015) and a cosine
learning rate schedule with the initial learning rate
of 3e−5. Notably, we report the average of three
runs with different random seeds on the testing set
as experimental results in this paper.
Evaluation Metric. We use ROUGE (1, 2, L) (Lin,
2004), BLEU (1, 2, 3, 4) (Papineni et al., 2002),
S-BLEU (NLTK, 2023), METEOR (Banerjee and
Lavie, 2005) and BERTScore (Zhang et al., 2020)
as the evaluation metrics. BLEU measures the
micro-average precision. We also adopt S-BLEU
that averages the sentence-level BLEU-4 scores
(i.e., macro-average precision). Instead of exact
matching, BERTScore measures the relevance be-
tween generated summaries and ground truth in
the semantic space of BERT (Devlin et al., 2019).
Thus, it correlates with human judgments.
Baselines. We adopt the following methods,
which are prevalently used in the experiments of

2https://github.com/fxsjy/jieba
3https://huggingface.co/fnlp/

bart-base-chinese

https://github.com/hrlinlp/cepsum
https://github.com/fxsjy/jieba
https://huggingface.co/fnlp/bart-base-chinese
https://huggingface.co/fnlp/bart-base-chinese
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Category Method R-1 R-2 R-L B-1 B-2 B-3 B-4 S-B M BS

Home
Appliances

Lead 22.15 9.46 19.59 26.08 19.30 14.49 11.17 10.58 35.95 63.34
Seq2seq 26.88 7.98 20.91 39.32 25.53 17.01 11.48 9.66 21.44 65.26

PG 27.67 9.24 23.67 41.58 28.04 20.01 14.76 13.19 25.44 64.99
MMPG 32.88 11.88 21.96 36.20 19.07 10.40 5.54 2.90 16.47 65.13

VG-BART (Multi-head) 32.10 11.72 25.15 48.34 34.25 24.92 18.59 16.83 29.58 67.73
VG-BART (Dot-product) 32.07 11.53 25.46 48.25 33.87 24.45 18.13 16.47 29.52 67.72

V2P 34.47 12.63 25.09 52.23 36.49 25.30 17.81 15.24 30.31 68.76
MMAPS 34.91 13.20 26.44 54.22 38.65 28.26 21.22 19.66 32.32 69.76

Improvement 1.28% 4.51% 3.85% 3.28% 11.31% 16.72% 15.76% 16.82% -10.10% 1.45%

Clothing

Lead 19.84 7.13 17.77 16.78 10.76 7.18 5.10 4.01 28.41 60.61
Seq2seq 31.33 9.88 23.02 35.71 21.84 14.29 9.54 7.43 23.46 68.22

PG 30.92 9.66 24.31 36.28 21.90 14.08 9.22 7.39 26.07 67.96
MMPG 30.73 10.29 21.25 28.32 11.69 5.15 0.57 2.24 14.47 66.07

VG-BART (Multi-head) 31.32 10.80 23.49 36.74 23.29 15.58 10.81 8.69 27.23 67.79
VG-BART (Dot-product) 30.18 10.40 22.82 35.30 22.37 15.09 10.59 8.36 26.32 66.81

V2P 35.05 11.98 22.62 42.41 25.04 15.70 9.16 6.55 27.96 68.40
MMAPS 34.05 11.52 25.09 41.43 26.05 17.17 11.62 9.26 28.30 69.57

Improvement -2.85% -3.84% 10.92% -2.31% 4.03% 9.36% 7.49% 6.56% -0.39% 1.71%

Cases &
Bags

Lead 20.15 7.32 18.26 17.93 11.71 7.89 5.60 4.56 29.23 61.05
Seq2seq 28.59 8.07 20.60 23.64 14.11 8.85 5.74 4.38 17.79 68.16

PG 32.18 9.73 24.73 40.06 23.97 15.00 9.58 7.70 26.43 68.14
MMPG 32.69 11.78 22.27 30.39 12.46 5.26 2.14 0.49 14.93 65.44

VG-BART (Multi-head) 30.76 10.46 24.88 38.16 24.31 16.22 11.30 9.39 25.81 67.11
VG-BART (Dot-product) 31.21 10.74 25.13 38.61 24.71 16.27 11.09 9.10 26.39 67.81

V2P 34.65 11.89 24.53 43.88 27.32 16.64 10.17 7.40 28.25 67.74
MMAPS 35.08 12.08 25.60 44.35 28.20 18.45 12.45 10.57 29.37 68.95

Improvement 1.24% 1.60% 1.87% 1.07% 3.22% 10.88% 10.18% 12.57% 0.48% 1.16%

Table 2: Performance of all methods on three product categories. The best results are shown in bold and
the second-best results are underlined. The percentages of the improvement are obtained by comparing
MMAPS with the best baseline. ROUGE, BLEU, SENTENCE-BLEU, METEOR and BERTScore are
denoted by R, B, S-B, M and BS, respectively.

existing product summarization works (Li et al.,
2020a; Song et al., 2022), as baselines in our ex-
periments:
• Lead (Li et al., 2020a; Song et al., 2022) di-

rectly extracts the first 80 characters of the long
product descriptions as product summaries.

• Seq2seq (Khatri et al., 2018) is the standard
neural architecture used for text generation. It
takes the long product descriptions as input and
outputs corresponding product summaries.

• Pointer-Generator (See et al., 2017) is a hybrid
method consisting of the pointer network and
the Seq2seq architecture. The pointer network
helps reproduce input in the generated sum-
maries by copying words from the long product
descriptions.

• MMPG4 (Li et al., 2020a) is a multi-modal dual-
encoder pointer-generator network for product
summarization, where the convolutional neural
networks are used to encode product images.

• VG-BART (Dot-product) and VG-BART (Multi-
head)5 (Yu et al., 2021) adopt BART as the
backbone for summarization, and use dot-
product based fusion and multi-head based fu-
sion to inject visual information, respectively.

• V2P6 (Song et al., 2022) adopts BART as the
backbone. It enhances product summarization

4https://github.com/hrlinlp/cepsum
5https://github.com/HLTCHKUST/VG-GPLMs
6https://xuemengsong.github.io/V2P_

Code.rar

by predicting product attributes and using at-
tribute prompts extracted from product images.

4.2. Overall Performance (RQ1)
We report the results in Tab. 2. From the results,
we can observe that:
1. MMAPS achieves the best results in most

cases, especially outperforming other methods
by a large margin on BLEU metrics. VG-BART,
V2P and MMAPS all use the same PLM (BART)
as the backbone, but MMAPS performs much
better than others in terms of most metrics. For
example, our method exceeds the best base-
line by 15.76% and 16.82% for BLEU-4 and S-
BLEU on Home Appliances, respectively. The
results indicate that MMAPS consistently gen-
erates high-quality product summaries that are
closer to human-written summaries.

2. In a few cases, baselines outperform MMAPS.
However, they do not show robust performance
as MMAPS. For example, Lead shows a supe-
rior performance on the METEOR metric, which
considers the number of chunks. Moreover, as
explained by the authors of V2P (Song et al.,
2022), V2P obtains better scores on Rouge-
1 and Rouge-2 on the Clothing category (the
performance of MMAPS is 2.85% and 3.84%
worse than V2P on Rouge-1 and Rouge-2)
since human-written summaries in the Cloth-
ing category are more likely to contain the
vision-related attributes. However, compared
to MMAPS, both Lead and V2P do not show

https://github.com/hrlinlp/cepsum
https://github.com/HLTCHKUST/VG-GPLMs
https://xuemengsong.github.io/V2P_Code.rar
https://xuemengsong.github.io/V2P_Code.rar
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Product Summary

GT Summary: 这款宽松撞色条纹可收腰连衣裙，严肃感的衬衫上衣，带出了利落的中性
美。不对称的撞色线条跳跃活力，打破视觉冲击，具有感染力。中腰两边抽拉式抽绳增加趣
味，张弛有度间表达心境。
This loose, waist-contrast striped dress is paired with a serious shirt top for sharp 
and neutral beauty. The asymmetrical contrasting color lines are energetic, break the 
visual impact, and are infectious. The drawstring design on both sides of the middle 
waist add interest, and express the state of mind with a certain degree of relaxation.

V2P: 宽松柔软舒适的面料，不对称的撞色线条，时尚简约的版型，刺绣的T恤图案，吸汗透
气，印花的圆领设计，白色的飘带点缀在胸前，增添了几分浪漫气息，让人眼前一亮。适合
日常穿着！
Loose, soft and comfortable fabric, asymmetric contrasting color lines, stylish and 
simple version, embroidered T-shirt pattern, sweat-absorbing and breathable, 
printed round neck design, white streamers dotted on the chest, adding a bit of 
romantic atmosphere, let people's eyes light up. Perfect for everyday wear!
(ROUGE-l:  20.15%, C-BLEU: 16.35%, METEOR: 23.62%)

MMAPS: 这款连衣裙采用了撞色的条纹元素，新颖亮眼。不对称的撞色线条跳跃活力。中腰
两边抽拉式抽绳的设计，可以自由调节松紧，穿着舒适，宽松的衬衫上身，利落的中性美，
具有感染力。
This dress uses color-contrast striped elements, which are novel and eye-catching. 
The asymmetrical contrasting color lines are energetic. The drawstring design on 
both sides of the middle waist can be adjusted freely. It is comfortable to wear. The 
loose shirt top with sharp and neutral beauty is contagious.
(ROUGE-l:  51.61%, C-BLEU: 49.11%, METEOR: 61.05%)

MMAPS-w/o-Image: 播撞色条纹连衣裙，臻选优质舒软面料材质，赋予整款连衣长裙更好
的质感与格调，穿着更显气质与档次。条纹设计优雅大气，倍显女士的知性。条纹收腰设
计，倍添女士性感。
The contrasting color striped dress is made of high-quality and soft fabric materials, 
which endows the whole dress with better texture and style, and shows more 
temperament and class when worn. The striped design is elegant and majestic, 
showing the intellectuality of women. The striped waist design adds feminine 
sexiness.
(ROUGE-l:  23.15%, C-BLEU: 8.88%, METEOR: 19.79%)

Product Detail Information:

播凉夏汽水糖 2019夏新品女装 纯棉连衣裙 女撞色
条纹 抽绳收腰显瘦 中长款仙女裙 鸢尾蓝条，不对
称，撞色，五分袖，简约，中长裙，落肩袖，文
艺，套头，棉，衬衫裙，方领，宽松,品名： 播凉夏
汽水糖，背面较软，袖肥，袖长适中，不同的条纹
配色，新颖亮眼。宽松撞色条纹可收腰连衣裙，严
肃感的衬衫上身，利落的中性美...

Soda cool summer soda sugar 2019 summer 
new women's cotton dress women's 
contrasting color stripes drawstring waist 
slimming mid-length fairy dress iris blue 
stripes, asymmetrical, contrasting colors, five-
quarter sleeves, simple, mid-length skirt, 
dropped shoulder sleeves , art, pullover, cotton, 
shirt skirt, square collar, loose, product name: 
Boliangxia soda candy, soft back, fat sleeves, 
moderate sleeve length, different stripes and 
colors, novel and eye-catching .  Loose 
contrasting striped waist dress, serious shirt 
upper body, neat neutral beauty...

Product Image:

Figure 3: A comparison between the product summaries generated by MMAPS and V2P. GT indicates
ground truth. The English texts are translated from the corresponding Chinese texts. The same or
semantically similar descriptions are highlighted in red. The product appearances manifested in the
image are underlined.

consistently good performance on all metrics
across the three categories.

3. We also find that V2P obtains better results
than other baselines on unigram and bigram
metrics (R-1, R-2, B-1 and B-2) while it is in-
ferior to VG-BART and MMAPS on trigram,
4-gram and sentence-level metrics (R-L, B-3,
B-4 and S-B). The results indicate that, com-
pared to VG-BART and MMAPS, V2P can-
not generate summaries containing adjectives
and nouns with relatively more words (e.g., 4-
gram text), making the generated summaries
of V2P less coherent than those generated by
MMAPS. This is also observed in the case
study reported in Sec. 4.5.

4.3. Ablation Study (RQ2)

To investigate the contribution of each component
in MMAPS, we design the following variants of
MMAPS for the ablation study:
• MMAPS-w/o-MRM: To verify the importance of

the masked region modeling task, we remove it
by setting λ1 = 0 in Eq. 10.

• MMAPS-w/o-CMM: To show the effect of
coarse-grained multi-modal modeling, we take
this task out by setting λ2 = 0 in Eq. 10.

• MMAPS-w/o-FMM: To show the necessity of
fine-grained multi-modal modeling, we exclude
it by setting λ3 to zero in Eq. 10.
Due to page limit, we only show the ablation

study results of the above methods over the Cases
& Bags in Tab. 3. We have the following findings:
1. The mask region modeling task improves the

quality of the generated summaries on all met-
rics, demonstrating that predicting the class of
the masked regions is helpful to the image en-
coder and it enhances product summarization.

2. Introducing the coarse-grained multi-modal
modeling exhibits notable benefits, showing
that capturing the semantic correlation be-
tween two modalities at the sequence level can
facilitate generating high-quality product sum-
maries.

3. The two fine-grained multi-modal modeling
tasks show a positive impact on the model
performance, suggesting that refining the fine-
grained token-level and region-level represen-
tations and capturing their mutual influence are
beneficial to product summary generation.

4.4. Impact of Task Weights (RQ3)
We inspect the sensitivity of MMAPS to task
weights in Eq. 10 over the category Cases & Bags.
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Figure 4: Sensitivity analysis of task weights on Cases & Bags.

Model R-1 R-2 R-L B-1 B-2 B-3 B-4 S-B M BS
MMAPS 35.08 12.08 25.60 44.35 28.20 18.45 12.45 10.57 29.37 69.76

MMAPS-w/o-MRM 34.44 11.35 24.51 44.20 27.58 17.44 11.19 8.79 28.34 69.74
MMAPS-w/o-CMM 33.88 10.32 24.65 43.10 25.89 15.95 10.11 7.96 27.25 68.63
MMAPS-w/o-FMM 34.05 11.76 24.81 44.55 27.88 18.17 12.30 9.84 27.13 69.40

Table 3: The results of ablation studies on Cases & Bags. The best results are shown in bold.

We vary the values from 0 to 1 at the step of 0.1.
From Fig. 4 we can see that MMAPS performs
worst when setting one of the three task weights to
zero. This confirms the importance of the masked
region modeling task, the coarse-grained multi-
modal modeling and the fine-grained multi-modal
modeling to the overall performance of MMAPS.
Besides, we observe that MMAPS performs rela-
tively stably when the three task weights are non-
zero. This implies that MMAPS is not sensitive to
different task weights as long as they are non-zero.

4.5. Case Study (RQ4)
Fig. 3 provides a case study for better under-
standing the difference between MMAPS and V2P,
which is the best baseline in most cases. From
Fig. 3, we have the following observations:
1. V2P cannot generate grammarly corrected

summaries and it produces many short phrases
containing only product attributes. This phe-
nomenon explains why V2P shows good per-
formance on BLEU-1 in Tab. 2, but performs
poorly when tested using n-gram based met-
rics with a large n (e.g., BLEU-3, BLEU-4
and S-BLEU). Differently, MMAPS can gen-
erate more coherent and descriptive product
summaries containing rich product attribute in-
formation described by n-grams with a large
n. For example, the generated summary of
MMAPS contains several n-grams with a rela-
tively large n, e.g., “不对称的撞色线条跳跃活
力” (“The asymmetrical contrasting color lines
are energetic”) and ‘中腰两边抽拉式抽绳” (“the
drawstring design on both sides of the middle
waist”). And these n-grams are also contained
in the human-written summary. This observa-
tion shows that MMAPS can capture the prod-

uct attributes which are better described us-
ing n-grams with large n values. Therefore,
MMAPS can generate more coherent and read-
able summaries as discussed in Sec. 4.2.

2. From the generated summaries, we can see
that MMAPS is able to model the product ap-
pearances manifested in the image (i.e., the un-
derlined parts: “asymmetrical”, “shirt top” and
“The drawstring design on both sides of the mid-
dle waist”), while MMAPS-w/o-Image cannot.
Hence, the image modality indeeds enhances
the product summarization by providing addi-
tional signal to guide the model to generate the
attractive summaries.

5. Conclusion

In this paper, we propose MMAPS for multi-modal
product summarization and it is able to model prod-
uct attributes and produce coherent and descrip-
tive summaries simultaneously. Our experiments
show that MMAPS exceeds state-of-the-art prod-
uct summarization methods. In the future, we
plan to incorporate cross-grained contrast learn-
ing, i.e., the contrast between coarse-grained rep-
resentations and fine-grained representations. We
will also consider generating personalized prod-
uct summarization based on user preferences and
affinity towards different product characteristics.
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