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Abstract

This paper presents a new approach to form-filling by reformulating the task as multimodal natural language

Question Answering (QA). The reformulation is achieved by first translating the elements on the GUI form (text

fields, buttons, icons, etc.) to natural language questions, where these questions capture the element’s multimodal

semantics. After a match is determined between the form element (Question) and the user utterance (Answer),

the form element is filled through a pre-trained extractive QA system. By leveraging pre-trained QA models and

not requiring form-specific training, this approach to form-filling is zero-shot. The paper also presents an approach

to further refine the form-filling by using multi-task training to incorporate a potentially large number of successive

tasks. Finally, the paper introduces a multimodal natural language form-filling dataset Multimodal Forms (mForms),

as well as a multimodal extension of the popular ATIS dataset to support future research and experimentation.

Results show the new approach not only maintains robust accuracy for sparse training conditions but achieves

state-of-the-art F1 of 0.97 on ATIS with approximately 1/10th the training data.
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1. Introduction

The last decade has seen the development and

broad deployment of digital assistants (DAs) in-

cluding Siri, Cortana, Alexa, Google Assistant,

and Bixby. A primary component of DAs is Natu-

ral Language Understanding (NLU) - understand-

ing the meaning of the user’s utterance. Referring

to Figure 1, the NLU task determines the domain

of the user’s request (e.g., travel), the user’s intent

(e.g., find_flight) and information-bearing parame-

ters commonly referred to as semantic slots (e.g.,

City-departure, City-arrival, and Date). The task of

determining the semantic slots is called slot filling

(Tur and DeMori, 2011). In this paper, we address

a related but distinct task - form-filling, where the

DA processes the user requests to act on form el-

ements (fill text fields, click buttons and icons, etc.)

onMobile Apps or web pages. Equipping DAs with

the ability to simultaneously parse visual seman-

tic information and contextual dialogue enhances

their ability to understand and act on information

acrossmultiplemodalities. This type of multimodal

interaction through conversations is currently an

open problem and an active area of research (Sun-

dar and Heck, 2022).

Early methods for the related area of semantic

slot filling used recurrent neural networks (RNNs)

(Mesnil et al., 2014), then progressed to long

short-term memory (LSTM) neural networks (Liu

and Lane, 2016), and more recently transformer-

based approaches (Chen et al., 2019).

Dynamic deep learning approaches, while achiev-

ing high slot-filling accuracy, demand extensive

domain-specific supervised training data. This

poses challenges for applications with limited ac-

cess to extensive data, such as AI skill develop-

Figure 1: An example semantic representation

with domain, intent, and semantic slot annotations.

ment for DAs, limiting the broad expansion of AI

skills to adequately cover the long tail of user goals

and intents.

Prior work has focused on developing models and

approaches that require less supervised training

data. Zero and few-shot learning methods have

been developed across NLP tasks (Dauphin et al.,

2013; Yann et al., 2014; Upadhyay et al., 2018).

Methods can be broadly categorized into trans-

fer learning (Jaech et al., 2016; El-Kahky et al.,

2014; Hakkani-Tür et al., 2016), sequential learn-

ing (Bapna et al., 2017a), reinforcement learning

(Liu et al., 2017; Kumar et al., 2017; Shah et al.,

2016) and synthetic training (Xu et al., 2020; Cam-

pagna et al., 2020).

In many cases, the user interacts with an App

screen or web page and, therefore, uses multi-

ple modalities such as voice, vision, and/or touch

(Heck et al., 2013; Hakkani-Tür et al., 2014; Li

et al., 2019; Selvaraju et al., 2019; Zhang et al.,

2020; Xu et al., 2021; Reichman et al., 2023;

Zhang et al., 2019; Sundar and Heck, 2023; Re-

ichman and Heck, 2023; Sundar et al., 2024). For
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these settings, zero- and few-shot learning can be

achieved by leveraging the semantics contained in

the screen. In (Bapna et al., 2017b), the authors

incorporated visual slot names or descriptions in a

domain-agnostic slot tagging model called a Con-

cept Tagger. The Concept Tagger models the

visual slot description (e.g. “destination”) as a

Bag-of-Words (BOW) embedding vector and in-

jects a Feed-Forward network inside the original

deep LSTM network to process the user’s utter-

ance (e.g., “Get a cab to 1945 Charleston”). Re-

sults showed the inclusion of slot descriptions sig-

nificantly outperformed the previous state-of-the-

art multi-task transfer learning approach (Hakkani-

Tür et al., 2016).

The Concept Tagger (Bapna et al., 2017b) is lim-

ited in several ways. First, the BOW semantic rep-

resentation of the visual slot description is static

and does not model the dynamics of the descrip-

tion language. Second, the method is limited to

only visual slots with text descriptions and does

not incorporate other semantic information from

the visual elements (i.e., is the element a form field

or a radio button with choices). Third, the Con-

cept Tagger incorporates multi-task learning only

through the visual slot description.

This paper1 addresses all three limitations of the

Concept Tagger. To address these limitations,

the next section describes a new approach that

formulates multimodal form-filling as Question An-

swering (QA). This approach also extends more

recent work on text-based slot filling as QA (Levy

et al., 2017; Du et al., 2021; Fuisz et al., 2022) by

developing a much broader, multimodal computer

vision-based approach. The extension to a mul-

timodal approach is required in form-filling where

the QA formulationmust cover all of the 25 UI com-

ponent categories, 197 text button concepts, and

99 icon classes.

In the Experiments Section, we introduce a new

corpus collected for multimodal form-filling called

the Multimodal Forms (mForms) dataset as well

as an extension of the ATIS (Tur et al., 2010)

dataset as a simulated form-filling task. We com-

pare the new zero-shot multimodal form-filling QA

approach to competing methods on this new cor-

pora. Finally, we summarize our findings and sug-

gest the next steps in the Conclusions and Future

Work Section.

2. Approach

2.1. Multimodal form-filling

The foundation of the approach presented in

this paper is the utilization of deeper semantics

in the visual representation of the form on the

user’s screen. While previous form-filling methods

1Update of arXiv preprint (Heck and Heck, 2020).

Figure 2: Semantically annotated mobile Graphi-

cal User Interface (GUI) using computer vision to

identify 25 UI component categories, 197 text but-

ton concepts, and 99 icon classes (Liu et al. 2018)

treated the form label as a classification tag with no

semantic information, the approach of this paper

extracts meaning from the visual slot representa-

tion. By formulating the form field description as

a Question and the user’s utterance as the Para-

graph, we can directly utilize transformer-based

extractive Question Answering (QA) models (Lan

et al., 2019). The Start/End Span of the extracted

Answer is used to fill the appropriate content in the

web form. We call our approach Multimodal form-

filling as Question Answering (QA), which we will

henceforth refer to by mForms as QA.

In addition to the lexical semantics contained in the

text field description, the type of the visual graph-

ical user interface (GUI) element on the App or

web page provides additional semantic informa-

tion. The set of GUI design elements of a mo-

bile App that are available to translate into ques-

tions are shown in Figure 2. In our approach,

the GUI design elements are automatically classi-

fied via a convolutional deep neural network com-

puter vision system trained on the RICO dataset

as shown in Figure 9 of the Appendix (Deka et al.,

2017; Liu et al., 2018). The computer vision clas-

sifier identifies 25 UI component categories (e.g.,

Ads, Checkboxes, On/Off switches, Radio But-

tons), 197 text button concepts (e.g., login, back,

add/delete/save/continue), and 99 icon classes

(e.g., forward/backward, dots, plus symbol). Our

implementation as described in (Liu et al., 2018)

has a 94% classification accuracy.

In mForms, rules are used to translate each GUI

design element into an appropriate question. Each

type of GUI design element has a unique rule type

that triggers depending on its visual presence on

the GUI. Figure 3 shows an example of these GUI

elements, their associated rule templates, and ex-

ample questions and user utterances. If multi-

ple GUI design elements are visible, then multi-

ple translation rules fire, generating simultaneous

questions to be paired with the user’s utterance.
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Figure 3: The mForms pipeline. The rule template uses the semantified UI to trigger a question template.

The visual information of the GUI element drives the generation of the actual question. Then, using the

user’s request as evidence, the questions are answered to fill the form with the appropriate information.

For example, GUI elements that are classified as

simple text fields trigger a rule that generates a

question template “What is the Text_Field?”. Fig-

ure 3 shows simple text fields in the Michaelsoft

Vehicle Logger App. The first text field is “Vehicle”.

In this case, the rule recognizes command and

generates a question “What is the vehicle type?”.

Given a user utterance “Please track my busi-

ness trip using GPS which I will take in my Toyota

Prius.”, the Question-Answering system extracts

the answer to this question as “Toyota Prius”.

2.2. Single- and Multi-Task Training

Our mForms as QA method is shown in Figure 4.

It can be formulated as both single- and multi-task

training. The Single-task (ST) model is initialized

as a general-purpose QA trained with SQuAD2

(Rajpurkar et al., 2018). Used as-is, this model is

zero-shot for form-filling. The model can be fine-

tuned with supervised (annotated) form-filling data

from the visual App or web page GUI.

In contrast to Single-task training, Multi-task

(MT) training incorporates form-filling training sets

across multiple tasks with each training further re-

fining the model. Similar tasks represented by

common domains can be grouped for successive

fine-tuning stages. For example, flight reservation

form-filling Apps could be successively refined us-

ing the first N−1 Apps with the Nth App used as

the final fine-tuning stage. The potential advan-

tage of the MT approach is the required amount of

annotated supervised training data becomes less

with each new task refinement stage.

Figure 4: mForms as QA Approach

3. Experiments

3.1. Setup

Our base QA system is based on the Pytorch

implementation of ALBERT (Lan et al., 2019) 2.

We use the pre-trained LM weights in the en-

coder module trained with all the official hyper-

parameters3.

3.2. Multimodal Forms Dataset

Amazon Mechanical Turk (AMT) was used to col-

lect Multimodal Forms (mForms) - a dataset to

support multimodal form-filling research4. The

AMT crowd workers were asked to formulate re-

quests to mobile App screens from three Apps in

2https://github.com/huggingface/transformers
3ALBERT (xxlarge)
4https://huggingface.co/avalab
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the RICO dataset: Vehicle Logger from Michael-

soft, United Airlines flight search, and Trip Advi-

sor. The UIs of each App with GUI elements se-

mantically annotated by the computer vision sys-

tem described earlier are available online.5 More

details on the mForms dataset are in given in the

Appendix.

3.3. Simulated ATIS Form-Filling Dataset

The ATIS dataset is a widely usedNLU benchmark

for users interacting through natural language with

a flight booking system (Tur et al., 2010). To use

ATIS for mForms as QA, we extended the dataset

in several ways. First, as shown in Figure 5, each

slot is treated as a simulated visual Text Field

where the information of the slot tag is displayed

in an App with a simple form. As is the case with

Text Fields, each slot was reformulated as a natu-

ral language Question. For example, the ATIS slot

tag “B-aircraft_code” is translated into the question

“What is the aircraft code?”. This modified dataset

will be called “ATIS form-filling”.

Figure 5: Simulated ATIS form-filling fields trans-

lated to Questions

Table 1 summarizes the three Visual App datasets

as well as ATIS form-filling with example utter-

ances from each dataset. Table 6 in the Ap-

pendix shows the types of slots annotated in each

dataset. ATIS form-filling has the largest number

of slot types at 83.

Table 2 summarizes F1 scores (harmonic mean

of precision and recall) on the 3 new mForms

datasets and the ATIS form-filling dataset. For

comparison, the F1 score is given for the joint

slot and intent model (JB) given in (Chen et al.,

2019). The new mForms as QA approach pre-

sented in this paper consistently outperforms the

JB slot filler. While the JB slot filler requires at

least 100 training samples on the Vehicle Logger

App, the mForms as QA approach maintains the

F1 score even for only 0 and 5 training samples.

These results suggest the semantic information

contained in the mForms is particularly important

for sparse training conditions.

5http://interactionmining.org/rico

With more training data, is interesting to note that

the accuracy of the new mForms as QA approach

also achieves one of the best published F1 mea-

sures at 0.97 on the ATIS dataset. For compari-

son, the mForms as QA system was only trained

on 500 samples for this case as compared to the

full training set of ATIS at over 4400 samples. This

suggests that the injection of simulated mForm

and the subsequent generation of questions for

the QA system is effective at reducing the amount

of training data required to yield high accuracy.

This characteristic of mForms as QA makes the

approach especially attractive for commercial digi-

tal assistants given the industry’s reliance on third-

party developers who are often not highly skilled in

NLU.

To examine the effect of visual semantics in a

more controlled experiment, questions generated

in the newmForms asQA approach were replaced

with tag symbols, where the tag symbol had no se-

mantic information (e.g., “XYZ”). Otherwise, “No

Visuals” is the same model as mForms as QA.

Results for the Vehicle Logger App are shown in

Table 3 comparing the No Visuals approach to

two conditions from the mForms as QA approach

(1) Text Only - all visuals are treated as simple

Text Fields and other GUI elements are ignored

(2) All GUI elements are used. The training sam-

ples were randomly chosen across all 10 slot types

from the complete set of 500 utterances. Larger

differences are observed in sparse training condi-

tions where the No Visuals approach largely fal-

ters.

Given the mForms as QA approach incorporates

multi-task (MT) training, an interesting question to

answer is whether the MT training transfers knowl-

edge across domains. Table 4 shows results for

the cross-domain case: fine-tuning on the ATIS

form-filling dataset followed by another iteration of

fine-tuning on data from the Vehicle Logger App.

The effect of MT is more pronounced in the sparse

training cases with an improvement from 0.48 F1

to 0.52 F1 at zero-shot training and an improve-

ment of 0.46 F1 to 0.60 F1 with 5 training sam-

ples. These results suggests cross-domain con-

cept learning is occurring for these training condi-

tions.

Finally, Table 5 shows zero-shot F1 scores on

the mForms datasets for our new approach when

varying the number of visual GUI elements that are

displayed to the user. For example, when 2 visual

elements are displayed, the model must not only

parse the slots from the utterance for one of the

visual elements but also correctly reject the filling

of slots into the other element. For the mForms

datasets, the models degrade gracefully. This ro-

bustness is likely the result of the initial fine-tuning

on the SQuAD2 dataset which is trained to reject
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Visual App Sample Utterance # Utterances

Vehicle Logger “Please activate GPS tracking and log my car trip” 850

United “Book a Flight from California to arizona on august 15th 2020” 850

ATIS form-filling “I live in Denver and I’d like to make a trip to Pittsburgh” 4478

Trip Advisor “Please book a 5 star hotel in Atlanta Georgia” 803

Table 1: Sample utterances from each domain

# train samples 0 5 50 100 500

Domain JB mForms JB mForms JB mForms JB mForms JB mForms

Vehicle Logger 0.00 0.48 0.00 0.46 0.48 0.73 0.45 0.80 0.78 0.87

ATIS form-filling 0.00 0.60 0.00 0.74 0.66 0.88 0.77 0.93 0.91 0.97

United 0.00 0.40 0.00 0.44 0.37 0.58 0.44 0.72 0.51 0.74

Trip Advisor 0.00 0.52 0.00 0.47 0.18 0.63 0.53 0.66 0.59 0.66

Table 2: Weighted token F1 (harmonic mean of precision and recall) scores. The table shows the

baseline (JB) as detailed in (Chen et al., 2019) versus our new mForms as QA approach.

# train samples 0 50 100 500

No Visuals 0.01 0.29 0.32 0.71

Text Visuals 0.36 0.69 0.71 0.88

GUI (all) Visuals 0.48 0.73 0.80 0.87

Table 3: F1 results showing effects of visual se-

mantics on the Vehicle Logger App. The row

labeled Text Visuals shows the results of our

mForms as QA method with every visual element

treated as a simple text field. GUI (all) Visuals

leverage the full semantic information contained in

the visual GUI elements for mForms as QA.

# train samples 0 5 100 500

Vehicle Logger 0.48 0.46 0.80 0.87

+ATIS form-filling 0.52 0.60 0.80 0.89

Table 4: Results for multi-task training (MT) across

multiple domains. The first row shows F1 scores

for the Vehicle Logger dataset for various amounts

of training data. The second row shows the effect

of fine-training the SQuAD2model with ATIS form-

filling before training with the Vehicle Logger data.

false questions - questions that do not have a cor-

rect answer to extract from the given Paragraph.

4. Conclusions and Future Work

This paper presented a new approach to filling

GUI forms by reformulating the problem as a

multimodal natural language Question Answer-

ing (QA) task. The reformulation is achieved by

first translating the elements on the GUI form

(text fields, buttons, icons, etc.) to natural lan-

guage questions, where these questions capture

the element’s multimodal semantics. These ques-

# elements 1 2 3 4 5

Vehicle Logger 0.52 0.51 0.49 0.49 0.46

ATIS form-filling 0.60 0.58 0.56 0.53 0.52

Table 5: Zero-Shot Slot F1 scores on the Vehicle

Logger and ATIS form-filling datasets for varying

numbers of visual elements shown to the user si-

multaneously

tions are paired with the user’s utterance and an-

swers are extracted from the utterance using a

Transformer-based Question-Answering system.

An approach to further refine the model is pre-

sented that facilitates transfer learning across a

large number of tasks. The paper also presented

mForms - a multimodal form-filling dataset to sup-

port future research.

Results show the new approach not only maintains

robust accuracy for sparse training conditions but

achieves state-of-the-art F1 of 0.97 on ATIS with

approximately 1/10th of the training data.

Future work will extend mForms as QA to a

broader set of visual GUI screens across both mo-

bile Apps and web pages. In addition, we plan

to explore improved rejection methods for screens

with high-density competing visual GUI elements.

Lastly, while mForms as QA uses a BERT-based

architecture for comparison with prior work, fu-

ture work will explore ways to leverage generative

models such as GPT3.5-4/T5/BART.
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6. Appendix

This section outlines the applications used to

collect the mForms dataset. The slot schemas for

each form are shown in Table 6.

Vehicle Logger: The Vehicle Logger App shown

in Figure 6 is a popular tool to create, share,

and report vehicle log books for mileage, fuel

expenses, and tax purposes. As previously

described, the visual GUI elements of the Vehicle

Logger App include Text fields (e.g., Odometer

Value), Radio Buttons (e.g., Business, Personal,

Other), and Text Buttons (e.g., Track distance

with GPS). Referring to Table 1, 850 utterances

were collected with annotations according to 10

slot types.

United Airlines: The United Airlines flight

search App shown in Figure 7 is used to find

flights according to travel plans and preferences.

The GUI elements include simple text fields, tab

buttons, and search buttons as well as more

visually-oriented icons such as the user’s current

location (icons on the right-most column) and

an icon to swap departure and arrival airports.

850 utterances were collected with annotations

according to 6 slot types.

Trip Advisor: Finally, Figure 8 shows the Trip

Advisor App. This App serves many purposes

including booking a table at restaurants as well

as comparing prices when booking flights and ho-

tels. The portion of the App used for this study

focused on hotel room booking. Much of the App

screen shown in the Figure contains visually ori-

ented icons such as the symbol for people (in this

case, showing 2 people) and a bed (1 bed in the

room). The Trip Advisor dataset has 803 utter-

ances with annotations according to 6 slots.

Figure 6: Vehicle Logger Application

Figure 7: United flight search Application

Figure 8: Trip Advisor Application
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Visual App Slot descriptions

2*Vehicle Logger fuel cost, fuel added, trip description, gps tracking, start logging, date, odometer value,

trip type, entry, vehicle

United arrival airport, departure airport, travel dates, search, switch/swap airports

2*ATIS form-filling aircraft code, airline code, airline name, airport code, airport name, arrival date (relative),

arrival date (day name), arrival date (day number), arrival date (month name), etc

Trip Advisor number of beds, date range, filter by price, filter by rating, number of nights, number of people

Table 6: Slot schema / descriptions used for the mForms tagger for each domain

Figure 9: Computer Vision classification of GUI visual elements (Liu et al. 2018)
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