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Abstract
Text segmentation is the task of dividing a sequence of text elements (e.g., words, sentences, or paragraphs) into
meaningful chunks. Although exciting advances are being made in modern segmentation-based tasks, such as
automatically generating podcast chapters, current segmentation similarity metrics share a critical weakness: they
are content-agnostic. In this paper, we present a word-embedding-based metric of cross-textual cohesion based
on the formal linguistic definition of cohesion and incorporate it into a new segmentation similarity metric, SED.
Our similarity metric, SED, is capable of providing fine-grained segmentation similarity scoring for the 3 basic
segmentation errors: transposition, insertion, and deletion, as well as mixtures of them, avoiding the limitations of
traditional metrics. We discuss the benefits of SED and evaluate its alignment with human judgement for each of the
3 basic error types. We show that our metric aligns with human evaluations significantly more than traditional metrics.
We briefly discuss future work, such as the integration of anaphora resolution into our cohesion-based metric, and
make our code publicly available.
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1. Introduction

Text segmentation is the task of dividing a se-
quence of text elements (e.g. words, sentences,
or paragraphs) into segments. Formally, given a
sequence of text elements T = e1, e2, e3...en, a seg-
mentation S of T can be defined by a binary string
Q = [0|1]n−1 that encodes boundaries between the
elements of T . The ith character of Q codifies the
presence of a boundary (1) or lack thereof (0) be-
tween ei and ei+1 in S. S contains m−1 boundaries
and partitions T into m segments1.

S Dogs are cute Cars are fast

0 0 1 0 0

Figure 1: Example segmentation with Q = 00100.

While many segmentation-based tasks, such as
topic segmentation, have received significant atten-
tion from researchers over the years, little progress
has been since the early 2000s on improving seg-
mentation similarity metrics. Exciting advances are
being made in modern topic segmentation-based
tasks, such as meeting transcript segmentation
and the automatic generation of podcast chapters,
but researchers continue to evaluate segmentation
models using similarity metrics that share a critical
weakness: they are agnostic to segment content.

1This definition corresponds to single-type segmen-
tation. A multi-type version also exists where different
boundary types are considered, enabling the encoding
of different types of segments and even hierarchical rela-
tions between them.

Content agnosticism frequently results in seg-
ment similarity scores that are at odds with human
judgment. For example, consider the task of divid-
ing a news article into sections. In Figure 2, the
reference segmentation r outlines an article cov-
ering a report on homelessness in the US: after
a brief introduction, the article describes the cur-
rent state of homelessness in cities across the US,
then in states across the US, and concludes with
a section on how the deputy secretary of the US
Department of Housing and Urban Development
resigned after the release of the report.

r Intro Cities States Deputy

h1 Intro Cities States Deputy

h2 Intro Cities States Deputy

Figure 2: Reference article section outline and two
alternative segmentations.

The figure shows two alternative segmentations,
h1 and h2, which each miss a single section bound-
ary, merging two sections from r. Traditional simi-
larity metrics evaluate h1 and h2 as equidistant to
r. However, human judges can perceive that h1

is closer to r because the sections it merges are
more closely related than those merged by h2.

Current metrics cannot make this distinction be-
cause the majority — WindowDiff (Pevzner and
Hearst, 2002), Pk, (Beeferman et al., 1999), and
Boundary Similarity, (Fournier and Inkpen, 2012) —
evaluate segmentation similarity based only on in-
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dividual boundary differences. The one metric that
does not — A (Ocampo Diaz and Ouyang, 2022)
— is based on the number, but not the content, of
overlapping text elements between segments.

To address this problem, we propose a new met-
ric, SED, that uses static word embedding similar-
ity as a proxy for textual cohesion, based on defi-
nitions from linguistic theory (Halliday and Hasan,
2014). We discuss the theoretical benefits of this
new metric and evaluate its correlation with human
judgments. As we show in Section 4, SED aligns
more closely to human judgements than existing
similarity metrics. We also comment on potential
avenues for future research and make our code
and resources publicly available.

2. Existing Metrics

Existing segmentation similarity metrics fall into
three categories2: window-based metrics slide a
window across the sequence of elements, com-
paring at each position whether the boundaries
in two segmentations match; edit-based metrics
find a sequence of boundary edit operations that
make the two segmentations equal; and alignment-
based metrics produce a score based on segment-
to-segment alignments.

Existing are based on three types of basic errors:

• Boundary Insertion: An extra boundary is
inserted, creating two segments where one
should be.

• Boundary Deletion: A boundary is deleted,
merging two segments.

• Boundary Transposition: A boundary is
"pushed" left or right, slightly distorting two
contiguous segments.

2.1. Window-Based Metrics
Pk (Beeferman et al., 1999) and WindowDiff
(Pevzner and Hearst, 2002) are the most popu-
lar similarity metrics currently used. Both slide a
window of size k + 1 across the sequence of ele-
ments and calculate a penalty based on the number
of positions where the elements on the edges of
the window are segmented differently by the two
candidate segmentations (Figure 3).
Pk is defined as “the probability that a random

pair of elements, k elements apart, will be classi-
fied inconsistently by two segmentations as belong-
ing/not belonging in the same segment.” Given an

2Due to length constraints, we discuss only a repre-
sentative set of existing metrics; we refer the reader to
the survey in Ocampo Diaz and Ouyang (2022) for a
more detailed discussion of metrics and variations.

Figure 3: Illustration of Pk and WindowDiff with
k = 4 from (Pevzner and Hearst, 2002). Penalized
windows indicated by dashed lines.

element sequence T of length n, a reference seg-
mentation r, and an alternative segmentation h, a
window of size k + 1 is slid across the elements (k
is recommended to be half the average segment
size in r); at each position, the r and h are com-
pared based on the elements at the edges of the
window, ei and ei+k; if the segmentations disagree
on whether the elements are in the same segment,
a penalty of 1 is added; finally, the penalty sum is
divided by the number of windows:

Pk(r, h) =
1

n− k

i=n−k∑
i=1,j=i+k

δ(ri,j) ̸= δ(hi,j)

where δ(xi,j) is true iff ei, ej are in the same seg-
ment in segmentation x.

There are a variety of situations where Pk pe-
nalizes errors inconsistently (Pevzner and Hearst,
2002): it penalizes missing boundaries more than
extra boundaries, fails to penalize extra boundaries
that are in close proximity to correct boundaries,
and is very sensitive to the window size k.

WindowDiff (WD) improves on Pk by using a
different penalty criteria. Instead of comparing the
elements at the window edges, WindowDiff counts
the number of boundaries between the edge ele-
ments and assigns a penalty of 1 if the number is
inconsistent between segmentations:

WD(r, h) =
1

n− k

i=n−k∑
i=1,j=i+k

b(ri,j) ̸= b(hi,j)

where b(xi,j) is the boundary count between ei and
ej in segmentation x.

Although WD solves some of Pks problems, it still
produces unintuitive scores and penalizes errors at
the edges of the sequence less than those towards
the middle. WD has been shown to produce er-
ratic scores, for example by prematurely assigning
similarity scores of 0 (Fournier and Inkpen, 2012)
or by penalizing slightly transposed boundaries as
harshly as missing boundaries (Fournier, 2013).
Further, Ocampo Diaz and Ouyang (2022) recently
showed that WD ignores the relative impact of trans-
positions when considering segments of different
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Figure 4: Example segmentation alignment with
boundary edit operations from Fournier (2013).

sizes and penalizes offset boundaries equally even
if they cross over into a different segment.

Although variations of the metric have been pro-
posed (e.g. (Lamprier et al., 2007) proposes a
correction to avoid the edge problem described
above), the original WD metric continues to be the
most used by researchers(Lukasik et al., 2020; Sol-
biati et al., 2021; Liu et al., 2022).

2.2. Edit-Based Metrics

Edit-based metrics are based on the Damerau-
Levenshtein string edit distance (Damerau, 1964;
Levenshtein, 1966) and partially replicated by
Generalized Hamming Distance (Bookstein et al.,
2002); they represent a segmentation as a se-
quence of boundaries and define a set of edit oper-
ations over that sequence. The distance between
two segmentations can be measured as the cost
of the optimal sequence of edit operations required
to make the two segmentations equal, and the op-
timal sequence of edit operations is equivalent to
a boundary alignment between the segmentations.
Segmentation Similarity and Boundary Similarity
both use the same set of edit operations (Figure 4):

• Match: Mark a boundary as correct.
• Addition/Deletion: Insert/delete a boundary.
• k-transposition: Shift a boundary by a max

of k units. Default k = 13.
Segmentation Similarity (S) (Fournier and

Inkpen, 2012) assigns a constant cost to all edit
operations and normalizes the resulting distance
based on the total number of possible boundaries
for the given element sequence. The idea behind
this normalization is to scale the cost based on the
potential complexity of the segmentation in ques-
tion; the intuition is that a constant cost is less im-
pactful on a longer/more complex sequence than it
is on a shorter/simpler one.

Let Ae, Te Se be the sets of the optimal boundary
addition/deletion, transposition, and substitution
operations required to align a pair of segmentations,
h1 and h2, over a sequence of elements T . Further,
let b be the number of boundary types (in the case
of multi-type segmentation) available.

3When k > 1, S and B allow transpositions across
existing boundaries.

S(h1, h2, T ) = 1− |Ae|+ |Te|+ |Se|
b(|T | − 1)

Fournier and Inkpen argue that S 1) produces
scores that align favorably with human intuition in
three key examples, 2) has reduced sensitivity to
variations in segment sizes, and 3) produces more
accurate inter-annotator agreement scores on one
dataset, all in comparison to WindowDiff.
B improves S by introducing weighted-cost trans-

positions and improving the edit distance normal-
ization factor. It is defined as

B(h1, h2, T ) = 1− |Ae|+ t(Te, k) + s(Se, Bt)

|Ae|+ |Te|+ |Se|+ |M |

where k is the maximum transposition distance, |M |
is the number of matching boundary pairs between
h1 and h2, Bt is the set of boundary types, and t
and s are functions that return the weighted sums
of Te (transpositions) and Se (substitutions). The
normalization factor in B produces behavior that
aligns more closely with human judgement than S.

Fournier argues that B produces behavior that
falls more in line with human intuition and over-
comes WD’s bias towards segmentations with
few or tightly-clustered boundaries. However,
Ocampo Diaz and Ouyang (2022) show that B also
shares weaknesses with WD: it allows transposi-
tions across segments, uses constant cost opera-
tions that do not account for the sizes of segments
(e.g. a boundary offset by one element is penalized
the same regardless of the lengths of the surround-
ing segments), and produces constant scores when
boundaries are transposed beyond its maximum
transposition distance.

2.3. Alignment-Based Metrics
Segment Alignment (A) (Ocampo Diaz and
Ouyang, 2022) avoids the issues of window-based
and edit-based similarity metrics by working at
the segment level. Two segmentations h1, h2 are
scored in two stages. First, a segment-to-segment
alignment is found between h1 and h2 by aligning
each segment to its closest segment in the other
segmentation (by default, a simple intersection ra-
tio function is used). Second, alignment edges are
weighted using the Jaccard index and averaged to
produce a final score.

h1

h2

Figure 5: Example alignment produced by A.
A(h1, h2) = 0.51
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Figure 5 shows an example alignment generated
by A. The similarity score is calculated as:

A(h1, h2, c, g) =

∑
edge∈MLA(h1,h2,c)

g(edge)
# edges in MLA(h1, h2, c)

where MLA(h1, h2, c) is the function that produces
the alignment (based on the intersect ratio function
c) and the edge weighting function, g, is the Jaccard
index between two segments, s, t:

J(s, t) =
|intersect(s, t)|
|union(s, t)|

Note that the Jaccard edge weights are based on
element indices, not on segment content.

The main benefit of A over the previous metrics
discussed in this section is that it enables errors
to be weighted relative to the size of the segments
involved. Further, because it does not contain a
maximum range for any kind of error, it does not
saturate scores like WD and B. Because it works
at the segment level, it does not allow transposi-
tions across boundaries. Finally, by replacing the
edge weighting function (e.g., with a semantic sim-
ilarity score between aligned segments), A can be
modified to to be content-sensitive. However, as
we discuss in the next section, A has significant
limitations of its own that we must first address.

2.4. Limitations of A
Lack of 1-to-many alignments. It is not possible
for A with default settings to distinguish between
alignments where segments are aligned one-to-
many. Ocampo Diaz and Ouyang present the ex-
ample in Figure 6 below.

r

h1

h2

Figure 6: Reference r and two candidate segmen-
tations h1, h2 that are indistinguishable using A.

Is it better for a segmenter to make many mis-
takes (in this case, deletions) in the same segment,
as in h1, or for the mistakes to be spread out, as
in h2? The answer may very well be application-
specific, but under A, edges are weighted individu-
ally, so such distinctions cannot be made.

Boundary insertion bias. A penalizes boundary
deletions more harshly than insertions. Figure 7
shows a reference segmentation r and two candi-
date segmentations h1, h2. Both candidates con-
tain one error: h1 deletes a boundary from r, while

h2 inserts an extra boundary; thus, both candidates
can be argued to 50% correct: h1 produces one cor-
rect segment and one incorrect segment, while h2

produces two correct and two incorrect segments.
However, A produces a score of 2/3 for h1 and 3/4
for h2. It is worth noting that the earlier metrics B
and WD do not exhibit this bias.

r

h1

h2

Figure 7: Insertion bias in A where candidate h1 is
scored as more similar to reference r.

Transposition non-linearity. A does not penal-
ize transpositions in a linear fashion. Consider the
sequence of increasingly dissimilar segmentation
pairs in Figure 8. As the distance between the
boundaries increases linearly, we would expect the
similarity score between pairs to decrease linearly,
but A does not follow this trend.

It makes intuitive sense for the top left segment
to align to the bottom left segment, and for the
top right segment to align to the bottom right seg-
ment, but starting at pair (i, j), A allows the top-left
segment to also align across to the bottom-right
segment, creating an alignment with a third, diag-
onal edge. This cross-alignment edge receives
higher and higher weights as the middle bound-
aries are pushed farther apart, which slows down
the decrease in similarity scores.

Maximal segmentation. A penalizes extra
boundaries in the range [1, 1/n] (where n is the
sequence length), instead of in the range [1, 0].
Consider the pair of segmentations in Figure 9:
the reference r consists of only one large segment,
while the candidate h1 has split each element into
a separate segment. WD and B assign this pair a
score of 0, but A assigns a score of 1/7. Because
A weights alignment edges independently, it
cannot account for the fact that h1 is the worst
possible candidate to r.

To illustrate why this is a problem, consider Fig-
ure 10 below. Both candidates h1, h2 insert an extra
boundary, but h1 does so in a large segment that
contains many potential boundary positions, while
h2 does so in a very small segment, where there is
only one possible boundary position.

Is h1 better, or h2? In terms of errors relative to
segment size, which is the intended purpose of A,
h2’s error is worse because it has failed to match
the second segment of r in the worst way possible.
Again, because A produces individual edges, this
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a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

Pair A E
(a, b) 1 1
(c, d) 0.816 0.816
(e, f ) 0.666 0.666
(g, h) 0.535 0.535
(i, j) 0.419 0.428
(k, l) 0.386 0.330

(m, n) 0.366 0.250
(o, p) 0.349 0.173
(q, r) 0.340 0.111

Figure 8: Non-linear transposition penalties in A
where the segmentation pairs grow more dissimilar
linearly, but their scores do not decrease linearly.

r

h1

Figure 9: Maximal segmentation where h1 is the
worst possible candidate segmentation relative to
the reference r; at every possible boundary posi-
tion, it makes the opposite decision.

r

h1

h2

Figure 10: Reference r and candidate segmen-
tations h1, h2. Both candidates make a single in-
sertion error, but h2’s error produces a maximal
segmentation of the second segment in r.

cannot be accounted for: both candidate segmen-
tations are given a score of 2/3.

Content Agnosticism A operates based on seg-
ment indices, not on segment content. For example,
given equal length segments in figure 1, A would
judge h1 and h2 as being equidistant to r.

3. A Global Alignment and
Cohesion-Based Segmentation

Similarity Metric

The weaknesses of window- and edit-based met-
rics stem from the fact that they operate on bound-
aries, not segments; while A does operate on seg-
ments, it produces and weights alignment edges
individually. Finally, all current metrics are agnos-
tic to segment content. We propose to generate
a global segment alignment, and then weight its
edges it based on the content of its segments.

3.1. Global Segment Alignments
Our new metric, Segment Edit Distance (SED),
measures similarity as the cost of editing a refer-
ence segmentation r into a candidate segmentation
h using the following operations:

• Match/Transpose (1:1): Match/transpose a
segment from r with one from h.

• Split (1:M): Match/transpose a segment from
r with many from h.

• Merge (M:1): Match/transpose many seg-
ments from r into a single segment from h.

The SED between segmentations r and h is de-
fined as the average cost of the optimal sequence of
segment edit operations. It can be found in O(nm)
time, where n and m are the number of segments
in r and h, respectively4.
SED effectively aligns segmentation chunks be-

tween a reference and a candidate segmentation,
allowing us to penalize different types of chunks
differently (1:1,1:M,M:1).

Given a reference segmentation r and a candi-
date h, with m and n segments, respectively, SED

4A python-based implementation is available at
https://github.com/sierra98x/resources.

https://github.com/sierra98x/resources
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r

h1

Figure 11: Example alignment produced by SED.
There are three aligned chunks: (r0-h0,2), (r1,2-h2),
(r3-h3).

can be calculated in O(m · n) using dynamic pro-
gramming in a way similar to string edit distance.
Let cost(i, j) be the cost of aligning the first i seg-
ments in r with the first j segments in h. We can find
cost(i, j) by considering only three options based
on the rightmost intersecting unaligned segments,
ri and hj .

• Option A) (1:1) Align ri to hj . Then the total
alignment cost is cost(i − 1, j − 1) + cost of
aligning ri to hj .

• If ri reaches farther left than hj :

– Option B) (1:M) Align ri to hx...j , the
longest sequence of segments in h1...j

that intersects with ri. Then the total cost
is cost(i− 1, x− 1) + cost of aligning ri to
hx...j .

– Option C) (1:M) Align ri to hx+1...j . Then
the total cost is cost(i − 1, x) + cost of
aligning ri to hx+1...j .

• Else, if hj reaches farther left than ri:

– Option B) (M:1) Align hj to rx...i, the
longest sequence of segments in r1...i that
intersects with hj . Then the total cost is
cost(x− 1, j − 1) + cost of aligning hj to
rx...i.

– Option C) (M:1) Align hj to rx+1...i. Then
the total cost is cost(x, j − 1) + cost of
aligning hj to rx+1...i.

• Finally, cost(i, j) = min(A,B,C)

• Note that cost(0,0) = 0 and cost(x,y) = inf if r[x]
and h[y] do not intersect.

We do not need to consider more than two options
for (1:M) and (M:1) alignments at each step, be-
cause all other options generate orphaned seg-
ments in r or h that have no intersecting segment to
align to, invalidating the final alignment. SED(m,n)
is calculated as:

Note that, unlike in A, cross-alignments (Figure
8) can not occur, since every alignment operation
requires relevant segments to intersect. Also, since
SED defines split and merge operations that pro-
duce alignment chunks (1:M or M:1), it can score

cost(R,r,h,i,j):
if i==0 and j==0 return 0
if r[i] and h[j] do not intersect

return inf

t = R[i-1][j-1] + TC(r[i],h[j])
s1, s2 = inf

if r[i] reachest left more than h[j]:
z = leftmost h-seg intersecting r[i]
s1 = R[i-1][z-1] + SC(r[i],h[z...j])
s2 = R[i-1][z] + SC(r[i],h[z+1...j])

if h[j] reachest left more than r[i]:
z = leftmost r-seg intersecting h[j]
s1 = R[z-1][j-1] + MC(r[z...i],h[j])
s2 = R[z][j-1] + MC(r[z+1...i],h[j])

return min(t,s1,s2)

SED(r,h):
m,n = [r.length,h.length]
R = m*n matrix initialized with 0s
for i in [1,m]:

for j in [1,n]:
R[i][j] = cost(R,r,h,i,j)

Figure 12: SED pseudocode

segmentations based on how well a split/merge
is performed: we can define cost functions that
account for the complexity of the merge/split. For
example, we can write cost functions that prefer
balanced splits, where segments are roughly the
same size; we can consider how segments in a
split/merge compare to each other (Figure 2); or
we could punish a segment being split into multiple
smaller segments exponentially or linearly (Figure
6), relative to the worst possible merge/split.
SED also solves the insertion bias problem:

because inserting/deleting additional boundaries
does not change the number of edit operations
(e.g., a segment being Split into three candidate
segments, rather than two, is still just a single Split),
we can use symmetric cost functions for splits and
merges. Finally, because the edit operations are
based on segment chunks, we can define different
content-based penalty functions for each type of
error (split,merge, transpose), something not possi-
ble in A, since it only produces alignments between
individual segments.

3.2. Segmentation and Textual Cohesion
A good segmentation produces cohesive segments,
so textual cohesion is an intuitive measure of seg-
mentation quality. Textual cohesion has the benefit
of being well-defined linguistically: Halliday and
Hasan (2014) describe five devices used to gener-
ate cohesion in written texts:
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• Reference: Two linguistic elements refer to
the same thing. E.g., anaphora: Jan lives by
the pub. He often visits.

• Substitution: One linguistic item replaces an-
other. E.g., A: I will have toast, please. B: I will
have the same.

• Ellipsis: Deletion of words or phrases, which
are referenced implicitly. E.g., A: Do you want
another soda? B: Yes, another [ soda] please.

• Conjunction: The use of conjunctive markers
such as and, or, but, .....

• Lexical Cohesion: The use of vocabulary
which is related to each other either by repeti-
tion or other means. E.g., The laundry is not
done yet. I hate washing clothes.

Paltridge and Burton (2000) further break down
the different types of lexical cohesion: repetition,
synonymy, antonymy, meronymy, and collocation.

Measuring Lexical Cohesion Under an edit-
distance based framework, we need to measure
cohesion between different segments, so not all
five devices of lexical cohesion are applicable. For
example, it is highly unlikely that anaphora or ellip-
sis would exist across separate podcast chapters or
article sections. Lexical cohesion can reasonably
be expected occur across segments, so we use it
as a proxy for overall textual cohesion.

Word embeddings can capture lexical cohesion
to some degree, as high cosine similarity scores
between embeddings are the result of collocation
and semantic similarity. This is illustrated in Figure
2: the merged segment in h1 is more cohesive than
the one in h2 because it contains words with higher
embedding similarity (“cities" and “states").

3.3. Error Penalization Criteria
Given two segments, A and B, the cross-segment
lexical cohesion, CL(A,B) is calculated as follows:

1. Align A and B by finding, for each token, the
closest token in the opposite segment, based
on static word embedding cosine similarity.

2. Calculate the directed cohesion from A to B as
the sum of cosine similarities for each token in
A with value >= 0.75, normalized by the total
number of tokens in A.

3. Repeat for B.

5We empirically set this threshold to capture words
that are similar enough that they would reasonably es-
tablish lexical cohesion between the two texts.

4. The cross-segment lexical cohesion is the har-
monic mean of the directed cohesions from A
to B and B to A.

Given an alignment, we weight segmentation er-
rors to penalize poor intra-segment cohesion within
segments and strong inter-segment cohesion.

• Transpositions: In a transposition, a text unit
is removed from one segment and added to
another. The transposition is worse if the trans-
posed unit is strongly cohesive with the seg-
ment it is removed from and is weakly cohesive
with the segment it is added to.

• Insertions: A boundary insertion splits a sin-
gle segment into two. The insertion is worse
if it results in new segments that are strongly
cohesive with each other.

• Deletions: A boundary deletion merges two
segments into one. The deletion is worse if it
merges uncohesive segments.

Match/Transposition Cost Function Let sr be
a segment from a reference segmentation r and
sh be an overlapping segment from a candidate
segmentation h. Further, let seh be the extra sub-
segment of sh, which is not in sr, and smh be the
subsegment of sr that is missing from sh. The
transposition cost between si and sj is

TC(sr, sh) = (1− CL(sr, s
e
h)) + CL(sr, s

m
h )

where CL(sr, s
m
h ) is the cohesion between the ref-

erence and the missing subsegment in sh, and
(1 − CL(sr, s

e
h)) is the lack of cohesion between

the reference and the extra subsegment in sh.

Split Cost Function A straightforward cost func-
tion first measures the transposition cost between a
reference segment sr and the corresponding meta-
segment Si,j that is the union of candidate seg-
ments involved in the split. Recall that the bound-
aries can be slightly offset by alternative segmen-
tations, so the edges of sr may not be exactly
matched by the corresponding meta-segment Si,j .

Then, the split is penalized based on the number
of segments involved in Si,j , relative to the worst
possible number of such segments (i.e., the num-
ber of elements in sr; Figure 10).

Finally, the split is further penalized based on the
pair-wise cohesion between segments. Intuitively,
if a large segment sr is split into multiple, smaller
segments in sh ∈ Si,j , then a split where the sh
are as different as possible is preferable; if the split
segments are more similar to each other, it is worse
for them to be separated.
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The final cost function is 1− SC(sr, Si,j):

SC(sr, Si,j) =

CL(sr,
⋃

Si,j)

× (|sr| − 1)(|Si,j | − 1)

(|sr| − 1)

× cdiff(Si,j)

where sr is the reference segment, Si,j is a set of
contiguous segments in the candidate h, and cdiff
is 1 - the average pairwise cohesion among Si,j .

Merge Cost Function The merge cost function
is the same as the split cost function, with the ex-
ception of the pair-wise segment cohesion penalty.

MC(Sk,l, sh) =

CL(sh,
⋃

Sk,l)

× (|sh| − 1)(|Sk,l| − 1)

(|sh| − 1)

× csim(
⋃

Sk,l)

where sh is the candidate segment, Sk,l is a set of
contiguous segments in the reference r, and csim
is the average pairwise cohesion among Sk,l.

3.4. Comparison with BERT-like
Approaches

In recent years, BERT-like metrics based on contex-
tual embeddings, such as BERTScore(Zhang et al.,
2020) and SBERT(Reimers and Gurevych, 2019),
have become a popular approach to measuring
text similarity. Although these metrics share sim-
ilarities with our segment lexical cohesion metric,
we argue they should not be used for segmentation
scoring, as they are designed to measure semantic
similarity, a stricter requirement than cohesion.

To illustrate why semantic similarity is not ade-
quate for scoring segmentations, consider a ref-
erence segment r = [s1, s2, s3], where each ele-
ment is a sentence, and an alternative segment
h = [s1, s2, s3, s4]. We know that s1, s2s3 in r and
h are identical; the question is how well s4 “fits"
with the other elements. If h is a good alternative
segment, we would expect s4 to be cohesive with
s1, s2, s3, but we would not require it to be highly
semantically similar to s1, s2, s3 because that would
mean it is redundant with them.

If we simply applied, for example, BERTScore
to measure the distance between r and h, it would
perfectly align all tokens from s1, s2, s3 in h to
s1, s2, s3 in r and the tokens from s4 to tokens
across s1, s2, s3; the score reported would be the
average cosine similarity between aligned tokens.
This is problematic for two reasons: first, since

s1, s2, s3 are the same in h and r, their alignments
would produce perfect cosine similarity scores, and
second, the tokens in s4 would be penalized based
on how semantically similar they are to those in
s1, s2, s3, instead of based on how cohesive they
are.

4. Human Evaluation

To test whether SED aligns with human judge-
ments, we perform evaluation experiments using a
dataset of articles downloaded from CNN.com. We
generate candidate segmentations with errors that
are different only in segment content and ask hu-
mans to choose between them. We find evaluators
frequently agree with SED and are rarely agnostic
to article content.

4.1. Data Collection
We download articles from the top five CNN cate-
gories between 2011 and 2021: politics, us, health,
entertainment, and opinions. We filter out articles
that 1) have fewer than four sections (based on the
number of headers in the text), and 2) have a more
than 1000 words (to avoid annotator fatigue). We
further filter articles that contain sections shorter
than 50 words, as these tend to be non-article doc-
uments, such as interviews, and we manually filter
list-like documents, as they involve self-contained,
unrelated sections that annotators find confusing.

4.2. Experimental Setup
For each article, we define a reference segmen-
tation r over its paragraphs based on the section
headers in the article (we consider the headers
themselves to be segment boundaries, not part of
the article content). We then generate distinct pairs
of alternative segmentations by introducing one of
the basic segmentation errors6: deleting a bound-
ary, inserting an extra boundary, or transposing
a boundary. Deletion pairs each delete a single
(different) boundary from r; insertion pairs each
insert a single boundary into the same segment of
r, but in different positions; and transposition pairs
each transpose the same boundary in r in opposite
directions by 1 unit (paragraph). For each article
and error type, we select a pair h1, h2 to maximize
the difference |SED(r, h1)−SED(r, h2)|7, with the

6We do not produce errors involving the first section;
the first section is frequently an introduction and is thus
semantically different from the other sections.

7We perform tokenization, lemmatization, POS tag-
ging, filtering, and word vector calculations using the
spaCy en_core_web_lg v 3.7.1 pipeline. We filter any
words that are not nouns, verbs, adjectives, or adverbs.
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goal of testing whether humans agree that there is
a difference between them.

For each error type, we present three hu-
man judges with 30 articles8, each paired with
two segmentations h1,h2, and ask them whether
h1 is better, h2 is better, or h1, h2 are equally
good/indistinguishable, taking the majority vote
among judges.

4.3. Results
For each basic error, we report three values: inter-
annotator agreement ( Fleiss multi-/kappa), per-
centage agreement between SED and human ma-
jority vote, and percentage agreement between
prior metrics (i.e., judging all pairs to be indistin-
guishable) and human majority vote.

Error Fleiss κ SED % Prior %
Deletion 0.57 0.87 0.06
Insertion 0.50 0.60 0.03

Transposition 0.19 0.44 0.40

Table 1: Human evaluation results for the three
types of basic errors.

The cohesion-based penalization used by SED
works particularly well for deletion errors, with
human judges reporting high levels of chance-
corrected agreement (0.57) and metric accuracy
(0.87%) against human majority vote. Human
judges have similarly high agreement for insertion
errors (0.5), but here SED’s accuracy against the
human majority vote is only moderate (0.60). Fi-
nally, both human agreement and accuracy against
the majority vote are lowest for transposition errors
(0.19, 0.44, respectively).

The level of difficulty reported by judges for each
error type aligns well with the inter-annotator agree-
ment results. Judges rank deletions as being the
easiest to evaluate, then insertions, and finally,
transpositions as the hardest:
• Deletion errors are the easiest to judge because

they involve merging two gold segments (each on
one side of the deleted boundary) that are both
semantically meaningful and distinct.
– Example: In an article about dogs, h1 may

merge the topics "food" and "treats", while h2

merges "discipline" and "health". Because all
the segments are semantically meaningful and
sufficiently distinct, it is easy for human judges
to decide which merging is worse.

• Insertion errors are harder because they split a
gold segment with no guarantee that the resulting
halves will be semantically meaningful or distinct.

8We limit the number of articles to prevent fatigue, as
judges must read large sections of the articles.

– Example: In the same article about dogs, the
"food" section is split by inserting an extra
boundary, but the "food" section talks about
different foods that are good for dogs in no
particular order, so it becomes hard for evalu-
ators compare two segmentations h1,h2 that
split "food" in different ways.

• Transposition errors are the hardest because they
involve the first and last paragraphs of neighbor-
ing sections, which tend to be equally heavy in
terms of topic-specific content; both candidate
segmentations look equally bad to human judges.
– Example: Given two contiguous sections in r,

"dogs" and "cats", h1 expands "dogs" so that
it now includes the first paragraph of "cats",
while h2 expands "cats" so that it now includes
the last paragraph of "dogs" — both are bad.

Overall, the content-agnostic approach of prior
metrics does not align well with human judgements.
For deletions and insertions, humans rarely judge
pairs as being equal. We see an increase in hu-
mans selecting ties for transpositions, although this
could be attributed to the difficulty of the task.

5. Limitations

Like all segmentation similarity metrics, our work
assumes segment homogeneity; for example, in
Figure 2, SED would correctly identify that merg-
ing the City section with the States section is better
than merging the States section with the Deputy
section, but things are less clear when merging
the Intro section with the Cities section, as the In-
tro section plays a very different role in the article
than the other sections do. There is no straightfor-
ward solution to this problem, as segment types
are frequently domain-specific.

6. Conclusions and Future Work

Textual cohesion enables segmentation similarity
metrics to move towards content-based scoring.
Our experiments show that SED, with a simple
word-embedding-based metric of cross-text cohe-
sion, aligns significantly well with human evalua-
tions of segmentation similarity, unlike traditional
metrics.

There are two straightforward research directions
in which we are interested: first, the incorporation
of anaphora resolution into our cohesion metric
as a pre-processing step would help capture more
cases of lexical cohesion; second, it is relatively
simple to modify the cross-text cohesion metric to
measure inner-text cohesion, which can be used
as a proxy for segment quality.

We make our code and data available for public
use at https://github.com/sierra98x/resources.

https://github.com/sierra98x/resources
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