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Abstract
Continual Few-shot Relation Extraction (CFRE) is a practical problem that requires the model to continuously
learn novel relations while avoiding forgetting old ones with few labeled training data. The primary challenges are
catastrophic forgetting and overfitting. This paper harnesses prompt learning to explore the implicit capabilities of
pre-trained language models to address the above two challenges, thereby making language models better continual
few-shot relation extractors. Specifically, we propose a Contrastive Prompt Learning framework, which designs
prompt representation to acquire more generalized knowledge that can be easily adapted to old and new categories,
and margin-based contrastive learning to focus more on hard samples, therefore alleviating catastrophic forgetting
and overfitting issues. To further remedy overfitting in low-resource scenarios, we introduce an effective memory
augmentation strategy that employs well-crafted prompts to guide ChatGPT in generating diverse samples. Extensive
experiments demonstrate that our method outperforms state-of-the-art methods by a large margin and significantly
mitigates catastrophic forgetting and overfitting in low-resource scenarios.
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1. Introduction

Relation Extraction (RE) is a fundamental and im-
portant task in the field of natural language process-
ing, which aims to extract the underlying relation
between entities in a sentence or document. Tradi-
tional RE methods (Peng et al., 2020; Chen et al.,
2022) train models on a large number of labeled
samples and subsequently test them on data with
the same label space. However, in real-life scenar-
ios where new relations emerge all the time, these
models may experience a substantial performance
decline when adapting to novel relations. In ad-
dition, these models heavily rely on the massive
labeled data, which demands considerable time
and effort to collect.

Therefore, Continual Few-Shot Relation Extrac-
tion (CFRE) (Qin and Joty, 2022) has been pro-
posed, which aims to continually learn new re-
lations while retaining knowledge of previously
learned relations, all within the constraints of limited
labeled data. This practical task brings forth two
significant challenges: catastrophic forgetting and
overfitting, as shown in Figure 1. Catastrophic for-
getting refers to the phenomenon where the model
abruptly forgets the knowledge gained from pre-
vious tasks when learning new tasks. It’s worth
noting that some latest studies (Luo et al., 2023;
Zhai et al., 2023) point out that catastrophic forget-
ting even exists in large language models, which
makes this issue well worth studying. Overfitting
occurs when a model learns to perform exception-
ally well on the training data but fails to generalize
effectively to unseen data due to fitting noise or irrel-
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Figure 1: Overview of catastrophic forgetting and
overfitting in CFRE.

evant patterns, which tends to be more pronounced
in low-resource scenarios with sparse training data.

There are several methods have been proposed
to address CFRE. Qin and Joty (2022) tackle both
issues by introducing embedding space regular-
ization and data augmentation from external data
sources. Wang et al. (2023) introduce serial con-
trastive knowledge distillation to preserve the prior
knowledge, thus addressing catastrophic forgetting.
Chen et al. (2023) design a consistent prototype
learning method to mitigate catastrophic forgetting.
While these methods have demonstrated remark-
able performance, they do not fully explore the rich
inherent knowledge embedded within Pre-trained
Language Models (PLMs) to effectively combat
catastrophic forgetting and overfitting.

Recently, prompt learning is popular for its magic
ability to unlock the potential of PLMs (Lester et al.,
2021) and has been widely proven to be simple
and effective, especially in the few-shot setting
(Gao et al., 2021; Gu et al., 2022). In this work,
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we delve into the implicit capabilities of PLMs by
leveraging prompt learning to address catastrophic
forgetting and overfitting, thereby making language
models better continuous few-shot relation extrac-
tors. To the best of our knowledge, this is the first
exploration of prompt technologies in the CFRE
task. Specifically, we propose a Contrastive Prompt
Learning framework (CPL), comprising a prompt
representation module and a margin-based con-
trastive learning module. Prompt Representation
introduces an effective semi-automated template
for RE, which converts RE from classification to text
infilling based on context. In this way, PLM tends
to learn general task knowledge rather than spe-
cific relation categories, becoming adept at identify-
ing previous and novel relations, thereby mitigating
catastrophic forgetting. Margin-based contrastive
learning makes the model focus more on hard sam-
ples and thereby takes a more uniform feature dis-
tribution, which effectively alleviates overfitting. To
further remedy overfitting in low-resource scenar-
ios, we leverage the power of large language mod-
els to bolster smaller PLMs and introduce an effec-
tive memory augmentation strategy, which employs
well-crafted prompts to guide ChatGPT (OpenAI,
2022) in generating diverse samples. During rela-
tion prediction phase, Nearest-Class-Mean classi-
fier is adopted instead of softmax classifier, which
is more appropriate for incremental-class classifi-
cation tasks.

Extensive experiments on two popular RE
datasets demonstrate our proposed approach sig-
nificantly outperforms the baselines, for example,
improving accuracy by 6.28% compared to the
state-of-the-art method in TACRED dataset. We
also conduct a series of ablation studies to prove
the effectiveness of each module. We release our
code1 to the community for future research. To
summarize, our main contributions include:

• We leverage prompt learning to explore the
implicit capabilities of PLMs and propose CPL
framework, combining it with a novel margin-
based contrastive learning objective for CFRL,
which alleviates catastrophic forgetting and
overfitting issues simultaneously.

• We introduce a memory augmentation strat-
egy by exploiting the power of LLMs to boost
smaller PLMs, which employs well-crafted
prompts to guide ChatGPT in generating sam-
ples and thus better combat overfitting.

• Extensive experiments on two RE benchmarks
show that our method outperforms SOTA mod-
els, proving the effectiveness of mitigating
catastrophic forgetting and overfitting.

1https://github.com/mashengkun/CPL

2. Related Work

2.1. Continual Learning
Continual Learning (CL) aims to continually learn
new knowledge from a sequence of tasks while
avoiding forgetting old knowledge. The main chal-
lenge in CL is catastrophic forgetting (McCloskey
and Cohen, 1989). Existing CL methods are di-
vided into three categories: 1) regularization meth-
ods (Li and Hoiem, 2017; Ritter et al., 2018) use ex-
tra constraints to restrict the update of parameters,
so that the models can remember more old knowl-
edge. 2) dynamic architecture methods (Fernando
et al., 2017; Mallya et al., 2018) extend model archi-
tecture dynamically to store new knowledge when
sequence tasks keep coming. 3) memory-based
methods (Rebuffi et al., 2017; Shin et al., 2017)
store a few typical samples of current task to the
memory, and replay the memory after learning
sequence task to review old knowledge. Among
these methods, memory-based methods are the
most effective in NLP tasks (Wang et al., 2019;
Han et al., 2020). However, data for new tasks is
not always sufficient and also getting high-quality
data tends to be expensive and time-consuming.
Qin and Joty (2022) first introduce Continual Rela-
tion Extraction (CRE) in the few-shot setting, and
Wang et al. (2023); Chen et al. (2023) propose so-
lutions based on memory methods. We also adopt
memory-based strategy, but we concentrate more
on how to better leverage PLMs to solve CFRE.

2.2. Prompt Learning
Prompt learning emerged with the birth of GPT-3 se-
ries (Brown et al., 2020) and has achieved remark-
able performance in NLP tasks, especially in few-
shot scenarios (Gao et al., 2021; Gu et al., 2022).
It reformulates downstream tasks into pre-training
tasks by adding prompted tokens and guides PLMs
to understand diverse tasks. Previous prompt learn-
ing methods can be divided into three categories:
1) hard prompt (Schick and Schütze, 2021) is to
add handcrafted prompt tokens to the sentences
and convert them into mask language modeling
problem. Though effective, it requires sophisti-
cated expert knowledge for different tasks which is
cumbersome and time-consuming. 2) soft prompt
(Lester et al., 2021) is instead to add continuous
trainable vectors contained in the sentences that
can be automatically learned by the model. How-
ever, models can not always learn the appropri-
ate prompts without any prior expert knowledge,
especially in low-resource scenarios. 3) hybrid
prompt (Han et al., 2022) combines untunable hard
prompts and tuneable soft prompts, allowing the
models to easily learn suitable templates with small
manual intervention. It is verified to be the most

https://github.com/mashengkun/CPL
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effective prompt method according to recent stud-
ies (Gu et al., 2022). Zhang et al. (2022) introduce
a prompt-based framework to enhance continual
learning process in dealing with CRE. Different from
them, we focus on the few-shot setting and adopt
hybrid prompts to help with PLMs to alleviate catas-
trophic forgetting and overfitting.

3. Task Formalization

Continual relation extraction aims to continually
learn new relations from a series of n tasks
T =

(
T 1, T 2, . . . , T n

)
. where the k-th task

T k has its own relation set Rk, and each rela-
tion r ∈ Rk owns several instances x, x =
[x1, . . . , eh, . . . , et, . . . , x|x|]] which represents a nat-
ural language sentence with head entity eh and tail
entity et. The samples from T k are divided into
training set Dk

train, validation set Dk
valid, and test

set Dk
test. The relations from different tasks are

disjoint ∩ni=1R
i = ∅. Note that, once finishing task

T k, the samples of T k are no longer available for
future training. The model after training T k will be
evaluated on the test set of all seen relations.

To align with the real situation where labeled
samples of each relation are often scarce, we fo-
cus on CRE in the few-shot setting following the
work of Qin and Joty (2022). For the first task
T 1, samples are sufficient, and the subsequent
tasks T 2, T 3, . . . , T n are all the few-shot. Follow-
ing (Chen et al., 2023), we set N as the relation
number of each few-shot task and K as the sample
number of each relation, so the continual few-shot
task can be called continual N -way K-shot task.

Following previous works (Han et al., 2020; Qin
and Joty, 2022; Wang et al., 2023), we set a mem-
ory M =

{
M1,M2, . . . ,Mn

}
with size L, which

stores L typical samples for each relation from pre-
vious tasks. When training on T k, the memory
M̂k−1 = ∪k−1

i=1Mi can be accessed by the model.
In the few-shot setting, we just store one sample
per relation (L = 1) in the memory.

4. Method

In this section, we detail the components of the
proposed method and the training procedure.

4.1. Framework Overview

As shown in figure 2, our framework can be di-
vided into three modules: (1) prompt representa-
tion, (2) contrastive learning, and (3) memory
augmentation. Prompt representation module in-
troduces the prompt template and the encoding
method, which makes downstream tasks more sim-
ilar to pre-training tasks of PLMs, so that the model

is better adapted to new tasks, detailed in Sec-
tion 4.2. Contrastive learning module proposes a
margin-based contrastive learning objective and
introduces how to train the model during current
task and memory replay. After two contrastive train-
ing, model tends to learn a more uniform feature
distribution, thus reducing overfitting, detailed in
Section 4.3. Memory augmentation module se-
lects typical samples from current tasks and then
generates extra samples by ChatGPT for data aug-
mentation, it further mitigates overfitting caused by
sparse data, see Section 4.4.

4.2. Prompt Representation
Vanilla prompt engineering consists of two parts,
namely template and verbalizer. The template re-
formulates the original input as a cloze-style phrase
by adding a set of prompt tokens and one [MASK]
token, and the verbalizer maps each task label to
the corresponding textual token. By predicting the
[MASK] token as label verbalization, the model
can determine the corresponding label of the input
example. Different from vanilla prompt engineer-
ing, our prompt framework only includes template
without verbalizer. By adding a prompt template to
input sentences, the downstream tasks are more
similar to the pre-training task of PLMs, therefore
PLMs can understand well what to do and perform
better on downstream tasks.

Prompt template We design a semi-automated
continuous template T , which combines entity in-
formation and learnable tokens as prompts rather
than hard prompt with only handcrafted tokens or
soft prompt with only learnable tokens (Lester et al.,
2021). Hard prompt likes “x. The relation between
eh and et is [MASK].”, which needs different so-
phisticated expert knowledge for specific tasks, and
soft prompt might be hard to converge with sparse
data. Specifically, for an input sentence x with two
entities eh and et, the template is as follows:

T (x) = x. [v0:n0−1] eh [vn0:n1−1] [MASK]

[vn1:n2−1] et [vn2:n3−1] . (1)

where [vi] refers to the i-th learnable continuous
token, and ni is the length of token phrases. We
add a special token [MASK] in the template as the
representation of the relation between eh and et.

Encoding Given a encoding model E and a tem-
plated sentence T (x) as input, we map the T (x)
into a sequence of continuous vectors:

Emb (T (x)) = e (x) , h0, . . . , hn0−1, e (eh) ,

hn0
, . . . , hn1−1, e ([MASK]) , hn1

,

. . . , hn2−1, e (et) , hn2
, . . . , hn3−1 (2)
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Figure 2: Framework of the proposed CPL.

where Emb (·) is the embedding function, e () is the
embedding layer of encoding modelE, hi ∈ Rd1 are
learnable vectors, d1 is the embedding dimension
of E, and 0 ≤ i < n3. Then the embeddings are
fed into the encoding model E and get the hidden
representations m of the sentence:

m = Enc (Emb (T (x))) (3)

where Enc (·) represents the hidden layers of E.
m ∈ Rd2 refers the hidden representation of [MASK],
and d2 is the hidden dimension of E.

4.3. Contrastive Learning
We design a novel margin-based contrastive learn-
ing to gain discriminative representations and focus
more on hard samples, thus alleviating overfitting.
It is worth noting that by doing this, the model does
not need the verbalizer module in vanilla prompt
engineering, which saves the labor required for
prompt engineering and makes the method more
general. Instead of linear classifier with extra pa-
rameters in previous works (Cui et al., 2021; Qin
and Joty, 2022), our method predicts relations
based on parameter-free metric method, which is
more suitable for incremental-class problems.

Margin-based contrastive learning objective
Typically, let zi be PLMs’ output hidden vector after
normalization and si,p = zi · zp denotes positive
pair, si,n = zi · zn denotes negative pair, the MCL
loss can be defined as follows:

LMCL (i) =
∑

p∈P (i)

log
exp (αi,p · si,p/τ)

Z (i)
, (4)

where P (i) denotes the positive set with i, τ is the
temperature constant and Z (i) is as follows:

Z(i)=
∑

p∈P (i)

exp
(
αi,p

si,p
τ

)
+

∑
n∈N(i)

exp
(
αi,n

si,n
τ

)
(5)

where N(i) is the negative set with i, αi,p and αi,n

are relaxation factors that control the relaxation of
the decision boundaries.

αi,p = m+ k · si,p, αi,n = 1−m+ k · si,n (6)

where k is normalization constant depends on si,p
and si,n, m is the margin factor which expects k ·
si,p > 1−m and k · si,n < m.

As we can see, MCL objective can make mod-
els pay more attention to hard samples and less
attention to easy ones, thus mitigating overfitting
problem. It can also make learned distribution more
uniform and further alleviate catastrophic forgetting.

Current task training Given a new task T k, we
perform training process with MCL loss on each
batch B. According to (Khosla et al., 2020), su-
pervised contrastive loss performs better with big
batch size, but it’s costly to have a large memory, so
we set an additional memory S for contrastive train-
ing. Specifically, the sentences of current training
set Dk

train are encoding as features z and stored
in a bucket Ck. Then, for i-th instance x in B, we
randomly select partial features from Ck to form a
temporary contrastive features set Si. Finally, the
contrastive loss of i-th instance x can be calculated
in Si. The batch MCL loss is as follows:

LMCL =
∑
i∈I

−1
|P (i)|

∑
p∈P (i)

log
exp (αi,p · si,p/τ)

Z (i)
,

(7)

where I = {1, 2, . . . , |B|}, and positive set
P (i) = {p ∈ Si : yp = yi}, negative set N(i) =
{n ∈ Si : yn ̸= yi}. After backpropagating the gra-
dient of loss on each batch, we update the corre-
sponding features in the bucket Ck:

Ck[Î]← {zi}|B|
i=1, (8)

where Î is the corresponding index set of this batch
of samples in Ck.
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Memory replay The new task training process
can make the model concentrate more on new
knowledge while forgetting old learned knowledge,
especially in low-resource scenarios. To alleviate
forgetting, the second training is performed in the
memory to consolidate old knowledge. Specifically,
we generate additional samples to augment the
memory set (refer to section 4.4) and then perform
memory training with MCL loss again, which can
not only allow the model to review learned knowl-
edge but also prevent the model from overfitting.

4.4. Memory Augmentation
After current task training, We first select typical
samples of current training data to store in memory,
then design the elaborate prompt to guide ChatGPT
to generate diverse samples for memory augmen-
tation.

Representative memory sampling Inspired by
previous works (Han et al., 2020), after training for
current task T k, we apply K-means algorithm (Likas
et al., 2003) to select typical samples for each rela-
tion and store them in the memory M̂. Specifically,
we first get features zi of i-th x on Dk

train, and for
each relation r ∈ Rk, we use K-means algorithm
to cluster features {zi}|R

k|
i=0 into L clusters. Then,

for each cluster, the nearest sample closest to the
centroid is chosen as the typical sample which is
stored in the memory M̂.

Prompt data augmentation To utilize the rich
knowledge of LLMs, we design elaborate prompt
to stimulate LLMs’ powerful language generation
ability to generate relevant examples. We choose
GPT-3.5 as our generation model. For every histor-
ical relation r in R̂k, we select one typical sample
from memory M̂k as the instance and construct a
prompt input including task instruction, semantic
relation explanation (in purple) and demonstrations
(in blue) like In-context learning (Dong et al., 2022).
Here is an example of prompting ChatGPT to gen-
erate samples with the relation “founded by” :
Prompt:
One sample in relation extraction datasets con-
sists of a relation, a context, a head and tail entity.
The head entity has the relation with the tail entity.
Relation founded by means an organization was
found by a person.
Here is an example:
Relation: founded by
Context: Steve Jobs is the co-founder of Apple
Inc.
Head Entity: Steve Jobs
Tail Entity: Apple Inc.
Please generate n samples for relation founded
by :

Then it is used to ask ChatGPT to generate g di-
verse samples with relation r. For the output, we
parse the text to get structured data as the gener-
ated training data A. Finally, memory samples M̂k

are combined with generated data A to construct
a new training set for subsequent memory replay.

4.5. Training Procedure
First, the parameters of prompt template θ1 and
encoding model θ2 are initialized with the param-
eters trained on the last task. Then, there are two
main training steps: (1) Current task training: cur-
rent task training set Dk

train is encoded with prompt
template θ1, and then fed into the encoding model
θ2 for training by MCL loss LMCL (2) Memory re-
play: after training current task, we select typical
samples for each relation and store them in the
memory M̂. Then, ChatGPT is applied to generate
relevant samples with the same relation in memory
M̂ to augment training set for subsequent mem-
ory replay. Finally, historical memory samples are
trained together with generated samples via the
MCL loss LMCL, allowing the model to recall for-
gotten knowledge without overfitting due to sparse
data.

4.6. Relation Prediction
To leverage the discriminative feature distribution af-
ter contrastive training, Nearest-Class-Mean (NCM)
classifier is adopted to predict the relations in the
test phase. Given a historical memory M̂n, we
perform forward propagation with trained encod-
ing model E to get the features of all relations and
average features for each relation to calculate pro-
totypes of relations. Then we get the feature of test
sample x to compute L2 pairwise distance with all
prototypes of seen relations and get the nearest
prototype pr with relation label:

pr =
1

L

L∑
i=0

E (x̂r
i ) ,

y∗ = argmin
r=1,...,n

∥E (x)− pr∥2 (9)

where L is the memory size per relation, x̂r
i denotes

the samples with label yr in memory M̂n. y∗ is the
predicted relation label.

5. Experiments

In this section, we conduct experiments on two RE
datasets and give a further analysis of the results.

5.1. Experiments Setup
Datasets We conduct experiments on two RE
datasets: FewRel (Han et al., 2018) and TACRED
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FewRel (10-way 5-shot)
Method T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8

Finetune 94.58 41.67 26.42 20.79 16.63 13.09 11.27 9.78
Joint-train 95.07 88.16 83.08 79.67 77.85 75.11 72.62 70.33

EMAR+ACA‡ (Wang et al., 2022) 94.75 78.33 69.01 67.17 65.55 61.77 60.04 58.48
InfoCL‡ (Song et al., 2023) 95.38 78.92 72.63 69.05 66.75 63.36 60.65 58.90
RP-CRE† (Cui et al., 2021) 93.97 76.05 71.36 69.32 64.95 61.99 60.59 59.57
CRL† (Zhao et al., 2022) 94.68 80.73 73.82 70.26 66.62 63.28 60.96 59.27
CRECL† (Hu et al., 2022) 93.93 82.55 74.13 69.33 66.51 64.60 62.97 59.99
ERDA† (Qin and Joty, 2022) 92.43 64.52 50.31 44.92 39.75 36.36 34.34 31.96
SCKD‡ (Wang et al., 2023) 94.75 82.56 75.98 72.04 70.53 67.02 64.73 62.87
CPL (ours) 94.87 85.14 78.80 75.10 72.57 69.57 66.85 64.50

TACRED (5-way 5-shot)
Method T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8

Finetune 88.12 23.26 17.23 16.30 14.19 9.64 9.47 7.90
Joint-train 88.40 83.65 74.40 71.36 65.61 64.01 61.13 58.26

EMAR+ACA‡ (Wang et al., 2022) 88.06 71.55 63.57 51.84 46.03 46.31 42.55 39.78
InfoCL‡ (Song et al., 2023) 87.45 75.35 65.94 59.10 52.24 49.42 44.52 40.37
RP-CRE† (Cui et al., 2021) 87.32 74.90 67.88 60.02 53.26 50.72 46.21 44.48
CRL† (Zhao et al., 2022) 88.32 76.30 69.76 61.93 54.68 50.92 47.00 44.27
CRECL† (Hu et al., 2022) 87.09 78.09 61.93 55.60 53.42 51.91 47.55 45.53
ERDA† (Qin and Joty, 2022) 81.88 53.68 40.36 36.17 30.14 22.61 22.29 19.42
SCKD‡ (Wang et al., 2023) 88.16 78.89 71.68 64.99 61.13 57.92 53.18 51.11
CPL (ours) 86.27 81.55 73.52 68.96 63.96 62.66 59.96 57.39

Table 1: Main results on FewRel and TACRED in 5-shot setting. † are reported in (Wang et al., 2023), ‡
are we re-running the origin code. The best results are in bold, and the second-highest are underlined.

(Zhang et al., 2017). For FewRel, we follow Wang
et al. (2023), and adopt the version of 80 publicly
released relations, and split them equally into 8
tasks. For the first task T 1, we select 100 instances
per relation, while the subsequent tasks

{
T i

}8

i=2
are few-shot tasks with only 5 and 10 instances
per relation for training which called 10-way 5-shot
and 10-way 10-shot, respectively. For TACRED,
we filter out “no_relation” and divide the remaining
41 relations into 8 tasks. The first task T 1 has 6
relations and 100 instances per relation, and sub-
sequent tasks

{
T i

}8

i=2
have 5 relations with 5 or

10 instances per relation.

Evaluation metrics We evaluate the model’s per-
formance by the average accuracy of all tasks. Af-
ter training on task T k, the model is evaluated on
D̂k

test = ∪ki=0D
i
test to get the overall accuracy of all

seen relations. We measure the average perfor-
mance across six rounds of experiments.

Baselines We compare with some strong CRE
models published in recent years: RP-CRE (Cui
et al., 2021) introduces a novel attention-based
memory module to refine subsequent sample em-
beddings. CRL (Zhao et al., 2022) and CRECL (Hu
et al., 2022) adopt contrastive learning to ensure the
feature space is more distinguishable. EMAR+ACA
(Wang et al., 2022) propose an adversarial class
augmentation mechanism using EMAR (Han et al.,

2020) as the backbone. InfoCL (Song et al., 2023)
focus on distinguishing analogous classes. ERDA
(Qin and Joty, 2022) and SCKD (Wang et al., 2023)
mainly focus on CRE in few-shot, they use addi-
tional memory to alleviate forgetting and data aug-
mentation to mitigate overfitting.

We set two borderlines: Finetune trains mod-
els sequentially without memory set. It faces seri-
ous catastrophic forgetting and serves as the lower
bound. Joint-training stores all samples of pre-
vious tasks in memory, and trains models with all
data for every new task, which can be regarded as
the upper bound.

Implementation details We implement our
framework based on PyTorch 1.7.0 (Paszke et al.,
2019) and Huggingface’s Transformers 4.10.0
(Wolf et al., 2020). For a fair comparison, BERT-
base-uncased (Devlin et al., 2019) is adopted as
our encoding model. We choose GPT-3.5-turbo
(OpenAI, 2023a) for sample generation. We set
the random seeds identical to Wang et al. (2023);
Qin and Joty (2022) so that the task order is exactly
the same. Following Wang et al. (2023), we employ
the “strict” evaluation rule to put all seen relation
labels as candidates when predicting, rather than
“loose” rule which only picks 10 labels as candi-
dates (Qin and Joty, 2022). For memory size, we
set L = 1, i.e. there is only one sample per relation.
See Appendix A.3 for more details.
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FewRel T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8

CPL 94.87 85.14 78.80 75.10 72.57 69.57 66.85 64.50
w.o. pro. 93.78 78.86 69.65 63.97 60.89 56.73 53.83 51.09
w.o. MCL 94.97 84.05 77.64 73.32 70.21 66.76 63.71 61.78
w.o. gen 94.73 82.62 76.16 73.38 70.51 66.98 65.30 63.78
w.o. all 93.20 76.46 66.14 61.49 57.97 53.72 50.09 48.29

TACRED T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8

CPL 86.27 81.55 73.52 68.96 63.96 62.66 59.96 57.39
w.o. pro. 86.30 75.14 64.27 59.44 54.11 48.87 44.74 42.61
w.o. MCL 86.02 81.37 75.46 71.46 64.60 63.26 57.53 54.75
w.o. gen 86.14 79.61 70.01 65.24 60.16 57.98 52.64 50.63
w.o. all 86.77 76.10 61.05 55.01 50.83 44.71 39.76 38.06

Table 2: Ablation study on components of CPL.

5.2. Results and Analysis

5.2.1. Main Results

Table 1 presents the overall results of the 5-shot
setting on FewRel TACRED (See Appendix B.2 for
10-shot results). We have the following findings:

(1) Our CPL outperforms all CRE models and
achieves SOTA performance on both RE datasets.
Specifically, we outperform the second-best model
SCKD by 1.63% and 6.28% on FewRel and TA-
CRED, respectively. Notably, we achieve signif-
icantly the best performance on the final task of
TACRED, even though the performance on the first
task is not very good, which proves that the pro-
posed CPL better handles the catastrophic forget-
ting and overfitting problems. (2) Observing the
performance of two borderlines, we find finetune
model leads to rapid drops in average accuracy,
which shows catastrophic forgetting and overfitting
in CFRE tasks. Particularly, we achieve close per-
formance to the joint-training model on TACRED
with only one memory sample per relation. How-
ever, there is still a five-point gap behind the joint
train on FewRel due to the bias caused by very few
memory samples. (3)Compared to data augmen-
tation methods ERDA and SCKD, CPL achieves
significant improvements, which demonstrates that
our method can generate more diverse samples
that are closer to the true distribution. Note that
ERDA gains the worst performance in our setting,
the reason is that the extra data they import may
contain noise and bias, and loose evaluation met-
rics they used are also ill-considered. (4) Com-
pared to contrastive learning methods CRL and
CRECL, CPL outperforms them by a large mar-
gin on both datasets, which demonstrates that our
proposed margin-based contrastive learning can
better alleviate overfitting and is more suitable in
low-resource scenarios.

5.2.2. Ablation Study

We conduct ablation experiments on the FewRel 10-
way 5-shot and TACRED 5-way 5-shot to verify the
effectiveness of each component in our method.

Template
1 x0 . . . [E0] eh [E1] . . . [E2] et [E3] . . .xn.
2 x. The relation between eh and et is

[MASK].
3 x. [v0] [v1] [MASK] [v2] [v3].
4 x. [v0] eh [v1] [MASK] [v2] et [v3].

Table 3: Templates of different prompt encoding.

(a) w.o. pro. denotes without prompt template.
Instead, we use entity markers following previous
works (Cui et al., 2021; Zhao et al., 2022; Qin and
Joty, 2022; Hu et al., 2022; Wang et al., 2023). (b)
w.o. MCL means using supervised contrastive loss
(Zhao et al., 2022) instead of our margin-based
contrastive loss. (c) w.o. gen represents without
generated samples for memory replay. (d) w.o. all
means without all of the above components.

As shown in table 2, prompt representation
brings a boost of 13.41% and 14.78% after training
all tasks, demonstrating the powerful effectiveness
of prompt learning for alleviating catastrophic for-
getting. MCL loss can also contribute to 2.27% and
2.26% improvement in the 5-shot setting, which
shows our margin-based contrastive learning helps
models mitigate overfitting caused by sparse data.
Additionally, we observe a steady improvement with
data augmentation, which represents ChatGPT ef-
fectively generates various samples to help the
model learn more realistic distributions.

5.2.3. Analysis of Prompt Representation

To verify the effectiveness of proposed prompt rep-
resentation method, we conduct comparison ex-
periments with four encoding templates in table 3:
entity marker, hard prompt, soft prompt, and hybrid
prompt template. Figure 3 shows the average ac-
curacy after final task training which represents the
degree of forgetting. It can be observed that hybrid
prompt outperforms entity marker extensively used
in previous works by a big gap, demonstrating the
effectiveness of proposed prompt template. The
reason is that we combine entity knowledge for
RE and make downstream tasks approximate the
tasks during pre-training phase of PLMs, hence, the
current task training can activate underlying knowl-
edge of PLMs and further alleviate forgetting. No-
tably, hard prompt is elaborately handcrafted for RE
tasks, which contains domain expert knowledge,
but even so, our hybrid prompt still outperforms it
distinctly, which shows that our hybrid prompt can
learn the most suitable template for current tasks
with only several samples. The reason for the poor
performance of soft prompt is that randomly initial-
ized vectors are difficult to converge with only a few
samples, as reported by Gu et al. (2022).
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Figure 3: Results of different prompt formats.
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Figure 4: t-SNE plots of instance embeddings
trained with SCL and MCL.

5.2.4. Visualization of Contrastive Learning

In order to study the effects of proposed margin-
based contrastive objective in low resource scenar-
ios, we use t-SNE (Van der Maaten and Hinton,
2008) to visualize the feature space of test data
after current task training. Figure 4 illustrates the
results of supervised contrastive loss (SCL) and
our MCL loss. As we can see, the feature space of
MCL is more uniform than SCL, and samples with
different relations are discriminative. As for SCL,
though samples with easy-distinguish relations like
“owned by” and “head of government” have obvious
boundaries, some samples with similar relations as
“child” and “father” are difficult to distinguish. This
is because SCL focuses more on easy pairs and
less on hard ones, making it difficult to distinguish
similar relations, especially in the few-shot setting.

5.2.5. Analysis of Memory Augmentation
through LLMs

To analyze the effect of memory augmentation
through LLMs on results, we conduct experiments
with different numbers of generated samples in the
5-shot setting, where one sample per relation is
stored in memory (L = 1). As shown in Figure
5, data generation with LLMs can yield better per-
formance in the few-shot setting. However using
more generated data can only boost RE perfor-
mance to a certain extent, not continuously better,
and even cause a performance degradation with on
FewRel. This is because the samples generated
by LLMs may be noisy and not diverse enough.
We further conduct a detailed case study to show
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Figure 5: Results with different generated samples.

Prompt: One sample in relation extraction
datasets consists of a relation, a context, a head
and tail entity. The head entity has the relation
with the tail entity. Relation child means subject
has object as child.
Here is an example:
Relation: child
Context: Pierre-Suzanne-Augustin Cochin
was the father of the Catholic politician Denys
Cochin and the grandfather of the historian Au-
gustin Cochin.
Head Entity: Pierre-Suzanne-Augustin Cochin
Tail Entity: Denys Cochin
Please generate n samples for relation child:
Output 1: (with example in input)
Relation: child
Context: John Smith is the father of Emily
Smith and the husband of Sarah Smith. Emily
is a talented musician, while Sarah is a painter.
Head Entity: John Smith
Tail Entity: Emily Smith
Output 2: (without example in input)
Relation: child
Context: John and Mary are siblings. John is
the eldest child in the family.
Head Entity: John
Tail Entity: Mary

Table 4: Case of the inputs and outputs of memory
augmentation.

the real inputs and corresponding outputs of Chat-
GPT, as presented in table 4. We combine relation
name and description (in purple italics) as prompt
input, output 1 with example in input while output
2 without example. We observe that LLMs can
generate the correct sample with the relation “child”
when with the example, but generate the sample
with the wrong relation “siblings” between entities
when without example. It shows some relations can
not be understood well by LLMs only with relation
names and descriptions, examples are sometimes
necessary for LLMs. More results refer to Appendix
C.
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6. Conclusion

In this paper, we propose CPL, which leverages
prompt learning and contrastive learning to em-
power pre-trained language models to better contin-
ual few-shot relation extractors. To alleviate catas-
trophic forgetting, we explore using prompt learn-
ing to activate generalized knowledge of PLMs that
can easily adapt to old and new relations. To miti-
gate overfitting, we design a novel margin-based
contrastive learning objective and apply ChatGPT
to generate diverse samples for memory augmen-
tation. Extensive experiments indicate that CPL
enables PLMs to better mitigate catastrophic for-
getting and overfitting in low-resource scenarios.
In the future, we are going to study how to design
better prompts to guide LLMs to generate more
reliable samples.

7. Limitations

We argue that the main limitations of our work are
mainly twofold: (1) Time efficiency. As the model
continues to learn new tasks, more different relation
samples are held in memory, and more augmented
data are generated by the memory samples. There-
fore, with the continuous accumulation, the sample
of subsequent tasks will be more and more, and the
training time will be more and more. In the future,
we will explore more time-efficient data augmen-
tation strategies. (2) Stability of results. Due to
the unstable content generated by ChatGPT, aug-
mented samples are inconsistent in some exper-
iments with the same input, even when we had
set the temperature in OpenAI to 0 for consistency.
Therefore, under the same setting, experimental re-
sults are not completely consistent each time. We
tried our best to ensure the validity of the experi-
mental results by taking the average value of six
rounds of experiments.
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A. Experimental Details

A.1. Datasets
We conduct experiments on two RE datasets:
FewRel (Han et al., 2018) and TACRED (Zhang
et al., 2017).

FewRel is a recently popular few-shot relation
extraction dataset built from Wikidata. It has high-
quality manually annotated data, which contains
100 relations and 700 instances per relation. It is
also a dataset with evenly distributed instances for
each relation, without long-tail distribution issues.

TACRED is one of the most widely used relation
extraction datasets with 106,264 examples and 41
relation types and no_relation if on defined rela-
tion if held. It is built over newswire and web text
from the corpus used in the yearly TAC Knowledge
Base Population (TAC KBP) challenges (Zhang
et al., 2017). Unlike FewRel, TACRED has an
unbalanced distribution of relations, which simu-
lates real-world scenarios. Based on the open rela-
tion assumption of CRE (Cui et al., 2021), models
continually learn certain relation types, we filter
out no_relation type as previous works (Han et al.,
2020; Cui et al., 2021; Qin and Joty, 2022; Wang
et al., 2023).

A.2. Baselines
SCKD (Wang et al., 2023) also focuses on CFRE,
but different from our work: First, they focus on
using knowledge distillation to preserve the prior
knowledge, thus addressing catastrophic forget-
ting. Although it works, their approach requires
extra computation and consumes more computing
resources. While we concentrate more on how to
better leverage PLMs to learn more generalized
knowledge that can be easily adapted to old and
new categories, thus activates catastrophic forget-
ting without extra computation cost. Second, they
use bidirectional data augmentation to generate
pseudo samples, which essentially replace similar
entities to generate new samples. Their augmented
samples are unnatural and noisy and also lack di-
versity. We exploit the power of LLMs to boost
smaller PLMs and propose a memory augmenta-
tion strategy that can generate more natural and
diverse samples. Another work ConPL (Chen et al.,
2023) for CFRE, is not adopted for comparison due
to its different task settings.

A.3. Implementation Details and
Hyperparameters

EMAR+ACA (Wang et al., 2022) and InfoCL (Song
et al., 2023) are designed for CRE, not CFRE. We

Hyperparameters Values
seed 100
batch_size 16
epoch_currenTrain 10
epoch_memTrain 10
learning_rate 1e− 5
optimizer Adam
BERT_hidden_size 768
Encoder_output_size 768
BERT_input_max_length 256
margin_m 0.3
normalization_k 0.5
temperature_τ 0.1
contrastive_sample_number 500
soft_prompt_initialization random
soft_prompt_length 3
soft_prompt_number 4
ChatGPT_temperature 0
generated_number_FewRel 2
generated_number_TACRED 5

Table 5: Hyperparameters setting.

re-implement their origin code in our few-shot set-
ting with the default hyperparameters. For task
consistency, we re-implement their data processing
using our data to keep the task sequence exactly
the same as ours. Note that, we set the tempera-
ture parameter in OpenAI API to 0, to ensure the
stability of ChatGPT generation as much as possi-
ble, so the experimental results can be reproduced
as much as possible. However, there is no guaran-
tee that ChatGPT generation will remain the same
in the future.

We utilize 1 single NVIDIA Tesla P40 GPU with
24 GB memory on an Intel(R) Xeon(R) Gold 5118
CPU @2.30GHz to run all experiments. For the hy-
perparameters search, we conduct a grid search to
choose the appropriate values. Hyperparameters
are illustrated in Table 5.

B. More Experimental Results

B.1. Influence of Memory Size

Memory size is an important factor for memory-
based continual learning models. Since CRE as-
sumes that the model continues to learn new tasks,
the number of tasks(samples) may be very large
in the real-world scenario, and the memory size is
limited, so it can not save more samples, but only
save the key sample. Generally speaking, mem-
ory sampling and augmentation are employed to
ensure that CFRE works practically in real-world
scenarios.
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FewRel (10-way 10-shot)
Method T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8

Finetune 95.43 45.67 28.26 21.69 17.94 13.83 12.24 10.70
Joint-train 95.55 88.75 83.98 80.70 79.39 78.24 76.48 74.93

EMAR+ACA‡ (Wang et al., 2022) 95.43 84.23 74.67 71.00 68.61 65.39 63.48 61.75
InfoCL‡ (Song et al., 2023) 95.08 83.34 76.03 72.05 70.09 66.97 65.09 63.02
RP-CRE† (Cui et al., 2021) 95.19 79.21 74.72 71.39 67.62 64.43 63.08 61.46
CRL† (Zhao et al., 2022) 95.01 82.08 79.52 75.48 69.41 66.49 64.86 62.95
CRECL† (Hu et al., 2022) 95.63 83.81 78.06 71.28 68.32 66.76 64.95 63.01
ERDA† (Qin and Joty, 2022) 92.68 66.59 56.33 48.62 40.51 37.21 36.39 33.51
SCKD‡ (Wang et al., 2023) 95.43 86.51 79.72 76.01 73.69 70.45 68.22 66.58
CPL (ours) 95.54 88.51 81.92 77.42 74.71 72.25 69.63 67.49

TACRED (5-way 10-shot)
Method T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8

Finetune 86.13 25.17 19.82 17.71 15.25 10.71 10.12 8.45
Joint-train 88.37 83.79 76.75 72.15 70.21 66.60 64.29 61.42

EMAR+ACA‡ (Wang et al., 2022) 86.10 75.68 51.03 42.39 47.26 45.69 45.02 41.51
InfoCL‡ (Song et al., 2023) 85.42 74.64 62.49 57.80 54.65 49.81 46.24 44.25
RP-CRE† (Cui et al., 2021) 86.68 78.43 69.43 60.71 55.84 51.17 47.27 47.16
CRL† (Zhao et al., 2022) 87.81 77.68 63.31 56.51 53.21 52.42 48.54 46.46
CRECL† (Hu et al., 2022) 83.88 73.45 59.24 53.51 49.27 47.41 45.15 44.33
ERDA† (Qin and Joty, 2022) 79.37 51.28 36.97 29.39 27.80 25.18 24.47 22.37
SCKD‡ (Wang et al., 2023) 88.28 80.77 72.41 65.57 64.90 58.60 55.65 53.42
CPL (ours) 86.52 81.78 75.55 68.04 66.65 61.72 60.61 58.57

Table 6: Main results on FewRel and TACRED in 10-shot setting. † are reported in (Wang et al., 2023), ‡
are we re-running the origin code. The best results are in bold, and the second-highest is underlined.

We set the memory size to 1 for a fair compari-
son with other baselines. We also did experiments
to analyze the memory size, and all results are
reported in the 10-shot setting without data gener-
ation. From figure 6, with the increase in memory
size, the performance of the models improves sig-
nificantly, which proves the importance of memory
size for continual learning. Notably, when the mem-
ory size increases to 10, that is, the memory con-
tains all previous samples, and the performance is
almost close to the Joint-train result.
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Figure 6: Results on memory size.

B.2. Results with 10-shot
Table 6 shows the 10-shot results on FewRel and
TACRED datasets. From the results, our method
still achieved the best performance in the 10-shot
setting, which indicates that our method can allevi-
ate catastrophic forgetting and overfitting even with

more training samples.

C. Generated Samples from ChatGPT

To generate more diverse examples, you can set
the temperature parameter in OpenAI API to 1, to
ensure that the samples generated are as diverse
as possible. But for the stability of the results, we
set the temperature to 0 in our experiments. The
memory size is set to 1, so we only have one exam-
ple as the demonstration in the input. The prompt
input is shown in Table 4, and we give some cases
on FewRel dataset in Table 7.

From the results, we have some findings: (1)
Our method is able to generate some high-quality
samples, but the generated samples are still a lit-
tle monotonous even though we’ve tried to make
sure that the generated samples are as diverse as
possible. With relation “child”, the words "mother",
"father", "son" and "daughter" appear in almost
all of the samples. (2) Without example in the in-
put, ChatGPT sometimes doesn’t understand the
relation well and generates some lexically similar
samples, but actually false relations.
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Example Cases
with Relation: child

Context: Michelle Obama is the mother of Sasha and Malia Obama, both of whom
are well-known for their activism and public speaking engagements.
Head Entity: Michelle Obama
Tail Entity: Sasha and Malia Obama

with Relation: child
Context: Queen Elizabeth II is the mother of Prince Charles, Prince Andrew, Princess
Anne, and Prince Edward, all of whom hold royal titles and duties.
Head Entity: Queen Elizabeth II
Tail Entity: Prince Charles, Prince Andrew, Princess Anne, and Prince Edward

with Relation: child
Context: Renowned actor Will Smith is the father of Jaden and Willow Smith, both of
whom have followed in their father’s footsteps and pursued careers in the entertain-
ment industry.
Head Entity: Will Smith
Tail Entity: Jaden and Willow Smith

with Relation: child
Context: The famous singer Beyonce is the mother of Blue Ivy, Sir, and Rumi Carter,
all of whom have captured the hearts of fans with their appearances in music videos
and public events.
Head Entity: Beyonce
Tail Entity: Blue Ivy, Sir, and Rumi Carter

with Relation: child
Context: Former President Barack Obama and First Lady Michelle Obama are the
parents of Malia and Sasha Obama, both of whom have grown up in the public eye
and captivated audiences with their poise and intelligence.
Head Entity: Barack Obama and Michelle Obama
Tail Entity: Malia and Sasha Obama

without Relation: child
Context: Sarah watched proudly as her daughter, Emily, rode her bike without training
wheels for the first time.
Head Entity: Sarah
Tail Entity: Emily

without Relation: child
Context: John and Mary are siblings. John is the eldest child in the family.
Head Entity: John
Tail Entity: Mary

without Relation: child
Context: The park was filled with families enjoying the sunny day, including Jane
pushing her son, Noah, on the swings.
Head Entity: Jane
Tail Entity: Noah

without Relation: child
Context: The school auditorium was buzzing with excitement as Maria prepared to
watch her daughter, Isabella, perform in the school play.
Head Entity: Maria
Tail Entity: Isabella

without Relation: child
Context: Jake beamed with pride as he watched his son, Liam, take his first steps
towards him.
Head Entity: Jake
Tail Entity: Liam

Table 7: Generated cases on FewRel. Errors are highlighted in bold and keywords for judging relations
are underlined.
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