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Abstract
This paper proposes LayoutLLM, a more flexible document analysis method for understanding imaged documents.
Visually Rich Document Understanding tasks, such as document image classification and information extraction,
have gained significant attention due to their importance. Existing methods have been developed to enhance
document comprehension by incorporating pre-training awareness of images, text, and layout structure. However,
these methods require fine-tuning for each task and dataset, and the models are expensive to train and operate.
To overcome this limitation, we propose a new LayoutLLM that integrates these with large-scale language models
(LLMs). By leveraging the strengths of existing research in document image understanding and LLMs’ superior
language understanding capabilities, the proposed model, fine-tuned with multimodal instruction datasets, performs
an understanding of document images in a single model. Our experiments demonstrate improvement over the
baseline model in various document analysis tasks.
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1. Introduction

Visual-rich Document Understanding (VrDU) fo-
cuses on analyzing document images, such as
invoices, to extract and organize structured infor-
mation automatically. Different documents have
different styles, formats, and contents, so unlike tra-
ditional textual information extraction tasks, VrDU
relies on both textual and visual information. There-
fore, taking advantage of the multimodal nature of
visually rich documents is essential. To this end,
previous works, such as LayoutLMs (Huang et al.,
2022; Xu et al., 2021, 2020), have proposed to ac-
quire feature representations by jointly pre-training
textual, visual, and layout information end-to-end
in a single model, as shown in Figure 1. The pro-
cess of fine-tuning is carried out on each task, as
illustrated in Figure 1(a). However, this approach
requires complex fine-tuning steps for each task
and dataset, significantly increasing training and
operational costs.

Large language models (LLMs) have gained a
lot of attention due to their success in natural lan-
guage processing tasks (Brown et al., 2020). They
acquire linguistic knowledge by predicting the con-
tinuation of input sentences through pre-training on
large amounts of the corpus (Radford et al., 2019).
Then, a model can perform various tasks, such as
translation and summarization, by fine-tuning the
knowledge with responses to the input text. How-
ever, while they can perform various tasks through
prompts, which are input instructions, they can only
handle one-dimensional sequences of textual in-
formation. They must be improved to handle text
with significant two-dimensional structure, such as
document images.

We propose a new approach, LayoutLLM, which

Figure 1: The overview of the existing and pro-
posed method approaches. The current method
is fine-tuned for each task after pre-training, as
shown in (a). In contrast, our method is fine-tuned
via LLMs to handle multiple tasks, as shown in (b).

tackles the limitations of conventional models by
combining the advantages of VrDU models and
LLMs. As an encoder, it employs a model that ex-
cels in document layout understanding, while as
a decoder, it uses LLMs that excel in language
understanding. The proposed single model can
flexibly perform multiple tasks by fine-tuning to
multiple VrDU tasks, as shown in Figure 1(b).
We evaluated the proposed method on various
benchmarks, such as document image classifi-
cation, information extraction, and document vi-
sual question-answering. Our experimental results
confirm that LayoutLLM outperforms professionally
tuned models in the VrDU task on several tasks
and also improves performance on NLP tasks.

2. Related Works

VrDU. Previously, language models (Devlin et al.,
2018) challenged document image analysis using
only optical character recognition (OCR) text (Fuji-
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take, 2023b, 2024). However, a current approach
integrates document images and OCR text to pre-
train text, visual, and document layout, providing a
more comprehensive understanding of documents.
LayoutLM (Xu et al., 2020) combines 2D location
information, image embedding, and text for pre-
training, like masking language modeling. The im-
proved models and pre-training techniques, such
as LayoutLMv3 (Huang et al., 2022), have been
proposed for higher accuracy (Xu et al., 2021; Lee
et al., 2023). Text and document feature represen-
tations have been improved through multimodal en-
coders (Gu et al., 2021). A method introduced mod-
eling documents as a collection of bounding box
tokens (Garncarek et al., 2021). OCR-free mod-
els generate text output directly from document
images for optimization (Kim et al., 2022; Li et al.,
2022; Ye et al., 2023). UDOP (Tang et al., 2023)
is a method that combines multiple modes and
tasks into a single model with image reconstruc-
tion. However, it only works for VrDU tasks and
cannot handle NLP tasks. Therefore, this work pro-
poses a flexible framework for multi-domain NLP
and VrDU tasks by using pre-trained models as
encoders and fine-tuning them with LLMs.
LLMs. Large language models have been rapidly
studied in recent years after the success of lan-
guage models (Devlin et al., 2018). BERT pro-
posed a pre-training method, masked language
modeling, which learns bidirectional text repre-
sentations and then fine-tunes them to the target
task. GPT (Radford et al., 2018) also proposed
a method for acquiring representations through
next-word prediction pre-training. The succeed-
ing research found that by successfully inputting
prompts, the model can be adapted to various
tasks without fine-tuning (Radford et al., 2019), and
various large-scale language models have been
proposed (Brown et al., 2020; Armengol-Estapé
et al., 2022). In this study, we used Alpaca (Taori
et al., 2023), based on the large language model
Llama (Touvron et al., 2023), and fine-tuned with a
dataset of 52K instructions and their responses.

3. Method

Figure 2: Architectural overview of the proposed
LayoutLLM. It consists mainly of an encoder that
encodes document images and a decoder that
interprets tasks, and outputs.

Table 1: Prompt format for VrDU tasks.

Prompts

The previous information is about document images.
Below is an instruction that describes a task. Write a
response that appropriately completes the request.
### Instruction: {instruction}
### Response:

Figure 2 shows an overview of the proposed
method. Our method, LayoutLLM, consists of pre-
trained VrDU models and LLMs. VrDU models,
particularly LayoutLMv3 (Huang et al., 2022), han-
dle visual and layout comprehension of documents.
The LLMs, especially Llama (Touvron et al., 2023),
interpret and analyze the document’s textual con-
tent and the task with the language understanding
capabilities, and output the results.

The proposed method is fine-tuned using VrDU
and NLP tasks. As a training phase, the proposed
method uses LayoutLMv3 as an encoder to pro-
cess document images. It takes an OCRed docu-
ment image, which is a document image with OCR
text by some methods (AI, 2020; Fujitake, 2023a),
as input and generates features. Next, the model
receives the document features and subsequent
VrDU task instructions as prompts, and inputs them
to Llama. The response to the prompt is output in
an autoregressive manner, and fine-tuning is per-
formed using CrossEntropy in the same way as in
standard LLMs training. We follow Alpaca (Taori
et al., 2023), which fine-tunes Llama with Intruct-
tuning for the NLP task. Precisely, we fine-tune the
model to the NLP task to respond appropriately,
such as summarizing, based on the input of text
prompts. We do not use the VrDU model at this
time and train in the same way as in Alpaca.

In the test phase, the proposed method uses the
encoder to generate features for the VrDU task and
input them to the LLM with the prompts, as in the
training phase. In the case of the NLP task, only
text prompts are used to output responses.
Encoder. OCRed textual and visual information
from the document image is first encoded using the
pre-trained LayoutLMv3 architecture. It captures
the layout structure and text of the document, and
generates features corresponding to the document.
It is made into a 1D sequence with a maximum
sequence length of 512 to be input to subsequent
Llama. The maximum sequence is determined
by the LayoutLMv3 configuration. In addition, one
linear layer was used to correspond to the input
dimension of Llama. The feature is input to Llama.
Decoder. The decoder uses Llama to receive in-
put data and task instructions, and produces corre-
sponding output. It is an auto-regressive language
model using the optimized Transformer architec-
ture, and a 7B parameters model was used in this
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study. Document features and VrDU task instruc-
tion prompts are used as input for the VrDU tasks.
More precisely, after tokenizing and encoding the
task instruction prompts, the document features
are first input to the LLM, followed by task instruc-
tion information. The feature is input at the same
stage as the features after embedding the natu-
ral language prompts. The NLP task fine-tuning
method follows Alpaca completely.
VrDU Prompts. Based on the document data,
the task content is given to Llama by prompts to
correspond to the target VrDU task. The prompts
are made as consistent as possible with the Alpaca
format, and the format is shown in Table 1. The
“{instruction}” is a variable, the content of which is
task-specific. For document classification, we use
“Perform document classification. The classification
labels are ...” In the case of document information
extraction, we use “Perform document information
extraction. The classification labels are... The
output format is a set of extraction words and their
labels, separated by commas. If multiple extraction
targets exist, use \n as a separator and split the
outputs.” For document questions, we use “Perform
document question answering. The question is that
...” Ground truth is created from each dataset to
match the prompts’ output.

4. Experiments

4.1. Dataset and Evaluation

LayoutLLM’s performance was evaluated through
experiments such as form understanding, receipt
recognition, and document classification tasks. Un-
less stated otherwise, OCR text and bounding
boxes are extracted by EacyOCR (AI, 2020).
Document Classification. Document classifica-
tion predicts the category of each document image.
RVL-CDIP (Harley et al., 2015) is used as the tar-
get dataset. This dataset comprises 320K/40K/40K
training/validation/test images in 16 categories.
Classification accuracies for the 16 categories are
used to measure model performance.
Document Information Extraction. To extract
information from documents, a model must pre-
dict the label for each semantic entity. We use
the FUNSD (Jaume et al., 2019) and CORD (Park
et al., 2019) datasets. FUNSD uses 149/50 noisy
document images during training and testing. Each
semantic entity includes a word list, label, and
bounding box. The evaluation measure used is
an entity-level F1 score for predicting a question,
answer, header, or other. We use the OCR text
and bounding boxes provided by the dataset.

The CORD dataset is a benchmark for receipt
comprehension, with 626/247 receipts for train-
ing/testing, respectively. A model must recognize

a list of text lines. The receipts are labeled with
30 entities grouped into four categories: company,
date, address, and total. The metric is F1, and the
task format is the same as FUNSD.
Document Visual Question Answering. We
use a document understanding benchmark,
DocVQA (Mathew et al., 2021). It consists of
50,000 questions defined on over 12,000 pages of
documents. The dataset is organized into training,
validation, and test sets, with a ratio of about 8:1:1.
It contains an OCRed image page, questions, and
answers. The task is evaluated using an ANLS,
an edit distance-based metric measuring average
normalized Levenshtein similarity.

4.2. Implementation Details

Our model used a pre-trained LayoutLMv3 large
encoder and a pre-trained Llama-7B decoder with
their official weights. We used VrDU task datasets
and NLP task datasets to fine-tune the model. We
created the VrDU task dataset using the dataset
above and the prompt described in the proposed
method section. For the NLP task dataset, we
used the Alpaca dataset (Taori et al., 2023). Mini-
batches were created during training, separating
the VrDU and NLP tasks. It was because the
NLP task doesn’t require data input to the encoder.
Mixing the two tasks prevented back-propagation.
Encoder outputs and prompt inputs were consis-
tently supplied in the same order for training and
inference. The model is optimized on eight A100
GPUs with a batch size of 16. We follow Alpaca’s
learning process basically, using AdamW Opti-
mizer (Loshchilov and Hutter, 2018), with a learn-
ing rate of 1e-5 and 20 epochs. Cosine learning
rate scheduling was used, with a warmup ratio of
0.05 and weight decay of 0.01.

4.3. Main Results

Table 2 shows the performance of each dataset
with several state-of-the-art methods.
Document Classification. Our approach results
in new state-of-the-art accuracy, surpassing Struc-
turalLM’s previous record by 2.6 points without task-
specific and special fine-tuning after pre-training.
The improvement in accuracy can be attributed to
two factors: improved linguistic ability using LLMs
and learning multiple tasks simultaneously. The
conventional method only considers linguistic con-
text obtained during pre-training and fine-tuning
with documents. In contrast, the proposed method
takes advantage of a language model specialized
for linguistic information, making it easier to classify
documents based on their content.
Document Information Extraction. The pro-
posed method has achieved outstanding results
on both datasets, with scores of 95.3% and 98.6%
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Table 2: Performance comparison with state-of-the-arts on FUNSD, CORD, and RVL-CDIP datasets.
Modality V, T, L denote vision, text and layout.

Model Modality FUNSD CORD RVL-CDIP Doc VQA

BERTlarge (Devlin et al., 2018) T 65.6 90.3 89.9 67.5
DiTlarge (Li et al., 2022) V − − 92.7 −
Donut (Kim et al., 2022) V − 91.6 95.3 72.1
mPLUG-DocOwl (Ye et al., 2023) V − − − 62.2
StructuralLMlarge (Li et al., 2021) T+L 85.1 − 96.2 83.9
LayoutLMlarge (Xu et al., 2020) T+L 77.9 − 91.9 −
UniDoc (Gu et al., 2021) V+T+L 87.9 96.9 95.1 −
LAMBERT (Garncarek et al., 2021) T+L − 96.1 − −
TILTlarge (Powalski et al., 2021) V+T+L − 96.3 95.5 87.1
LayoutLMv2large (Xu et al., 2021) V+T+L 84.2 96.0 95.6 78.8
LayoutLMv3large (Huang et al., 2022) V+T+L 92.1 97.5 95.9 83.4
UDOP (Tang et al., 2023) V+T+L 91.6 97.6 96.0 84.7

LayoutLLM (Ours) V+T+L 95.3 98.6 98.8 86.9

Table 3: Component analysis.

Method RVL-CDIP CORD

Encoder-only (LayoutLMv3) 95.9 97.5
+ Decoder (Llama) with Each VrDU Task 97.5 97.9
+ Decoder (Llama) with Multi VrDU Tasks 98.1 98.1
+ Decoder (Llama) with Multi VrDU & NLP Tasks 98.8 98.6

Table 4: Impact of encoder.

Encoder Modal RVL-CDIP CORD

LayoutLMv3 V+T+L 98.8 98.6
UniDoc V+T+L 98.1 97.9

DiT V 94.3 89.6

on FUNSD and CORD, respectively. These scores
represent a significant improvement of 3.2 points
over LayoutLMv3’s best accuracy for the FUNSD
dataset and 1.0 points over UDOP’s best accuracy
for the CORD dataset. UDOP and our method are
both a single model for VrDU tasks. However, the
proposed method uses a language model, extract-
ing more accurate information from documents.
Document Visual Question Answering. Our
method achieved an accuracy of 86.9%, which
is comparable to the highest accuracy achieved
in previous works. The 3.5 points improved over
the baseline show its effectiveness, as it uses a
language model as a decoder, which enhances
language comprehension in Q&A sessions.

4.4. Detailed Analysis

We evaluated the method in detail using CORD
and RVL-CDIP datasets.
Component Analysis. We performed a stepwise
validation to see whether the proposed method
works. Table 3 shows the results of fine-tuning to
each task using only the encoder, fine-tuning to
each VrDU task only using the decoder, fine-tuning
to multiple VrDU tasks simultaneously, and finally
fine-tuning with the NLP task. We confirm that
incorporating the language model, VrDU multi-task
training, and NLP multi-task training are all crucial.
Effects of Encoder Component. We evaluated
the impact of the encoder component. Our ap-
proach is a flexible framework, and the encoder
can be replaced. Table 4 shows the results of
replacing the encoder with other methods. The en-

coder’s feature output length is set to 512. It shows
the successful performance of various methods
and modalities. This suggests that more robust
methods in the future can be incorporated flexibly.

Table 5: Affect on the NLP task performance.

Model Average ARC HellaSwag MMLU TruthfulQA

Alpaca 52.02 52.05 77.00 41.45 37.60
Proposed model 53.06 52.12 79.32 44.31 36.49

Impact on the NLP Tasks. We used a generic
LLM as a decoder and fine-tuned it with a regular
NLP task and the VrDU task. We investigated how
learning the NLP and VrDU tasks together affects
the NLP task. We used various benchmarks that
have been used in recent years to evaluate LLMs.
We used the following benchmarks: ARC (Chollet,
2019) for multiple-choice, HellaSwag (Zellers et al.,
2019) for sentence completion, MMLU (Hendrycks
et al., 2020) for multidomain knowledge under-
standing, and Truthful TruthfulQA (Lin et al., 2021),
which measures the accuracy of answers to ques-
tions. The results of the Alpaca model and the
proposed method are presented in Table 5. Al-
though the VrDU task appeared to negatively im-
pact the NLP task because it is in a different do-
main, the average score increased. In particular, it
improved by 2.86 points in language comprehen-
sion with MMLU. Further research is needed to
explore which NLP tasks, such as summarization,
are associated with higher scores with VrDU.

5. Conclusion

This study has presented a document analysis
framework capable of performing multiple tasks.
The proposed approach, LayoutLLM, combines a
VrDU encoder to capture document images and
a decoder, LLM, to receive task instructions and
process them accordingly. It allows us to efficiently
understand document images by capturing visual
and textual context. Experimental results show that
our method significantly improves the performance
of various VrDU tasks. Furthermore, unlike pre-
vious studies, it can exploit LLMs’ pure NLP task
processing capability, not only for VrDU tasks.
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