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Abstract
Language identification is an important first step in many NLP applications. Most publicly available language
identification datasets, however, are compiled under the assumption that the gold label of each instance is determined
by where texts are retrieved from. Research has shown that this is a problematic assumption, particularly in the case
of very similar languages (e.g., Croatian and Serbian) and national language varieties (e.g., Brazilian and European
Portuguese), where texts may contain no distinctive marker of the particular language or variety. To overcome this
important limitation, this paper presents DSL True Labels (DSL-TL), the first human-annotated multilingual dataset for
language variety identification. DSL-TL contains a total of 12,900 instances in Portuguese, split between European
Portuguese and Brazilian Portuguese; Spanish, split between Argentine Spanish and Castilian Spanish; and English,
split between American English and British English. We trained multiple models to discriminate between these
language varieties, and we present the results in detail. The data and models presented in this paper provide a
reliable benchmark toward the development of robust and fairer language variety identification systems. We make
DSL-TL freely available to the research community.
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1. Introduction

Language identification is the task of automatically
identifying the language of a given text or docu-
ment (Jauhiainen et al., 2019c). The task is a vital
pre-processing step integrated into many NLP ap-
plications. Language identification is commonly
modeled as a supervised text classification task
where the archetypal language identification sys-
tem typically follows these four main steps (Lui,
2014):

(a) Representation: selects a text representation
(e.g., characters, words, or a combination of
the two);

(b) Language Modelling: derives a model from
texts for each language;

(c) Classification: defines a function that best rep-
resents the similarity between a text and each
language model;

(d) Prediction: computes the highest-scoring
model to determine the language of the given
text.

In the early 2000s, language identification was
widely considered as a solved task (McNamee,
2005) since character n-gram language models
achieve perfect performance on discriminating be-
tween sets of dissimilar languages (e.g., Arabic,
English, Finish, and Japanese) in standard contem-
porary texts (e.g., newspaper texts). Renewed inter-
est in the task has emerged in the last decade with

more challenging scenarios including identifying
the language of very short non-standard texts from
user-generated content (e.g., microblogs) (Tromp
and Pechenizkiy, 2011), and web queries (Ceylan
and Kim, 2009; Anand, 2014). Other challenges
to state-of-the-art language identification systems
arise from linguistic phenomena such as code-
mixing and code-switching, where two or more lan-
guages are mixed in texts or social media posts
(Solorio et al., 2014; Molina et al., 2016; Burchell
et al., 2024).

Discriminating between very similar languages,
dialects, and national varieties of the same lan-
guage is another important, challenging language
identification scenario that has been addressed by
several studies (Tiedemann and Ljubešić, 2012;
Lui and Cook, 2013; Bouamor et al., 2019). In
this scenario, systems need to model fine distinc-
tions between a set of closely-related languages
(e.g., Bulgarian and Macedonian), dialects (e.g.,
the different dialects of Arabic), or national vari-
eties of the same language (e.g., Brazilian and
European Portuguese) to accurately discriminate
between them. This challenge has been the main
topic of the workshop series on NLP for Similar
Languages, Varieties, and Dialects (VarDial) (Gă-
man et al., 2020; Chakravarthi et al., 2021; Aepli
et al., 2022) and their associated benchmark com-
petitions which are organized yearly since 2014.
The VarDial competitions have been providing the
community with multiple datasets containing a wide
variety of languages and dialects, helping to estab-
lish important language identification benchmarks.
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As discussed in Section 2, the main limitation of
the datasets collected for VarDial and similar com-
petitions is that the gold labels for each instance
are not obtained through human annotation. The
most widely used one, the DSL Corpus Collection
(DSLCC) (Tan et al., 2014), for example, contains
news texts retrieved from multiple newspaper web-
sites considering the domain of the website as a
proxy for language variety. For example, all content
retrieved from news websites hosted in country-
specific domains such as .br and .pt domains is
labeled as Brazilian and European Portuguese, re-
spectively. While this is a straightforward assump-
tion that results in a high number of accurate gold
labels, this assumption has proved to be problem-
atic in cases of republications of articles in different
countries, particularly for languages that are widely
spoken throughout the world, most notably English
(Zampieri et al., 2014). Furthermore, multiple stud-
ies (Ács et al., 2015; Goutte et al., 2016) have eval-
uated native speakers’ performance in identifying
language varieties using the DSLCC concluding
that many instances do not include any marker that
allows humans to discriminate between varieties.

To address this limitation, we introduce DSL True
Labels (DSL-TL), the first human-annotated lan-
guage variety identification dataset. To the best
of our knowledge, no manually annotated dataset
with true labels is available for language variety
identification or language identification in general,
and ours fills this gap. We collect instances avail-
able in the DSLCC and in other news corpora and
gather multiple human judgments for each instance
through a crowdsourcing platform. Finally, we train
and evaluate multiple machine-learning models on
this new dataset.

The contributions of this paper are the following:

1. A novel problem formulation for language va-
riety identification and language identification
in general.

2. The release of DSL-TL, the first human-
annotated language identification dataset.1

3. An evaluation of multiple language identifica-
tion models on this new dataset.

The remainder of this paper is organized as follows.
Section 2 discusses prior research in language vari-
ety identification, including the VarDial competitions
and available datasets. Section 3 details the steps
taken in the construction DSL-TL dataset from data
collection to annotation. Section 4 describes the
language identification models used in our exper-
iments, while Section 5 presents their results on

1https://github.com/
LanguageTechnologyLab/DSL-TL

the new DSL-TL dataset. Finally, Section 6 sum-
marizes our research and discusses avenues for
future work.

2. Related Work

As discussed in a comprehensive survey (Jauhi-
ainen et al., 2019c), several language identifica-
tion studies have reported achieving near-perfect
performances in a variety of scenarios. Ljubešić
and Kranjčić (2014) trained traditional machine
learning classifiers to discriminate between social
media posts (tweets) written in four related lan-
guages: Bosnian, Croatian, Montenegrin, and Ser-
bian. Their best model, a Gaussian naive Bayes
(GNB) classifier, achieved an accuracy of 97.1%.
Martadinata et al. (2016) used a Markov model to
identify which extracts were taken from Wikipedia
articles in Indonesian, Javanese, Sundanese, or
Minang-kabau. Their model achieved an accuracy
of 95.75%. Li et al. (2018) trained a convolutional
neural network (CNN) on multiple datasets con-
taining 97 languages. Their model consistently
achieved performance of over 95% accuracy when
training was conducted across several datasets.

Language variety identification systems that dis-
criminate between varieties of the same language,
however, achieve more varied performances as
discussed in the VarDial shared task reports (Gă-
man et al., 2020; Chakravarthi et al., 2021; Aepli
et al., 2022, 2023). Since 2014, the VarDial work-
shop has hosted several shared tasks for language
variety identification, as discussed next.

2.1. VarDial Shared Tasks
The Discriminating between Similar Languages
(DSL) shared task at VarDial-2014 (Zampieri et al.,
2014), saw eight teams produce systems for distin-
guishing between similar languages and language
varieties of several language groups. The best-
performing model used a probabilistic model similar
to a Naive Bayes classifier combined with several
SVMs. They reported an accuracy of 91% for dif-
ferentiating between European and Brazilian Por-
tuguese and an accuracy of 95.6% for Castilian
and Argentine Spanish (Goutte et al., 2014). The
same model achieved an accuracy of 52.2% for dif-
ferentiating between British and American English
(Zampieri et al., 2014).

DSL continued in VarDial-2015 and 2016
(Zampieri et al., 2015; Malmasi et al., 2016) ex-
panding upon the original dataset. The 2015 edi-
tion added several additional languages and re-
moved named entities to determine their influence
on performance (Zampieri et al., 2015). The 2016
edition included varieties of French and challenged
18 teams with Arabic dialect identification (Mal-

https://github.com/LanguageTechnologyLab/DSL-TL
https://github.com/LanguageTechnologyLab/DSL-TL
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masi et al., 2016). The highest performing sys-
tems (Malmasi and Zampieri, 2016; Ionescu and
Popescu, 2016; Eldesouki et al., 2016; Adouane
et al., 2016) achieved accuracies ranging from
49.7% and 51.2% when differentiating between
Egyptian, Gulf, Levantine, Modern Standard, and
Maghreb dialects. The two best-performing sys-
tems were an ensemble or a single SVM(s) trained
on character and word-level n-grams (Malmasi and
Zampieri, 2016; Eldesouki et al., 2016).

Since 2017 VarDial continued to host shared
tasks for identifying other language varieties
(Zampieri et al., 2017, 2018, 2019; Găman et al.,
2020; Chakravarthi et al., 2021; Aepli et al., 2022).
Performances on these shared tasks were consis-
tent with that of 2014 to 2016, with SVMs and mod-
els trained on character and word-level n-grams
often outperforming other approaches. An ensem-
ble or a single SVM(s) trained on character n-grams
achieved the highest performance for language va-
riety identification for German in 2017 with an F1 of
0.662 (Malmasi and Zampieri, 2017), for Dutch and
Flemish in 2018 with an F1 of 0.660 (Çöltekin and
Rama, 2017), and for Romanian in 2020 with an F1
of 0.787 (Çöltekin, 2020). Naive Bayes trained on
character n-grams also reported the highest F1s
of 0.908 for Chinese in 2019 (Jauhiainen et al.,
2019a), 0.777 for Romanian in 2021 (Jauhiainen
et al., 2021), and 0.9 for Italian in 2022 (Jauhiainen
et al., 2022a). Language identification is, therefore,
far from being a solved task, with performances
varying greatly between groups of dialects and lan-
guage varieties. Dataset quality and the similar-
ity between language varieties are responsible for
such varied performances.

2.2. Available Datasets
The datasets used in the VarDial shared tasks, as
well as other similar shared tasks (Zubiaga et al.,
2016; Rangel et al., 2017), contain thousands of
sentences in groups of languages or dialects sam-
pled mostly from local newspapers and social me-
dia. Examples include Portuguese, Spanish, and
English (Zampieri et al., 2014, 2015), Arabic (Mal-
masi et al., 2016), Chinese (Zampieri et al., 2019),
Romanian (Găman et al., 2020), and Italian (Aepli
et al., 2022). However, as discussed in the introduc-
tion, these datasets consist of instances assigned
with a ground truth label determined by where the
text was published (e.g., UK, USA, etc.). Each sen-
tence within these datasets is, therefore, either, for
example, American or British English, and only one
of these labels is considered correct according to
the gold labels included in these datasets.

The problem with formulating automatic lan-
guage identification in this way is that many sen-
tences do not necessarily belong to a single lan-
guage variety (Goutte et al., 2016). This is true

for varieties of English and varieties of other lan-
guages. The DSL dataset from 2014 (Zampieri
et al., 2014), for example, contained instances with
incorrect ground truth labels. Articles containing
features characteristic of British English were pub-
lished in American newspapers and vice-versa, re-
sulting in mislabeled data. Goutte et al. (2016)
went on to show that human annotators were un-
able to achieve competitive performances on the
DSL 2014 and 2015 datasets (Zampieri et al., 2014,
2015). On average, accuracies achieved by single
human annotators were just over 50%, with per-
formances varying between languages. Relying
on the source of extracts or on an individual an-
notator to determine binary ground truth labels is,
therefore, problematic. We address this limitation
with DSL-TL by collecting the first human-annotated
language identification dataset containing multiple
annotations per instance.

3. The Dataset: DSL-TL

3.1. Rationale and Motivation

The main limitation of the datasets used in the afore-
mentioned benchmark competitions is that each
instance (a sentence or a paragraph) contains only
one ground truth label, which is assigned depend-
ing on the country where the text was published
(e.g., UK, USA, etc.). Therefore, each sentence
in the datasets is either, say, American or British
English, and only one of the labels is considered
correct when evaluating the language identification
system. The problem with this task formulation is
that, as demonstrated in previous research (Goutte
et al., 2016), many sentences are simply impos-
sible to be identified because they may belong to
multiple language varieties. For example, not all
sentences published in a British newspaper contain
features that are exclusive to British English, such
as spelling conventions (e.g., analyze, neighbor) or
lexical choices (e.g., trousers, rubbish) that would
make it possible for an English native speaker to
recognize a sentence as British. The same is true
for other English varieties and varieties of other
languages. Goutte et al. (2016) showed that na-
tive speakers perform very poorly in identifying the
language variety when only one label needs to be
assigned to each text.

As human performance is often below chance
in this task, it is unfair to expect that automatic
systems will ever be able to achieve 100% per-
formance when discriminating between national
varieties of the same language. To cope with this
important limitation, we introduce the use of true
labels in language variety identification. The true
labels are designed to capture the presence or ab-
sence of variety-specific features in each sentence
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Language Variety A Variety B Both or Neither Total
Portuguese 1,317 (pt-PT) 3,023 (pt-BR) 613 (pt) 4,953
Spanish 2,131 (es-ES) 1,211 (es-AR) 1,605 (es) 4,947
English 1,081 (en-GB) 1,540 (en-US) 379 (en) 3,000
Total 12,900

Table 1: DSL-TL’s class splits and the total number of instances.

by collecting and aggregating multiple human judg-
ments per data point using Amazon Mechanical
Turk (AMT). The annotators were displayed with
sentences from the dataset, and they were asked
to assign one of the following three labels to a given
sentence.

• variety X when at least one feature of the vari-
ety X is present in the instance;

• variety Y when at least one feature of the vari-
ety Y is present in the instance;

• both/neither when no or the same number of
features of the variety X and Y is present in
the instance.

More detail on the data collection and annotation
is provided next.

3.2. Data
DSL-TL contains 12,900 instances split between
several language varieties, as shown in Table 1.
These instances vary between 1 to 3 sentences in
length. They consist of short extracts taken from
newspaper articles. The English articles have been
sourced from a collection of news articles made
available by Zellers et al. (2019) - henceforth True
News - while the Portuguese and Spanish articles
have been sourced from the DSLCC (Tan et al.,
2014). Both datasets feature data retrieved from
multiple newspapers from each country. We ran-
domly selected instances from the original datasets
with an even split between each language variety,
being a 2,500/2,500 split for Portuguese and Span-
ish varieties and a 1,500/1,500 split for English
varieties. The final 12,900 instances in DSL-TL
have been randomly split into training, develop-
ment, and testing partitions in a 70%, 20%, 10%
split as shown in Table 2. Finally, example in-
stances from DSL-TL are provided in Table 3.

Variety Train Dev Test Total
Portuguese 3,467 991 495 4,953
Spanish 3,467 985 495 4,947
English 2097 603 300 3,000
Total 12,900

Table 2: DSL-TL’s train, dev, and test splits are
70/20/10% of the total number of instances.

3.3. Annotation

The annotators were crowd-sourced using AMT.
They were based in the six countries where the
language varieties were spoken, namely Argentina,
Brazil, Portugal, Spain, United Kingdom, and the
United States. The annotators were paid between 3
and 5 cents of US dollar per annotation. The remu-
neration is in line with similar annotation efforts in
computational linguistics and NLP (Saunders et al.,
2013; Williams and Dagli, 2017; Shardlow et al.,
2021; Štajner et al., 2022).

The annotators were requested to label instances
in their own native or non-native language variety.
They labeled instances as being either European
(pt-PT) or Brazilian Portuguese (pt-BR), Castilian
(es-ES) or Argentine Spanish (es-AR), and British
(en-GB) or American English (en-US). Label distri-
butions are shown in Table 1. We asked annotators
to label each instance with what they believed to be
the most representative variety label. They were
presented with three options: (1) language variety
A, (2) language variety B, or (3) both or neither. We
initially collected three annotations for each of the
12,900 instances in the dataset. We considered
the gold label correct in cases in which the three
annotators agreed on the same label or when two
annotators agreed with the original gold label from
the DSLCC for Spanish and Portuguese and from
True News for English. This resulted in 6,426 in-
stances annotated by three annotators. For the
remaining 6,474 instances, we collected two addi-
tional human annotations targeting an agreement
of at least three annotators or two annotators and
the gold label.

Finally, the annotators were also asked to iden-
tify the linguistic markers or named entities that
influenced their decision. From the total 12,900
instances, 3,386 instances were provided with lin-
guistic markers. The number of markers for each
language is 270 for English, 2,378 for Spanish, and
738 for Portuguese.

4. Models

We trained classic machine learning models as
well as transformer-based models on the DSL-TL
corpus, as presented in the next sections. As
discussed by Medvedeva et al. (2017) and Jauhi-
ainen et al. (2019c), deep learning models have
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Gold Label
Language Sentence Old DSL-TL Markers

Portuguese
desde a cracolândia até as grandes mansões que existem
à beira-mar...

pt-BR pt-BR cracolândia

O reajuste solicitado pela Celpe, empresa do Grupo Neoen-
ergia, previa o efeito médio de 8,67%.

pt-BR pt-BR reajuste

O Esta equipa do Athletic Bilbau é muito diferente da que,
em 1976-77, jogou e perdeu a final.

pt-PT pt-PT equipa

Spanish
Le dejé la llave a un baqueano y debo volver en poco tiempo,
porque en abril las condiciones...

es-AR es-AR baqueano

Aún así, la alimentación sana consigue más adeptos cada
día gracias... restaurantes verdes.

es-ES es-ES adeptos

Estas irregularidades fueron planteadas por legisladores del
PSOE y, sobre todo, de Izquierda...

es-AR es-ES PSOE

English
A rose Hill funeral director who prides herself on delivering
the perfect personalised send-off

en-GB en-GB personalised

Ten symbolic silhouettes are on display around the county
as part of the... campaign.

en-GB both/neither county

It seems very un-saintslike, almost unnatural, to go into the
last day of the season with nothing..

en-GB en-GB saintslike

Table 3: Example instances in English, Portuguese, and Spanish from the DSL-TL. The ‘old label’
represents the original dataset label along with the new label at the DSL-TL corpus. The linguistic markers
identified by the annotators are provided in bold. Only a snapshot of these instances is shown.

not shown to clearly outperform traditional machine
learning models in language identification, so we
take this opportunity to test methods from different
machine learning paradigms.

The models were evaluated in two tracks.

• Track one contains nine labels - the six lan-
guage varieties plus the both or neither class
for each language.

• Track two contains six labels - only the six
language varieties

4.1. Naive Bayes

We describe experiments using the newest ver-
sion of the Naive Bayes system previously used
by Jauhiainen et al. (2022b) and Jauhiainen et al.
(2022a). For each language pair, we used the com-
mon instances as a third "language" in a usual clas-
sification setup on track one. On our first run on the
test data with the optimized parameters and the de-
velopment data added as additional training data,
the macro F1 was 0.505 for track one. Only charac-
ter trigrams were used as they performed best on
the development data. Table 5 shows the statistics
for individual language varieties for track one. The
macro F1 is clearly affected by the low F1 scores
of the common instances. For track two, we mod-
ified the system to ignore the common instances
when evaluating during optimization. The common
instances in the training and the development sets
were added to both varieties in each language. This
time the optimal character n-gram range was from
two to five. The system attained a macro F1 score

of 0.794, which also outperformed the deep learn-
ing systems with pre-trained language models.

For track two, we also experimented with the
open variety by adding the training data from
DSLCC v1.0 corpus. Adding the English instances
from the first DSL shared task made the results
worse on the development set, whereas adding the
Portuguese and the Spanish instances improved
the results. This is likely due to the fact that the
results attained for the English varieties were al-
ready much higher than those of the best systems
on DSL 2014. The resulting macro F-score for the
open NB run was 0.803.

4.2. Adaptive Naive Bayes

In addition to the traditional Naive Bayes identifier,
we used it with adaptive language models (Jauhi-
ainen et al., 2019b) in a similar manner to Jauhi-
ainen et al. (2022a) in the winning system of the
ITDI shared task (Aepli et al., 2022). We use the
same penalty modifier and character n-gram range
as in the non-adaptive version. Using the develop-
ment data, we optimize the number of splits used
in adaptation as well as the number of learning
epochs used. The number of splits indicates the
size of the most confidently identified test data to
be added after each identification run. The number
of splits was chosen to be 512 with four epochs of
adaptation. Table 5 shows the results for track one.
The macro averaged F1-score of 0.503 is slightly
higher than that of 0.501, which was attained by the
identical system without adaptation. On track two,
a similar increase in performance was observed,
with 0.799 attained by adaptive naive Bayes.



10105

mBERT XLM-R XLM-R-LD
type BERT-base RoBERTa-base RoBERTa-base

corpus Wikipedia CC data LID
size 3.3B (102 lang.) 2.5TB (100 lang.) 70k (20 lang.)

#layers 12 12 12
#heads 12 16 16
#lay.size 768 768 768

#para 110M 250M 250M

Table 4: Comparison of mBERT, XLM-R, and XLM-R-LD models. Lang is short for languages. CC data
refers to CommonCrawl data.

4.3. Deep Learning Models
We also experimented with several pre-trained
large language models (LLMs). These LLMs
were multilingual, and consisted of multilingual
BERT2 (mBERT) (Devlin et al., 2019), XLM-
RoBERTa3 (XLM-R) (Liu et al., 2019), and XLM-R-
Language Detection4 (XLM-R-LD). XLM-R-LD is a
fine-tuned XLM-R model on the language identifi-
cation dataset5 (LID) containing 90k instances in
20 languages. These instances were taken from a
range of sources, including Amazon reviews and
SemEval tasks from 2012 to 2017. The three mod-
els were trained on train and dev sets with no bleed
between sets (Table 2). Train sets for English,
Spanish, and Portuguese consisted of 2097, 3467,
and 3467 instances, respectively. The dev sets con-
tained 599 instances for English, 989 instances for
Spanish, and 991 instances for Portuguese. Mod-
els were trained with a learning rate of 2e-5 over 5
epochs. Our models are summarized in Table 4.

5. Results

In this section, we present the results obtained by
all models in tracks one and two. Table 5 presents
the results of the models on track one in terms
of Precision, Recall, and F1-score, as well as the
macro average for all languages.

In track one, we show that mBERT achieves the
best results with a 0.540 average F1-score, fol-
lowed by XLM-R with a 0.540 average F1-score. In
terms of the performance for individual languages,
we observe that all models obtained their best re-
sults for the two English varieties and, in particu-
lar, for en-US, with results as high as 0.829 F1-
score obtained by the XLM-R model. This is some-
what surprising given that the English dataset is
the smallest among the three languages.

2https://huggingface.co/
bert-base-multilingual-cased

3https://huggingface.co/
xlm-roberta-base

4https://huggingface.co/papluca/
xlm-roberta-base-language-detection

5https://huggingface.co/datasets/
papluca/language-identification

The results obtained by all models for the ‘both
or neither’ class (en, es, and pt) were very low com-
pared to the scores obtained for the varieties. This
suggests that the class is very difficult to model
due to the absence of class-specific features. Pre-
viously released language identification datasets
have not been manually annotated; they did not
contain such a class. Therefore, the results on
‘both or neither’ require further investigation.

To further understand the prediction of our best-
performing model, mBERT, in Figure 1 we plot a
confusion matrix of our model in the track one set-
ting. The confusion matrix shows that confusion
does not occur outside the three labels of each lan-
guage which is evidence of the high performance
of the model in discriminating between different
languages. We observe that the predictions for
the ‘both or neither’ Portuguese class behave differ-
ently than the classes for any of the other languages
without any correct prediction.

Figure 1: Confusion matrix showing the class pre-
dictions of mBERT in track one.

In Table 6, we present the results of all models in
track two. We include the same five models as in
track one plus a variation of Naive Bayes (NB, open)
that has been trained using additional original data
retrieved from the DSLCC. Unsurprisingly, the use
of additional training data has boosted this system’s
performance and helped it achieve the best aver-
age score among all models with a 0.803 average

https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/xlm-roberta-base
https://huggingface.co/xlm-roberta-base
https://huggingface.co/papluca/xlm-roberta-base-language-detection
https://huggingface.co/papluca/xlm-roberta-base-language-detection
https://huggingface.co/datasets/papluca/language-identification
https://huggingface.co/datasets/papluca/language-identification
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Variety Model Recall Prec. F1

en-GB

NB 0.754 0.705 0.729
ANB 0.772 0.721 0.746
mBERT 0.760 0.807 0.783
XLM-R 0.750 0.842 0.793
XLM-R-LD 0.771 0.798 0.784

en-US

NB 0.750 0.848 0.796
ANB 0.731 0.851 0.786
mBERT 0.867 0.795 0.829
XLM-R 0.829 0.776 0.801
XLM-R-LD 0.797 0.782 0.790

en

NB 0.267 0.190 0.222
ANB 0.233 0.146 0.179
mBERT 0.278 0.333 0.303
XLM-R 0.231 0.200 0.214
XLM-R-LD 0.233 0.233 0.233

es-AR

NB 0.481 0.427 0.452
ANB 0.579 0.458 0.512
mBERT 0.551 0.489 0.518
XLM-R 0.551 0.489 0.518
XLM-R-LD 0.511 0.519 0.515

es-ES

NB 0.636 0.679 0.657
ANB 0.612 0.716 0.660
mBERT 0.651 0.670 0.660
XLM-R 0.689 0.752 0.719
XLM-R-LD 0.684 0.694 0.689

es

NB 0.327 0.336 0.331
ANB 0.34 0.351 0.345
mBERT 0.442 0.468 0.455
XLM-R 0.454 0.442 0.448
XLM-R-LD 0.444 0.429 0.436

pt-BR

NB 0.662 0.762 0.708
ANB 0.609 0.795 0.689
mBERT 0.718 0.799 0.756
XLM-R 0.753 0.786 0.769
XLM-R-LD 0.739 0.796 0.767

pt-PT

NB 0.533 0.442 0.483
ANB 0.555 0.442 0.492
mBERT 0.459 0.496 0.477
XLM-R 0.492 0.657 0.562
XLM-R-LD 0.488 0.613 0.544

pt

NB 0.136 0.118 0.126
ANB 0.153 0.100 0.121
mBERT 0.214 0.051 0.082
XLM-R 0.000 0.000 0.000
XLM-R-LD 0.000 0.000 0.000

Macro

NB 0.505 0.501 0.501
ANB 0.509 0.509 0.503
mBERT 0.549 0.545 0.540
XLM-R 0.528 0.549 0.536
XLM-R-LD 0.519 0.541 0.529

Table 5: The scores for individual language vari-
eties on the test set with Naive Bayes, Adaptative
Naive Bayes, mBERT, XLM-R, and XLM-R-LD on
track one in terms of Recall, Precision, and F1-
score. Macro average is reported for average. The
best average results are in bold.

F1-score. That said, we observed that in track two,
the three Naive Bayes variations had outperformed
the deep learning systems corroborating the find-

ings of previous studies (Medvedeva et al., 2017;
Jauhiainen et al., 2019c). Language identification
is essentially a pattern-matching task rather than
a semantic understanding one. We believe that
this often favors relatively simpler character n-gram
models when compared to more sophisticated text
embedding-based representations.

Variety Model Recall Prec. F1

en-GB
NB 0.921 0.761 0.833
NB, open 0.877 0.758 0.813
ANB 0.930 0.752 0.831
mBERT 0.828 0.842 0.835
XLM-R 0.795 0.921 0.854
XLM-R-LD 0.802 0.851 0.826

en-US
NB 0.808 0.933 0.866
NB, open 0.821 0.901 0.859
ANB 0.795 0.939 0.861
mBERT 0.889 0.872 0.880
XLM-R 0.935 0.827 0.878
XLM-R-LD 0.886 0.846 0.866

es-AR
NB 0.857 0.726 0.786
NB, open 0.789 0.789 0.789
ANB 0.887 0.724 0.797
mBERT 0.772 0.662 0.713
XLM-R 0.750 0.654 0.699
XLM-R-LD 0.765 0.684 0.722

es-ES
NB 0.791 0.896 0.840
NB, open 0.864 0.864 0.864
ANB 0.782 0.915 0.843
mBERT 0.800 0.874 0.835
XLM-R 0.794 0.859 0.825
XLM-R-LD 0.809 0.864 0.836

pt-BR
NB 0.716 0.873 0.787
NB, open 0.696 0.924 0.794
ANB 0.702 0.897 0.788
mBERT 0.766 0.779 0.773
XLM-R 0.823 0.809 0.816
XLM-R-LD 0.810 0.796 0.803

pt-PT
NB 0.774 0.564 0.652
NB, open 0.876 0.58 0.698
ANB 0.825 0.568 0.673
mBERT 0.504 0.489 0.496
XLM-R 0.599 0.620 0.609
XLM-R-LD 0.570 0.591 0.581

Macro
NB 0.811 0.792 0.794
NB, open 0.820 0.803 0.803
ANB 0.820 0.799 0.799
mBERT 0.760 0.753 0.755
XLM-R 0.783 0.782 0.780
XLM-R-LD 0.774 0.772 0.772

Table 6: The scores for individual language vari-
eties on the test set with Naive Bayes, Adaptative
Naive Bayes, mBERT, XLM-R, and XLM-R-LD on
track two in terms of Recall, Precision, and F1-
score. Macro average is reported for average. The
best average results are in bold.

Both the average and individual class results are
substantially higher in track two than in track one,
once again evidencing the challenge of modeling
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the ‘both or neither’ class and its impact on the
overall performance of the models. In this task
formulation, however, track two brings the most im-
portant baseline results for DSL-TL as those are
obtained when discriminating only between the lan-
guage varieties. We believe that the ‘both or neither’
is of much less importance to real-world language
identification systems.

6. Conclusion and Future Research

This paper presented DSL-TL, the first human-
annotated dataset for language variety identifica-
tion and language identification more broadly. The
dataset includes newspaper texts written in three
languages and annotated with six language variety
labels and a ‘both or neither’ class. We evaluate
the performance of multiple models on this dataset,
including variations of a classical machine learning
approach (Naive Bayes) and multiple deep learn-
ing systems (mBERT, XLM-R, and XLM-R-LD). In
terms of performance, we observed that the Naive
Bayes system delivers performance on par with
the deep learning models corroborating the find-
ings of previous research (Medvedeva et al., 2017;
Jauhiainen et al., 2019c). In certain scenarios, the
performance by Naive Bayes even surpassed deep
learning models.

This is a new way of looking at the problem. Our
findings indicate that there is room for improvement
in the treatment and computational modeling of the
‘both or neither’ class. Although this class is of
less importance to real-world applications than the
variety labels, the low results for this class evidence
the challenge of modeling it in this novel language
identification setting.

This new dataset opens several avenues for re-
search in language identification. It allows the com-
munity to perform a much fairer evaluation of lan-
guage identification systems mitigating potential
biases. We anticipate the true labels strategy pre-
sented in DSL-TL to become a new standard in
language variety identification, helping to improve
the performance of IR and NLP applications that
struggle to deal with language variation, such as
virtual assistants (e.g., Alexa, Siri), machine transla-
tion systems, text and multimedia retrieval systems,
and many others.

In the future, we would like to expand the size
of this dataset to further investigate the impact of
dataset size on performance. We would also like
to carry out the same annotation on groups of very
similar languages, such as Bosnian, Croatian, and
Serbian. DSL-TL was the official dataset of the DSL-
TL shared task at VarDial 2023 (Aepli et al., 2023).
The results presented in this paper served as base-
line results for this competition. Finally, DSL-TL is
also part of a larger dataset made available in the

DSL-ML (multi-label) shared task at VarDial 2024.
Finally, recent developments in language mod-

eling such as the release of LLMs with billions of
parameters such as Falcon, GPT-4, and Llama-2
have brought significant changes to the field of NLP.
In the future, we would like to benchmark the perfor-
mance of recently-released LLMs on DSL-TL. While
these models have proved to achieve state-of-the-
art performance in various tasks, particularly those
that entail text generation (Minaee et al., 2024), we
expect them to struggle with the identification of
language varieties without further fine-tuning.
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