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Abstract
The notion of face described by Brown and Levinson (1987) has been studied in great detail, but a critical aspect
of the framework, that which focuses on how intentions mediate the planning of turns which impose upon face,
has received far less attention. We present an analysis of three computational systems trained for classifying both
intention and politeness, focusing on how the former influences the latter. In politeness theory, agents attend to the
desire to have their wants appreciated (positive face), and a complementary desire to act unimpeded and maintain
freedom (negative face). Similar to speech acts, utterances can perform so-called face acts which can either raise
or threaten the positive or negative face of the speaker or hearer. We begin by using an existing corpus to train a
model which classifies face acts, achieving a new SoTA in the process. We then observe that every face act has an
underlying intention that motivates it and perform additional experiments integrating dialog act annotations to provide
these intentions by proxy. Our analysis finds that dialog acts improve performance on face act detection for minority
classes and points to a close relationship between aspects of face and intent.

Keywords: Discourse Annotation, Representation and Processing, Cognitive Methods, Dialogue

1. Introduction

Brown and Levinson (1987) introduce an influential
theory of politeness based on the concept of “face”,
which they claim to be culturally universal. In this
theory, face – i.e., the public image one seeks to
claim – is a two-sided coin. Agents attend to their
desire to have their wants appreciated, which the
theory calls positive face, as well as a complemen-
tary desire to act unimpeded and maintain freedom,
which the theory calls negative face. The face of
every agent is ensnared with that of every other
agent – agents cannot have their desires appreci-
ated if they cannot appreciate the desires of others.
As a result, utterances can raise (+) or threaten
(-) the positive (Pos) or negative (Neg) face of the
speaker (S) or hearer (H).

For example, pass the salt would be labeled
HNeg- as it imposes on the hearer’s freedom by
requesting their action, while that was my fault, a
self-critique, would be considered SPos-. A sum-
mary of possible face acts is shown in Table 1.

A face threat or face raising is not a property
of particular linguistic choices, but of communica-
tive intent. If I want to request information from
you, then I necessarily need to threaten your neg-
ative face: if you recognize the speech act (and
thus it is successful), I will oblige you to answer,
and therefore I will restrict your choice of actions.
In Brown and Levinson (1987)’s theory, discourse
participants choose among various strategies for
minimizing threats to face. These strategies are
linguistic strategies (for example, using hedges),
and the choice of strategy depends on many fac-
tors such as the discourse situation (who is talking

to whom under what circumstances) and cultural
conventions.

Work related to natural language processing
has concentrated on studying linguistic manifes-
tations of politeness (Walker et al., 1997; Danescu-
Niculescu-Mizil et al., 2013), while largely disre-
garding the notion of face act (FA). The major ex-
ception is the seminal work of Dutt et al. (2020),
who annotate a corpus of written dialogs for face
acts, and then develop a system for predicting face
acts for dialog turns. In this paper, we build on this
work. Our goal is not primarily to improve on the
tagging results (which we do), but to understand
better how face acts interact with discourse inten-
tion, and to pave the way for a new phase of work
on face acts. We believe face acts, as conceived
of by Brown and Levinson (1987), are not a periph-
eral aspect of NLP, but can serve a crucial role in
improving both interactive NLP and our understand-
ing of how we humans use language. There are
two reasons to make such a strong claim. First,
in NLP it has been observed that, despite their
great success in many engineering problems, large
language models (LLMs) are typically pre-trained
entirely on sequences of words and do not model
intention (Bender et al., 2021; Bender and Koller,
2020). However, communicative intention and in-
tention recognition is the fundamental mechanism
of communication. Second, while much progress
has been made (again partially thanks to LLMs)
in processing multiple languages, there has not
been much work in NLP that addresses the culture-
specific ways in which language is used in context.
We believe the study of face acts can address both
issues. This paper is a first step in the direction of
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Face Act Interpretation Example Discourse Goals
HNeg- Imposition Requests, commands, questions, offers, promises, ...
HPos- Disagreement Criticism, insults, disapproval, ...
HNeg+ Permissiveness Granting permission, making exceptions, ...
HPos+ Agreement Seeking common ground, group cohesion, ...
SNeg- Indebtedness Thanking, accepting offers or thanks, commitments, ...
SPos- Apologies Confessions, embarrassment, ...
SNeg+ Autonomy Refusing requests, asserting freedoms, ...
SPos+ Confidence Self-promotion, signaling virtue, ...

Table 1: Face acts with a short label, which serves as an general interpretation of the face act, and some
examples of their related discourse goals.

a larger research project.
The principal contribution of this paper lies in

a set of experiments in which we train FA taggers
using information from dialog act taggers. We show
in an extensive analysis how this helps for specific
FAs, which are hard to tag without such information.
Furthermore, we provide a relatively straightforward
application of generative neural techniques to the
FA tagging problem, and we obtain a new state-of-
the-art (increasing the state-of-the-art from 69% to
73% F-measure).

This paper is structured as follows. We start with
a review of relevant literature (§2) and an outline of
our approach to modeling and evaluation (§3). We
then discuss our experiments using only face act
information (§4) as well as follow-up experiments
which integrate intention through the use of dia-
log acts (§5). We then conduct an extensive error
analysis of all system variants (§6) and report our
conclusions along with a discussion of future work
for this research program (§7).

2. Related Work

Brown and Levinson (1987) provide a theory of
politeness which has been fundamental to work
in various fields concerned with how language is
used. We have provided a brief summary in Sec-
tion 1. Curiously, in NLP there has not been much
work building explicitly on (Brown and Levinson,
1987). Danescu-Niculescu-Mizil et al. (2013) con-
centrate on one type of face-threatening act (FTA),
namely the negative face-threatening act of a re-
quest, and investigate the strategies used for doing
this FTA. To do this, they use crowd sourcing to
rate the requests on a politeness scale. They then
develop a model which predicts the politeness of
these requests and use it to study how this affects
the interactions between users on Wikipedia and
StackExchange.

The face acts (FAs) themselves are the object of
Dutt et al. (2020). In addition to developing a data
set annotated with FAs, they present a FA classi-

fier based on a neural architecture they devise on
top of BERT, which achieves 69% F-measure (60%
macro). As the data involves participants convinc-
ing others to donate to a charity, they also use this
corpus to investigate the relationship between face
acts and persuasion by predicting if a participant
chose to donate. We use this data set in our work
on FA tagging.

A salient aspect of the work of Brown and Levin-
son (1987) is that they situate the notion of polite-
ness within a larger theory of rational interaction,
as outlined by Grice (1975). One consequence of
this is that successful communication requires the
recognition of intent: a speaker’s request cannot
threaten the hearer’s negative face if the hearer
does not recognize the speech act as a request.
There is a large body of work on speech acts and in-
tent, starting with Austin (1962). We do not provide
a summary of all relevant work here, but the notion
of speech act was extended in NLP as a dialog
act, and given several fine-grained inventories that
go well beyond the initial high-level distinctions of
speech acts (Anderson et al., 1991; Core and Allen,
1997; Stolcke et al., 2000a). The corresponding
classification task, dialog act tagging, is a crucial
component in creating dialog systems, as it allows
for a simple way of modeling the user’s communica-
tive intent through text classification. In this paper,
we do not make contributions to dialog act tagging,
but we use existing work.

3. Approach

In this section we outline the data, modeling tech-
niques, and evaluation measures used throughout
the paper.

3.1. Face Act Data
As discussed in Section 2, we use the face data
set developed by Dutt et al. (2020) for our exper-
iments. Wang et al. (2019) introduce a corpus of
dyadic, persuasion-oriented conversations sourced
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from an online task where Amazon Mechanical Turk
workers must convince their addressee to donate
part of their task earnings to a charity, Save the Chil-
dren. The conversations are carried out through
a chat interface with one worker acting as the per-
suader (ER) and the other as the persuadee (EE).
The participants were informed that the dialog must
last at least 10 turns and that their reward is not
penalized should they fail to convince their partner
to donate. Dutt et al. (2020) augment conversa-
tions from this corpus with eight face act annota-
tions (see Table 2) based on Brown and Levinson
(1987). They take some small departures from po-
liteness theory in their annotation. Most notably,
thanking is annotated as HPos+ rather than SNeg-
and Other is used to indicate that no face act is
present. The authors selected the corpus as their
starting point for two main reasons. First, the goal-
oriented nature of the conversations incentivizes
face-threatening acts, which are typically avoided
unless necessary. Second, each participant is on
equal ground which helps mitigates potentially con-
founding issues, like power distance.

It is possible for a single utterance to perform
multiple face acts at once. For example, Just stick
to what you know could be seen as both HNeg-,
since it is issuing a command, and HPos-, as it
entails the critique that they did not know what they
were doing. However, Dutt et al. (2020) observed
multi-labeled acts in only 2% of their data leading
them to simplify the the problem to a single label per
utterance. In the event of a multi-label annotation,
they select one randomly. The resulting data set
contains 10,716 turns averaging 10 words (or 51
characters) in length across 296 unique conversa-
tions. The label distribution (see Table 2) is highly
imbalanced with vanishingly rare labels like SPos+
appearing only 12 times and labels like SNeg- ac-
tually vanishing.

3.2. Modeling
We model face act tagging as a text classifica-
tion task. Given a sequence of n tokens S =
[t1, t2, . . . , tn], we wish to assign a label y ∈ Y
where Y represents the set containing the 8 possi-
ble face acts. Recently, similar classification tasks
including sentiment analysis (Zhang et al., 2021)
and event factuality prediction (Murzaku et al.,
2022) have achieved state-of-the-art results train-
ing sequence-to-sequence models. We adopt this
approach and utilize Flan-T5-base (Chung et al.,
2022) for fine-tuning which allows us to re-frame
the problem as a generation task with limited model-
specific requirements.1

1Our choice of Flan-T5 was informed by a preliminary
set of small experiments in which a variety of pre-trained
models were were examined on single seed runs.

3.3. Data Representation
While generative approaches unify many aspects
of the model design, they present challenges when
it comes to determining effective input and output
representations. We provide the models an input
which contains an utterance prefixed with ER for
persuaders or EE for persuadees along with up to
two previous turns of dialog as context. Each turn
is separated by a newline character which we treat
as a special token when tokenizing.

[Input]
ER: Are you interested in donating?
EE: Possibly, I’m not sure.
EE: I don’t even know what the char-
ity is.

[Output]
sneg+

The target output is a string containing the correct
label for the final utterance of the input text, in this
case SNeg+ since the speaker is asserting their
freedom of action. In preliminary experiments we
found context to be a critical factor with a size of
two, for a total of three utterances, performing best.
As there are no previous turns for the first two turns
in each dialog, those examples are provided in a
similar format containing only one or no lines of
context.

3.4. Evaluation
We evaluate model performance using F-measure
for each of the eight represented classes as well
as micro and macro F-measure aggregated over
all labels. Since each utterance is assigned exactly
one label, micro F-measure is the same as accu-
racy. We observe that the extreme rarity of SPos+
(12 occurrences) contributes to high variance in
macro F1 and, as a result, advocate focusing on
micro F1 and macro F1 with this label removed
as the primary high-level metrics for this task. So
as to maintain comparability with previous work,
we report values for macro F-measure computed
with all represented labels. Our experiments are
performed using five-fold cross-validation on the
same splits which Dutt et al. (2020) report their find-
ings on.2 We identified some conversations which
were duplicated across folds and keep only the first
appearance of these entries when performing eval-
uation. The evaluation metrics are averaged across
all five folds.

Ideally, the output generated by the model would
contain only sequences in our label set, but there
were a small number of cases in which malformed
output was produced. We repair these labels us-
ing a methodology inspired by (Zhang et al., 2021).

2https://github.com/xinru1414/Face_Act

https://github.com/xinru1414/Face_Act
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F1 F1 Prec. Recall Count
Macro 0.60 0.63 0.63 0.63 -
Micro 0.69 0.73 0.73 0.73 -
Other - 0.75 0.76 0.73 4,300
HPos+ - 0.75 0.72 0.77 2,844
SPos+ - 0.74 0.74 0.75 1,589
HNeg- - 0.74 0.71 0.76 1,073
HPos- - 0.55 0.61 0.51 334
HNeg+ - 0.44 0.47 0.41 305
SNeg+ - 0.57 0.61 0.53 259
SPos- - 0.47 0.39 0.58 12
Dutt et al. (2020) Fos

Table 2: Performance of our Fos against the pre-
vious state-of-the-art BERT HiGRU-f model and
label count.

Invalid output sequences are compared with all
possible labels using edit-distance and the clos-
est match is used. In the event of a tie, the most
frequent label in the training data is chosen.

3.5. Replication
All of the code written, data sets prepared, and
experimental observations made in the course of
this research are available on GitHub.3

4. Face-Only System

We begin by training the model with no additional
information containing intentions. We will refer to
this configuration as the Fos (Face-Only System).

Methodology We fine-tune Flan-T5-base on
each of the five cross-validation folds with a batch
size of 32 and two gradient accumulation steps.
The AdamW optimizer is configured with a learning
rate of 3e-4, weight decay of 0.01, and epsilon of
1e-8. As the cross-validation preparation does not
contain a development set, early stopping is con-
figured using micro F1 on the training data set with
a patience of 3. In general, fine-tuning completed
after roughly 15 to 20 epochs. These parameters
were arrived at through a small run of hyperparam-
eter tuning experiments. When predicting, genera-
tion is performed with a beam size of one.

Results Evaluation metrics, averaged across all
folds, for the Fos are summarized in Table 2. This
relatively straight-forward approach achieves a
macro F1 of 0.63 and micro F1 of 0.73, improving
on the previous state-of-the-art by 3 and 4 points, re-
spectively. Among the labels, F1 correlates strongly

3https://github.com/cogstates/
2024-lrec-coling-faceacts

(r = 0.77) with the number of examples found in
the data. In other words, the minority classes are
where this model struggles to find signal.

5. Adding Intention

We observe that every face act has an underly-
ing intention which motivates it. A rational agent
would not risk reprisals that result from threatening
their interlocutor’s face unless (1) they have a goal
or intention which necessitates the face act or (2)
other cultural factors such as power-distance pro-
tect them from such reprisals. As (2) is not the case
in our corpus, we have reason to believe that pro-
viding the model with explicit information regarding
agent intentions may improve performance.

5.1. Data
We represent information regarding intent using two
well-known dialog act corpora with varying levels
of granularity in distinguishing actions.

Meeting Recorder Dialog Act Corpus MRDA
(Shriberg et al., 2004) consists of transcripts from
75 in-person meetings that are generally research
oriented in nature, annotated for dialog acts using
a tag set adapted from DAMSL (Core and Allen,
1997). It contains 108,202 utterances with a mean
utterance length of 8 words. The annotations are
provided in three levels of granularity. The “basic”
level contains 6 tags, the “general” level contains
12 tags, and the full label set contains 52 tags. We
utilize the basic tag set for our experiments.

Switchboard Dialog Act Corpus SWDA is a
collection of short phone conversations in which
callers are matched with a partner to discuss
some provided general-interest topic (Stolcke et al.,
2000b). It contains roughly 180,000 utterances with
a mean length of 9.6 words across 1,155 unique
conversations. They use the DAMSL dialog act tag
set to annotate the transcripts with 41 dialog act
labels.

5.2. Methodology
We experiment with two methods of integrating di-
alog act information into the model. In the first
method, we augment the face act corpus with ex-
plicit dialog act tags in the text. For both MRDA
and SWDA, we use the dialog act tagging system of
He et al. (2021) to automatically augment the face
act corpus and produce two new preparations of
data for training. We will refer to the resulting text-
augmented models as Ta-Mrda and Ta-Swda, re-
spectively. Returning to the example in Section 3.3,

https://github.com/cogstates/2024-lrec-coling-faceacts
https://github.com/cogstates/2024-lrec-coling-faceacts
https://github.com/cogstates/2024-lrec-coling-faceacts
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SPos+ HPos- SNeg+ HNeg+ HNeg-
F1‡ Prec.† Recall F1 Prec. Recall F1 Prec. Recall† F1‡ Prec.† Recall‡ F1 Prec. Recall†

Fos 0.74 0.74 0.75 0.55 0.61 0.51 0.57 0.61 0.53 0.44 0.47 0.41 0.74 0.71 0.76
Ta-Swda 0.70 0.68 0.72 0.53 0.56 0.51 0.48 0.55 0.43 0.49 0.44 0.56 0.72 0.69 0.75
Ta-Mrda 0.70 0.70 0.69 0.53 0.58 0.49 0.51 0.59 0.45 0.51 0.47 0.55 0.72 0.71 0.73
Mtl-Swda 0.72 0.74 0.70 0.55 0.56 0.54 0.54 0.57 0.52 0.41 0.46 0.37 0.72 0.65 0.79
Mtl-Mrda 0.72 0.71 0.73 0.49 0.49 0.50 0.53 0.62 0.47 0.43 0.50 0.39 0.73 0.70 0.78

Table 3: Detailed evaluation results for all experiments on the five least common labels, excluding SPos-.
Significant differences using the Friedman rank sum test are marked with † and ‡ for α = 0.10 and 0.05
respectively.

F1 Precision Recall
Micro Macro Micro Macro Micro Macro

Fos 0.73 0.63 0.73 0.63 0.73 0.63
Ta-Swda 0.70 0.61 0.70 0.59 0.70 0.63
Ta-Mrda 0.70 0.60 0.70 0.60 0.70 0.60
Mtl-Swda 0.70 0.57 0.70 0.58 0.70 0.57
Mtl-Mrda 0.71 0.60 0.71 0.61 0.71 0.59
Dutt et al. 0.69 0.60 - - - -

Table 4: Summary of model results.

the augmented input using SWDA tags is shown
below.

[Input]
ER: Are you interested in donating?
(Yes-No-Question)
EE: Possibly, I’m not sure.
(Hedge)
EE: I don’t even know what the char-
ity is. (Statement-non-opinion)

[Output]
sneg+

In the second method, we incorporate the dialog act
data through traditional multi-task learning. As the
dialog act data sets contain far more examples than
the face act data set, we randomly sample 10% of
conversations from both SWDA and MRDA. This
results in training regimens with roughly 1:1 and
2:1 ratios of dialog acts to face acts, respectively.
To indicate the desired task, each example input
is prefixed accordingly with the task name (dialog
acts or face acts) followed by a colon and new line.
The data for both tasks is provided with the same
three total turns of context as used for the Fos. We
will refer to the resulting models as Mtl-Mrda and
Mtl-Swda.

These experiments use the same training con-
figuration, cross-validation folds, and hardware as
we used in the case of Fos.

5.3. Results
The evaluation results for each of these model vari-
ants are summarized in Table 4. While models
incorporating dialog act data generally outperform
the baseline, they do not improve upon the Fos
and, in fact, hamper performance across the board
for these high-level measures. At first glance, this

is a puzzling negative result. However, inspecting
the performance on minority classes (see Table 3)
we find several instances where SWDA, the more
granular of the two, improves recall while MRDA,
which uses a coarser tag set, improves precision.

To make sense of these distinctions we employ
a set of non-parametric statistical tests. This min-
imizes the assumptions made about our data, as
no distribution is required, while still allowing us
to assign rankings to the variables under question.
Holding the training regimen as a treatment variable
we utilize the Friedman rank sum test to determine
if this contributes significantly to predicting model
F1, precision, and recall by considering the null hy-
pothesis that all variations contribute equally. This,
along with Kendell’s W, identifies where the models
are performing differently from each other and the
effect size of that difference, respectively. Signif-
icant differences on the minority classes can be
seen in Table 3. According to Cohen’s interpreta-
tion guidelines for Kendall’s W (0.1: small effect,
0.3: moderate effect, > 0.5: large effect) we find
moderate to large effects in all metrics with signifi-
cant differences. This confirms our suspicion that
the dialog acts were indeed helping for minority
labels.

Figure 1: Confusion matrix for the Fos; the num-
bers show the fraction of time the tag on the x-axis
is predicted instead of the gold label on the y-axis;
the numbers in each row add up to 1.
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HNeg+ HNeg- HPos+ HPos- Other SNeg+ SPos+ SPos- Total
Both Happening (Same Part) 5 2 3 7 0 7 5 0 29
Both Happening (Diff. Part) 2 3 2 5 0 1 2 2 17
Gold Error (Correct) 3 0 3 0 18 4 5 0 33
Gold Error (Incorrect) 1 0 2 1 2 0 1 1 8
True for Previous 3 4 1 2 3 2 2 1 18
Predicted Other 10 13 11 5 0 8 7 1 55
No Idea 1 3 3 5 2 3 3 0 20
Total 25 25 25 25 25 25 25 5 180

Table 5: Fos error counts by gold label and error category.

This raises the question of what exactly the dia-
log act data was providing to the model and why did
it succeed in some cases but fail to improve over-
all performance. In the subsequent sections, we
perform an extensive error analysis which carefully
examines our data and results to better disentangle
the possible causes.

6. Error Analysis and Discussion

Our error analysis seeks to answer three questions.
(1) What is the Fos doing? (2) Is there signal in the
dialog act data being incorporated and if there is,
(3) are our systems that are trained with dialog act
information using that signal? We start by making
some high level observations (§6.1), then perform
a manual analysis of the output produced by Fos
(§6.2), and finally discuss the contribution dialog
act tags were making by comparing output between
the systems (§6.3).

6.1. Basic Observations
As noted in Section 4 and shown in Table 2, Fos
performance is highly correlated (r = 0.77) with
the frequency of a tag. For the four tags that
occur more than 1,000 times, we obtain 73%
F-measure or more, and for three tags that oc-
cur between 250 and 350 times, we obtain F-
measures below 56%. Using this information we
divide the labels into three classes: The majority
classes (Other, HPos+, SPos+, HNeg-), the mi-
nority classes (HPos-, HNeg+, SNeg+), and the
extremely rare (SPos-). As discussed in Section
3.4, we disregard SPos- in our analysis as its infre-
quency causes highly volatile results.

The confusion matrix for Fos (see Figure 1)
shows that, like in previous work (Dutt et al., 2020),
the majority of misclassifications occur when no
face act is predicted to be present (the Other col-
umn) though one is indeed there. As shown in
Table 2, Other is the most frequent label in our
corpus. The next largest source of error is HPos+,
which is the second most common label in the data
set. We conclude that the model is, to some extent,
probability matching. Furthermore, the confusion

matrix in Figure 1 reveals that the system may strug-
gle with distinguishing positive and negative face,
with HNeg+ being mistaken for HPos+ 18% of the
time, and SNeg+ being mistaken for SPos+ 11%
of the time.

6.2. Error Analysis on the Fos
We perform manual analysis of the output produced
by our best performing system (Fos) by collecting
25 misclassified examples for each label with five
randomly selected from each test fold for a total of
up to 200 output-prediction pairs. As every test fold
does not necessarily contain five incorrect predic-
tions for SPos-, this produced 180 examples for
study.

We sort these examples into the following seven
error categories and consult the annotation guide-
lines and criteria to make the appropriate determi-
nations.

1. Both Happening (Same Part): The pre-
dicted face act is also happening for that
utterance in the same span of text (two face
acts at once).

2. Both Happening (Diff. Part): The pre-
dicted face act is also happening for that
utterance, but in a different span of the text.

3. Gold Error (Correct): The reference face
act label is incorrect and the predicted face
act label is correct.

4. Gold Error (Incorrect): The reference face
act label is incorrect and the predicted face
act label is also incorrect.

5. True for Previous: The predicted face act
occurs for a previous utterance in the context
window.

6. Predicted Other: None of the previous error
categories apply and the system predicted
Other.

7. No Idea: None of the previous error cate-
gories apply and we could not determine a
specific reason for this (errorful) prediction.

The results of this analysis are summarized in
Table 5. Overall, we find a gold error in 22.7% of the
examples examined with 18.3% absolute of these
errors being identified as instances where the sys-
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SPos+ HPos+ SPos- HPos- SNeg+ HNeg+ HNeg- Other
BackChannel -0.02 0.01 -0.00 -0.01 -0.01 -0.01 -0.01 0.02
Disruption 0.03 0.01 -0.00 -0.00 0.02 -0.01 -0.04 -0.00
FloorGrabber -0.01 -0.02 -0.00 -0.01 -0.01 -0.01 -0.01 0.04
Question -0.19 -0.24 -0.02 0.02 -0.07 -0.05 0.49 0.09
Statement 0.14 0.20 0.02 -0.02 0.04 0.05 -0.38 -0.08
Acknowledge (Backchannel) -0.03 0.00 -0.00 -0.02 -0.01 -0.00 -0.03 0.05
Action-directive -0.01 -0.01 -0.00 0.00 -0.01 -0.01 0.04 -0.00
Affirmative non-yes answers 0.00 0.03 -0.00 -0.01 -0.01 -0.01 -0.01 -0.02
Agree/Accept -0.02 0.15 -0.00 -0.02 -0.02 -0.02 -0.04 -0.07
Appreciation -0.12 0.29 0.01 -0.05 -0.05 -0.05 -0.10 -0.06
Backchannel in question form -0.01 -0.01 -0.00 -0.01 -0.01 -0.01 -0.00 0.03
Conventional-closing -0.09 0.06 0.01 -0.04 -0.03 -0.03 -0.07 0.09
Conventional-opening -0.01 -0.02 -0.00 -0.01 -0.00 -0.00 -0.01 0.04
Hedge -0.01 -0.01 -0.00 -0.00 0.02 -0.00 -0.01 0.01
Hold before answer/agreement -0.02 -0.01 -0.00 -0.01 -0.01 -0.01 -0.02 0.04
No answers -0.02 0.00 -0.00 0.03 0.01 -0.01 -0.02 0.01
Non-verbal -0.06 0.00 0.03 -0.02 0.02 0.00 -0.03 0.05
Other -0.03 -0.05 -0.00 -0.01 -0.01 -0.01 -0.03 0.10
Other answers -0.00 -0.01 -0.00 -0.00 -0.00 -0.00 -0.00 0.01
Response Acknowledgement -0.01 -0.00 -0.00 -0.01 -0.01 -0.01 -0.01 0.02
Segment 0.07 0.01 -0.01 -0.00 0.02 0.02 -0.05 -0.04
Statement-non-opinion 0.30 -0.10 0.01 0.01 0.12 0.08 -0.21 -0.07
Statement-opinion -0.03 0.13 -0.01 0.05 -0.03 0.02 -0.10 -0.05
Wh-Question -0.14 -0.18 -0.01 0.02 -0.05 -0.05 0.35 0.07
Yes answers 0.01 0.01 -0.00 -0.01 -0.00 -0.01 -0.03 0.01
Yes-No-Question -0.12 -0.16 -0.01 0.01 -0.05 -0.03 0.31 0.06

Table 6: The correlation coefficients for the dialog act labels produced by He et al. (2021)’s system
for MRDA (top) and SWDA (bottom). These were incorporated into the training data for Ta-Mrda and
Ta-Swda (§5.2).

tem output was correct. In another 25.5% of cases
we identified criteria in the annotation guidelines for
both the gold label and the predicted label (meaning
that both labels are correct), with the “same” and
“different” part categories occurring with roughly
equal frequency. This is in stark contrast to the
reported 2% frequency of multi-label annotations
observed by Dutt et al. (2020). 10% of the time
the system produced a prediction which is correct
for a previous utterance in the context. This points
to a systematic issue with this method of integrat-
ing the context and suggests performance could
be improved by helping the model more accurately
identify the exact utterance under question. Among
the cases in which no discernible pattern was identi-
fied, 30.6% absolute involved the system predicting
no face act to be present (i.e., Other), and 11.2%
absolute involved another prediction. Thus, in sum-
mary, we have a gold error rate of 22.7%, and we
find that in 43.8% of errors the predicted face act
is actually correct (possibly among others).

We also break these counts down by gold label
and error category in Table 5. Note that the first
three rows of the table refer to predictions that are
actually correct. The analysis reveals that the sys-
tem’s prediction is in fact correct for a majority of
the cases with gold labels of Other, and about half

the time for cases in which the gold label is HPos-,
SNeg+, or SPos+. The worst performance is on
HNeg-.

6.3. Contribution of Dialog Acts

We now turn to investigating the effects of integrat-
ing dialog acts into the model. We do so by first
examining correlations found between face acts
and dialog acts included in the text-augmented
model data to determine, roughly, where signal
might be. The results of this analysis are shown
in Table 6 and qualitatively support our hypothesis
that these concepts, face and intention, are inti-
mately related. Inspecting the MRDA tags, there
is a strong positive correlation (r = 0.49) between
questions and HNeg- with a correspondingly neg-
ative correlation (r = −0.38) for statements. The
trend continues across the various question cate-
gories for the SWDA tags though, critically, no cor-
relation is observed for backchannels which take
the form of a question. As impositions on nega-
tive face often take the form of requests or ques-
tions rather than statements, with the exception of
commands (which are not frequent in this corpus),
these correlations are expected. Furthermore, the
trend is nicely reversed for HPos+, which sees
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All HNeg+ FN to TP TP to FN FP to TN TN to FP
Statement 80% 93% 97% 100% 78% 91%
Question 20% 7% 3% 0% 22% 9%
Count - 305 64 20 50 101

Table 7: Distribution of MRDA dialog act tags Statement (containing also Disruption) and Question for
different cases relating to predicting HNeg+, FN refers to false negatives, TP to true positives, and so on.

positive correlation (r = 0.20) with statements and
negative (r = −0.24) with questions. The SWDA
tags reveal this largely comes from the appreci-
ation (r = 0.29) and agreement (r = 0.15) labels
which are stereotypical examples of the HPos+ face
act. Because the corpus contains a large number
of utterances in which participants signal virtue
(e.g. I often make large donations), the correla-
tion between SPos+ and non-opinion statements
(r = 0.30) makes sense.

This all indicates that the dialog act data included
in the text-augmented models, and learned from
the same data set used in training the multi-task
models, does contain information with signal. One
might conclude that (1) dialog acts were not pro-
viding very much orthogonal information in training
(i.e. Fos already learned to distinguish these) or,
if it was, perhaps (2) these methods of integration
were not effective for this task.

To untangle these options, we carefully examine
examples where the gold label or output from Fos,
Ta-Mrda, or Ta-Swda contained HNeg+. This la-
bel indicates that an utterance aims to raise the
hearer’s negative face, meaning that the speaker
is trying to provide or point out options for action to
the hearer (rather than restrict them). We focus on
this label for analysis because it is an outlier in that
this is the only label for which the Fos system did
not obtain the best F1 result (see Table 3), mean-
ing that dialog acts actually helped its performance.
We use the MRDA dialog acts to investigate this
phenomenon, partly because the MRDA tag set is
simpler than the SWDA tag set, and partly because
the Ta-Mrda system obtained the best results of all
five systems. There are 305 instances of HNeg+ in
the corpus. We investigate the distribution of dialog
act tags. In doing this, we collapse Statement and
Disruption, as we could find no meaningful distinc-
tion in this written dialog corpus. Since the other
tags are exceedingly rare, we restrict our analysis
to the distinction between Statement (to which we
have added Disruption) and Question. The results
are in Table 7.

In the first two columns, we see that overall, 20%
of turns are questions, but for the 305 turns labeled
HNeg+, only 7% are, which is consistent with the
semantics of the tag. However, as we could see in
Table 6, the correlation is not strong (5% absolute

for both dialog act tags). Despite the rather weak
correlation, the presence of the tag increases the
F1 measure from a low 44% (the lowest of any
tag) for the Fos system to 51% for the Ta-Mrda
system, entirely by increasing recall from 41% to
55%. To understand why, we can look at the cases
in which the MRDA tags in the input change the
prediction. There are four cases: the predicted tag
is HNeg+ (Positive) or some other tag (Negative),
and the prediction is correct (True) or not (False).
This gives us four possible shifts as we go from
the Fos system to the Ta-Mrda system which uses
the dialog act tags. The correct shifts from False
Negative to True Positives have 97% Statements,
and the correct shift from False Positives to True
Negatives have 22% Questions – as expected. In
terms of the incorrect shifts, the Ta-Mrda system
does not change a True Positive to a False Negative
frequently, and we disregard this case. The Ta-
Mrda system does change a True Negative to a
False Positive very frequently (101 cases), but here
the distribution of Statements and Questions is very
close to that of HNeg+ in general, so the dialog act
label does not contribute to this error class. In
conclusion, we can see that simply adding a very
simple dialog act distinction helps the classifier for a
low-frequency tag in the way we expect, increasing
TPs and decreasing FPs.

While it may seem odd that for the three face
act tags for which the correlations are strongest
(SPos+, HPos+, and HNeg-) we do not see an
improvement from adding the tags, we note that
these three face acts are also the most common in
our corpus, and we assume that the Fos system
has enough data and can derive the face act tag
from the lexical information on its own.

7. Conclusion and Future Work

We have presented a new study on the face act
corpus of Dutt et al. (2020) and use a generative
approach to obtain state-of-the-art results. The
model is then augmented to investigate the role of
communicative intention in determining face acts.
Through several methods of analysis we find ev-
idence that there is a close relationship between
dialog acts and face acts. Despite showing some
improvement on minority labels (§ 5.3) and correla-
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tions between dialog acts and face acts (§ 6.3), our
augmented models see an overall decline in perfor-
mance when incorporating dialog acts. Our error
analysis finds issues with the annotation consis-
tency (Other in particular) and, more importantly,
points to methods of improving future annotation
efforts.

We observe that some of the theoretical study
that was done when developing dialog act represen-
tations is very applicable to face acts. Early work on
speech act theory also limited utterances to a single
label but this was, over time, identified as a serious
flaw by several researchers (Cohen and Levesque,
1987; Hancher, 1979). As a result, DAMSL (Core
and Allen, 1997), now the most commonly adapted
methodology for dialog act annotations, made sup-
porting multiple labels a primary objective in its
design. Future annotations of face acts should do
the same and the frequency that multiple act utter-
ances were found in our error analysis supports
this recommendation.

Face acts are an important part of language use,
and while Dutt et al. (2020) have made a major
contribution, there has been little work with this
corpus, and future work will require thinking hard
about the data. We hope this paper will allow other
researchers to use the corpus in constructive ways
while being aware of the nature of the data in more
detail. Despite their similarities from a computa-
tional perspective, it does not seem to be as simple
as lifting the approaches used for dialog acts when
modeling face acts. In the future, we plan to de-
velop an annotation which incorporates additional
aspects of politeness theory and to label a corpus
with in-house trained annotators. Once we have
such a corpus, we predict that we will be able to ex-
ploit the double annotation of face acts and dialog
acts in machine learning more effectively and ob-
tain a much deeper understanding of how intention
and modeling of the audience interact.

Ethics Statement

The experiments for this work were performed us-
ing computational resources that are not, in gen-
eral, freely available. In part due to these com-
putational requirements, but also a result of min-
imal data, we were not able to evaluate the tech-
niques on additional languages and acknowledge
the limitations this places on extending our results
to other cultures. We also note along similar lines
that while Brown and Levinson (1987) claim their
theory of politeness to be culturally universal, this
claim has been contested – most notably for east-
ern cultures (Al-Duleimi et al., 2016; Purkarthofer
and Flubacher, 2022). As discussed in detail above,
taking utterances to have a single face act or intent
is a critically limiting assumption which lends some

uncertainty to our conclusions.
Despite a detailed analysis of the errors, we can-

not verify the safety of this system in any user-
oriented context and therefore do not recommend
such uses without further study. While we do not
produce any data sets directly from human anno-
tations, we do use several which were, to the best
of our knowledge, compiled ethically. As the pri-
mary object of study in this work is the relationship
between face and intention, we do not anticipate
broad risks to its application.
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