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Abstract

Unsupervised cross-lingual transfer involves transferring knowledge between languages without explicit super-
vision. Although numerous studies have been conducted to improve performance in such tasks by focusing on
cross-lingual knowledge, particularly lexical and syntactic knowledge, current approaches are limited as they
only incorporate syntactic or lexical information. Since each type of information offers unique advantages and
no previous attempts have combined both, we attempt to explore the potential of this approach. In this paper,
we present a novel framework called ”Lexicon-Syntax Enhanced Multilingual BERT” that combines both lexical
and syntactic knowledge. Specifically, we use Multilingual BERT (mBERT) as the base model and employ two
techniques to enhance its learning capabilities. The code-switching technique is used to implicitly teach the model
lexical alignment information, while a syntactic-based graph attention network is designed to help the model
encode syntactic structure. To integrate both types of knowledge, we input code-switched sequences into both the
syntactic module and the mBERT base model simultaneously. Our extensive experimental results demonstrate this
framework can consistently outperform all baselines of zero-shot cross-lingual transfer, with the gains of 1.0∼3.7
points on text classification, named entity recognition (ner), and semantic parsing tasks.
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1. Introduction

Unsupervised cross-lingual transfer refers to the
process of leveraging knowledge from one lan-
guage, and applying it to another language without
explicit supervision (Conneau et al., 2019). Due
to the free requirement of the labeled data in tar-
get language, it is highly preferred for low-resource
scenarios. Recently, unsupervised cross-lingual
transfer has been widely applied in various nat-
ural language processing (NLP) tasks, such as
part-of-speech (POS) tagging (Kim et al., 2017;
de Vries et al., 2022), named entity recognition
(NER) (Fetahu et al., 2022; Xie et al., 2018), ma-
chine reading comprehension (Hsu et al., 2019;
Chen et al., 2022), and question answering (QA)
(Nooralahzadeh and Sennrich, 2023; Asai et al.,
2021).

The success of unsupervised cross-lingual
transfer can be attributed to its ability to exploit con-
nections across languages, which are reflected in
various linguistic aspects such as lexicon, seman-
tics, and syntactic structures. Consequently, many
studies have sought to enhance models by encour-
aging them to learn these cross-lingual commonal-
ities. For instance, in the lexical domain, Qin et al.
(2021) utilize bilingual dictionaries to randomly re-
place certain words with their translations in other
languages, thereby encouraging models to implic-
itly align representations between the source lan-
guage and multiple target languages. In the area
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of syntax, several works have developed novel
neural architectures to guide models in encoding
the structural features of languages. Ahmad et al.
(2021), for example, proposes a graph neural net-
work (GNN) to encode the structural representa-
tion of input text and fine-tune the GNN along with
the multilingual BERT (mBERT) for downstream
tasks. Both lexical and syntactic approaches fa-
cilitate the alignment of linguistic elements across
different languages, thereby enhancing the perfor-
mance of cross-lingual transfer tasks.

However, language is a highly intricate system
(Ellis and Larsen-Freeman, 2009), with elements
at various levels being interconnected. For exam-
ple, sentences are composed of phrases, which
in turn are composed of words. In cross-lingual
transfer, we hypothesize that merely guiding mod-
els to focus on a single linguistic aspect is inad-
equate. Instead, by simultaneously directing mod-
els to learn linguistic knowledge across diverse lev-
els, their performance can be further improved. Ta-
ble 1 presents some example sentences extracted
from the XNLI dataset (Conneau et al., 2018).
These parallel sentence pairs demonstrate that the
multilingual model makes incorrect predictions for
sentence pairs in the target languages (French and
German) when only one aspect of linguistic knowl-
edge, such as lexical or syntactic knowledge, is
incorporated. However, when both types of knowl-
edge are integrated into the model, the correct pre-
diction is obtained. Despite this, most previous
studies have focused on either syntactic or lexical
information alone, without considering the integra-
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Lang Premise(P)/Hypothesis(H) Label +Lex +Syn Ours

fr
P:Votre société charitable fournit non seulement de les services sociaux communautaires efficaces à
les animaux et les personnes, mais sert également également de fourrière pour la Ville de Nashua.
H:La société humaine est le refuge pour animaux de Nashua.

entali contra contra entail

de
P:Ihre humane Gesellschaft erbringt nicht nur effektive gemeinschaftlich-soziale Dienstleistungen
für Tiere und ihre Menschen, sondern dient auch als Zwinger der Stadt Nashua.
H:Die Humane Society ist Nashuas Tierheim.

entail contra contra entail

en
P:Your humane society provides not only effective community social services for animals and their
people , but also serves as the pound for the City of Nashua .
H:The humane society is Nashua’s animal shelter .

Table 1: The parallel sentence pairs in French and German from XNLI(Conneau et al., 2018), which
are translated from English. Each sentence pair consist of a Premise sentence(P) and a Hypothesis
sentence(H). The ”Label” column indicates the relationship between each sentence pair, which can be
contradiction(contra), entailment(entail) or neutral. ”+Lex” and ”+Syn” represent the prediction results
from the multilingual models infused with lexical and syntactic knowledge, respectively. The ”ours” col-
umn shows the results of integrating both types of knowledge into the model. Compared to the other two
methods, our method can accurately predict the relationship between each sentence pair.

tion of both types of information.
In this work, we aim to enhance unsupervised

cross-lingual transfer by integrating knowledge
from different linguistic levels. To achieve this, we
propose a framework called ”Lexicon-Syntax En-
hanced Multilingual BERT” (”LS-mBERT”), based
on a pre-trained multilingual BERT model. Specif-
ically, we first preprocess the input source lan-
guage sequences to obtain each word’s part-
of-speech information and dependency relation-
ships between words in each sentence. Then,
we replace some words in the sentence with
their translations from other languages while pre-
serving the established dependency relationships.
Furthermore, we employ a graph attention net-
work(Veličković et al., 2017) to construct a syntac-
tic module, the output of which is integrated into
the attention heads of the multilingual BERT. This
integration guides the entire model to focus on syn-
tactic structural relationships. Finally, during the
fine-tuning process, we simultaneously train the
multilingual BERT and the syntactic module with
the pre-processed text. As a result, our framework
enables the multilingual BERT to not only implic-
itly learn knowledge related to lexical alignment but
also encode knowledge about syntactic structure.

To validate the effectiveness of our framework,
we conduct experiments on various tasks, in-
cluding text classification, named entity recogni-
tion (ner), and semantic parsing. The experi-
mental results show that our framework consis-
tently outperforms all baseline models in zero-shot
cross-lingual transfer across these tasks. For in-
stance, our method achieves the improvement of
3.7 points for mTOP dataset. Our framework also
demonstrates significant improvements in general-
ized cross-lingual transfer. Moreover, we examine
the impact of important parameters, such as the
replacement ratio of source words, and languages
for replacement. To facilitate further research
explorations, we release our code at https://
github.com/Tian14267/LS_mBert.

2. Related Work

Cross-lingual transfer is crucial in the field of natu-
ral language processing (NLP) as it enables mod-
els trained on one language to be applied to an-
other. To enhance performance in transfer tasks,
numerous studies focus on addressing the char-
acteristics of various languages and their relation-
ships.

2.1. Incorporating Lexical Knowledge
for Cross-lingual Transfer

A group of studies aims to incorporate lexical
alignment knowledge into cross-lingual transfer re-
search (Zhang et al., 2021a; Wang et al., 2022;
Qin et al., 2021; Lai et al., 2021). For example,
Zhang et al. (2021a) and Wang et al. (2022) em-
ploy bilingual dictionaries to establish word align-
ments and subsequently train cross-lingual mod-
els by leveraging explicit lexical associations be-
tween languages. Other methods (Qin et al., 2021;
Lai et al., 2021) involve substituting a portion of
words in a sentence with their equivalents from dif-
ferent languages, a technique commonly known
as ”code-switching.” By increasing the diversity of
input text, these approaches promote implicit align-
ments of language representations. However, this
group of studies mainly offers insights into lexical
translation across languages, while neglecting the
learning of language-specific structural rules.

2.2. Incorporating Syntactic Knowledge
for Cross-lingual Transfer

Another research category focuses on integrating
syntactic knowledge for cross-lingual transfer (Ah-
mad et al., 2021; Yu et al., 2021; Zhang et al.,
2021b; He et al., 2019; Cignarella et al., 2020; Xu
et al., 2022; Shi et al., 2022; Wang et al., 2021).
Many studies in this group (Ahmad et al., 2021;
Wang et al., 2021) develop graph neural networks

https://github.com/Tian14267/LS_mBert
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to encode syntactic structures, a category to which
our work also belongs. Taking inspiration from
Ahmad et al. (2021), we adopt a similar archi-
tecture, specifically using a graph attention net-
work to encode syntactic knowledge. Other meth-
ods (Cignarella et al., 2020; Xu et al., 2022) ex-
tract sparse syntactic features from text and sub-
sequently incorporate them into the overall model.
Although these approaches consider the relation-
ships between language elements, they frequently
overlook the alignments across languages, which
impedes the effective transfer of linguistic ele-
ments and rules between languages.

Consequently, we combine the strengths of
these two categories of approaches. First, we re-
place the input sequence with translated words
from other languages, which aids in guiding the en-
tire model to acquire implicit alignment information.
Then, we introduce an additional module to assist
the model in encoding syntax.

3. Methodology

In this section, we provide a detailed introduction
to our framework ”LS-mBERT”, as illustrated in
Figure 1. Our objective is to enhance the cross-
lingual transfer capabilities of multilingual BERT
(mBERT) by incorporating both lexical and syn-
tactic knowledge. Given an input sequence, we
first pre-process it using a part-of-speech tagger
and a universal parser(Section 3.1). This yields
the part-of-speech tag for each word and depen-
dency relationships among words in the sequence.
To enable mBERT to implicitly encode word align-
ment information, we substitute some words with
their translations from other languages using a
code-switching technology (Section 3.2). More-
over, to guide mBERT in attending to syntactic re-
lationships, we construct a graph attention network
(GAT), introduced in Section 3.3. The output of the
graph attention network is then used as input to
the attention heads within BERT, effectively bias-
ing attention information between words. Finally,
to integrate both syntactic and lexical knowledge,
we pass the code-switched text into both the GAT
network and mBERT, which are trained simultane-
ously (Section 3.4).

3.1. Pre-processing Input Sequence
The initial step involves pre-processing the input
data to obtain prior knowledge for subsequent
training. As our framework incorporates syntac-
tic knowledge, we opt for an off-the-shelf parser
with high accuracy to process the input text. In
this case, we employ the UDPipe toolkit(Straka
and Straková, 2017) to parse the inputs sentences,
and Stanza(Qi et al., 2020) to annotate the part-

of-speech information of each word. By utilizing
both tools, given a sentence, we can obtain the de-
pendency relationships between words and their
part-of-speech information, which are then utilized
to provide syntactic knowledge and enhance word
representations, respectively.

3.2. Code-switching for Text (lexical
knowledge)

As our objective is to improve unsupervised cross-
lingual transfer, introducing explicit alignment sig-
nals would be inappropriate. Therefore, we em-
ploy an implicit strategy to guide the entire model
to encode word alignment information. Inspired by
the work of Qin et al. (2021), we opt for the code-
switching strategy. Specifically, we first randomly
select a proportion α of words within each source
sentence. Then, for each selected word, we use a
high-quality bilingual dictionary to substitute it with
a corresponding translation from another target
language. This method not only promotes the im-
plicit alignment of representations across diverse
languages within our model, but also enhances the
model’s robustness when processing input text.

3.3. Graph Attention Network (syntactic
knowledge)

To guide mBERT in acquiring syntactic knowledge
better, we construct an external syntactic module
by referring to the method introduced by Ahmad
et al. (2021). The overview of this module is dis-
played in Figure 2. Given that there are n tokens
in the input sequence, we first represent each to-
ken by combining its embedding representation
with part-of-speech (POS) information. The rep-
resentation of the i-th token can be calculated:
xi = ciWc + posiWpos, where ci and posi rep-
resent the token representation and the part-of-
speech representation of the i-th token, respec-
tively; whileWc andWpos denote the token parame-
ter matrix and the part-of-speech parameter matrix.
Then, the encoded sequence s′ = [x1, x2, · · · , xn]
is passed into the subsequent syntactic module,
which is designed with a graph attention network
(GAT) (Veličković et al., 2017). The GAT module
comprises a total of L layers, each with m atten-
tion heads. These attention heads play a crucial
role in generating representations for individual
tokens by attending to neighboring tokens in the
graph. Each attention in GAT operates as follows:
O = Attention(T, T, V,M), wherein T denotes
the query and key matrices, and V represents the
value matrix. Besides, M signifies the mask ma-
trix, determining whether a pair of words in the de-
pendency tree can attend each other. Notably, the
relationships between words in the attention ma-
trix are modeled based on the distances between
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Figure 1: An overview of lexicon-syntax enhanced multilingual BERT (”LS-mBERT”). An example sen-
tence is provided to explain how this framework works. To introduce lexical alignment knowledge, we
utilize bilingual dictionaries to randomly replace some words in the sentence with the equivalent words
from other languages (pink for German, green for Spanish, light blue for Chinese, and orange for French).
Then, an graph attention network (GAT) is developed to encode the syntactic structure of this sentence.
The output representation of GAT is sent to the attention heads in multilingual BERT for guiding them to
focus on the language-specific structures.

words in the dependency tree, rather than the posi-
tional information within the word sequence. Sub-
sequently, the resulting representations produced
by all attention heads are concatenated to form
the output representations for each token. Finally,
the output sequence from the final layer can be
denoted as Y = [y1, y2, · · · , yn], where yi repre-
sents the output representation for the i-th token.
To maintain the lightweight nature of the architec-
ture, certain elements in GAT have been excluded.
Specifically, we do not employ feed-forward sub-
layers, residual connections, or positional repre-
sentations. We found that these modifications do
not result in a significant performance gap.

3.4. Summary of the Framework:
Lexicon-syntax Enhanced
Multilingual BERT

In this subsection, we provide an overview of our
”LS-mBERT” framework, as illustrated in Figure 1.
We first select multilingual BERT (mBERT) as the
base model. Then, we process the input sequence
using the code-switching strategy in Section 3.2,
resulting in the code-switched sequence s′. It is
important to note that despite some words in each
sentence being replaced with other languages, the
original dependency relationships between words
are still preserved in s′. Next, we feed the code-
switched text into both mBERT and the syntac-
tic module (GAT), facilitating the fusion of the two
types of knowledge. Furthermore, this step guides
the entire model to better align different languages
within the high-dimensional vector space during
training. After GAT processes the code-switched
sequence, the output from the final layer is uti-
lized to bias the attention heads of mBERT. The

calculation process can be described as follows:
O = Attention(Q+YWQ

l ,K+YWK
l , V ), where Q,

K, and V represent the query, key, and value ma-
trices, respectively; While WQ

l and WK
l are new

parameters to learn for biasing the query and key
matrices.
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Figure 2: The architecture of graph attention net-
work (Ahmad et al., 2021; Veličković et al., 2017).
Each input token is represented by combining its
token embedding and part-of-speech embedding.
Each attention head within the graph attention net-
work(GAT) generates a representation for each to-
ken embedding by attending to its neighboring to-
kens in the dependency graph. Next, the resulting
representations are concatenated to form the out-
put representation for each token. Finally, we can
obtain the representations of the output sequence
embeddings from the final layer of GAT.
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4. Experiments

4.1. Experimental Settings
As above mentioned, we use UDPipe (Straka and
Straková, 2017) and Stanza (Qi et al., 2020) for
parsing sentences and obtaining words’ part-of-
speech information in all languages, and employ
MUSE (Lample et al., 2018) as the bilingual dictio-
nary for word substitution. For all tasks, we identify
the optimal parameter combinations by searching
within the candidate sets. The learning rate is set
to 2e-5, utilizing AdamW as the optimizer. The
batch size is 64, and the maximum length for in-
put sequences is 128 tokens. For code-switching,
we vary the replacement ratio (α) from 0.3 to 0.7
with a step of 0.1. For the GAT network, we adopt
the identical parameter values as employed in the
work of Ahmad et al. (2021). Specifically, we set
L to 4 and k to 4.

4.2. Tasks
Our framework is evaluated on the following tasks,
using English as the source language. Some
statistics are summarized in Table 2, along with the
detailed descriptions provided below.
Text Classification. Text Classification is a task
that assigns predefined categories to open-ended
text. In our experiment, we utilize two publicly avail-
able dataset: XNLI and PAWS-X. In XNLI (Con-
neau et al., 2018), models need to predict whether
a given pair of sentences is entailed, contradicted,
or neutral; In PAWS-X (Yang et al., 2019), mod-
els are required to determine whether two given
sentences or phrases convey the same meaning.
When implementing the two tasks, to establish
connections between the dependency trees of the
two sentences, we introduce two edges from the
[CLS] token to the root nodes. Subsequently, we
apply the code-switching technique to randomly re-
place certain words in the sentence pairs.
Named Entity Recognition. Named Entity
Recognition (NER) is a task that involves the au-
tomatic identification and categorization of named
entities. In our experiment, we employ the Wikiann
(Pan et al., 2017) dataset. Wikiann consists of
Wikipedia articles annotated with person, location,
organization, and other tags in the IOB2 format.
Our method is evaluated across 15 languages. To
ensure that the models can obtain complete entity
information, we exclusively substitute words that
do not constitute named entities during the code-
switching process.
Task-oriented Semantic Parsing. In this task,
the models are required to determine the intent
of the utterance and then fill the relevant slots.
The dataset for the experiment is mTOP (Li et al.,
2021), which is an almost parallel corpus, contain-

ing 100k examples in total across 6 languages.
Our experiments cover 5 languages.

4.3. Baselines

We choose the following methods as baselines to
compare:

• mBERT. We exclusively utilize the multilin-
gual BERT model to perform zero-shot cross-
lingual transfer for these tasks.

• mBERT+Syn. A graph attention network
(GAT) is integrated with multilingual BERT,
and these two components are jointly trained
for all tasks.

• mBERT+Code-switch. The multilingual
BERT model is fine-tuned with the code-
switched text across various languages.

5. Results and analysis

5.1. Cross-Lingual Transfer Results

The main experimental results are displayed in
Table 3. Our method consistently demonstrates
superior performance across all tasks compared
to other baselines. This indicates our method’s
effectiveness for cross-lingual transfer, achieved
through the incorporation of lexical and syntactic
knowledge. Especially for the tasks Wikiann and
mTOP, our method exhibits a significant improve-
ment, with an increase of 2.2 and 3.7 points, re-
spectively, when compared to the baseline with
the best performance. In addition, since code-
switching technique blends words from various lan-
guage, we calculate the results across the lan-
guages excluding English, as shown in the column
”AVG/en” in Table 3. We find that the performance
gap between our method and each baseline in
most tasks becomes wider. This also indicates
that our method can more effectively align non-
English languages within the same vector space
implicitly.

For each task, we discover most of languages
can gain improvement by using our method, as
compared to the top-performing baseline. Specifi-
cally, 84.6% (11/13), 100.0% (7/7), 80.0% (12/15)
and 100.0% (5/5) languages demonstrate improve-
ment in XNLI, PAWS-X, Wikiann and mTOP re-
spectively. Furthermore, our method also pro-
vides improvement for non-alphabetic languages
in many tasks, such as Chinese, Japan and Ko-
rean. This reflects that our method can be effec-
tively generalized into various target languages,
even in cases where significant differences exist
between the source and target languages.
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Task Dataset |Train| |Dev| |Test| |Lang| Metric
Classification XNLI 392K 2.5K 5K 13 Accuracy
Classification PAWS-X 49K 2K 2K 7 Accuracy
NER Wikiann 20K 10K 1-10K 15 F1
Semantic Parsing mTOP 15.7K 2.2K 2.8-4.4K 5 Exact Match

Table 2: Evaluation datasets. |Train|, |Dev| and |Test| delegate the numbers of examples in the training,
validation and testing sets, respectively. |Lang| is the number of target languages we use in each task.

Tasks Methods en ar bg de el es fr hi ru tr ur vi zh ko nl pt ja AVG / en AVG

XNLI (Conneau et al., 2018)

mBERT 80.8 64.3 68.0 70.0 65.3 73.5 73.4 58.9 67.8 60.9 57.2 69.3 67.8 - - - - 66.4 67.5
mBERT+Syn 81.6 65.4 69.3 70.7 66.5 74.1 73.2 60.5 68.8 62.4 58.7 69.9 69.3 - - - - 67.4 68.5
mBERT+code-switch 80.9 64.2 70.0 71.5 67.1 73.7 73.2 61.6 68.9 58.6 57.8 69.9 70.0 - - - - 67.2 68.3
our method 81.3 65.8 71.3 71.8 68.3 75.2 74.2 62.8 70.7 61.1 58.8 71.8 70.8 - - - - 68.6 69.5

PAWS-X (Yang et al., 2019)

mBERT 94.0 - - 85.7 - 87.4 87.0 - - - - - 77.0 69.6 - - 73.0 80.2 81.7
mBERT+Syn 93.7 - - 86.2 - 89.5 88.7 - - - - - 78.8 75.5 - - 75.9 82.7 83.9
mBERT+code-switch 92.4 - - 85.9 - 87.9 88.3 - - - - - 80.2 78.0 - - 78.0 83.4 84.3
our method 93.8 - - 87.2 - 89.6 89.4 - - - - - 81.8 79.0 - - 80.0 84.6 85.6

Wikiann(Pan et al., 2017)

mBERT 83.7 36.1 76.0 75.2 68.0 75.8 79.0 65.0 63.9 69.1 38.7 71.0 - 58.9 81.3 79.0 - 66.9 68.1
mBERT+Syn 84.1 34.6 76.9 75.4 68.2 76.0 79.1 64.0 64.2 68.7 38.0 73.1 - 58.0 81.7 79.5 - 67.0 68.1
mBERT+code-switch 82.4 39.2 77.1 75.2 68.2 71.0 78.0 66.1 64.2 72.4 41.3 69.2 59.9 81.3 78.9 - 67.3 68.3
our method 84.5 41.4 78.9 77.3 70.2 75.3 80.3 67.6 63.9 73.1 46.8 72.6 - 62.2 81.8 80.8 - 69.4 70.5

mTOP(Li et al., 2021)

mBERT 81.0 - - 28.1 - 40.2 38.8 9.8 - - - - - - - - - 29.2 39.6
mBERT+Syn 81.3 - - 30.0 - 43.0 41.2 11.5 - - - - - - - - - 31.4 41.4
mBERT+code-switch 82.3 - - 40.3 - 47.5 48.2 16.0 - - - - - - - - - 38.0 46.8
our method 83.5 - - 44.5 - 54.2 51.7 18.8 - - - - - - - - - 47.3 50.5

Table 3: The experimental results on four tasks. The best results in each task are highlighted in bold.
The baselines include ”mBERT”, ”mBERT+Syn” and ”mBERT+codeswitch”. They delegate ”only using
mBERT”, ”using mBERT with a syntactic module (GAT)” and ”mBERT with the code-switching technique”
for cross-lingual transfer. The results of ”mBERT” is from Hu et al. (2020). For ”mBERT+Syn” and
”mBERT+code-switch”, we adopt open-source code of the work of Ahmad et al. (2021) and Qin et al.
(2021) to reproduce these experiments, and report the results. The evaluation metrics are F1 value for
the NER task, Accuracy for classification tasks, and Exact Match for semantic parsing. The ”AVG” column
means the average performance across all language for each method, while the ”AVG /en” indicates the
average performance on the languages excluding English.

5.2. Generalized Cross-Lingual Transfer
Results

In practical scenarios, cross-lingual transfer could
involve any language pair. For example, in a cross-
lingual question-answering (QA) task, the context
passage may be in German, while the multilin-
gual model is required to answer the question in
French. Considering on this, we conduct zero-shot
cross-lingual transfer experiments within a gener-
alized setting. Since PAWS-X and mTOP are com-
pletely parallel, we evaluate the performance of
our method and ”mBERT” baseline on generalized
cross-lingual transfer tasks using the two dataset.
The experimental results are illustrated in Figure 3.

For both classification and semantic parsing
benchmarks, we have observed improvements
among most language pairs. This reflects that
our method is very effective for generalized cross-
lingual transfer. Furthermore, when English is in-
cluded in the language pair, there is a substantial
enhancement in performance. Specifically, when
English serves as the source language, the aver-
age performance of target languages is increased
over 10% and 3% in mTOP and PAWS-X dataset,
respectively. This reflects the effectiveness of
the code-switching in aligning other languages
with English. For the PAWS-X dataset, we find
that some non-Indo-European languages such as

Japanese, Korean, and Chinese can achieve im-
provements, even when the source languages be-
long to the Indo-European language family, includ-
ing English, Spanish, French, and German. It re-
flects that syntactic knowledge can effectively nar-
row the gap of language structures for this task,
especially for the language pairs without close lin-
guistic relationships.

6. Analysis and Discussion

6.1. Impact on Languages

We investigate whether our method can improve
the performance of specific languages or language
groups. As shown in Figure 4, we display the per-
formance improvement of our method by compar-
ing the ”mBERT” baseline. We find that almost lan-
guages can obtain benefits from our method. Par-
ticularly, when the target language, such as Ger-
man, Spanish and French, belongs to the Indo-
European language family, the improvement is
very significant. Furthermore, the performance in
the mTOP task is improved significantly by our
method among all languages. This may be be-
cause that our method consider both syntax and
lexicon simultaneously, which is beneficial for the
semantic parsing task.
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Figure 3: Results for generalized zero-shot cross-lingual transfer on mTOP and PAWS-X. We report the
performance differences between our method and ”mBERT” baseline across all languages.
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Figure 4: Performance improvements for XNLI, PAWS-X, Wikiann, and mTOP across languages. The lan-
guages in x-axis are grouped by language families: IE.Germanic (en, de), IE.Romance (es, fr), IE.Slavic
(bg, ru), Afro-asiatic (ar), Austro-asiatic (vi), Altaic (tr, ur), IE.Greek (el), IE.Indic (hi), Sino-tibetan (zh),
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6.2. Representation Similarities across
Languages

To evaluate the effectiveness of our method in
aligning different languages, we employ the rep-
resentation similarity between languages as the
metric. Specifically, we utilize the testing set of
XNLI (Conneau et al., 2018) as the dataset, which
consists of parallel sentences across multiple lan-
guages. Then we take the vector of [CLS] token
from the final layer of our model, as well as the
vectors from two baselines (”mBERT+Syn” and
”mBERT+code-switch) for each sentence. Follow-
ing Libovickỳ et al. (2019), the centroid vector for
representing each language is calculated by aver-
aging these sentence representations. Finally, we
adopt cosine similarity as the indicator to assess
the degree of alignment between English and each
target language.

Figure 5 illustrates the similarities between
languages by using our method and the other
two baselines. It can be easily found that our

method outperforms the other two baselines in
aligning language representations. This sug-
gests that infusing two types of knowledge is in-
deed effective in reducing the disparities in lan-
guage typologies, which improve cross-lingual
transfer performance. In addition, we observe
that ”mBERT+code-switch” performs better than
”mBERT+Syn”, which reflects that lexical knowl-
edge is more useful than syntactic knowledge for
this task.

6.3. Impact of Code-switching

The replacement ratio α for code-switching is an
important hyper-parameter in our method. Hence,
we explore its impact on mTOP and PAWS-X, by
varying α from 0 to 0.9 in increments of 0.1, shown
in Figure 6. When α is set to 0, it represents
the results of the baseline ”mBERT+Syn”. As
α increases, more source words are substituted
with their equivalent words from other languages.
The performance improvement certificates the ef-
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Figure 5: The similarities between languages. We
first calculate the centroid representation for each
language following Libovickỳ et al. (2019). Then
we adopt cosine similarity to evaluate the similarity
between English and each target language.

fectiveness of code-switching technique. Notably,
when about half of the words are replaced (0.5
for PAWS-X and 0.4 for mTOP), the performance
reaches their peaks. After that, both tasks ex-
perience a decline in performance. This decline
might be because the expression of meaning and
sentence structure are influenced severely as too
many words are replaced. Therefore, it is a opti-
mal choice to set α between 0.4 to 0.5 for code-
switching.

Figure 6: Performance on mTOP and PAWS-
X with different replacement ratio α in code-
switching.

Furthermore, we investigate whether the choice
of the replacement language in code-switching
impacts our model’s performance. We select
mTOP and PAWS-X as the testing tasks. In code-
switching, we devise three different measures for
language replacement: ”Exclusively replacing with
the target language”, ”Replacing with languages
from the same language family as the target lan-
guage”; and ”Replacing with languages selected
randomly”. The experimental results are illustrated
in Figure 7. We can easily observe that ”Exclu-
sively replacing with the target language” performs
best, while ”Replacing with randomly selected lan-
guages” yields the poorest results. Hence, this
also underscores the importance of selecting lan-
guages closely related to each target language for

substitution when employing the code-switching
technique.
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Figure 7: Performance on mTOP and PAWS-
X with different replacement languages in code-
switching. The source language for both tasks
is English, and the results are averaged across
all target languages excluding English. “Type1”
represents the replacement with the target lan-
guage; “Type2” represents the replacement with
languages from the same language family as the
target language; “Type3” represents the replace-
ment with randomly selected languages.

6.4. Performance with XLM-R
To validate the universality of our method, we
substitute multilingual BERT with XLM-R in our
framework. XLM-R is a more robust multilingual
pre-trained model known for its exceptional cross-
lingual transfer capabilities. Subsequently, we test
its performance on the PAWX-S dataset, and the
experimental results are displayed in Table 4.

In Table 4, we also observe that our framework
outperforms the other three baselines. This indi-
cates that integrating lexical and syntactic knowl-
edge is beneficial for enhancing performance, irre-
spective of the base model employed. Notably, our
framework only achieves the slight performance
improvement when utilizing XLM-R as the base
model compared to employing multilingual BERT.
It may be because that the base model, XLM-R,
adopt larger corpus during pre-training, resulting
in preserving richer language information. Con-
sequently, XLM-R itself has possessed superior
cross-lingual transfer capabilities. The assistance
by incorporating external linguistic knowledge ap-
pears to be relatively minor in comparison.

6.5. Limitations and Challenges
In our study, we adopt a bilingual dictionary, such
as MUSE (Lample et al., 2018), to substitute
words in other languages. However, we randomly
choose a target language word when there exist
multiple translations for a source language word.
This approach, although convenient, neglect the



8994

Task Methods en ar bg de el es fr hi ru tr ur vi ko nl pt AVG

PAWS-X

XLM-R 84.2 48.5 80.5 77.0 77.8 76.1 79.8 67.5 70.4 76.0 54.2 78.5 59.1 83.3 79.3 72.8
XLM-R+Syn 83.5 46.4 80.1 76.0 78.9 77.6 79.1 72.1 70.6 76.1 55.3 77.6 59.0 83.1 79.2 73.0
XKLM-R+code-switch 83.4 46.8 81.7 78.2 79.2 71.1 78.6 72.9 70.6 77.2 57.9 76.0 58.2 83.6 80.0 73.0
our method 83.1 44.9 82.7 76.8 78.4 76.9 79.6 71.1 70.1 76.6 60.4 78.2 58.1 83.5 79.7 73.3

Table 4: Results for PAWS-X with XLM-R.

context of the source language word, potentially
leading to inaccurate translations. This also high-
lights us to explore more precise word alignment
methods in the future.

Furthermore, the tasks we have evaluated are
quite limited, with some of them involving only a
few languages. In the future, we will extend our
method to more cross-lingual tasks. Meanwhile,
we also develop dataset for these tasks to support
more languages.

7. Conclusion

In this paper, we present a framework called
”lexicon-syntax enhanced multilingual BERT” (”LS-
mBERT”), which infuses lexical and syntactic
knowledge to enhance cross-lingual transfer per-
formance. Our method employs code-switching
technology to generate input text mixed in various
languages, enabling the entire model to capture
lexical alignment information during training. Be-
sides, a syntactic module consisting of a graph
attention network (GAT) is introduced to guide
mBERT in encoding language structures. The ex-
perimental results demonstrate that our proposed
method outperforms all the baselines across differ-
ent tasks, which certificates the effectiveness of in-
tegrating both types of knowledge into mBERT for
improving cross-lingual transfer. In the future, we
plan to incorporate different linguistic knowledge
into large language models (LLMs) to further en-
hance cross-lingual transfer performance.
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