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Abstract
Implicit Discourse Relation Recognition (IDRR), which infers discourse logical relations without explicit connectives,
is one of the most challenging tasks in natural language processing (NLP). Recently, pre-trained language
models (PLMs) have yielded impressive results across numerous NLP tasks, but their performance still remains
unsatisfactory in IDRR. We argue that prior studies have not fully harnessed the potential of PLMs, thereby resulting
in a mixture of logical semantics, which determine the logical relations between discourse arguments, and general
semantics, which encapsulate the non-logical contextual aspects (detailed in Sec.1). Such a mixture would inevitably
compromise the logic reasoning ability of PLMs. Therefore, we propose a novel method that trains the PLMs
through two semantics enhancers to implicitly differentiate logical and general semantics, ultimately achieving logical
semantics enhancement. Due to the characteristic of PLM in word representation learning, these two semantics
enhancers will inherently confront with each other, facilitating an augmentation of logical semantics by disentangling
them from general semantics. The experimental results on PDTB 2.0 dataset show that the confrontation approach
exceeds our baseline by 3.81% F1 score, and the effectiveness of the semantics confrontation method is validated

by comprehensive ablation experiments.
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tion

1. Introduction

Discourse relation recognition, aiming to identify
the logical relation between two arguments (sen-
tences or clauses), is a crucial task in discourse
parsing which can benefit many downstream tasks
in natural language processing (NLP), such as ma-
chine translation (Guzman et al., 2014; Meyer and
Popescu-Belis, 2012; Meyer and Webber, 2013) ,
text summarization (Gerani et al., 2014; Yoshida
et al., 2014) and question answering (Jansen et al.,
2014; Verberne et al., 2007). Discourse relation
recognition encompasses two distinct paradigms:
explicit and implicit. In explicit discourse relation
recognition (EDRR) task, there are connectives
(e.g., because, so) between the two discourse ar-
guments, offering valuable prompts for the models
to reasoning the semantic relations (as shown in
Example 1). In contrast, implicit discourse relation
recognition (IDRR) task lacks such connectives, ne-
cessitating models to extract logical information di-
rectly from the content of the arguments (as shown
in Example 2).

In fact, EDRR has already demonstrated the re-
markable effectiveness by utilizing explicit connec-
tives. Pitler et al. (2008) have previously achieved
a notably high accuracy of 93.09% in EDRR, while
Zhou et al. (2010) demonstrated that a substantial
F1 score of 91.8% can be attained only by pair-
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logical semantics enhancement,

semantics confronta-

ing connectives with their corresponding discourse
relations (e.g. Reason, Result). Nonetheless,
IDRR is still an exceptionally challenging task due
to the absence of the connectives, which poses
greater challenges to the semantic understanding
and logic reasoning ability of the models. Remark-
ably, even state-of-the-art methods can only attain
an accuracy around 70%.

Example 1 (Explicit)

Arg1:We're offering this plan now
Conn:[Because]

Arg2:we feel it’s the right time

Relation Sense:(Contingency.Cause.Reason)

Example 2 (Implicit)

Arg1:Living there for six years was really scary
Arg2:The ghosts of the past are everywhere
Relation Sense:(Contingency.Cause.Reason)

Recently, pre-trained language models (PLMs),
such as BERT (Devlin et al, 2019) and
RoBERTa (Liu et al., 2019), have been widely
adopted in many tasks of NLP, including IDRR (Liu
et al., 2020; Wu et al., 2022). However, PLMs did
not improve IDRR significantly. We argue that the
primary reason is that the implicit relation recogni-
tion task imposes greater demands on text under-
standing and with the data-sparse nature of IDRR,
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Type argy args

Original Living there for six years was really  (because) The ghosts of the past are everywhere
scary

Same logic Living there was scary (because) The ghosts are everywhere

Diff logic Living there for six years was really  (although) The ghosts of the past are gone

scary

Table 1: General and logical semantics of arguments

it inevitably presents formidable challenges for the
models to achieve better performance.

To make it clear, firstly, we assume that any text
unit consists of more than one aspect of semantics.
As for IDRR, a robust discourse relation recognition
model should be able to pronouncedly disentan-
gle the logical semantics from logical-independent
semantics (distinguished as "general semantics").
Here, the logical semantics play a pivotal role in
the identification of logical relations between ar-
guments, determining which specific relation they
belong to. Conversely, the general semantics en-
capsulate all the non-logical contents, bearing little
influence on logical relation reasoning.

Intuitively, the words contributing to logical se-
mantics (denoted as logical words) are typically
fewer in number compared to those contributing to
general semantics (denoted as general words). As
an example shown in Table 1, the logical relation
is totally different when replacing just one word
(everywhere — gone), which demonstrates a sig-
nificantly shift in logical semantics. In contrast, the
relation sense of the arguments still remains con-
sistent when altering many other words. In other
words, the distribution of logical words is more
sparse compared to general words.

Meanwhile, a majority of PLMs employ mask lan-
guage modeling (MLM) as their pre-training task.
Given that the distribution of logical words are more
sparse than general ones, the masking process
mainly involves general words, which results in
a predominant focus on learning the representa-
tion of general semantics, mixing with limited log-
ical semantics. To verify this assertion, we ob-
tained the embeddings of these sentences in Ta-
ble 1 by putting them into a RoBERTa language
model that had been fine-tuned using PDTB 2.0
dataset (Prasad et al., 2008). The distribution of
these embeddings is visually depicted in Figure 1.
As observed, sentences exhibiting different logical
relations are found to be even closer to the origi-
nal sentences than those sharing the same logical
relations, which suggests that within the represen-
tations learned by PLMs, even after fine-tuning,
there persists a mixing of general semantics and
logical semantics.

In this paper, we propose a Semantics
Confrontation method for Implicit Discourse

) same logic
diff logic
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Figure 1: Distribution of the embeddings for dif-
ferent sentences in Table 1. The embedding of
diff(same) logic is obtained by fine-tuned RoBERTa,
while the embedding of diff(same) logic’ is obtained
by our model.

diff logic'

rElation Recognition (SCIDER) to disentangle the
logical semantics from general semantics, thereby
improving the performance of IDRR. Specifically,
we firstly introduce two special tokens ([general]
and [/ogical]) to represent general and logical se-
mantics of arguments pairs, respectively. Subse-
quently, we train the pre-trained language model
(RoBERTa) to learn the representation of both spe-
cial tokens via different tasks (implemented by
two semantics enhancers). Inherently, these two
tasks confront with each other, ultimately guiding
the representations towards the respective spaces
of general semantics and logical semantics. No-
tably, the disentangled logical semantics exhibit
greater efficacy in clarifying logical relations. The
experiments demonstrate that our approach ex-
ceeds our baseline by 3.81% F1 and 2.99% accu-
racy on PDTB 2.0".

It is noteworthy that the proposed approach can
be applied not only to IDRR but also extended
to any task requiring the disentanglement of the
specific semantics (sentiment semantics, salient
object features etc.) from general semantics (non-
sentiment semantics, general image semantics
etc.), such as sentiment classification, object de-
tection and so on. So in essence, the seman-
tics enhancer we proposed is a widely applicable
framework with powerful transferability.

'Our code will be released at https://github.com/
Young-Zhen/IDRR_SCIDER
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Figure 2: The model structure of our approach. The "G" represents "[general]" token, "L" represents
"[logical]" token, "M" represents "[M ASK]" token and [rel;] is manually designed token for each candidate
logical relation, in order to be suitable for masked token predicting paradigm.

2. Related Work

Since the release of the PDTB corpus, numerous
researchers have proposed various methodologies
for IDRR task. In the early stages, the focus of re-
searchers mainly revolved around manual feature
engineering. For instance, Marcu and Echihabi
(2002) derived word-pair features by calculating
Cartesian products between all words in the two
arguments and subsequently tallying their frequen-
cies across each relation. Meanwhile, Varia et al.
(2019) integrated both whole sentence and word-
pair features to augment the features with global
context information. Recognizing the potential data
sparsity issue associated with word-pair features,
Biran and McKeown (2013) addressed this concern
by clustering semantically similar word pairs.

The emergence of neural networks has brought
about significant enhancements in many NLP tasks
including IDRR. Ji and Eisenstein (2015) employed
two Recurrent Neural Networks (RNNs) to model
argument semantics in a top-down manner and
entity semantics in a bottom-up manner. Liu and
Li (2016) harnessed the Long Short-Term Memory
(LSTM) structure to mimic the repeatedly reading
strategy, which can improve the comprehension of
arguments. Qin et al. (2016) introduced stacked
gated Convolutional Neural Networks (CNNs) to
model arguments and perform classification. In-

spired by the insight that the relation of arguments
with connectives can be easily identified, Qin et al.
(2017) adopted an adversarial approach to align
the representations, ensuring that arguments with-
out connectives exhibit similar representations to
those with connectives. Dai and Huang (2018)
posited that a broader context could aid argument
understanding, motivating them to model the entire
paragraph alongside the arguments themselves
together."

In recent years, the deployment of large-scale
pre-trained language models has significantly im-
pacted various domains in NLP. Shi and Demberg
(2019) adopted the BERT (Devlin et al., 2019)
language model and retrained it using the next
sentence prediction (NSP) task on PDTB. Simi-
larly, Kishimoto et al. (2020) employed BERT as
their encoder, but they conducted pre-train task on
the discourse corpus before fine-tuning. Liu et al.
(2020) proposed a method to learn the discourses’
semantics in different level based on RoBERTa lan-
guage model. On the other hand, Wu et al. (2022)
explored the dependencies between discourse cat-
egories across different hierarchies and utilized
a Graph Convolutional Network (GCN) to model
these categories, they then combined the cate-
gories’ and the arguments’ RoBERTa embeddings
to identify the discourse relations. Alternatively,
Jiang et al. (2021) pursued a generative approach,
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Type Sentence
input  [general] argy [logical] args
label  [general] argy  [rely] args

Table 2: Training data for logical semantics en-
hancer, wherein [rel;] represents the correspond-
ing token of ground-truth logical relation between
the argument pair arg; and args.

wherein they designed a question specific to each
discourse relation. Subsequently, they trained a T5
model not only to recognize the relation label but
also to generate a target sentence that contains
the meaning of the relations.

Notably, a trend has emerged in recent works
towards the utilization of additional data. For in-
stance, many works (Jiang et al., 2022; Chan et al.,
2023b) employed the multi-level hierarchical in-
formation to enhance IDRR. Among them, GOLF
(Jiang et al., 2022) exploited global and local hi-
erarchies of senses through contrastive learning,
while DiscoPrompt (Chan et al., 2023b) proposed
a prompt-based method to predict the paths in-
side the hierarchical tree. More recently, PLSE
(Wang et al., 2023) proposed a connective predic-
tion based method which conducted pre-training
with unannotated explicit data and then performed
prompt-tuning with the implicit data.

Existing works have shown that the implicit dis-
course relation recognition is a significantly difficult
task and the pre-trained language models play a
crucial role in improving the performance. However,
these approaches only utilize pre-trained models
as the encoder, without further exploring the se-
mantics representation generated by the PLMs.

3. Model

The overall structure of our model is illustrated in
Figure 2. It delineates three key components 2: the
encoder, the logical semantics enhancer, and the
general semantics enhancer. These components
will be introduced individually in the subsequent
sections.

3.1.

Following prevailing practices in this field, we uti-
lize the pre-trained RoBERTa language model
as the encoder. To enhance the model’s ability
in capturing the discourse semantics, we intro-
duce two additional special tokens: "[general]"
and "[logical]"., which represent general seman-

Encoder

2In Figure 2, it does not depict the Masked Language
Modeling (MLM) task for input argument pairs, yet it still
constitutes an essential part of our model to enhance the
global understanding of discourse semantics for PLMs

tics and logical semantics, respectively. The in-
put argument pair (Argl, Arg2) is reformulated
as ([general], Argl, [logical], Arg2). Intuitively, the
"[general]" token is positioned before the first argu-
ment to capture the global, long-term, and "dense”
general semantics. In contrast, the "[logical]" to-
ken is placed between the two arguments, in or-
der to align more closely with the natural lan-
guage expression where logical connectives typi-
cally emerge between two sentences.

Finally, the embeddings e for [general] and
ey, for [logical] are learned through the encoder,
and subsequently enhanced by two semantics en-
hancers.

3.2. Logical Semantics Enhancer

In the logical semantics enhancer, a manually de-
signed relation token [rel;] is introduced for each
candidate discourse relation. And a MLM head
structure is utilized to predict the probability distri-
bution of each word token; in vocabulary, based
on the embedding of [logical] token:

exp(wler)

Zvocab_size
j=1

p(token;|ctx) =

exp('wJTeL)’ ()
where ey, is the embedding of [logical] token, ctx
is current context, vocab_size is the word count
of language model’s vocabulary, including the ad-
ditional tokens, and token; includes the relation
tokens [rely], [rels), ..., [rel,,] and other normal to-
kens, wherein the [rel;] with the highest probability
is served as the predicted relation label between
two input arguments:

label = argmax p([rel;||ctz) (i=1,2,3,...). (2)

In other words, the logical semantics enhancer
regards [logical] as a "[M ASK]" token (as in BERT
(Devlin et al., 2019)) and predicts the masked to-
ken [rel;] in MLM paradigm (the meaning of [rel;]
and the specific data format for training are shown
in Table 2). So the objective function for [rel;] pre-
diction is as follows:

Lpredict([reli]|ctx) = logp([rely]|ctx).  (3)

Besides, in order to enhance the comprehen-
sion of global semantics and further improve the
model’s performance in predicting the relation to-
kens [rel;], we also employ MLM as an auxiliary
task. Specifically, we randomly mask some tokens,
except [logical], in the arguments, and then task
the language model with predicting the masked
tokens. The objective function of the MLM task can
be described as Equation 4:

11|
Loum (|context) = Zlogp(ﬂﬂcontext),
i=1

= i >
(4)
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where the II is the collection of masked tokens,
and |II] is the number of masked tokens.

Finally, as shown in Equation 5, the object func-
tion for training logical semantics enhancer is a
sum of Lyredict and Ly :

Elogical = Epredz’ct + Lonim (5)

3.3. General Semantics Enhancer

As for the general semantics enhancer, we adopted
the replaced token detection (RTD) task to gain
expertise in capturing general semantics. It is in-
spired by the observation, as explained in Section
1, that such a specific MLM task is highly effective
in learning general semantics. As illustrated in Ta-
ble 3, tokens in the original input sentences are
randomly masked to get input’, then a generation
model, with fixed parameters, predicts the masked
token to obtain the input”. Meanwhile, the em-
beddings of [general] token e, obtained through
the encoder, is concatenated with the words em-
beddings of input”, resulting in egrp. Finally, a
discrimination model is trained to check whether
each token in input” is the same as that in input.
In order to improve the prediction accuracy of
whether a word is replaced, the model need learn
the [general] token’s representation with a more
comprehensive grasp of all the general words, lead-
ing to a better understanding of general semantics.
The loss function for general semantics enhancer
is calculated as Equation 6:

|s|
Lgeneral = Z (71 (inputg’ = inputt) log D(egTD)
t=1
— 1(input; # input;) log(1 — D(eRTD))>
(6)
where the 1 is indicator function, D is the discrim-
ination model and |s| is the length of the input
sequence.

Type Sentence

input  The ghosts are everywhere.
input’  The [MASK] [M ASK] everywhere
input” The cats  are everywhere.
label 0 1 0 0

Table 3: The different content of sentences after
passing through the general semantics enhancer.

3.4. Semantics Confrontation

Through the two aforementioned semantics en-
hancers, the model has acquired the represen-
tation learning ability for logical and general se-
mantics. In this section, we will explain how the
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Figure 3: Data distribution categorized by the 4-
way (up) and 11-way (bottom) classification of rela-
tion classes on PDTB 2.0 corpus

semantics confrontation works. The two seman-
tics enhancers achieve the logical and general se-
mantics enhancement by relation token prediction
(RTP) and replaced token detection (RTD), respec-
tively. We leverage the inherent confrontation be-
tween the targets of RTP and RTD, thus training
the two enhancers alternately to guide the repre-
sentation of both tokens towards the logical and
general semantics space, respectively. Ultimately,
it facilitates an augmentation of logical semantics
by disentangling the logical semantics from gen-
eral semantics. Since we have adopted RoBERTa,
a transformer-based PLM, as the encoder, due to
the characteristics of self-attention in Transformer
architecture, if one token’s embedding is changed
to fit a specific downstream task, it inevitably exerts
an influence on the embeddings of other tokens.
Therefore, the proposed method practically con-
ducts implicit confrontation at the representation
level, which enables the model to autonomously
learn and allocate the two types of semantics, ob-
viating the need to construct additional data for
explicit adversarial learning.

4. Experiments

4.1. Dataset

The PDTB 2.0 corpus is collected from more than
2,000 Wall Street Journal English articles (Prasad
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et al., 2008), and divided into 24 different sections.
There are both implicit and explicit discourse re-
lation data in PDTB 2.0, which is classified into a
hierarchical structure consisting of three levels. As
shown in Example 1 and Example 2, Contingency
belongs to the top-level sense, Cause belongs to
the second-level sense, and Reason belongs to the
third-level sense. We evaluate our method on the
4 top-level discourse classes and the 11 second-
level discourse classes, consistent with prior stud-
ies (Long and Webber, 2022; Zhou et al., 2022a).
Figure 3 provides an overview of the data distribu-
tion in PDTB 2.0. As depicted, the dataset com-
prises only about 14,000 instances of discourse
data, making discourse relation recognition a data-
sparse task. Furthermore, the dataset exhibits
noticeable data imbalance, with the number of dis-
course pairs varying significantly across different
relation categories. Following the predecessors
(Ji and Eisenstein, 2015), we split sections 2-20,
0-1, and 21-22 as training, validation, and test sets
respectively.

Another widely used dataset for IDRR is the
CoNLL 2016 shared task (CoNLL16) (Xue et al.,
2016). CoNLL16 merges several labels to annotate
new relation senses and provides more abundant
annotation. It consists of two test data denoted as
CoNLL-Test (from PDTB section 23) and CoNLL-
Blind (Wikinews texts).

4.2,

In the experiments, we utilize the RoBERTa-base
model as the encoder. The logical semantics en-
hancer consists of a three-layer MLP with dimen-
sions of 768, 768 and 4 for each layer, incorporat-
ing the Tanh activation function. In the auxiliary
MLM task in logical semantics enhancer, we ran-
domly mask 15% of the tokens empirically. As
for the general semantics enhancer, we utilize a
RoBERTa-base model as the generator, with pa-
rameters frozen. Here, the original input is ran-
domly masked with a higher probability of 20%
, which aims at accelerating the general words
masking process and enhancing general seman-
tics learning. Meanwhile, the discriminator com-
prises another RoBERTa-base model and an ad-
ditional MLP, with the parameters learnable. We
train the general semantics enhancer after logical
semantics enhancer during one epoch. In other
words, two semantics enhancers are trained alter-

Implementation Details

nately.
During the training process, we adopt
AdamW (Loshchilov and Hutter, 2017) as

the optimizer with an initial learning rate set to
3 x 1075, 3, setto 0.9, and 3, set to 0.999. The
batch size is set to 16 for the concern of GPU
memory occupation. We train our model for 20
epochs and select the checkpoints that yield the

best performance on the validation dataset as the
final model. All the experiments are performed on
one 48GB NVIDIA A6000 GPU.

4.3. Baselines

To validate the effectiveness of the proposed
method, we conduct comparative experiment with
the most advanced baselines. Here we mainly in-
troduce the baselines that have emerged within the
past two years.

+ CG-T5 (Jiang et al., 2021) a generative ap-
proach, wherein a T5 model is trained to simul-
taneously recognize the logical relation and
generate a sentence that contains the mean-
ing of the relations.

« CVAE-IDRR (Dou et al., 2021) a CVAE-based
method, which focuses on addressing the
data-sparse problem in IDRR.

+ LDSGM (Wu et al., 2022) a label dependence-
aware sequence generation model, which ex-
ploits the dependence between hierarchically
structured labels by a encoder-decoder struc-
ture.

* PCP (Zhou et al., 2022b) a prompt-based
method, which utilizes the correlation between
connectives and discourse relation using ex-
plicit connective prediction.

+ ChatGPT (Chan et al., 2023a) a ChatGPT-
based method leveraging ChatGPT with in-
contex learning (ICL) prompt template.

Additionally, we fine-tune a RoBERTa-base model,
without semantics confrontation and two special
tokens, as our baseline model.

4.4. Experimental Results

Multi-way Classification Table 4 shows the per-
formance of various models on the 4-way and
11-way classification on PDTB 2.0 and CoNLL16.
The proposed method outperforms all the other
models on top-level relation classification and sur-
passes our baseline model by a margin of 3.81%
F1 score and 2.99% accuracy, demonstrating a re-
markable improvement of the proposed method.
It is worth noting that many second-level cate-
gories, as illustrated in Figure 3, are particularly
data-sparse, which significantly hurts the accuracy
of 11-way classification, including the proposed
model. Compared to other works utilizing PLMs,
such as BMGF-RoBERTa (Liu et al., 2020) and
PCP (Zhou et al., 2022b), our method consistently
shows noteworthy improvement in F1 score, indi-
cating its efficacy in enhancing the PLMs’s ability
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Method PDTB-4 PDTB-11 | CoNLL-Test | CoNLL-Blind
F1 ACC ACC F1 ACC F1 ACC
NNMA (Liu and Li, 2016) 46.29 57.17 - - - - -
Gshare (Lan et al., 2017) 47.80 57.39 - - 39.40 - 40.12
Bi-LSTM-DU (Dai and Huang, 2018) 48.82 57.44 - - - - -
ELMo-C&E (Dai and Huang, 2019) 52.89 59.66 - - - - -
RWP-CNN (Varia et al., 2019) 50.20 59.13 - - 39.39 - 39.36
KANN (Guo et al., 2020) 47.90 57.25 - - - - -
TransS (He et al., 2020) 51.24 59.94 - - - - -
BERT-HierMTN-CRF (Wu et al., 2020) 55.72 65.26 52.34 - - - -
BERT-FT (Kishimoto et al., 2020) 58.48 65.26 54.32 - - - -
BMGF-RoBERTa (Liu et al., 2020) 63.39 69.06 58.13 40.68 57.26 | 28.98 55.19
CG-T5 (Jiang et al., 2021) 57.18 65.54 53.13 - - - -
CVAE-IDRR (Dou et al., 2021) 65.06 70.17 - - - - -
LDSGM (Wu et al., 2022) 63.73 71.18 60.33 - - - -
PCP (Zhou et al., 2022b) 64.95 70.84 60.54 33.27 5548 | 26.00 50.99
ChatGPT (Chan et al., 2023a) 36.11 44.18 24.54 - - - -
Our Baseline Model 63.19 69.12 59.34 39.32 5221 | 27.72 49.18
Ours (SCIDER) 67.00 72.11 59.62 46.69 58.06 | 36.15 56.47

Table 4: The macro-averaged F1 score (%) and accuracy (ACC) (%) of our model and previous works on
PDTB 2.0 and CoNLL16. ltalics numbers indicate the reproduced results from (Chan et al., 2023b). Bold
numbers correspond to the best results, whereas underlined numbers correspond to the second best.

to reason the logical relation. Recently, large lan-
guage models (LLMs), represented by ChatGPT,
have demonstrated extraordinary ability across a
spectrum of tasks, and Chan et al. (2023a) re-
ported the performance of ChatGPT on IDRR task.
Notably, ChatGPT’s performance lags far behind
other methods, displaying an inferiority of approxi-
mately 30% F1 and 28% accuracy compared to our
approach, which indicates ChatGPT'’s limited ability
of logical relation understanding without carefully
designed prompt. Considering the outstanding per-
formance of ChatGPT on many other tasks, there
remains an evident and pressing need for further
research on IDRR within the NLP community. Addi-
tionally, some recent studies, such as PLSE (Wang
et al., 2023), GOLF (Jiang et al., 2022), and Disco-
Prompt (Chan et al., 2023b), achieve good results
by utilizing extra data, e.g., large-scale unanno-
tated utterances with explicit connectives or anno-
tated relation hierarchy structure. However, such
methods exhibit an excessive reliance on additional
data while our model can achieve remarkable per-
formance based on discourse itself, which shows
fertile avenues for future research explorations.

Binary Classification Table 5 presents the F1
score achieved by our model for each relation cat-
egory of the 4 top-level classes. Notably, due to
the limited data available for the "COMPARISON",
"CONTINGENCY", and "TEMPORAL" categories,
several models exhibit subpar performance. How-
ever, the proposed method consistently shows su-

=——F1-Logical F1-General

Figure 4: The trend of the F1 score during the
training process. The results are obtained by con-
ducting classification based on the embedding of
[logical] and [general] , respectively.

perior performance in the three categories com-
pared to previous models, which verifies the ef-
fectiveness of our approach in mitigating the im-
pact of data imbalance problem on the PDTB 2.0
dataset. The primary reason could be the fully
data utilization facilitated by the general semantics
enhancer, which is equivalent to harnessing the
data twice beyond the logical semantics enhancer,
thereby alleviating the imbalance in data distribu-
tion across different relation categories. However,
as explained in Sec. 4.4, when the data is particu-
larly sparse, it remains challenging and demanding
to further improve the performance of IDRR.

Visualization of Semantics Confrontation To
investigate the influence of semantics confronta-
tion, we conduct IDRR based on the representation
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Model COMPARISON CONTINGENCY EXPANSION TEMPORAL
NNMA (Liu and Li, 2016) 36.70 54.48 70.43 38.84
Gshare (Lan et al., 2017) 40.73 58.96 72.47 38.50
Bi-LSTM-DU (Dai and Huang, 2018) 46.79 57.09 70.41 45.61
ELMo-C&E (Dai and Huang, 2019) 45.34 51.80 68.50 45.93
RWP-CNN (Varia et al., 2019) 4410 56.02 72.11 44 .41
TransS (He et al., 2020) 47.98 55.62 69.37 38.94
BMGF-RoBERTa (Liu et al., 2020) 59.44 60.98 77.66 50.26
KANN (Guo et al., 2020) 43.92 57.67 73.45 36.33
CG-T5 (Jiang et al., 2021) 55.40 57.04 74.76 41.54
CVAE-IDRR (Dou et al., 2021) 55.72 63.39 80.34 44.01
Ours (SCIDER) 63.92 66.67 78.12 61.02

Table 5: Binary classification results on PDTB for the 4 top-level classes of our baseline and previous

works in terms of macro-averaged F1 score (%).

Method F1 ACC
Classifying by [logical]

w/o Conf 65.34 70.84
w/ Conf 66.31 71.76
Predicting [rel;]

w/o Conf 65.22 70.93
w/ Conf 67.00 72.11
replace [general] by (s)

Classifying by [logical] 64.02 71.13
Predicting [rel;] 64.85 68.36
train jointly 66.41 71.70
train alternately 67.00 72.11

Table 6: Ablation study on PDTB 2.0 in terms of
multi-way classification, where Conf is the abbrevi-
ation of semantics confrontation.

of [general] and [logical], respectively. Specifically,
for the acquired representations of both [general]
and [logical] after each epoch, the model predicts
the relation tokens through the MLM head in logi-
cal semantics enhancer. As shown in Figure 4, in
the initial training epochs, the F1 score, obtained
through the embedding of [general], closely par-
alleled that of [logical]. But as training continued,
a notable divergence emerged: [logical] exhibited
remarkable improvement while [general] performs
poorly, which indicates a pronounced disentangle-
ment between logical and general semantics.

4.5. Ablation Study

4.5.1. Logical Semantics Enhancer and

Semantics Confrontation

In the logical semantic enhancer, we introduce re-
lation tokens [rel;],i = 1,2, 3, ... for each discourse
relation type, and conduct classification by predict-
ing arguments’ corresponding relation token [rel;]
via a MLM head structure on top of [logical]’'s em-
bedding (denoted as "predicting [rel;]"). However,
another alternative method is using a MLP layer

and getting the probabilities of each discourse rela-
tion instead (denoted as "classifying by [logical]"),
as formulated in Equation 7:

exp(wiTeL)

S exp(wTey)

p(relation = i) =

o (7)

where e;, indicates special token [logical]'s em-
bedding, and num_cls is the number of discourse
relation types.

In addition, we also conducted an investigation
into the impact of semantics confrontation on both
classification strategies. Specifically, for the two
strategies above, we trained our model with and
without the general semantics enhancer, respec-
tively. Table 6 shows the experimental results, in
which the "w/o Conf" means without semantics con-
frontation. According to the experimental results,
without semantics confrontation, directly classify-
ing within 4 relation classes exhibits comparable
performance with predicting [rel;] approach. Never-
theless, when conducting semantics confrontation,
though both approaches exhibit improvement, the
method of predicting rel; outperforms the other,
which demonstrates the importance and indispens-
ability of MLM task in logical semantics enhancer.

4.5.2. General Semantics Representation

In the general semantic enhancer, we employ an
additional special token [general] to represent the
general semantic of current discourse arguments.
But when adopting RoBERTa, researchers usu-
ally use the existing special token (s), which rep-
resents the start of a sentence, for classification
or other tasks. To explore the effect of addition-
ally introduced special token [general], we conduct
experiment to compare its performance with uti-
lizing the existing (s) token as the representation
of general semantics. As the results shown in
Table 6, the performance decreases across all set-
tings when replacing [general] with (s). The reason
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could be that the representation of (s) contains lots
of information unrelated to general semantics, con-
sequently introducing interference with replaced
token detection.

4.5.3. Train Semantics Enhancers Alternately
or Jointly?

During the main experiments, the two semantics
enhancers are trained alternately (as detailed in
Section 4.2). In this section, we also seek to in-
vestigate the effect of joint training. In the case of
joint training, the losses from both the logical and
general semantics enhancers are combined, and
we define the total loss, £;.in:, as a weighted sum
of Elogical and ['general:

£joint = Wlﬁlogical + wgﬁgeneraly (8)

where w; and w,, are set to 5.0 and 1.0, empirically.
As shown in Table 6, the joint learning shows in-
ferior performance compared to alternate training,
which indicates the merit of separately consider-
ing general and logical semantics enhancement
during training. It demonstrates that the do-one-
then-another paradigm of alternate training per-
forms well in preventing the model from conflating
logical and general semantics. The reason could
be that when training jointly, the losses from both
general and logical semantics enhancers simul-
taneously affect the encoder, inevitably causing
the model conflating logical and general semantics.
Correspondingly, the final learned representations
of both [general] and [logical] are likely to be an
average of the two semantics, which hurts the dis-
entanglement of logical and general semantics.

5. Conclusion

In this paper, we argue that the representation
of the arguments, learned by the PLMs, contains
many aspects of semantics, wherein the logical
semantics determines the discourse relation recog-
nition. So we propose a novel semantics con-
frontation method to improve the performance of
PLMs on IDRR. Our approach sufficiently disentan-
gles the logical semantics from general semantics
by introducing two special tokens ([general] and
[logical]) and implicitly guiding the representation
of both tokens towards the semantics space of
general and logical semantics, respectively. Exper-
imental results indicate that our approach outper-
forms the concurrent methods for both 4-way and
11-way classification on PDTB 2.0 dataset.

Limitations

In the proposed work, we only consider the argu-
ments’ representation learned by PLMs as logical

and general semantics, which may not cover all
aspects of semantics. A fine-grained division may
yield further improvement. Additionally, the se-
mantics confrontation in our method is achieved
implicitly, whereas explicit and carefully designed
constraints may distinguish the logical and general
semantics with a larger margin.

Ethics Statement

We note that this work mainly focuses on advanc-
ing technical aspects and conducting model eval-
uations, and the IDRR task is particularly data-
sparse. Thus, we did not conduct additional ag-
gressive data cleaning approach on the dataset,
except those already applied to obtain the dataset.
The text data utilized in our research might en-
compass elements of bias, toxicity, or unfairness.
These aspects, although noteworthy, fall beyond
the primary scope of our research, and we have not
delved into them in specific detail. Apart from this,
we have not identified any other potential risks.
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