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Abstract
Protolanguage reconstruction is central to historical linguistics. The comparative method, one of the most
influential theoretical and methodological frameworks in the history of the language sciences, allows linguists
to infer protoforms (reconstructed ancestral words) from their reflexes (related modern words) based on the
assumption of regular sound change. Not surprisingly, numerous computational linguists have attempted to
operationalize comparative reconstruction through various computational models, the most successful of which
have been supervised encoder-decoder models, which treat the problem of predicting protoforms given sets of
reflexes as a sequence-to-sequence problem. We argue that this framework ignores one of the most important
aspects of the comparative method: not only should protoforms be inferable from cognate sets (sets of related
reflexes) but the reflexes should also be inferable from the protoforms. Leveraging another line of research—reflex
prediction—we propose a system in which candidate protoforms from a reconstruction model are reranked by a
reflex prediction model1. We show that this more complete implementation of the comparative method allows us
to surpass state-of-the-art protoform reconstruction methods on three of four Chinese and Romance datasets.

Keywords:historical reconstruction, historical linguistics, phonology, reranking

1. Introduction
Historical linguistics provides a window into the
human past, the diversification of and interac-
tions between human populations, as well as the
mechanisms through which languages change
over time. Perhaps the most enduring theoreti-
cal and methodological contribution of historical
linguistics is the comparative method, by which
protolanguages—putative ancestors of families of
languages—can be reconstructed (Anttila, 1989;
Campbell, 2021). In the comparative method,
cognate sets—groups of words believed to have
descended from the same ancestral word—are
compared in order to infer the corresponding an-
cestral words (protoforms). These reconstruc-
tions are chosen to maximize the regularity of the
mapping from reconstructions to reflexes (daugh-
ter forms) and minimize the phonetic distance be-
tween reconstructions and their reflexes. The as-
sumption is that the historical changes that affect
the sounds in words are largely regular such that
almost all reflexes in a language can be derived
deterministically from the protoforms given a se-
ries of sound changes.
This method is difficult to employ in practice, in no
small part because datasets can be very large. To
deal with the cognitive burden of historical com-
parison, computational methods have been pro-
posed to assist linguists in this endeavor. How-
ever, with a few exceptions (Bouchard-Côté et al.,
2013; He et al., 2023; Arora et al., 2023), the most

1Our code is available at https://github.com/
cmu-llab/reranked-reconstruction.

successful comparative reconstruction models
have treated this task as a fairly generic sequence-
to-sequence transduction task, in essence trans-
lating sets of reflexes (cognate sets) into proto-
forms (Meloni et al., 2021; Chang et al., 2022;
Fourrier, 2022; Kim et al., 2023; Cui et al., 2022).
This ignores an important aspect of the compara-
tive method in that it does not constrain the proto-
forms so that they can be deterministically trans-
lated back into each of the reflexes.
In this paper, we propose a multi-model recon-
struction system that improves its reconstructions
via reflex prediction—the task of predicting the re-
flexes given a protoform. Our system consists of a
beam search-enabled sequence-to-sequence re-
construction model and a sequence-to-sequence
reflex prediction model that serves as a reranker.
The reflex prediction component can often pro-
vide valuable information that may not have been
captured by the reconstruction model’s probabil-
ity distribution, thereby addressing certain recon-
struction errors. We find that our linguistically-
motivated method can address some errors made
by existing techniques. Figure 1 shows an ex-
ample where reranking reconstruction candidates
according to reflex prediction accuracy compen-
sates for the erroneous probability ranking of the
reconstruction model, leading to a correct recon-
struction.
As reflex prediction prior art on our datasets of in-
terest is limited, we test various neural reflex pre-
diction models. We then combine pre-trained re-
construction models and reflex prediction models
into reconstruction systems. We perform ablation
studies and post hoc error analysis to examine

https://github.com/cmu-llab/reranked-reconstruction
https://github.com/cmu-llab/reranked-reconstruction
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Beam Search
rank p̂bsi mi

0 pjet入 -0.1114
1 pet入 -0.2711
2 pit入 -0.5030
3 pep入 -1.5533
4 pij去 -1.6329

Reflex Prediction (based on protoform candidates)
Cantonese Gan Hakka Jin Mandarin Hokkien Wu Xiang ri
piːt˧ pi̯ɛt˥ pi̯et˨ pi̯əʔ˨ pi̯ɛ ˥ pi̯ɛt˧ pi̯ɪʔ˥ pi̯e̞˨ 0.2500
piːt˧ pi̯ɛt˥ pi̯et˨ pi̯əʔ˨ pi̯ɛ˥ pi̯ɛt˧ pi̯ɪʔ˥ pi̯e̞˨ 0.2500
pɐt˥ pit˥ pit˨ pi̯əʔ˨ pi ˥ pit˧ pi̯ɪʔ˥ pi ˨ 0.8750
piːp˧ pi̯ɛt˥ pi̯ap˨ pi̯əʔ˨ pi̯ɛ˥ pi̯ap˧ pi̯ɪʔ˥ pi̯e̞˨ 0.2500
pei̯˧ pi˧ pi˥ pi˦˥ pi ˥ pi˧ pi˧ pi˦˥ 0.1250
piːt˥ pit˥ pit˨ pi̯əʔ˨ pi ˥ pit˧ pi̯ɪʔ˥ pi ˨ -

Reranking Result
rank p̂rki si
0 pit入 0.5995
1 pjet入 0.2036
2 pet入 0.0439
3 pep入 -1.2383
4 pij去 -1.4754

Figure 1: A scenario in which using beam search on Meloni et al. (2021)’s sequence-to-sequence GRU
reconstruction model incorrectly predicts pjet入 as the most likely reconstruction for the必 pit入 ‘must’
cognate set (in theWikiHan test set). The reflex predictionmodel could only infer 2 (bold) of the 8 reflexes
from the incorrect reconstruction pjet入, but correctly infers 7 of the 8 reflexes from the third candidate
pit入. Our reflex prediction-based reranked reconstruction system makes score adjustments that lead
to the correct reranked protoform prediction pit入. The last row in the reflex prediction table provides
reference reflexes. Bold: correct protoform or reflexe; i: ranking index; p̂bsi : beam search protoform
candidate; mi: model score, which is the normalized log probability of the candidate protoform; ri:
reranker score; p̂rki : reranker protoform candidate; si: adjusted score.

the effectiveness of such systems. Our reranked
reconstruction system outperforms state-of-the-
art neural reconstruction approaches on Meloni
et al. (2021)’s Romance datasets and Chang et al.
(2022)’s Sinitic dataset WikiHan. Our contribu-
tions include:

1. Proposing a multi-model, reranking-driven re-
construction system that achieves state-of-
the-art reconstruction results on both Ro-
mance and Sinitic datasets

2. Adapting and examining existing architec-
tures, as well as modified variants, for reflex
prediction on Romance and Sinitic languages

3. Performing phonologically-informed analysis
of the reflex prediction model and its inter-
actions with the reconstruction model in a
reranking system

4. Providing a fast implementation of the re-
construction system with vectorized beam
search and reranking

2. Related Work
Word form-related tasks in computational histor-
ical linguistics include reconstruction, reflex pre-
diction, and cognate prediction2, as summarized
in Figure 2.

2.1. Reconstruction
Computational reconstruction of proto-languages
was proposed as early as the 1960s (Durham and
Rogers, 1969). Bouchard-Côté et al. (2013) used
sound change probabilistic models along with
a Monte Carlo inference algorithm to automate

2These terms are sometimes confused. Because we
need a distinction here, we categorize them using Arora
et al. (2023)’s definitions. When only relatedness but
not ancestry is concerned, the protoform is sometimes
treated as part of the cognate set in the literature.

Figure 2: Three word-form-related tasks in histor-
ical linguistics, exemplified by the轆 luk入 ‘wheel’
cognate set from WikiHan.

protoform reconstruction, but their method relies
on a phylogenetic tree. List et al. (2022a) pro-
posed sequence comparison and phonetic align-
ment for reconstruction, but this did not perform
well on either the WikiHan or Romance datasets
(Cui et al., 2022; Kim et al., 2023). Ciobanu
and Dinu (2018) and Ciobanu et al. (2020) used
conditional random fields to automate recon-
struction by labeling each position in the daugh-
ter sequence with a protoform token. Meloni
et al. (2021) formulated protoform reconstruction
as a sequence-to-sequence task and used an
encoder-decoder GRU model to perform Latin re-
construction, setting a baseline for future neural-
based reconstruction methods. Fourrier (2022)
compared RNNs and Transformers for protoform
reconstruction, noting that encoder-decoder ar-
chitectures can encode phonetic features in the re-
flexes into an informative latent space from which
the decoder can derive the protoform. Extend-
ing Meloni et al. (2021)’s work, Kim et al. (2023)
proposed using a Transformer-based encoder-
decoder architecture with language embedding
for protoform reconstruction, achieving state-of-
the-art on Meloni et al. (2021)’s Romance dataset
and Hóu (2004)’s Sinitic dataset. Very recently,
Akavarapu and Bhattacharya (2023) used an MSA
Transformer (originally proposed as a protein lan-
guage model with multiple sequence alignments
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as inputs (Rao et al., 2021)) pretrained for cognate
prediction to perform protoform reconstruction on
automatically aligned cognate sets.

2.2. Reflex prediction
Reflex prediction involves modeling the phono-
logical or morphological changes needed to de-
rive reflexes from protoforms. It corresponds
to recreating the evolutionary process of lan-
guages in historical linguistic studies. Marr and
Mortensen (2020, 2023) developed a rule-based
Latin-to-French reflex prediction model that pre-
dicted reflexes at five different stages in the his-
tory of French. Bodt and List (2022) used a semi-
automatic method to predict reflexes in West-
ern Kho-Bwa via automatic alignment and iden-
tification of sound correspondences on manually
annotated cognate sets. Paralleling the use of
sequence-to-sequence techniques in reconstruc-
tion, Cathcart and Rama (2020) pioneered neural
reflex prediction with an LSTM encoder-decoder
model that predicts Indo-Aryan languages from
Old Indo-Aryan. Recently, Arora et al. (2023) in-
troduced a new South Asian languages dataset
and replicated Cathcart and Rama (2020)’s reflex
prediction experiments on the dataset with both
GRU and Transformer encoder-decoder models.
To the best of our knowledge, no work has exam-
ined neural reflex prediction with Romance and
Sinitic languages.

Figure 3: A reflex prediction model aims to de-
rive the correct reflexes based on a protoform se-
quence tagged by the target daughter languages.
A forward pass on the model involves only one
daughter language.

2.3. Cognate prediction
Nitschke (2021) used neural machine translation
techniques to predict missing reflexes in Ro-

mance cognate sets. The SIGTYP 2022 shared
task on the prediction of conjugate reflexes called
for efforts to develop cognate prediction sys-
tems and evaluated submissions on numerous
language families (List et al., 2022b). Interest-
ingly, a CNN model by Kirov et al. (2022) re-
sembling image-inpainting (Mockingbird-I1) per-
formed the best overall (List et al., 2022b). By
treating phonemes as pixels, reflexes as rows of
pixels, and cognate sets as stacked rows form-
ing an image, Mockingbird-I1 recovers the miss-
ing rows with convolution and deconvolution net-
works. Cui et al. (2022) found that Mockingbird-I1
can be used to augment a reconstruction dataset,
improving the model’s stability while training. Al-
though we do not perform cognate prediction in
this paper, we test our methods on Cui et al.
(2022)’s augmented WikiHan dataset (WikiHan-
aug), which will help answer the question of how
well reflex prediction, cognate prediction, and re-
construction can combine to form a more effec-
tive reconstruction workflow.

3. Methods
3.1. Datasets
RomanceDatasets: We useMeloni et al. (2021)’s
dataset consisting of both IPA (International Pho-
netic Alphabet) and orthographic forms. The IPA
form (Rom-phon) represents words’ pronuncia-
tion in phonemes, while the orthographic form
(Rom-orth) represents the words as they are
spelled out in writing. To compare with the state-
of-the-art reconstruction model on the Romance
datasets, wematch Kim et al. (2023)’s preprocess-
ing and splits.
Sinitic Datasets: We use both Hóu (2004)’s
dataset compiled by Kim et al. (2023) and Chang
et al. (2022)’s WikiHan dataset3. Both datasets
contain phonetic representations of Middle Chi-
nese and its descendants. We also test an aug-
mented version of WikiHan (WikiHan-aug) created
by Cui et al. (2022), which uses the cognate pre-
diction model Mockingbird-I1 to fill in missing

3Although the full dataset consists of 21,227 cog-
nate sets, cognate sets with less than 3 reflexes are
ignored to match previous work.

Dataset Cognate sets # varieties Ancestor language
WikiHan (Chang et al., 2022) 5,165 8 Middle Chinese
WikiHan-aug (Cui et al., 2022) 8,780 8 Middle Chinese
Hóu (Hóu, 2004) 804 39 Middle Chinese
Rom-phon (Meloni et al., 2021; Ciobanu and Dinu, 2018) 8,703 5 Latin
Rom-orth (Meloni et al., 2021; Ciobanu and Dinu, 2018) 8,631 5 Latin

Table 1: Overview of the datasets with their respective number of daughter languages (# varieties) and
the number of cognate sets used in the experiments.
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daughter entries in the train set. Protoform la-
bels for the Sinitic datasets are based on Baxter
(2014)’s reconstructions of Middle Chinese. We
match Chang et al. (2022)’s splits for WikiHan and
Kim et al. (2023)’s splits for Hóu (2004).

3.2. Reflex Prediction Models
As there is limited prior work on neural reflex pre-
diction with our datasets of interest, we adapt re-
flex prediction models previously used for other
datasets, along with reconstruction models pre-
viously used for the current datasets. Figure 3
shows the reflex prediction task as a sequence-to-
sequence transduction task from the protoform—
with target language tokens prepended to the
beginning—to the reflex in each specified lan-
guage.
One notable difference between reflex predic-
tion and translation is that, instead of decod-
ing to one target language, the reflex predic-
tion model needs to decode into multiple pos-
sible target languages. As a baseline, we at-
tempt various architectural modifications to Mel-
oni et al. (2021)’s unidirectional encoder-decoder
GRU model to accommodate multiple target
languages—including multi-layer bidirectional en-
coding, target language embedding during de-
code similar to Meloni et al. (2021)’s encoder, one-
hot vector target language prompting to the de-
coder’s classifier, target-language-specific con-
nections in the decoder’s classifier network, and
support for VAE-style latent space used by Cui
et al. (2022)4 to decode from the same source to
multiple daughters—all of which are tuned as hy-
perparameters.
Additionally, we adapt Kim et al. (2023)’s Trans-
former reconstruction model5 for reflex prediction
and test Arora et al. (2023)’s GRU and Transformer
reflex prediction models on our datasets of inter-
est6. We implement batched training and infer-
ence for all the adapted models but retain the orig-
inal architecture.

4Cui et al. (2022)’s report proposes a reconstruction
model that learns a representation of the cognate set
with a Variational Autoencoder (VAE) on the reflexes, re-
constructing both the reflexes and the protoforms from
the same latent space.

5The major difference between Kim et al. (2023)’s
model and a standard Transformer encoder-decoder
model is the addition of language embeddings for in-
put daughter sequences. In the adapted version for re-
flex prediction, input language embedding serves little
purpose (due to a singular input language) and is thus
disabled, making it technically very similar to Arora et al.
(2023)’s Transformer model in architecture.

6Since Cathcart and Rama (2020)’s model requires
additional data such as part of speech for semantic em-
bedding, their reflex prediction model is not fully repli-
cable on our datasets of interest.

3.3. Beam Search Reconstruction Model
Since beam search is needed in the reranked
reconstruction process and no prior work uses
beam search in neural reconstruction, we imple-
ment beam search on top of Meloni et al. (2021)’s
GRU model (GRU-BS). To isolate the effects of
reranking, the architecture of the GRU is kept the
same as Meloni et al. (2021), consisting of lan-
guage and token embeddings, a single-layer uni-
directional encoder-decoder GRU model, and a
multi-layer perceptron classifier7. We tune GRU-
BS separately to optimize for performance with
beam search.
Before being passed into the reconstruction
model, reflexes in a cognate set are concate-
nated into one long sequence, with separators
between the reflexes and language tokens to
identify each reflex. An example input is as
follows:
*Cantonese:mei̯˨*Mandarin:mei̯˥˩*Wu:me̞˨˧*

3.4. Reranked Reconstruction System
In a simple beam search system, the candidate
sequences are ranked by their length-normalized
log probability, and the candidate with the high-
est normalized log probability is returned. We
propose to enhance this ranking using a reflex
prediction model that estimates phonetic natural-
ness when inferring the reflexes from each candi-
date protoform, as detailed in Algorithm 1. Given
protoform candidates predicted by GRU-BS, we
compute the proportion of reflexes correctly de-
rived from each candidate as score adjustment.
The candidates are rescored by summing the nor-
malized log probability and the score adjustment,
scaled by a score adjustment weight λ. The can-
didate with the highest adjusted score is chosen
as the final prediction.

3.5. Evaluation Criteria
To enable cross-task comparisons, we employ
established reconstruction metrics for both re-
flex prediction and reranked reconstruction ex-
periments, including token edit distance (TED),
the number of token insertions, deletions, or sub-
stitutions between predictions and targets (Lev-
enshtein et al., 1966); token error rate (TER), a
length-normalized edit distance (Cui et al., 2022);
accuracy (ACC), the percentage of exactly cor-
rect predictions; feature error rate (FER), a mea-
sure of phonological edit distance by PanPhon
(Mortensen et al., 2016); and B-Cubed F Score
(BCFS), a measure of structural similarity between
predictions and targets (Amigó et al., 2009; List,

7We use Chang et al. (2022)’s PyTorch reimple-
mentation obtained from github.com/cmu-llab/
meloni-2021-reimplementation.

https://github.com/cmu-llab/meloni-2021-reimplementation
https://github.com/cmu-llab/meloni-2021-reimplementation
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Algorithm 1 Sequential representation of our reranked reconstruction algorithm
Require: d1,d2, ...,dn = reflexes in daughter languages D1,D2, ...,Dn from a cognate set with n reflexes
Require: fθf = a beam search-enabled reconstruction model with pre-trained parameters θf
Require: gθg = a reflex prediction model with pre-trained parameters θg
Require: k = beam size for predicting candidate reconstructions on fθf
Require: α = length normalization constant
Require: λ = score adjustment weight
D← “*”D1“:”d1“*”D2“:”d2“*” · · · “*”Dn“:”dn“*” ▷ concatenate reflex sequences into a long

sequence, with language labels and separators in between

C = [(p̂1,m1), (p̂2,m2), . . . , (p̂l,ml)]← fθf(D, k, α) ▷ beam search with beam size k to obtain a list of
l ≤ k candidate protoform predictions p̂i with their normalized

log probabilities mi =
log P(p̂i|D)

|p̂i|α assigned by fθf for 1 ≤ i ≤ l

C′ ← [ ] ▷ initialize reranked candidate list
for (p̂i,mi) in C do

a← 0 ▷ counter for the number of correctly derived daughters
for j← 1 to n do

p̂′
i ← Djp̂i ▷ prepend the j-th daughter language token to the candidate protoform

d̂ij ← gθg(p̂′
i ) ▷ predict the reflex in the j-th daughter language based on the i-th candidate

if d̂ij = dj then
a← a+ 1 ▷ increment counter if predicted reflex is correct

ri ← a/n ▷ use the accuracy of reflex predictions as the reranker score ri
si ← mi + λri ▷ calculate the adjusted score si for the i-th candidate
C′ ← C′ ++ [(p̂i, si)] ▷ append entry with adjusted score to reranked candidate list

C′ ← C′ sorted by descending si
return C′[0] ▷ return the candidate with the highest adjusted score

2019). Tokens are phonemes in all datasets with
the exception of the character-level Rom-orth
dataset. Consequently, FER cannot be reliably
calculated for Rom-orth.

3.6. Experiments
Hyperparameters: We tune hyperparameters
using WandB (Biewald, 2020) except for mod-
els already tested by Kim et al. (2023): Meloni
et al. (2021)’s GRU reconstruction model and Kim
et al. (2023)’s Transformer reconstruction model
on Rom-phon, Rom-orth, and Hóu. We use
Bayesian search with 100 total runs for the best
validation phoneme edit distance, validated every
3 epochs and with early stopping. We keep a con-
stant beam size of 5 when tuning GRU-BS to bal-
ance computation cost and effectiveness.
Reflex Prediction Experiments: First, we test
the reflex prediction capability of the four afore-
mentioned reflex prediction models. For each
model on each dataset, we perform 20 runs with
random seeds (same hyperparameters). We se-
lect the best-performing reflex prediction model
from each architecture (GRU or Transformer) as
reranker models in reranked reconstruction exper-
iments.
Baseline Reconstruction Data: We use both
Meloni et al. (2021)’s GRU and Kim et al. (2023)
Transformer models as baselines. For datasets

present in Kim et al. (2023)’s work, we perform
additional runs to obtain 20 runs in total (on top of
Kim et al. (2023)’s 10 checkpoints).
Reranked Reconstruction Experiments: Each
reranking experiment involves a pre-trained GRU-
BS reconstruction model and a reflex prediction
model acting as a reranker, forming a reranked
reconstruction system. We select Arora et al.
(2023)’s Transformer and the baseline GRU reflex
prediction model as rerankers due to their higher
performance among their respective architecture.
For each reranked reconstruction system, we tune
two additional hyperparameters: the beam size
of GRU-BS k, and the score adjustment weight λ.
We perform a grid search on the hyperparameters
for best validation accuracy8. The search results
across 20 pairs of pre-trained reconstruction and
reflex prediction models are averaged (rounding k
to the nearest integer) to obtain the final hyperpa-
rameters for evaluations on the test set.
Statistical Analysis: Considering a small sample
size and unknown distribution, we use Wilcoxon
Rank-Sum test (Wilcoxon, 1992) with α = 0.01
and Bootstrap test (Efron and Tibshirani, 1994)
with 99% confidence interval for the mean differ-
ence between models or reconstruction systems.

8The search range for k and λ are [2, 10] with resolu-
tion 2 and [0.3, 4.2] with resolution 0.3, respectively.
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We consider results to be significant if both tests
indicate significance.
Ablation Studies: Our reranked reconstruction
system extends Meloni et al. (2021)’s model by
both beam search and reranking. To isolate the
effect of reranking, we remove the reranker to ob-
tain the performance of GRU-BS before rerank-
ing (with beam size no larger than when used in
reranking) and test for differences in performance
between GRU-BS with and without reranking.
Correlation Experiments: We select the worst-
performing reconstruction model (by accuracy at
k = 5) and rerank it with all the pre-trained re-
flex prediction models (20 GRU and 20 Trans-
former) using the same reranking hyperparame-
ters obtained from grid search, effectively varying
the reranker with controlled reconstruction and
reranking hyperparameters. We then examine the
correlation between reflex prediction performance
and reranked reconstruction performance.

4. Results and Discussion
4.1. Reflex prediction Results
Table 2 shows the average performance of the
four reflex prediction models. We found statisti-
cally significant evidence that Arora et al. (2023)’s
Transformer performs the best on all metrics for
WikiHan and WikiHan-aug, Arora et al. (2023)’s
Transformer performs the best only on ACC for
Rom-orth, and Kim et al. (2023)’s Transformer per-
forms the best on TER, TED, and BCFS for Rom-
phon. We find no evidence that the top-2 perform-
ing models are statistically different for the remain-
ing metrics or datasets. Among GRU models, the

baseline performs better than Arora et al. (2023)’s
GRU model across all datasets.
On all datasets except Rom-phon, we obtain over-
all better performance at reflex prediction than
reconstruction—consistent with the hypothesis
that learning regular sound changes is easier in
the forward direction. It is possible that reflex
prediction performs worse than reconstruction on
Rom-orth due to its non-phonetic nature, obscur-
ing the environments for sound changes.
In reranking experiments, we select the best-
performing model for each architecture: Arora
et al. (2023)’s Transformer and the baseline GRU9.

4.2. Reranked Reconstruction Results
As shown in Table 3, our reranking system per-
forms significantly better than both Meloni et al.
(2021) and Kim et al. (2023) on all datasets except
Hóu, for which it performs better on some metrics.
We notice a high variance in both reflex prediction
and reconstruction results for Hóu, possibly due
to its small test set. Finally, we find no statistical
difference between using a GRU or a Transformer
as a reranker, despite evidence that Transformers
outperform GRUs on reflex prediction.
Cui et al. (2022) previously found no evidence
that data augmentation helps improve reconstruc-
tion. However, our result on WikiHan-aug sug-
gests that cognate set augmentation contributes
to both reflex prediction and reranked reconstruc-

9We also tested reranking using Kim et al. (2023)’s
Transformer model, but found no statistical difference
in performance.

Dataset Model ACC% ↑ TED ↓ TER ↓ FER ↓ BCFS ↑
WikiHan GRU (baseline) 66.43% 0.5244 0.1547 0.0400 0.7394

GRU (Arora et al., 2023) 64.45% 0.5558 0.1640 0.0428 0.7260
Transformer (Kim et al., 2023) 66.39% 0.5302 0.1564 0.0406 0.7370
Transformer (Arora et al., 2023) 67.64% 0.5128 0.1513 0.0390 0.7445

WikiHan-aug GRU (baseline) 68.11% 0.5007 0.1477 0.0380 0.7495
GRU (Arora et al., 2023) 66.94% 0.5159 0.1522 0.0391 0.7430
Transformer (Kim et al., 2023) 68.96% 0.4889 0.1442 0.0371 0.7551
Transformer (Arora et al., 2023) 69.37% 0.4826 0.1424 0.0363 0.7572

Hóu GRU (baseline) 51.72% 0.7777 0.2037 0.0488 0.6783
GRU (Arora et al., 2023) 49.26% 0.8266 0.2166 0.0528 0.6622
Transformer (Kim et al., 2023) 55.46% 0.7576 0.1985 0.0494 0.6882
Transformer (Arora et al., 2023) 55.60% 0.7520 0.1970 0.0485 0.6892

Rom-phon GRU (baseline) 63.85% 0.7439 0.1014 0.0426 0.8361
GRU (Arora et al., 2023) 48.28% 1.3257 0.1808 0.0930 0.7567
Transformer (Kim et al., 2023) 64.19% 0.7349 0.1002 0.0427 0.8380
Transformer (Arora et al., 2023) 63.96% 0.7442 0.1015 0.0428 0.8361

Rom-orth GRU (baseline) 64.58% 0.7301 0.0967 - 0.8465
GRU (Arora et al., 2023) 57.92% 0.8741 0.1158 - 0.8218
Transformer (Kim et al., 2023) 64.80% 0.7258 0.0961 - 0.8478
Transformer (Arora et al., 2023) 65.20% 0.7247 0.0960 - 0.8476

Table 2: Average performance of the reflex prediction models across 20 runs, with bold indicating the
best-performing model for each metric.
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Dataset Reconstruction System ACC% ↑ TED ↓ TER ↓ FER ↓ BCFS ↑
WikiHan GRU (Meloni et al., 2021) 55.58% 0.7360 0.1724 0.0686 0.7426

Trans (Kim et al., 2023) 54.62% 0.7453 0.1746 0.0696 0.7393
GRU-BS (k = 10) 54.88% 0.7507 0.1758 0.0701 0.7364
GRU-BS (k ≤ 10) + GRU Reranker 57.14%*† 0.7045*† 0.1650*† 0.0661*† 0.7515*†
GRU-BS (k ≤ 10) + Trans. Reranker 57.26%*† 0.7029*† 0.1646*† 0.0658*† 0.7520*†

WikiHan-aug GRU (Meloni et al., 2021) 54.73% 0.7574 0.1774 0.0689 0.7346
Trans (Kim et al., 2023) 55.82% 0.7317 0.1714 0.0661 0.7416
GRU-BS (k = 10) 56.64%* 0.7214 0.1690 0.0658 0.7454
GRU-BS (k ≤ 10) + GRU Reranker 58.58%*† 0.6822*† 0.1598*† 0.0628*† 0.7579*†
GRU-BS (k ≤ 10) + Trans. Reranker 58.58%*† 0.6840*† 0.1602*† 0.0626*† 0.7575*†

Hóu GRU (Meloni et al., 2021) 34.63% 1.0916 0.2479 0.0914 0.6697
Trans (Kim et al., 2023) 39.01% 0.9904 0.2233 0.0875 0.6955
GRU-BS (k = 10) 37.36% 1.0382 0.2328 0.0917 0.6974
GRU-BS (k ≤ 10) + GRU Reranker 40.50%† 0.9727† 0.2181† 0.0867† 0.7130*†
GRU-BS (k ≤ 10) + Trans. Reranker 42.08%*† 0.9503*† 0.2131*† 0.0850† 0.7170*†

Rom-phon GRU (Meloni et al., 2021) 51.92% 0.9775 0.1244 0.0390 0.8275
Trans (Kim et al., 2023) 53.04% 0.9050 0.1148 0.0377 0.8417
GRU-BS (k = 10) 52.63% 0.9125 0.1018* 0.0353* 0.8402
GRU-BS (k ≤ 10) + GRU Reranker 53.95%*† 0.8775*† 0.0979*† 0.0336*† 0.8460*†
GRU-BS (k ≤ 10) + Trans. Reranker 53.85%*† 0.8765*† 0.0978*† 0.0333*† 0.8461*†

Rom-orth GRU (Meloni et al., 2021) 69.41% 0.6004 0.0781 - 0.8906
Trans (Kim et al., 2023) 71.05% 0.5636 0.0734 - 0.8981
GRU-BS (k = 10) 71.09% 0.5531 0.0617* - 0.8990
GRU-BS (k ≤ 10) + GRU Reranker 72.60%*† 0.5237*† 0.0584*† - 0.9045*†
GRU-BS (k ≤ 10) + Trans. Reranker 72.50%*† 0.5246*† 0.0585*† - 0.9044*†

Table 3: Evaluation of reconstruction systems, including baselines, GRU with beam search (GRU-BS),
and GRU-BS with reranking, averaged across 20 runs. Bold indicates the best-performing system
for each metric, asterisks indicate statistically better performance than both baseline models (Meloni
et al. (2021)’s GRU and Kim et al. (2023)’s Transformer), and daggers indicate that a reranking system
performs statistically better than its beam search counterpart.

Dataset Reranker ACC TED TER FER BCFS
WikiHan GRU Reranker 0.2771 0.3647 0.3647 0.1845 0.3639

Trans. Reranker 0.3860 0.0987 0.0987 0.3132 0.0276
WikiHan-aug GRU Reranker 0.3830 0.4179 0.4179 0.4829 0.3573

Trans. Reranker 0.1849 -0.0435 -0.0435 -0.0655 -0.0310
Hóu GRU Reranker 0.3735 0.1236 0.1236 0.4278 0.0173

Trans. Reranker 0.5432 0.2742 0.2742 0.2782 0.3184
Rom-phon GRU Reranker -0.2207 -0.0115 -0.0115 -0.0373 0.0336

Trans. Reranker -0.0706 -0.0181 -0.0181 -0.0866 0.0421
Rom-orth GRU Reranker 0.2531 0.4044 0.4044 - 0.4459

Trans. Reranker 0.1639 0.1123 0.1123 - 0.1035

Table 4: Correlation coefficients between rerankers’ reflex prediction performance and reranked recon-
struction performance. The cells are color-coded by sign and strength, with red for positive correlation
coefficients and blue for negative correlation coefficients.

tion performance, bringing WikiHan reconstruc-
tion accuracy to 3% above previous work.

4.3. Correlation Test Results
Correlation analysis reveals a mostly positive cor-
relation between rerankers’ reflex prediction per-
formance and the corresponding reranking sys-
tem’s reconstruction performance, except on the
Rom-phon dataset (see Table 4). Although sta-
tistical significance is unclear due to small sam-
ple sizes, evidence suggests that the performance

of the reranker could play an important role in a
reranked reconstruction system.

4.4. Ablation Studies
While GRU-BS alone (without a reranker) outper-
forms baseline models on some occasions, GRU-
BS with a reranker performs statistically better
than GRU-BS alone for all datasets and metrics,
as indicated in Table 3. Even though beam search
is commonly regarded as a powerful method in
sequence-to-sequence tasks, its ability in a pro-



8690

tolanguage reconstruction setting is still limited
compared to reranking, wheremodeling reflex pre-
diction in addition to reconstruction proves more
informative.

4.5. Reranking Error Analysis
To gain insights into the reranker’s behav-
ior, we conduct error analyses on the top-
performing reranking system (GRU-BS + Trans-
former Reranker) by randomly selecting one of
the 20 runs. We denote the ranks from beam
search and reranking by rbs and rrk respectively
(better score has lower rank), and categorized the
reranker’s behavior into four distinct categories:

• Improved (rrk < rbs): reranker assigns a more
favorable rank to the target protoform.

• Unchanged (rrk = rbs): reranker does not al-
ter the rank of the target protoform.

• Worsened (rrk > rbs): reranker assigns a less
desirable rank to the target protoform.

• Not-in: the target protoform is not predicted
as a candidate by beam search and is thus
not seen by the reranker. This category is not
included in analyses that require the target
protoform to be processed by the reranker.

Table 5 shows the distribution of the reranker’s
behavior among the four categories. On every
dataset, the reranker improves the ranking of the
target protoform more often than worsens it.
We observe that, compared to the target proto-
form, the incorrectly predicted protoform often

exhibits greater phonetic similarity, measured by
both token edit distance and feature edit distance,
to the reflexes10 (see Table 6). It is likely that the
reflex prediction models find it easier to derive cor-
rect reflexes from predicted protoforms that are
more similar to the reflexes, potentially making it
challenging for the reranker to improve the rank-
ing of the target protoforms less similar to the re-
flexes.
Furthermore, certain sound combinations in Wiki-
Han’s Middle Chinese forms, such as ju, je, and
xwo, are absent in the daughter languages in-
cluded in the dataset (see Table 7 for some exam-
ples). This highlights a notable challenge of com-
putational reconstruction—recovering phonemes
lost during language evolution—which likely re-
quire solutions other than reranking.
Finally, we observe that the reranker model has
the highest overall error rate when predicting
Hokkien reflexes compared to other daughter lan-
guages on WikiHan (see Table 8), despite Hokkien
having the third most training examples. A possi-
ble explanation is Karlgren (1974)’s hypothetical
subgrouping of Sinitic in which Hokkien is a de-
scendent of a sister of Middle Chinese rather than
Middle Chinese itself.

10Because the phonetic values of Middle Chinese
tones are unknown (WikiHan represents them tones
with the four abstract tone characters from Tang Dy-
nasty rhyme books), we exclude tones when calculating
DT and DF in Table 6 and in the case studies in Table 7.

Dataset Improved Worsened Unchanged Not-in Total
WikiHan 84 (8.13%) 32 (3.10%) 755 (73.09%) 162 (15.68%) 1033
WikiHan-aug 88 (8.52%) 23 (2.23%) 791 (76.57%) 131 (12.68%) 1033
Hóu 26 (16.15%) 15 (9.32%) 88 (54.66%) 32 (19.88%) 161
Rom-phon 109 (6.21%) 61 (3.48%) 1198 (68.30%) 386 (22.01%) 1754
Rom-orth 75 (4.29%) 23 (1.32%) 1367 (78.16%) 284 (16.24%) 1749

Improved/Changed (%)
72.41%
79.28%
63.41%
64.12%
76.53%

Table 5: The distribution of reranker behavior categorization on the test set (left), based on a randomly
sampled run for each dataset, as well as the corresponding rate of ranking improvement among in-
stances with changed (i.e. improved or worsened) ranking (right).

Dataset Category DT(p̂,R) < DT(p,R)
(R more similar to p̂ than p by DT)

DF(p̂,R) < DF(p,R)
(R more similar to p̂ than p by DF)

WikiHan Worsened 37.50% 53.12%
Unchanged 35.56% 43.33%
Improved 28.30% 32.08%

Rom-phon Worsened 60.66% 62.30%
Unchanged 47.21% 51.48%
Improved 47.17% 49.06%

Table 6: Comparison between the phonetic similarity between the reflexes R and the predicted proto-
form p̂ versus the target protoform p for each category of the reranker’s behavior among reconstruction
errors. Similarity are measured by normalized token edit distance (DT) and normalized feature edit dis-
tance (DF). The table presents percentages of entries in each category where the predicted protoforms
exhibit greater phonetic similarity to their modern reflexes than the target protoforms according to each
similarity metric, with bold indicating the highest percentage.
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Dataset
Category Worsened Unchanged Improved

Proto ˆProto Proto ˆProto Proto ˆProto
WikiHan Middle Chinese mjukʷ mukʷ ʈʰ ja ŋ t͡ɕʰa ŋ t͡sʰje k t͡s e k

Cantonese m ʊk mʊk t͡sʰ ɔːŋ t͡sʰɔːŋ t͡s ɪ k t͡s ɪ k
Hakka m uk muk t͡s a k t͡s a k
Mandarin m u mu ʈ͡ʂʰ a ŋ ʈ͡ʂʰa ŋ t͡ɕʰ i t͡ɕʰi
Hokkien b ɔk bɔk t͡ɕʰ i̯ɔŋ t͡ɕʰi̯ɔŋ t͡ɕʰ i̯ək t͡ɕʰi̯ək

Rom-phon Latin astʰma as ma f ɛrɪtatɛm f ɛritam tɛksɛrɛ tɪsserɛ
Romanian ast mə astmə t sese t sese
French as m as m fjɛʁ te fjɛʁ te ti se ti se
Italian az ma az ma f erita f erita tɛssere tɛssere
Spanish as ma as ma tex eɾ tex eɾ
Portuguese aʒ mɐ aʒ mɐ tɨ seɹ tɨ seɹ

Color key: substitution insertion ( ) deletion

Table 7: Instances in each category where the predicted protoform is phonetically closer to its reflexes
than the target protoform by both DT and DF, selected from the WikiHan (top) and Rom-phon (bottom)
test sets. The Proto and ˆProto columns show edits from the target protoform and the predicted proto-
form to the reflexes, respectively. Words in each column are manually aligned to reflect edits, with ‘ ’
indicating an empty position in the multi-sequence alignment in the case of deletion or insertion. Un-
available reflexes are not shown on the table, and languages without available reflexes (Gan, Jin, Wu,
and Xiang) are omitted. Differences in edits between the predicted and target protoforms are shaded.
The selected entries are睦mjukʷ ‘friendly’,昶 ʈʰjaŋ ‘long daytime’,磧, ts͡ʰjek ‘gravel’ (WikiHan), asthma
‘asthma’, feritatem ‘ferocity’, and texere ‘to weave’ (Rom-phon).

Category Cantonese Gan Hakka Jin Mandarin Hokkien Wu Xiang
Not-in 75.31% 72.73% 70.83% 83.33% 72.22% 82.05% 57.69% 82.14%
Worsened 59.38% 75.00% 40.00% 71.43% 68.75% 68.75% 33.33% 60.00%
Unchanged 24.44% 21.21% 42.16% 15.79% 27.22% 46.86% 15.66% 41.67%
Improved 38.46% 25.00% 54.05% 13.33% 18.87% 50.00% 37.93% 41.18%
Overall 48.12% 40.00% 53.10% 42.22% 46.37% 62.29% 32.95% 55.81%

Table 8: Reranker’s reflex prediction error rates among reranked reconstruction error entries (when
predicting reflexes from the target protoform) for each daughter language in the WikiHan dataset given
each reranker behavior category, obtained from a randomly selected run.

5. Conclusion
Ironically, many efforts to automate protolan-
guage reconstruction with neural models have
thus far treated reconstruction as a sequence-
to-sequence task, disregarding the comparative
method’s constraint that reflexes should be infer-
able from the reconstructions. Our reranked re-
construction system provides an elegant way to
replicate the synergy between reconstruction and
reflex prediction in the comparative method, yield-
ing results that surpass existing methods—a vin-
dication of the idea that designing reconstruction
systemswith the comparativemethod inmind can
be more powerful than relying solely on sequence-
to-sequence techniques.
Though our approach yields better reconstruction
performance, it is left to future work to address
some of the challenges identified in the present
work, such as a reconstruction system’s tendency
to produce reconstructions relatively similar to the
reflexes. In the bigger picture, reranking is but

one way to bring together multiple tasks in histor-
ical linguistics, and arguably a complicated one
due to its multi-step training and tuning process.
Future research, therefore, could also explore ap-
proaches to integrate reconstruction and reflex
prediction into one seamless model.
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size of 5 for GRU-BS reconstruction models dur-
ing tuning. Tables 10, 11, 14, 13, 15, and 16 report
our hyperparameter search results11.
Adam optimizer’s β1 = 0.9, β2 = 0.999, and
ε = 1e−8 are obtained from Chang et al. (2022)’s
experiments, while β1 = 0.9, β2 = 0.98, and
ε = 1e−9 are used to consistently replicate Arora
et al. (2023)’s experiments. We do not observe
a noticeable effect β2 and ε have on the models’
performance.

B. Dataset Source and Splits
The WikiHan dataset can be obtained from Chang
et al. (2022), and Hóu (2004)’s dataset can be ob-
tained through Kim et al. (2023). WikiHan-aug is
obtained from Cui et al. (2022). The Romance
datasets by Meloni et al. (2021) is not licensed for
redistribution and thus not included in our reposi-
tory.
All the datasets are split by 70%, 10%, and 20%
into train, validation, and test sets. The splits for
WikiHan Chang et al. (2022) match the original
work, and the splits for Meloni et al. (2021) and
Hóu (2004) match Kim et al. (2023). WikiHan-aug
Cui et al. (2022) has the same validation and test
sets as Chang et al. (2022) but with augmented re-
flexes in the train set. Because Chang et al. (2022)
only included cognate sets with at least 3 daugh-
ters in the train set, the train set in WikiHan-aug
includes additional cognate sets that fulfill the 3-
daughter requirement after augmentation.
Daughter languages included in WikiHan are Can-
tonese, Gan, Hakka, Jin, Mandarin, Hokkien, Wu,
and Xiang. Daughter languages included in Rom-
phon and Rom-orth are French, Italian, Spanish,
Romanian, and Portuguese. Daughter languages
included in Hóu are Beijing, Harbin, Tianjin, Ji-
nan, Qingdao, Zhengzhou, Xian, Xining, Yinchuan,
Lanzhou, Urumqi, Wuhan, Chengdu, Guiyang,
Kunming, Nanjing, Hefei, Taiyuan, Pingyao, Ho-
hhot, Shanghai, Suzhou, Hangzhou, Wenzhou,
Shexian, Tunxi, Changsha, Xiangtan, Nanchang,
Meixian, Taoyuan, Guangzhou, Nanning, Hong
Kong, Xiamen, Fuzhou, Jianou, Shantou, and
Haikou.

C. Training
All models are trained on NVIDIA GeForce RTX
2080 Ti or RTX A6000 GPUs. Each run takes
about 1–3 hours of compute time. Our total GPU
compute time is 237 days.

11We use batch size to refer to the number of cog-
nate sets in a batch, meaning that the number of reflex
prediction training examples in each batch may vary if
cognate sets have missing daughters.

D. Reranking Hyperparameters
The optimal beam size k and score adjustment
weight λ can be dataset-dependent. We use grid
search with ranges and resolutions detailed in Ta-
ble 9 to optimize k and λ on the validation set. The
search results are shown in Table 17. We observe
a preference for higher λ on Sinitic datasets.

Hyperparameter Search range
(inclusive)

Resolution

Beam size k [2, 10] 2
Score adjustment
weight λ

[0.3, 4.2] 0.3

Table 9: Grid search range and resolution for
reranking hyperparameters.

E. Results with standard deviation
Table 18 shows reflex prediction performancewith
standard deviations, and Table 19 shows recon-
struction performance with standard deviations.

F. Additional Reflex Error Analysis
Table 20 shows the reflex prediction error rate for
each daughter among all test entries. Similar to
Table 8, we observe an overall highest error rate
on Hokkien.

G. Statistical Tests Results
We obtain p-values from the Wilcoxon Rank-Sum
test and confidence intervals (CI) from the Boot-
strap test. Tables 21, 22, 23, 24, and 25 show p-
values and 99% confidence intervals for reflex pre-
diction performance. Tables 26, 27, 28, 29, and
30 show p-values and 99% confidence intervals
for reconstruction performance.

H. Additional Reranking Case
Studies

We provide additional reranking examples similar
to Figure 1. Figures 4 and 5 show two additional
reranking successes on WikiHan, Figures 6 and
7 show two failures on WikiHan, Figures 8 and
9 show two successes on Rom-phon, and Fig-
ures 10 and 11 show two failures on Rom-phon.
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WikiHan WikiHan-aug Hóu Rom-phon Rom-orth
batch size k 128 256 32 256 256
beam search α 0.912598 0.600524 0.638660 0.825868 0.707860
dropout 0.405044 0.496428 0.497715 0.430556 0.489005
embedding size 509 148 265 154 283
feedforward size 218 471 232 310 311
hidden size 81 216 36 115 255
number of layers 1 1 1 1 1
learning rate 0.000629980 0.000550343 0.000691970 0.000762067 0.000568855
max epochs 576 204 194 285 304
warmup epochs 19 3 24 50 50
β1 0.9 0.9 0.9 0.9 0.9
β2 0.999 0.999 0.999 0.999 0.999
ε 1e−8 1e−8 1e−8 1e−8 1e−8

Table 10: Hyperparameters for GRU reconstruction model with beam search (GRU-BS), tuned with
fixed beam size k = 5. Beam search α is the length normalization constant. The number of GRU layers
is set to 1 to match Meloni et al. (2021).

WikiHan WikiHan-aug Hóu Rom-phon Rom-orth
batch size 128 256 128 64 256
learning rate 0.000610810 0.00128592 0.00208360 0.000153890 0.000931776
max epochs 280 202 485 487 371
dropout 0.422406 0.411611 0.402412 0.467993 0.481404
embedding size 328 286 46 324 41
feedforward size 421 183 500 275 96
target-gated classifier True False False False True
decode with language embedding False False True False False
hidden size 46 33 110 177 194
number of encoder layers 2 4 1 2 1
one-hot target encoding True True True True False
bidirectional encoder True True True True True
use VAE latent False True False False False
warmup epochs 0 42 28 41 6
β1 0.9 0.9 0.9 0.9 0.9
β2 0.999 0.999 0.999 0.999 0.999
ε 1e−8 1e−8 1e−8 1e−8 1e−8

Table 11: Hyperparameters for our GRU reflex predictionmodel. Target-gated classifier refers towhether
each specific target language enables a specific subset of the token classifier, decode with language
embedding refers to whether to embed the target sequences with language embedding similar to Meloni
et al. (2021), one-hot target encoding refers to whether the classifier is prompted with an additional one-
hot vector concatenated to its input to indicate the target daughter language, and use VAE latent refers
to whether the decoder takes a sampled and reparametrized latent similar to Cui et al. (2022)’s VAE
reconstruction model.

WikiHan WikiHan-aug Hóu Rom-phon Rom-orth
batch size 512 32 32 128 64
learning rate 0.00133100 0.000275041 0.00223748 0.00103299 0.00117782
max epochs 413 186 177 514 383
dropout 0.109371 0.352477 0.239702 0.159863 0.250876
embedding size 128 128 64 64 64
feedforward size 429 1002 962 275 677
nhead 1 16 16 2 8
number of decoder layers 2 8 7 3 2
number of encoder layers 5 2 4 6 3
warmup epochs 20 17 40 5 37
weight_decay 6.29736e-07 5.34183e-07 9.50859e-07 4.76354e-07 9.89944e-07
β1 0.9 0.9 0.9 0.9 0.9
β2 0.999 0.999 0.999 0.999 0.999
ε 1e−8 1e−8 1e−8 1e−8 1e−8

Table 12: Hyperparameter for Kim et al. (2023)’s Transformer model adapted for reflex prediction.
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WikiHan WikiHan-aug Hóu Rom-phon Rom-orth
batch size 256 512 32 256 32
bidirectional encoder True True True True True
dropout 0.380055 0.434051 0.170343 0.278587 0.337712
embedding size 319 284 169 508 473
hidden size 353 397 367 448 422
learning rate 0.000286969 0.000321132 0.00143399 0.000153972 0.00146615
max epochs 506 434 542 436 179
number of layers 2 2 4 4 2
warmup epochs 37 43 14 16 10
β1 0.9 0.9 0.9 0.9 0.9
β2 0.98 0.98 0.98 0.98 0.98
ε 1e−9 1e−9 1e−9 1e−9 1e−9

Table 13: Hyperparameters for Arora et al. (2023)’s GRU reflex prediction model tuned on our datasets
of interest.

WikiHan WikiHan-aug Hóu Rom-phon Rom-orth
batch size 32 256 32 64 32
feedforward size 295 832 535 786 110
model size 64 64 256 128 64
dropout 0.199505 0.447951 0.443183 0.263578 0.251537
learning rate 0.000561076 0.00234191 0.00260176 0.00161177 0.00164335
max epochs 361 437 536 207 264
nhead 4 2 4 1 4
number of layers 4 5 3 5 7
warmup epochs 9 49 11 2 9
β1 0.9 0.9 0.9 0.9 0.9
β2 0.98 0.98 0.98 0.98 0.98
ε 1e−9 1e−9 1e−9 1e−9 1e−9

Table 14: Hyperparameters for Arora et al. (2023)’s Transformer reflex prediction model tuned on our
datasets of interest.

WikiHan WikiHan-aug
batch size 512 256
dropout 0.431211 0.409475
embedding size 248 196
feedforward size 375 421
decode with language embedding True True
hidden size 78 278
number of layers 1 1
bidirectional encoder False False
use VAE latent False False
learning rate 0.000935879 0.000964557
max epochs 472 298
warmup epochs 18 26
β1 0.9 0.9
β2 0.999 0.999
ε 1e−8 1e−8

Table 15: Hyperparameters forMeloni et al. (2021)’s GRU reconstructionmodel onWikiHan andWikiHan-
aug. For the hyperparameters used to train the same model on Hóu, Rom-phon, and Rom-orth, refer
to Kim et al. (2023).
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WikiHan WikiHan-aug
batch size 512 64
dropout 0.170582 0.293413
embedding size 256 64
feedforward size 133 857
nhead 1 2
number of decoder layers 5 3
number of encoder layers 4 6
learning rate 0.000556150 0.000595262
max epochs 194 209
warmup epochs 1 4
weight decay 8.48140e-07 8.26112e-07
β1 0.9 0.9
β2 0.999 0.999
ε 1e−8 1e−8

Table 16: Hyperparameters for Kim et al. (2023)’s Transformer reconstruction model on WikiHan and
WikiHan-aug. For the hyperparameters used to train the same model on Hóu, Rom-phon, and Rom-
orth, refer to Kim et al. (2023).

Dataset Reranking System k (beam size) λ (score adjustment weight)
WikiHan GRU-BS + GRU Reranker 6 1.395

GRU-BS + Trans Reranker 1 6 1.275
GRU-BS + Trans Reranker 2 7 1.260

WikiHan-aug GRU-BS + GRU Reranker 7 1.620
GRU-BS + Trans Reranker 1 8 1.755
GRU-BS + Trans Reranker 2 7 1.575

Hóu GRU-BS + GRU Reranker 7 1.755
GRU-BS + Trans Reranker 1 7 2.430
GRU-BS + Trans Reranker 2 7 2.415

Rom-phon GRU-BS + GRU Reranker 5 0.420
GRU-BS + Trans Reranker 1 6 0.555
GRU-BS + Trans Reranker 2 6 0.585

Rom-orth GRU-BS + GRU Reranker 6 0.870
GRU-BS + Trans Reranker 1 6 0.990
GRU-BS + Trans Reranker 2 5 0.915

Table 17: Reranking hyperparameter search results.



8698

Dataset Model ACC% ↑ TED ↓ TER ↓ FER ↓ BCFS ↑
WikiHan GRU (baseline) 66.43% ±

0.29%
0.5244 ±
0.0049

0.1547 ±
0.0014

0.0400 ±
0.0006

0.7394 ±
0.0022

Transformer (Kim et al., 2023) 66.39% ±
0.53%

0.5302 ±
0.0089

0.1564 ±
0.0026

0.0406 ±
0.0007

0.7370 ±
0.0040

GRU (Arora et al., 2023) 64.45% ±
0.34%

0.5558 ±
0.0060

0.1640 ±
0.0018

0.0428 ±
0.0007

0.7260 ±
0.0027

Transformer (Arora et al., 2023) 67.64% ±
0.35%

0.5128 ±
0.0072

0.1513 ±
0.0021

0.0390 ±
0.0006

0.7445 ±
0.0031

WikiHan-aug GRU (baseline) 68.11% ±
0.44%

0.5007 ±
0.0083

0.1477 ±
0.0024

0.0380 ±
0.0007

0.7495 ±
0.0036

Transformer (Kim et al., 2023) 68.96% ±
0.36%

0.4889 ±
0.0055

0.1442 ±
0.0016

0.0371 ±
0.0006

0.7551 ±
0.0022

GRU (Arora et al., 2023) 66.94% ±
0.68%

0.5159 ±
0.0101

0.1522 ±
0.0030

0.0391 ±
0.0011

0.7430 ±
0.0043

Transformer (Arora et al., 2023) 69.37% ±
0.18%

0.4826 ±
0.0028

0.1424 ±
0.0008

0.0363 ±
0.0004

0.7572 ±
0.0013

Hóu GRU (baseline) 51.72% ±
0.70%

0.7777 ±
0.0132

0.2037 ±
0.0035

0.0488 ±
0.0010

0.6783 ±
0.0046

Transformer (Kim et al., 2023) 55.46% ±
1.23%

0.7576 ±
0.0243

0.1985 ±
0.0064

0.0494 ±
0.0018

0.6882 ±
0.0078

GRU (Arora et al., 2023) 49.26% ±
1.57%

0.8266 ±
0.0370

0.2166 ±
0.0097

0.0528 ±
0.0030

0.6622 ±
0.0120

Transformer (Arora et al., 2023) 55.60% ±
1.30%

0.7520 ±
0.0243

0.1970 ±
0.0064

0.0485 ±
0.0018

0.6892 ±
0.0081

Rom-phon GRU (baseline) 63.85% ±
0.37%

0.7439 ±
0.0068

0.1014 ±
0.0009

0.0426 ±
0.0005

0.8361 ±
0.0014

Transformer (Kim et al., 2023) 64.19% ±
0.64%

0.7349 ±
0.0096

0.1002 ±
0.0013

0.0427 ±
0.0006

0.8380 ±
0.0019

GRU (Arora et al., 2023) 48.28% ±
14.82%

1.3257 ±
0.8784

0.1808 ±
0.1198

0.0930 ±
0.0748

0.7567 ±
0.1035

Transformer (Arora et al., 2023) 63.96% ±
0.65%

0.7442 ±
0.0087

0.1015 ±
0.0012

0.0428 ±
0.0005

0.8361 ±
0.0018

Rom-orth GRU (baseline) 64.58% ±
0.34%

0.7301 ±
0.0069

0.0967 ±
0.0009

- 0.8465 ±
0.0014

Transformer (Kim et al., 2023) 64.80% ±
0.50%

0.7258 ±
0.0061

0.0961 ±
0.0008

- 0.8478 ±
0.0011

GRU (Arora et al., 2023) 57.92% ±
2.31%

0.8741 ±
0.0346

0.1158 ±
0.0046

- 0.8218 ±
0.0054

Transformer (Arora et al., 2023) 65.20% ±
0.46%

0.7247 ±
0.0069

0.0960 ±
0.0009

- 0.8476 ±
0.0012

Table 18: Performance means and standard deviations of the reflex prediction models across 20 runs,
with the best-performing model for each metric in bold.
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Dataset Reconstruction System ACC% ↑ TED ↓ TER ↓ FER ↓ BCFS ↑
WikiHan GRU (Meloni et al., 2021) 55.58% ±

0.86%
0.7360 ±
0.0137

0.1724 ±
0.0032

0.0686 ±
0.0026

0.7426 ±
0.0038

Trans (Kim et al., 2023) 54.62% ±
1.22%

0.7453 ±
0.0165

0.1746 ±
0.0039

0.0696 ±
0.0029

0.7393 ±
0.0048

GRU-BS (k = 10) 54.88% ±
1.07%

0.7507 ±
0.0186

0.1758 ±
0.0043

0.0701 ±
0.0022

0.7364 ±
0.0064

GRU-BS (k ≤ 10) + GRU
Reranker

57.14% ±
0.80%*†

0.7045 ±
0.0146*†

0.1650 ±
0.0034*†

0.0661 ±
0.0018*†

0.7515 ±
0.0048*†

GRU-BS (k ≤ 10) + Trans
Reranker 2

57.26% ±
0.83%*†

0.7029 ±
0.0161*†

0.1646 ±
0.0038*†

0.0658 ±
0.0021*†

0.7520 ±
0.0052*†

WikiHan-aug GRU (Meloni et al., 2021) 54.73% ±
0.84%

0.7574 ±
0.0127

0.1774 ±
0.0030

0.0689 ±
0.0017

0.7346 ±
0.0048

Trans (Kim et al., 2023) 55.82% ±
0.97%

0.7317 ±
0.0165

0.1714 ±
0.0039

0.0661 ±
0.0020

0.7416 ±
0.0053

GRU-BS (k = 10) 56.64% ±
0.66%*

0.7214 ±
0.0113

0.1690 ±
0.0026

0.0658 ±
0.0014

0.7454 ±
0.0035

GRU-BS (k ≤ 10) + GRU
Reranker

58.58% ±
0.70%*†

0.6822 ±
0.0143*†

0.1598 ±
0.0033*†

0.0628 ±
0.0017*†

0.7579 ±
0.0040*†

GRU-BS (k ≤ 10) + Trans
Reranker 2

58.58% ±
0.75%*†

0.6840 ±
0.0129*†

0.1602 ±
0.0030*†

0.0626 ±
0.0017*†

0.7575 ±
0.0038*†

Hóu GRU (Meloni et al., 2021) 34.63% ±
2.37%

1.0916 ±
0.0629

0.2479 ±
0.0147

0.0914 ±
0.0049

0.6697 ±
0.0167

Trans (Kim et al., 2023) 39.01% ±
2.89%

0.9904 ±
0.0443

0.2233 ±
0.0108

0.0875 ±
0.0069

0.6955 ±
0.0103

GRU-BS (k = 10) 37.36% ±
3.25%

1.0382 ±
0.0662

0.2328 ±
0.0148

0.0917 ±
0.0065

0.6974 ±
0.0176

GRU-BS (k ≤ 10) + GRU
Reranker

40.50% ±
3.09%†

0.9727 ±
0.0486†

0.2181 ±
0.0109†

0.0867 ±
0.0058†

0.7130 ±
0.0132*†

GRU-BS (k ≤ 10) + Trans
Reranker 2

42.08% ±
2.96%*†

0.9503 ±
0.0525*†

0.2131 ±
0.0118*†

0.0850 ±
0.0063†

0.7170 ±
0.0137*†

Rom-phon GRU (Meloni et al., 2021) 51.92% ±
0.65%

0.9775 ±
0.0216

0.1244 ±
0.0028

0.0390 ±
0.0012

0.8275 ±
0.0033

Trans (Kim et al., 2023) 53.04% ±
0.80%

0.9050 ±
0.0166

0.1148 ±
0.0018

0.0377 ±
0.0008

0.8417 ±
0.0024

GRU-BS (k = 10) 52.63% ±
0.68%

0.9125 ±
0.0174

0.1018 ±
0.0019*

0.0353 ±
0.0009*

0.8402 ±
0.0032

GRU-BS (k ≤ 10) + GRU
Reranker

53.95% ±
0.77%*†

0.8775 ±
0.0165*†

0.0979 ±
0.0018*†

0.0336 ±
0.0007*†

0.8460 ±
0.0028*†

GRU-BS (k ≤ 10) + Trans
Reranker 2

53.85% ±
0.79%*†

0.8765 ±
0.0177*†

0.0978 ±
0.0020*†

0.0333 ±
0.0008*†

0.8461 ±
0.0030*†

Rom-orth GRU (Meloni et al., 2021) 69.41% ±
0.53%

0.6004 ±
0.0130

0.0781 ±
0.0018

- 0.8906 ±
0.0023

Trans (Kim et al., 2023) 71.05% ±
0.50%

0.5636 ±
0.0163

0.0734 ±
0.0022

- 0.8981 ±
0.0028

GRU-BS (k = 10) 71.09% ±
0.51%

0.5531 ±
0.0127

0.0617 ±
0.0014*

- 0.8990 ±
0.0023

GRU-BS (k ≤ 10) + GRU
Reranker

72.60% ±
0.41%*†

0.5237 ±
0.0109*†

0.0584 ±
0.0012*†

- 0.9045 ±
0.0019*†

GRU-BS (k ≤ 10) + Trans
Reranker 2

72.50% ±
0.45%*†

0.5246 ±
0.0111*†

0.0585 ±
0.0012*†

- 0.9044 ±
0.0020*†

Table 19: Performance means and standard deviations of reconstruction systems across 20 runs. Re-
construction systems include baselines, GRU with beam search (GRU-BS), and GRU-BS with reranking.
Bold indicates the best-performing system for each metric, asterisks indicate statistically better perfor-
mance than both baseline models (Meloni et al. (2021)’s GRU and Kim et al. (2023)’s Transformer), and
daggers indicate that a reranking system performs statistically better than its beam search counterpart.
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Cantonese Gan Hakka Jin Mandarin Hokkien Wu Xiang
Not-in 75.3% 72.7% 70.8% 83.3% 72.2% 82.1% 57.7% 82.1%
Worsened 59.4% 75.0% 40.0% 71.4% 68.8% 68.8% 33.3% 60.0%
Unchanged 16.6% 19.1% 32.2% 14.5% 15.1% 39.5% 14.1% 29.7%
Improved 34.9% 30.0% 51.0% 10.0% 21.4% 48.7% 31.6% 38.1%
Overall 28.6% 26.5% 38.8% 23.7% 26.2% 47.8% 20.4% 37.3%

Table 20: Transformer reranker error rates (when predicting reflexes from the gold protoform) for each
daughter language in the WikiHan dataset given each reranker behavior category, obtained from a ran-
domly selected run.
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Model 1 Model 2 ACC% ↑ TED ↓ TER ↓ FER ↓ BCFS ↑
GRU (baseline) Trans (Kim et al., 2023) p = 0.4196

(−0.0029, 0.0038)
p = 0.0093*
(−0.0112, 0.0001)

p = 0.0093*
(−0.0033, 0.0000)

p = 0.0021*
(−0.0011,−0.0001)*

p = 0.0242
(−0.0003, 0.0047)

GRU (Arora et al., 2023) p < 0.0001*
(0.0173, 0.0225)*

p < 0.0001*
(−0.0355,−0.0268)*

p < 0.0001*
(−0.0105,−0.0079)*

p < 0.0001*
(−0.0033,−0.0022)*

p < 0.0001*
(0.0113, 0.0152)*

Trans (Arora et al., 2023) p = 1.0000
(−0.0149,−0.0095)

p = 1.0000
(0.0060, 0.0166)

p = 1.0000
(0.0018, 0.0049)

p = 1.0000
(0.0005, 0.0015)

p = 1.0000
(−0.0073,−0.0027)

Trans (Kim et al., 2023) GRU (baseline) p = 0.5804
(−0.0040, 0.0031)

p = 0.9907
(−0.0003, 0.0115)

p = 0.9907
(−0.0001, 0.0034)

p = 0.9979
(0.0001, 0.0011)

p = 0.9758
(−0.0049, 0.0004)

GRU (Arora et al., 2023) p < 0.0001*
(0.0158, 0.0230)*

p < 0.0001*
(−0.0318,−0.0195)*

p < 0.0001*
(−0.0094,−0.0058)*

p < 0.0001*
(−0.0027,−0.0016)*

p < 0.0001*
(0.0083, 0.0138)*

Trans (Arora et al., 2023) p = 1.0000
(−0.0162,−0.0089)

p = 1.0000
(0.0105, 0.0236)

p = 1.0000
(0.0031, 0.0070)

p = 1.0000
(0.0011, 0.0021)

p = 1.0000
(−0.0102,−0.0044)

GRU (Arora et al., 2023) GRU (baseline) p = 1.0000
(−0.0223,−0.0173)

p = 1.0000
(0.0265, 0.0355)

p = 1.0000
(0.0078, 0.0105)

p = 1.0000
(0.0022, 0.0033)

p = 1.0000
(−0.0152,−0.0112)

Trans (Kim et al., 2023) p = 1.0000
(−0.0229,−0.0158)

p = 1.0000
(0.0196, 0.0317)

p = 1.0000
(0.0058, 0.0093)

p = 1.0000
(0.0016, 0.0027)

p = 1.0000
(−0.0138,−0.0084)

Trans (Arora et al., 2023) p = 1.0000
(−0.0348,−0.0291)

p = 1.0000
(0.0372, 0.0482)

p = 1.0000
(0.0110, 0.0142)

p = 1.0000
(0.0032, 0.0043)

p = 1.0000
(−0.0208,−0.0160)

Trans (Arora et al., 2023) GRU (baseline) p < 0.0001*
(0.0096, 0.0148)*

p < 0.0001*
(−0.0165,−0.0063)*

p < 0.0001*
(−0.0049,−0.0019)*

p < 0.0001*
(−0.0015,−0.0005)*

p < 0.0001*
(0.0029, 0.0073)*

Trans (Kim et al., 2023) p < 0.0001*
(0.0090, 0.0161)*

p < 0.0001*
(−0.0236,−0.0105)*

p < 0.0001*
(−0.0070,−0.0031)*

p < 0.0001*
(−0.0021,−0.0011)*

p < 0.0001*
(0.0044, 0.0102)*

GRU (Arora et al., 2023) p < 0.0001*
(0.0293, 0.0349)*

p < 0.0001*
(−0.0482,−0.0371)*

p < 0.0001*
(−0.0142,−0.0110)*

p < 0.0001*
(−0.0043,−0.0032)*

p < 0.0001*
(0.0159, 0.0208)*

Table 21: Reflex prediction significance test results for WikiHan. Asterisks indicates that Model 1 per-
forms better than Model 2 with the corresponding test (p-value or CI).

Model 1 Model 2 ACC% ↑ TED ↓ TER ↓ FER ↓ BCFS ↑
GRU (baseline) Trans (Kim et al., 2023) p = 1.0000

(−0.0120,−0.0053)
p = 1.0000
(0.0066, 0.0182)

p = 1.0000
(0.0020, 0.0054)

p = 1.0000
(0.0005, 0.0015)

p = 1.0000
(−0.0083,−0.0034)

GRU (Arora et al., 2023) p < 0.0001*
(0.0074, 0.0166)*

p < 0.0001*
(−0.0224,−0.0075)*

p < 0.0001*
(−0.0066,−0.0022)*

p < 0.0010*
(−0.0018,−0.0003)*

p < 0.0001*
(0.0033, 0.0096)*

Trans (Arora et al., 2023) p = 1.0000
(−0.0158,−0.0101)

p = 1.0000
(0.0139, 0.0245)

p = 1.0000
(0.0041, 0.0072)

p = 1.0000
(0.0013, 0.0022)

p = 1.0000
(−0.0104,−0.0058)

Trans (Kim et al., 2023) GRU (baseline) p < 0.0001*
(0.0053, 0.0121)*

p < 0.0001*
(−0.0183,−0.0066)*

p < 0.0001*
(−0.0054,−0.0019)*

p < 0.0001*
(−0.0015,−0.0005)*

p < 0.0001*
(0.0034, 0.0083)*

GRU (Arora et al., 2023) p < 0.0001*
(0.0162, 0.0252)*

p < 0.0001*
(−0.0342,−0.0207)*

p < 0.0001*
(−0.0101,−0.0061)*

p < 0.0001*
(−0.0028,−0.0013)*

p < 0.0001*
(0.0094, 0.0151)*

Trans (Arora et al., 2023) p = 0.9999
(−0.0067,−0.0020)

p = 1.0000
(0.0030, 0.0102)

p = 1.0000
(0.0009, 0.0030)

p = 1.0000
(0.0004, 0.0012)

p = 0.9994
(−0.0037,−0.0007)

GRU (Arora et al., 2023) GRU (baseline) p = 1.0000
(−0.0169,−0.0073)

p = 1.0000
(0.0075, 0.0230)

p = 1.0000
(0.0022, 0.0068)

p = 0.9997
(0.0003, 0.0019)

p = 1.0000
(−0.0098,−0.0032)

Trans (Kim et al., 2023) p = 1.0000
(−0.0250,−0.0162)

p = 1.0000
(0.0208, 0.0339)

p = 1.0000
(0.0061, 0.0100)

p = 1.0000
(0.0013, 0.0028)

p = 1.0000
(−0.0150,−0.0095)

Trans (Arora et al., 2023) p = 1.0000
(−0.0290,−0.0209)

p = 1.0000
(0.0279, 0.0400)

p = 1.0000
(0.0082, 0.0118)

p = 1.0000
(0.0022, 0.0035)

p = 1.0000
(−0.0170,−0.0118)

Trans (Arora et al., 2023) GRU (baseline) p < 0.0001*
(0.0102, 0.0158)*

p < 0.0001*
(−0.0244,−0.0140)*

p < 0.0001*
(−0.0072,−0.0041)*

p < 0.0001*
(−0.0022,−0.0013)*

p < 0.0001*
(0.0058, 0.0104)*

Trans (Kim et al., 2023) p < 0.0001*
(0.0019, 0.0065)*

p < 0.0001*
(−0.0102,−0.0029)*

p < 0.0001*
(−0.0030,−0.0009)*

p < 0.0001*
(−0.0012,−0.0004)*

p < 0.0010*
(0.0007, 0.0037)*

GRU (Arora et al., 2023) p < 0.0001*
(0.0208, 0.0290)*

p < 0.0001*
(−0.0398,−0.0277)*

p < 0.0001*
(−0.0117,−0.0082)*

p < 0.0001*
(−0.0035,−0.0022)*

p < 0.0001*
(0.0118, 0.0169)*

Table 22: Reflex prediction significance test results for WikiHan-aug. Asterisks indicates that Model 1
performs better than Model 2 with the corresponding test (p-value or CI).

Model 1 Model 2 ACC% ↑ TED ↓ TER ↓ FER ↓ BCFS ↑
GRU (baseline) Trans (Kim et al., 2023) p = 1.0000

(−0.0453,−0.0292)
p = 0.9989
(0.0037, 0.0360)

p = 0.9989
(0.0010, 0.0094)

p = 0.1337
(−0.0017, 0.0006)

p = 1.0000
(−0.0149,−0.0044)

GRU (Arora et al., 2023) p < 0.0001*
(0.0149, 0.0342)*

p < 0.0001*
(−0.0709,−0.0276)*

p < 0.0001*
(−0.0186,−0.0072)*

p < 0.0001*
(−0.0057,−0.0022)*

p < 0.0001*
(0.0091, 0.0235)*

Trans (Arora et al., 2023) p = 1.0000
(−0.0474,−0.0305)

p = 0.9998
(0.0097, 0.0414)

p = 0.9998
(0.0025, 0.0109)

p = 0.9075
(−0.0009, 0.0014)

p = 1.0000
(−0.0161,−0.0053)

Trans (Kim et al., 2023) GRU (baseline) p < 0.0001*
(0.0294, 0.0455)*

p = 0.0011*
(−0.0355,−0.0042)*

p = 0.0011*
(−0.0093,−0.0011)*

p = 0.8663
(−0.0006, 0.0017)

p < 0.0001*
(0.0046, 0.0150)*

GRU (Arora et al., 2023) p < 0.0001*
(0.0507, 0.0732)*

p < 0.0001*
(−0.0949,−0.0441)*

p < 0.0001*
(−0.0249,−0.0116)*

p < 0.0010*
(−0.0054,−0.0015)*

p < 0.0001*
(0.0180, 0.0343)*

Trans (Arora et al., 2023) p = 0.6221
(−0.0118, 0.0086)

p = 0.8066
(−0.0137, 0.0254)

p = 0.8066
(−0.0036, 0.0067)

p = 0.9384
(−0.0006, 0.0023)

p = 0.6964
(−0.0076, 0.0053)

GRU (Arora et al., 2023) GRU (baseline) p = 1.0000
(−0.0340,−0.0147)

p = 1.0000
(0.0272, 0.0711)

p = 1.0000
(0.0071, 0.0186)

p = 1.0000
(0.0022, 0.0058)

p = 1.0000
(−0.0234,−0.0090)

Trans (Kim et al., 2023) p = 1.0000
(−0.0733,−0.0505)

p = 1.0000
(0.0444, 0.0942)

p = 1.0000
(0.0116, 0.0247)

p = 0.9998
(0.0014, 0.0054)

p = 1.0000
(−0.0341,−0.0181)

Trans (Arora et al., 2023) p = 1.0000
(−0.0750,−0.0518)

p = 1.0000
(0.0495, 0.0999)

p = 1.0000
(0.0130, 0.0262)

p = 1.0000
(0.0023, 0.0063)

p = 1.0000
(−0.0353,−0.0187)

Trans (Arora et al., 2023) GRU (baseline) p < 0.0001*
(0.0301, 0.0472)*

p < 0.0010*
(−0.0416,−0.0098)*

p < 0.0010*
(−0.0109,−0.0026)*

p = 0.0925
(−0.0014, 0.0010)

p < 0.0001*
(0.0054, 0.0162)*

Trans (Kim et al., 2023) p = 0.3779
(−0.0087, 0.0120)

p = 0.1934
(−0.0256, 0.0147)

p = 0.1934
(−0.0067, 0.0039)

p = 0.0616
(−0.0023, 0.0007)

p = 0.3036
(−0.0056, 0.0076)

GRU (Arora et al., 2023) p < 0.0001*
(0.0518, 0.0749)*

p < 0.0001*
(−0.0995,−0.0494)*

p < 0.0001*
(−0.0261,−0.0129)*

p < 0.0001*
(−0.0062,−0.0024)*

p < 0.0001*
(0.0188, 0.0351)*

Table 23: Reflex prediction significance test results for Hóu. Asterisks indicates that Model 1 performs
better than Model 2 with the corresponding test (p-value or CI).
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Model 1 Model 2 ACC% ↑ TED ↓ TER ↓ FER ↓ BCFS ↑
GRU (baseline) Trans (Kim et al., 2023) p = 0.9848

(−0.0076, 0.0010)
p = 0.9983
(0.0022, 0.0158)

p = 0.9983
(0.0003, 0.0022)

p = 0.4143
(−0.0005, 0.0004)

p = 0.9983
(−0.0032,−0.0005)

GRU (Arora et al., 2023) p < 0.0001*
(0.0956, 0.2815)*

p < 0.0001*
(−1.3739,−0.2318)*

p < 0.0001*
(−0.1874,−0.0316)*

p < 0.0001*
(−0.1226,−0.0206)*

p < 0.0001*
(0.0392, 0.1708)*

Trans (Arora et al., 2023) p = 0.8066
(−0.0051, 0.0034)

p = 0.3132
(−0.0064, 0.0064)

p = 0.3132
(−0.0009, 0.0009)

p = 0.0616
(−0.0005, 0.0002)

p = 0.3727
(−0.0014, 0.0012)

Trans (Kim et al., 2023) GRU (baseline) p = 0.0152
(−0.0010, 0.0075)

p = 0.0017*
(−0.0160,−0.0022)*

p = 0.0017*
(−0.0022,−0.0003)*

p = 0.5857
(−0.0004, 0.0005)

p = 0.0017*
(0.0005, 0.0033)*

GRU (Arora et al., 2023) p < 0.0001*
(0.0989, 0.2843)*

p < 0.0001*
(−1.3808,−0.2415)*

p < 0.0001*
(−0.1883,−0.0329)*

p < 0.0001*
(−0.1225,−0.0206)*

p < 0.0001*
(0.0411, 0.1726)*

Trans (Arora et al., 2023) p = 0.2085
(−0.0030, 0.0076)

p = 0.0027*
(−0.0167,−0.0017)*

p = 0.0027*
(−0.0023,−0.0002)*

p = 0.1789
(−0.0006, 0.0003)

p = 0.0043*
(0.0003, 0.0033)*

GRU (Arora et al., 2023) GRU (baseline) p = 1.0000
(−0.2892,−0.0959)

p = 1.0000
(0.2447, 1.3977)

p = 1.0000
(0.0334, 0.1906)

p = 1.0000
(0.0214, 0.1162)

p = 1.0000
(−0.1743,−0.0405)

Trans (Kim et al., 2023) p = 1.0000
(−0.2924,−0.0998)

p = 1.0000
(0.2544, 1.4058)

p = 1.0000
(0.0347, 0.1917)

p = 1.0000
(0.0213, 0.1160)

p = 1.0000
(−0.1760,−0.0423)

Trans (Arora et al., 2023) p = 1.0000
(−0.2885,−0.0971)

p = 1.0000
(0.2443, 1.3977)

p = 1.0000
(0.0333, 0.1906)

p = 1.0000
(0.0211, 0.1160)

p = 1.0000
(−0.1744,−0.0404)

Trans (Arora et al., 2023) GRU (baseline) p = 0.1934
(−0.0035, 0.0053)

p = 0.6868
(−0.0064, 0.0065)

p = 0.6868
(−0.0009, 0.0009)

p = 0.9384
(−0.0002, 0.0005)

p = 0.6273
(−0.0013, 0.0014)

Trans (Kim et al., 2023) p = 0.7915
(−0.0077, 0.0031)

p = 0.9973
(0.0015, 0.0167)

p = 0.9973
(0.0002, 0.0023)

p = 0.8211
(−0.0003, 0.0006)

p = 0.9957
(−0.0033,−0.0002)

GRU (Arora et al., 2023) p < 0.0001*
(0.0963, 0.2810)*

p < 0.0001*
(−1.3713,−0.2328)*

p < 0.0001*
(−0.1870,−0.0317)*

p < 0.0001*
(−0.1225,−0.0204)*

p < 0.0001*
(0.0392, 0.1710)*

Table 24: Reflex prediction significance test results for Rom-phon. Asterisks indicates that Model 1
performs better than Model 2 with the corresponding test (p-value or CI).

Model 1 Model 2 ACC% ↑ TED ↓ TER ↓ FER ↓ BCFS ↑
GRU (baseline) Trans (Kim et al., 2023) p = 0.9837

(−0.0052, 0.0020)
p = 0.9661
(−0.0012, 0.0094)

p = 0.9661
(−0.0002, 0.0012)

- p = 0.9971
(−0.0022,−0.0003)

GRU (Arora et al., 2023) p < 0.0001*
(0.0559, 0.0829)*

p < 0.0001*
(−0.1649,−0.1257)*

p < 0.0001*
(−0.0218,−0.0166)*

- p < 0.0001*
(0.0218, 0.0281)*

Trans (Arora et al., 2023) p = 1.0000
(−0.0095,−0.0028)

p = 0.9848
(−0.0003, 0.0110)

p = 0.9848
(−0.0000, 0.0015)

- p = 0.9893
(−0.0022,−0.0000)

Trans (Kim et al., 2023) GRU (baseline) p = 0.0163
(−0.0021, 0.0052)

p = 0.0339
(−0.0092, 0.0012)

p = 0.0339
(−0.0012, 0.0002)

- p = 0.0029*
(0.0003, 0.0022)*

GRU (Arora et al., 2023) p < 0.0001*
(0.0577, 0.0850)*

p < 0.0001*
(−0.1690,−0.1299)*

p < 0.0001*
(−0.0224,−0.0172)*

- p < 0.0001*
(0.0230, 0.0292)*

Trans (Arora et al., 2023) p = 0.9951
(−0.0083,−0.0005)

p = 0.6118
(−0.0039, 0.0068)

p = 0.6118
(−0.0005, 0.0009)

- p = 0.3132
(−0.0008, 0.0011)

GRU (Arora et al., 2023) GRU (baseline) p = 1.0000
(−0.0826,−0.0555)

p = 1.0000
(0.1246, 0.1651)

p = 1.0000
(0.0165, 0.0219)

- p = 1.0000
(−0.0280,−0.0216)

Trans (Kim et al., 2023) p = 1.0000
(−0.0850,−0.0576)

p = 1.0000
(0.1294, 0.1689)

p = 1.0000
(0.0171, 0.0224)

- p = 1.0000
(−0.0292,−0.0230)

Trans (Arora et al., 2023) p = 1.0000
(−0.0890,−0.0617)

p = 1.0000
(0.1301, 0.1702)

p = 1.0000
(0.0172, 0.0225)

- p = 1.0000
(−0.0291,−0.0228)

Trans (Arora et al., 2023) GRU (baseline) p < 0.0001*
(0.0027, 0.0094)*

p = 0.0152
(−0.0109, 0.0002)

p = 0.0152
(−0.0014, 0.0000)

- p = 0.0107
(0.0001, 0.0022)*

Trans (Kim et al., 2023) p = 0.0049*
(0.0003, 0.0085)*

p = 0.3882
(−0.0067, 0.0041)

p = 0.3882
(−0.0009, 0.0005)

- p = 0.6868
(−0.0011, 0.0008)

GRU (Arora et al., 2023) p < 0.0001*
(0.0619, 0.0894)*

p < 0.0001*
(−0.1702,−0.1308)*

p < 0.0001*
(−0.0225,−0.0173)*

- p < 0.0001*
(0.0229, 0.0291)*

Table 25: Reflex prediction significance test results for Rom-orth. Asterisks indicates that Model 1
performs better than Model 2 with the corresponding test (p-value or CI).



8703

Reconstruction System 1 Reconstruction System 2 ACC% ↑ TED ↓ TER ↓ FER ↓ BCFS ↑
GRU (Meloni et al., 2021) Trans (Kim et al., 2023) p = 0.0075*

(0.0011, 0.0185)*
p = 0.0283
(−0.0217, 0.0029)

p = 0.0283
(−0.0051, 0.0007)

p = 0.1719
(−0.0034, 0.0011)

p = 0.0080*
(−0.0004, 0.0067)

GRU-BS p = 0.0405
(−0.0009, 0.0152)

p = 0.0040*
(−0.0288,−0.0018)*

p = 0.0040*
(−0.0068,−0.0004)*

p = 0.0442
(−0.0035, 0.0004)

p < 0.0010*
(0.0023, 0.0111)*

GRU-BS + GRU Reranker p = 1.0000
(−0.0223,−0.0090)

p = 1.0000
(0.0196, 0.0428)

p = 1.0000
(0.0046, 0.0100)

p = 0.9992
(0.0006, 0.0042)

p = 1.0000
(−0.0122,−0.0050)

GRU-BS + Trans. Reranker p = 1.0000
(−0.0240,−0.0101)

p = 1.0000
(0.0216, 0.0464)

p = 1.0000
(0.0051, 0.0109)

p = 0.9991
(0.0009, 0.0047)

p = 1.0000
(−0.0134,−0.0057)

Trans (Kim et al., 2023) GRU (Meloni et al., 2021) p = 0.9925
(−0.0182,−0.0014)

p = 0.9717
(−0.0023, 0.0222)

p = 0.9717
(−0.0005, 0.0052)

p = 0.8281
(−0.0011, 0.0034)

p = 0.9920
(−0.0067, 0.0002)

GRU-BS p = 0.8066
(−0.0124, 0.0063)

p = 0.1427
(−0.0197, 0.0092)

p = 0.1427
(−0.0046, 0.0022)

p = 0.2581
(−0.0025, 0.0016)

p = 0.0684
(−0.0015, 0.0077)

GRU-BS + GRU Reranker p = 1.0000
(−0.0339,−0.0173)

p = 1.0000
(0.0280, 0.0533)

p = 1.0000
(0.0066, 0.0125)

p = 0.9999
(0.0017, 0.0056)

p = 1.0000
(−0.0158,−0.0080)

GRU-BS + Trans. Reranker p = 1.0000
(−0.0354,−0.0183)

p = 1.0000
(0.0302, 0.0570)

p = 1.0000
(0.0071, 0.0134)

p = 1.0000
(0.0019, 0.0060)

p = 1.0000
(−0.0169,−0.0087)

GRU-BS GRU (Meloni et al., 2021) p = 0.9595
(−0.0150, 0.0007)

p = 0.9960
(0.0016, 0.0286)

p = 0.9960
(0.0004, 0.0067)

p = 0.9558
(−0.0004, 0.0035)

p = 0.9996
(−0.0109,−0.0022)

Trans (Kim et al., 2023) p = 0.1934
(−0.0068, 0.0122)

p = 0.8573
(−0.0085, 0.0197)

p = 0.8573
(−0.0020, 0.0046)

p = 0.7419
(−0.0016, 0.0025)

p = 0.9316
(−0.0080, 0.0014)

GRU-BS + GRU Reranker p = 1.0000
(−0.0304,−0.0150)

p = 1.0000
(0.0327, 0.0607)

p = 1.0000
(0.0077, 0.0142)

p = 1.0000
(0.0024, 0.0056)

p = 1.0000
(−0.0200,−0.0106)

GRU-BS + Trans. Reranker p = 1.0000
(−0.0317,−0.0162)

p = 1.0000
(0.0344, 0.0626)

p = 1.0000
(0.0081, 0.0147)

p = 1.0000
(0.0026, 0.0061)

p = 1.0000
(−0.0208,−0.0111)

GRU-BS + GRU Reranker GRU (Meloni et al., 2021) p < 0.0001*
(0.0090, 0.0224)*

p < 0.0001*
(−0.0426,−0.0193)*

p < 0.0001*
(−0.0100,−0.0045)*

p < 0.0010*
(−0.0042,−0.0006)*

p < 0.0001*
(0.0051, 0.0121)*

Trans (Kim et al., 2023) p < 0.0001*
(0.0172, 0.0339)*

p < 0.0001*
(−0.0537,−0.0281)*

p < 0.0001*
(−0.0126,−0.0066)*

p < 0.0001*
(−0.0056,−0.0018)*

p < 0.0001*
(0.0078, 0.0158)*

GRU-BS p < 0.0001*
(0.0151, 0.0303)*

p < 0.0001*
(−0.0598,−0.0321)*

p < 0.0001*
(−0.0140,−0.0075)*

p < 0.0001*
(−0.0056,−0.0024)*

p < 0.0001*
(0.0105, 0.0197)*

GRU-BS + Trans. Reranker p = 0.6723
(−0.0080, 0.0053)

p = 0.5962
(−0.0102, 0.0158)

p = 0.5962
(−0.0024, 0.0037)

p = 0.6425
(−0.0012, 0.0020)

p = 0.5216
(−0.0051, 0.0032)

GRU-BS + Trans. Reranker GRU (Meloni et al., 2021) p < 0.0001*
(0.0099, 0.0237)*

p < 0.0001*
(−0.0456,−0.0213)*

p < 0.0001*
(−0.0107,−0.0050)*

p < 0.0010*
(−0.0047,−0.0009)*

p < 0.0001*
(0.0058, 0.0132)*

Trans (Kim et al., 2023) p < 0.0001*
(0.0183, 0.0356)*

p < 0.0001*
(−0.0564,−0.0297)*

p < 0.0001*
(−0.0132,−0.0070)*

p < 0.0001*
(−0.0060,−0.0020)*

p < 0.0001*
(0.0085, 0.0169)*

GRU-BS p < 0.0001*
(0.0160, 0.0314)*

p < 0.0001*
(−0.0625,−0.0338)*

p < 0.0001*
(−0.0146,−0.0079)*

p < 0.0001*
(−0.0061,−0.0026)*

p < 0.0001*
(0.0110, 0.0207)*

GRU-BS + GRU Reranker p = 0.3277
(−0.0054, 0.0080)

p = 0.4038
(−0.0150, 0.0100)

p = 0.4038
(−0.0035, 0.0023)

p = 0.3575
(−0.0019, 0.0012)

p = 0.4784
(−0.0034, 0.0050)

Table 26: Reconstruction significance test results for WikiHan. Asterisks indicates that Reconstruction
System 1 performs better than Reconstruction System 2 with the corresponding test (p-value or CI).

Reconstruction System 1 Reconstruction System 2 ACC% ↑ TED ↓ TER ↓ FER ↓ BCFS ↑
GRU (Meloni et al., 2021) Trans (Kim et al., 2023) p = 0.9998

(−0.0171,−0.0025)
p = 1.0000
(0.0120, 0.0362)

p = 1.0000
(0.0028, 0.0085)

p = 1.0000
(0.0012, 0.0042)

p = 0.9998
(−0.0108,−0.0025)

GRU-BS p = 1.0000
(−0.0245,−0.0121)

p = 1.0000
(0.0253, 0.0449)

p = 1.0000
(0.0059, 0.0105)

p = 1.0000
(0.0018, 0.0044)

p = 1.0000
(−0.0141,−0.0074)

GRU-BS + GRU Reranker p = 1.0000
(−0.0442,−0.0315)

p = 1.0000
(0.0633, 0.0854)

p = 1.0000
(0.0148, 0.0200)

p = 1.0000
(0.0047, 0.0074)

p = 1.0000
(−0.0268,−0.0196)

GRU-BS + Trans. Reranker p = 1.0000
(−0.0444,−0.0313)

p = 1.0000
(0.0623, 0.0829)

p = 1.0000
(0.0146, 0.0194)

p = 1.0000
(0.0050, 0.0077)

p = 1.0000
(−0.0263,−0.0194)

Trans (Kim et al., 2023) GRU (Meloni et al., 2021) p < 0.0010*
(0.0022, 0.0171)*

p < 0.0001*
(−0.0361,−0.0125)*

p < 0.0001*
(−0.0084,−0.0029)*

p < 0.0001*
(−0.0042,−0.0012)*

p < 0.0010*
(0.0025, 0.0107)*

GRU-BS p = 0.9971
(−0.0160,−0.0023)

p = 0.9595
(0.0001, 0.0226)

p = 0.9595
(0.0000, 0.0053)

p = 0.6723
(−0.0010, 0.0019)

p = 0.9801
(−0.0079,−0.0005)

GRU-BS + GRU Reranker p = 1.0000
(−0.0358,−0.0216)

p = 1.0000
(0.0375, 0.0629)

p = 1.0000
(0.0088, 0.0147)

p = 1.0000
(0.0018, 0.0049)

p = 1.0000
(−0.0205,−0.0127)

GRU-BS + Trans. Reranker p = 1.0000
(−0.0360,−0.0212)

p = 1.0000
(0.0367, 0.0607)

p = 1.0000
(0.0086, 0.0142)

p = 1.0000
(0.0021, 0.0052)

p = 1.0000
(−0.0200,−0.0126)

GRU-BS GRU (Meloni et al., 2021) p < 0.0001*
(0.0118, 0.0247)*

p < 0.0001*
(−0.0450,−0.0251)*

p < 0.0001*
(−0.0105,−0.0059)*

p < 0.0001*
(−0.0043,−0.0019)*

p < 0.0001*
(0.0073, 0.0142)*

Trans (Kim et al., 2023) p = 0.0029*
(0.0022, 0.0158)*

p = 0.0405
(−0.0230,−0.0001)*

p = 0.0405
(−0.0054,−0.0000)*

p = 0.3277
(−0.0019, 0.0010)

p = 0.0199
(0.0005, 0.0079)*

GRU-BS + GRU Reranker p = 1.0000
(−0.0251,−0.0141)

p = 1.0000
(0.0285, 0.0496)

p = 1.0000
(0.0067, 0.0116)

p = 1.0000
(0.0017, 0.0043)

p = 1.0000
(−0.0155,−0.0094)

GRU-BS + Trans. Reranker p = 1.0000
(−0.0253,−0.0139)

p = 1.0000
(0.0276, 0.0475)

p = 1.0000
(0.0065, 0.0111)

p = 1.0000
(0.0020, 0.0045)

p = 1.0000
(−0.0152,−0.0091)

GRU-BS + GRU Reranker GRU (Meloni et al., 2021) p < 0.0001*
(0.0312, 0.0442)*

p < 0.0001*
(−0.0853,−0.0631)*

p < 0.0001*
(−0.0200,−0.0148)*

p < 0.0001*
(−0.0074,−0.0047)*

p < 0.0001*
(0.0196, 0.0268)*

Trans (Kim et al., 2023) p < 0.0001*
(0.0216, 0.0354)*

p < 0.0001*
(−0.0629,−0.0380)*

p < 0.0001*
(−0.0147,−0.0089)*

p < 0.0001*
(−0.0049,−0.0018)*

p < 0.0001*
(0.0128, 0.0204)*

GRU-BS p < 0.0001*
(0.0141, 0.0249)*

p < 0.0001*
(−0.0489,−0.0282)*

p < 0.0001*
(−0.0114,−0.0066)*

p < 0.0001*
(−0.0042,−0.0017)*

p < 0.0001*
(0.0093, 0.0153)*

GRU-BS + Trans. Reranker p = 0.3882
(−0.0058, 0.0058)

p = 0.3625
(−0.0122, 0.0097)

p = 0.3625
(−0.0029, 0.0023)

p = 0.5804
(−0.0011, 0.0017)

p = 0.3727
(−0.0030, 0.0035)

GRU-BS + Trans. Reranker GRU (Meloni et al., 2021) p < 0.0001*
(0.0311, 0.0444)*

p < 0.0001*
(−0.0830,−0.0620)*

p < 0.0001*
(−0.0194,−0.0145)*

p < 0.0001*
(−0.0077,−0.0050)*

p < 0.0001*
(0.0193, 0.0264)*

Trans (Kim et al., 2023) p < 0.0001*
(0.0214, 0.0355)*

p < 0.0001*
(−0.0604,−0.0366)*

p < 0.0001*
(−0.0142,−0.0086)*

p < 0.0001*
(−0.0052,−0.0021)*

p < 0.0001*
(0.0125, 0.0200)*

GRU-BS p < 0.0001*
(0.0137, 0.0252)*

p < 0.0001*
(−0.0468,−0.0275)*

p < 0.0001*
(−0.0110,−0.0064)*

p < 0.0001*
(−0.0045,−0.0020)*

p < 0.0001*
(0.0091, 0.0150)*

GRU-BS + GRU Reranker p = 0.6118
(−0.0058, 0.0058)

p = 0.6375
(−0.0092, 0.0130)

p = 0.6375
(−0.0022, 0.0030)

p = 0.4196
(−0.0017, 0.0011)

p = 0.6273
(−0.0036, 0.0028)

Table 27: Reconstruction significance test results for WikiHan-aug. Asterisks indicates that Reconstruc-
tion System 1 performs better than Reconstruction System 2 with the corresponding test (p-value or
CI).
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Reconstruction System 1 Reconstruction System 2 ACC% ↑ TED ↓ TER ↓ FER ↓ BCFS ↑
GRU (Meloni et al., 2021) Trans (Kim et al., 2023) p = 1.0000

(−0.0658,−0.0224)
p = 1.0000
(0.0571, 0.1453)

p = 1.0000
(0.0139, 0.0348)

p = 0.9867
(−0.0015, 0.0084)

p = 1.0000
(−0.0369,−0.0146)

GRU-BS p = 0.9991
(−0.0516,−0.0059)

p = 0.9914
(−0.0009, 0.1053)

p = 0.9975
(0.0026, 0.0269)

p = 0.6772
(−0.0056, 0.0038)

p = 1.0000
(−0.0417,−0.0132)

GRU-BS + GRU Reranker p = 1.0000
(−0.0813,−0.0370)

p = 1.0000
(0.0739, 0.1652)

p = 1.0000
(0.0193, 0.0404)

p = 0.9953
(0.0000, 0.0087)

p = 1.0000
(−0.0557,−0.0309)

GRU-BS + Trans. Reranker p = 1.0000
(−0.0988,−0.0540)

p = 1.0000
(0.0935, 0.1891)

p = 1.0000
(0.0237, 0.0455)

p = 0.9990
(0.0020, 0.0111)

p = 1.0000
(−0.0600,−0.0349)

Trans (Kim et al., 2023) GRU (Meloni et al., 2021) p < 0.0001*
(0.0230, 0.0658)*

p < 0.0001*
(−0.1463,−0.0571)*

p < 0.0001*
(−0.0348,−0.0140)*

p = 0.0133
(−0.0083, 0.0016)

p < 0.0001*
(0.0143, 0.0370)*

GRU-BS p = 0.0468
(−0.0087, 0.0405)

p = 0.0142
(−0.0935,−0.0028)*

p = 0.0199
(−0.0199, 0.0011)

p = 0.0199
(−0.0099, 0.0012)

p = 0.7331
(−0.0137, 0.0101)

GRU-BS + GRU Reranker p = 0.9119
(−0.0398, 0.0096)

p = 0.8416
(−0.0186, 0.0562)

p = 0.9029
(−0.0032, 0.0143)

p = 0.5751
(−0.0043, 0.0063)

p = 0.9998
(−0.0272,−0.0081)

GRU-BS + Trans. Reranker p = 0.9969
(−0.0562,−0.0086)

p = 0.9920
(0.0031, 0.0804)

p = 0.9907
(0.0017, 0.0197)

p = 0.8543
(−0.0024, 0.0083)

p = 1.0000
(−0.0320,−0.0126)

GRU-BS GRU (Meloni et al., 2021) p < 0.0010*
(0.0056, 0.0516)*

p = 0.0086*
(−0.1048,−0.0027)*

p = 0.0025*
(−0.0268,−0.0034)*

p = 0.3228
(−0.0039, 0.0054)

p < 0.0001*
(0.0141, 0.0413)*

Trans (Kim et al., 2023) p = 0.9532
(−0.0410, 0.0084)

p = 0.9858
(0.0025, 0.0944)

p = 0.9801
(−0.0011, 0.0202)

p = 0.9801
(−0.0014, 0.0096)

p = 0.2669
(−0.0097, 0.0135)

GRU-BS + GRU Reranker p = 0.9963
(−0.0571,−0.0059)

p = 0.9985
(0.0211, 0.1130)

p = 0.9985
(0.0047, 0.0253)

p = 0.9923
(0.0002, 0.0103)

p = 0.9945
(−0.0284,−0.0034)

GRU-BS + Trans. Reranker p = 1.0000
(−0.0736,−0.0236)

p = 0.9999
(0.0416, 0.1381)

p = 0.9999
(0.0094, 0.0310)

p = 0.9976
(0.0019, 0.0124)

p = 0.9996
(−0.0330,−0.0076)

GRU-BS + GRU Reranker GRU (Meloni et al., 2021) p < 0.0001*
(0.0370, 0.0817)*

p < 0.0001*
(−0.1638,−0.0743)*

p < 0.0001*
(−0.0402,−0.0194)*

p = 0.0047*
(−0.0087, 0.0002)

p < 0.0001*
(0.0313, 0.0553)*

Trans (Kim et al., 2023) p = 0.0881
(−0.0093, 0.0385)

p = 0.1584
(−0.0553, 0.0186)

p = 0.0971
(−0.0141, 0.0032)

p = 0.4249
(−0.0063, 0.0042)

p < 0.0010*
(0.0080, 0.0272)*

GRU-BS p = 0.0037*
(0.0042, 0.0556)*

p = 0.0015*
(−0.1130,−0.0189)*

p = 0.0015*
(−0.0253,−0.0042)*

p = 0.0077*
(−0.0104,−0.0000)*

p = 0.0055*
(0.0028, 0.0282)*

GRU-BS + Trans. Reranker p = 0.9029
(−0.0432, 0.0067)

p = 0.8663
(−0.0169, 0.0639)

p = 0.8663
(−0.0038, 0.0144)

p = 0.8029
(−0.0028, 0.0071)

p = 0.7915
(−0.0158, 0.0059)

GRU-BS + Trans. Reranker GRU (Meloni et al., 2021) p < 0.0001*
(0.0548, 0.0978)*

p < 0.0001*
(−0.1883,−0.0950)*

p < 0.0001*
(−0.0455,−0.0241)*

p = 0.0010*
(−0.0110,−0.0018)*

p < 0.0001*
(0.0354, 0.0597)*

Trans (Kim et al., 2023) p = 0.0031*
(0.0081, 0.0559)*

p = 0.0080*
(−0.0801,−0.0021)*

p = 0.0093*
(−0.0199,−0.0015)*

p = 0.1457
(−0.0083, 0.0025)

p < 0.0001*
(0.0123, 0.0321)*

GRU-BS p < 0.0001*
(0.0224, 0.0724)*

p < 0.0010*
(−0.1373,−0.0404)*

p < 0.0010*
(−0.0308,−0.0091)*

p = 0.0024*
(−0.0125,−0.0019)*

p < 0.0010*
(0.0067, 0.0328)*

GRU-BS + GRU Reranker p = 0.0971
(−0.0084, 0.0404)

p = 0.1337
(−0.0630, 0.0185)

p = 0.1337
(−0.0141, 0.0041)

p = 0.1971
(−0.0068, 0.0029)

p = 0.2085
(−0.0066, 0.0152)

Table 28: Reconstruction significance test results for Hóu. Asterisks indicates that Reconstruction
System 1 performs better than Reconstruction System 2 with the corresponding test (p-value or CI).

Reconstruction System 1 Reconstruction System 2 ACC% ↑ TED ↓ TER ↓ FER ↓ BCFS ↑
GRU (Meloni et al., 2021) Trans (Kim et al., 2023) p = 0.9999

(−0.0174,−0.0052)
p = 1.0000
(0.0567, 0.0886)

p = 1.0000
(0.0077, 0.0116)

p = 0.9993
(0.0005, 0.0021)

p = 1.0000
(−0.0167,−0.0119)

GRU-BS p = 0.9979
(−0.0124,−0.0013)

p = 1.0000
(0.0487, 0.0810)

p = 1.0000
(0.0206, 0.0246)

p = 1.0000
(0.0028, 0.0045)

p = 1.0000
(−0.0154,−0.0100)

GRU-BS + GRU Reranker p = 1.0000
(−0.0260,−0.0142)

p = 1.0000
(0.0846, 0.1159)

p = 1.0000
(0.0246, 0.0285)

p = 1.0000
(0.0046, 0.0062)

p = 1.0000
(−0.0210,−0.0160)

GRU-BS + Trans. Reranker p = 1.0000
(−0.0252,−0.0131)

p = 1.0000
(0.0843, 0.1167)

p = 1.0000
(0.0246, 0.0286)

p = 1.0000
(0.0049, 0.0065)

p = 1.0000
(−0.0212,−0.0160)

Trans (Kim et al., 2023) GRU (Meloni et al., 2021) p < 0.0001*
(0.0053, 0.0174)*

p < 0.0001*
(−0.0890,−0.0570)*

p < 0.0001*
(−0.0116,−0.0077)*

p < 0.0010*
(−0.0021,−0.0004)*

p < 0.0001*
(0.0119, 0.0167)*

GRU-BS p = 0.0881
(−0.0017, 0.0103)

p = 0.1280
(−0.0222, 0.0055)

p = 1.0000
(0.0114, 0.0145)

p = 1.0000
(0.0017, 0.0031)

p = 0.0925
(−0.0007, 0.0039)

GRU-BS + GRU Reranker p = 0.9992
(−0.0153,−0.0025)

p = 1.0000
(0.0141, 0.0408)

p = 1.0000
(0.0155, 0.0184)

p = 1.0000
(0.0035, 0.0048)

p = 1.0000
(−0.0063,−0.0021)

GRU-BS + Trans. Reranker p = 0.9973
(−0.0144,−0.0015)

p = 1.0000
(0.0136, 0.0414)

p = 1.0000
(0.0154, 0.0185)

p = 1.0000
(0.0038, 0.0051)

p = 1.0000
(−0.0065,−0.0020)

GRU-BS GRU (Meloni et al., 2021) p = 0.0021*
(0.0017, 0.0123)*

p < 0.0001*
(−0.0811,−0.0490)*

p < 0.0001*
(−0.0246,−0.0206)*

p < 0.0001*
(−0.0045,−0.0028)*

p < 0.0001*
(0.0100, 0.0154)*

Trans (Kim et al., 2023) p = 0.9119
(−0.0102, 0.0017)

p = 0.8720
(−0.0057, 0.0216)

p < 0.0001*
(−0.0145,−0.0115)*

p < 0.0001*
(−0.0031,−0.0017)*

p = 0.9075
(−0.0038, 0.0007)

GRU-BS + GRU Reranker p = 1.0000
(−0.0189,−0.0075)

p = 1.0000
(0.0218, 0.0485)

p = 1.0000
(0.0024, 0.0054)

p = 1.0000
(0.0011, 0.0024)

p = 1.0000
(−0.0082,−0.0034)

GRU-BS + Trans. Reranker p = 1.0000
(−0.0182,−0.0063)

p = 1.0000
(0.0212, 0.0495)

p = 1.0000
(0.0024, 0.0055)

p = 1.0000
(0.0013, 0.0027)

p = 1.0000
(−0.0083,−0.0034)

GRU-BS + GRU Reranker GRU (Meloni et al., 2021) p < 0.0001*
(0.0146, 0.0260)*

p < 0.0001*
(−0.1160,−0.0845)*

p < 0.0001*
(−0.0285,−0.0246)*

p < 0.0001*
(−0.0062,−0.0046)*

p < 0.0001*
(0.0160, 0.0211)*

Trans (Kim et al., 2023) p < 0.0010*
(0.0027, 0.0154)*

p < 0.0001*
(−0.0410,−0.0141)*

p < 0.0001*
(−0.0184,−0.0155)*

p < 0.0001*
(−0.0048,−0.0035)*

p < 0.0001*
(0.0021, 0.0064)*

GRU-BS p < 0.0001*
(0.0076, 0.0191)*

p < 0.0001*
(−0.0490,−0.0219)*

p < 0.0001*
(−0.0055,−0.0024)*

p < 0.0001*
(−0.0024,−0.0011)*

p < 0.0001*
(0.0035, 0.0083)*

GRU-BS + Trans. Reranker p = 0.3474
(−0.0053, 0.0072)

p = 0.6066
(−0.0133, 0.0137)

p = 0.6066
(−0.0015, 0.0015)

p = 0.8830
(−0.0003, 0.0009)

p = 0.6066
(−0.0024, 0.0023)

GRU-BS + Trans. Reranker GRU (Meloni et al., 2021) p < 0.0001*
(0.0136, 0.0252)*

p < 0.0001*
(−0.1165,−0.0843)*

p < 0.0001*
(−0.0286,−0.0246)*

p < 0.0001*
(−0.0065,−0.0049)*

p < 0.0001*
(0.0160, 0.0211)*

Trans (Kim et al., 2023) p = 0.0027*
(0.0014, 0.0146)*

p < 0.0001*
(−0.0417,−0.0138)*

p < 0.0001*
(−0.0185,−0.0154)*

p < 0.0001*
(−0.0051,−0.0038)*

p < 0.0001*
(0.0021, 0.0065)*

GRU-BS p < 0.0001*
(0.0065, 0.0182)*

p < 0.0001*
(−0.0501,−0.0218)*

p < 0.0001*
(−0.0056,−0.0024)*

p < 0.0001*
(−0.0028,−0.0014)*

p < 0.0001*
(0.0034, 0.0084)*

GRU-BS + GRU Reranker p = 0.6526
(−0.0071, 0.0052)

p = 0.3934
(−0.0139, 0.0132)

p = 0.3934
(−0.0016, 0.0015)

p = 0.1170
(−0.0009, 0.0003)

p = 0.3934
(−0.0022, 0.0024)

Table 29: Reconstruction significance test results for Rom-phon. Asterisks indicates that Reconstruc-
tion System 1 performs better than Reconstruction System 2 with the corresponding test (p-value or
CI).
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Reconstruction System 1 Reconstruction System 2 ACC% ↑ TED ↓ TER ↓ FER ↓ BCFS ↑
GRU (Meloni et al., 2021) Trans (Kim et al., 2023) p = 1.0000

(−0.0214,−0.0128)
p = 1.0000
(0.0249, 0.0495)

p = 1.0000
(0.0030, 0.0064)

- p = 1.0000
(−0.0097,−0.0055)

GRU-BS p = 1.0000
(−0.0217,−0.0130)

p = 1.0000
(0.0379, 0.0595)

p = 1.0000
(0.0153, 0.0180)

- p = 1.0000
(−0.0106,−0.0067)

GRU-BS + GRU Reranker p = 1.0000
(−0.0366,−0.0287)

p = 1.0000
(0.0682, 0.0882)

p = 1.0000
(0.0186, 0.0212)

- p = 1.0000
(−0.0158,−0.0124)

GRU-BS + Trans. Reranker p = 1.0000
(−0.0353,−0.0274)

p = 1.0000
(0.0672, 0.0869)

p = 1.0000
(0.0185, 0.0210)

- p = 1.0000
(−0.0157,−0.0122)

Trans (Kim et al., 2023) GRU (Meloni et al., 2021) p < 0.0001*
(0.0128, 0.0216)*

p < 0.0001*
(−0.0493,−0.0254)*

p < 0.0001*
(−0.0064,−0.0031)*

- p < 0.0001*
(0.0055, 0.0097)*

GRU-BS p = 0.7419
(−0.0040, 0.0041)

p = 0.9848
(−0.0011, 0.0222)

p = 1.0000
(0.0103, 0.0133)

- p = 0.7591
(−0.0030, 0.0011)

GRU-BS + GRU Reranker p = 1.0000
(−0.0189,−0.0115)

p = 1.0000
(0.0293, 0.0515)

p = 1.0000
(0.0137, 0.0165)

- p = 1.0000
(−0.0083,−0.0045)

GRU-BS + Trans. Reranker p = 1.0000
(−0.0178,−0.0101)

p = 1.0000
(0.0281, 0.0506)

p = 1.0000
(0.0136, 0.0164)

- p = 1.0000
(−0.0082,−0.0043)

GRU-BS GRU (Meloni et al., 2021) p < 0.0001*
(0.0130, 0.0214)*

p < 0.0001*
(−0.0590,−0.0380)*

p < 0.0001*
(−0.0179,−0.0152)*

- p < 0.0001*
(0.0067, 0.0105)*

Trans (Kim et al., 2023) p = 0.2581
(−0.0041, 0.0043)

p = 0.0152
(−0.0226, 0.0008)

p < 0.0001*
(−0.0133,−0.0103)*

- p = 0.2409
(−0.0011, 0.0030)

GRU-BS + GRU Reranker p = 1.0000
(−0.0191,−0.0115)

p = 1.0000
(0.0201, 0.0389)

p = 1.0000
(0.0022, 0.0043)

- p = 1.0000
(−0.0072,−0.0038)

GRU-BS + Trans. Reranker p = 1.0000
(−0.0180,−0.0102)

p = 1.0000
(0.0191, 0.0380)

p = 1.0000
(0.0021, 0.0042)

- p = 1.0000
(−0.0071,−0.0036)

GRU-BS + GRU Reranker GRU (Meloni et al., 2021) p < 0.0001*
(0.0286, 0.0365)*

p < 0.0001*
(−0.0882,−0.0684)*

p < 0.0001*
(−0.0212,−0.0186)*

- p < 0.0001*
(0.0124, 0.0159)*

Trans (Kim et al., 2023) p < 0.0001*
(0.0116, 0.0190)*

p < 0.0001*
(−0.0517,−0.0295)*

p < 0.0001*
(−0.0166,−0.0137)*

- p < 0.0001*
(0.0045, 0.0084)*

GRU-BS p < 0.0001*
(0.0115, 0.0190)*

p < 0.0001*
(−0.0390,−0.0199)*

p < 0.0001*
(−0.0043,−0.0022)*

- p < 0.0001*
(0.0037, 0.0072)*

GRU-BS + Trans. Reranker p = 0.3779
(−0.0022, 0.0047)

p = 0.4409
(−0.0097, 0.0079)

p = 0.4409
(−0.0011, 0.0009)

- p = 0.5431
(−0.0014, 0.0017)

GRU-BS + Trans. Reranker GRU (Meloni et al., 2021) p < 0.0001*
(0.0274, 0.0353)*

p < 0.0001*
(−0.0875,−0.0674)*

p < 0.0001*
(−0.0211,−0.0185)*

- p < 0.0001*
(0.0122, 0.0158)*

Trans (Kim et al., 2023) p < 0.0001*
(0.0103, 0.0180)*

p < 0.0001*
(−0.0509,−0.0282)*

p < 0.0001*
(−0.0165,−0.0136)*

- p < 0.0001*
(0.0044, 0.0083)*

GRU-BS p < 0.0001*
(0.0102, 0.0180)*

p < 0.0001*
(−0.0380,−0.0189)*

p < 0.0001*
(−0.0042,−0.0021)*

- p < 0.0001*
(0.0036, 0.0071)*

GRU-BS + GRU Reranker p = 0.6221
(−0.0047, 0.0022)

p = 0.5591
(−0.0077, 0.0100)

p = 0.5591
(−0.0009, 0.0011)

- p = 0.4569
(−0.0018, 0.0014)

Table 30: Reconstruction significance test results for Rom-orth. Asterisks indicates that Reconstruction
System 1 performs better than Reconstruction System 2 with the corresponding test (p-value or CI).
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Beam Search
rank p̂bsi mi

0 kjwet入 -0.2299
1 kit入 -0.2866
2 kwit入 -0.3882
3 kjɨt入 -0.3979
4 kjwit入 -0.5967
5 kjet入 -0.7380
6 kɛt入 -0.8579

Reflex Prediction (based on protoform candidates)
Cantonese Hakka Jin Mandarin Hokkien Wu Xiang ri
kyːt˧ ki̯et˨ tɕ͡y̯əʔ˨ tɕ͡yɤ˧ ku̯at˧ tɕ͡y̯ɪʔ˥ tɕ͡i̯e̞˨ 0.2857
kɐt˥ kit˨ tɕ͡i̯əʔ˨ tɕ͡i˥ kit˧ tɕ͡i̯ɪʔ˥ tɕ͡i˨ 0.1429
kʷɐt˥ ki̯ut˨ tɕ͡y̯əʔ˨ tɕ͡yɤ˧ kut˧ tɕ͡y̯ɪʔ˥ tɕ͡y ˨ 0.5714
kɐt˥ kit˨ tɕ͡i̯əʔ˨ tɕ͡i˥ kit˧ tɕ͡i̯ɪʔ˥ tɕ͡i˨ 0.1429
kʷɐt˥ ki̯ut˨ tɕ͡y̯əʔ˨ tɕ͡yɤ˧ kut˧ tɕ͡y̯ɪʔ˥ tɕ͡yn ˦ 0.4286
kiːt˧ ki̯et˨ tɕ͡i̯əʔ˨ tɕ͡i̯ɛ˥ ki̯ɛt˧ tɕ͡i̯ɪʔ˥ tɕ͡i̯e̞˨ 0.1429
kaːt˧ kat˨ tɕ͡i̯əʔ˨ tɕ͡i̯ɛ˥ kat˧ ka̱ʔ˥ kɤ̞˨ 0.0000
kʷɐt˥ kit˨ tɕ͡y̯əʔ˨ tɕ͡y ˧ ki̯ɛt˧ tɕ͡y̯ɪʔ˥ tɕ͡y ˨ -

Reranking Result
rank p̂rki si
0 kwit入 0.3318
1 kjwet入 0.1301
2 kjwit入 -0.0567
3 kit入 -0.1066
4 kjɨt入 -0.2179
5 kjet入 -0.5580
6 kɛt入 -0.8579

Figure 4: Successful reranking of橘 kwit入 ‘mandarin orange’.

Beam Search
rank p̂bsi mi

0 kwaj去 -0.2234
1 ʔwaj去 -0.3368
2 ɣwaj去 -0.3601
3 kwoj去 -0.3787
4 ɣwoj去 -0.5528
5 ʔwoj去 -0.5998
6 kʰwaj去 -0.8277

Reflex Prediction (based on protoform candidates)
Cantonese Hakka Mandarin Hokkien Wu ri
kʷɔː˧ ku̯i˥ kʰu̯ai̯ ˥ ku̯e˧ kɯe̯̞˧ 0.0000
wuːy̯˧ voi̯˥ u̯ei̯ ˥ u̯e˧ ɯe̯̞˧ 0.0000
wuːy̯˨ fi˥ xu̯ei̯ ˥ u̯e˧ ɦɯe̯̞˨ 0.6000
kʷuːy̯˧ ku̯i˥ ku̯ei̯ ˥ ku̯e˧ kɯe̯̞˧ 0.0000
wuːy̯˨ fi˥ xu̯ei̯ ˥ hu̯e˧ ɦɯe̯̞˨ 0.6000
wuːy̯˧ ve˥ u̯ei̯ ˥ u̯e˧ ɯe̯̞˧ 0.0000
fuːy̯˧ kʰu̯ai̯˥ kʰu̯ai̯ ˥ kʰu̯e˧ kʰɯe̯̞˧ 0.0000
kʰuːy̯ ˧ fi˥ xu̯ei̯ ˥ ku̯e˧ ɦɯe̯̞˨ -

Reranking Result
rank p̂rki si
0 ɣwaj去 0.3959
1 ɣwoj去 0.2032
2 kwaj去 -0.2234
3 ʔwaj去 -0.3368
4 kwoj去 -0.3787
5 ʔwoj去 -0.5998
6 kʰwaj去 -0.8277

Figure 5: Successful reranking of繪 ɣwaj去 ‘to draw’.

Beam Search
rank p̂bsi mi

0 sew平 -0.1557
1 suw平 -0.4004
2 suw上 -0.4671
3 sju平 -0.5906
4 sew上 -0.5909
5 sju上 -0.9313

Reflex Prediction (based on protoform candidates)
Cantonese Mandarin Hokkien ri
siːu̯˥ ɕi̯au̯˥ ɕi̯au̯˥ 0.0000
sɐu̯˥ soʊ̯˥ sau̯˥ 0.3333
sɐu̯ ˧ soʊ̯˨ sau̯ ˥ 0.3333
sɵy̯˥ ɕy˥ ɕɨ˥ 0.0000
siːu̯˧ ɕi̯au̯˨ ɕi̯au̯ ˥ 0.0000
sɵy̯˧ ɕy˨ ɕɨ ˥ 0.0000
sɐu̯ ˧ soʊ̯˥ sɤ ˥ -

Reranking Result
rank p̂rki si
0 suw平 0.0196
1 suw上 -0.0471
2 sew平 -0.1557
3 sju平 -0.5906
4 sew上 -0.5909
5 sju上 -0.9313

Figure 6: Unsuccessful reranking of艘 sew平 ‘small boat’.

Beam Search
rank p̂bsi mi

0 kjun平 -0.1272
1 kwin平 -0.1766
2 kin平 -0.6991
3 kwen平 -0.9995
4 kjin平 -1.0021
5 kjon平 -1.2847

Reflex Prediction (based on protoform candidates)
Cantonese Gan Hakka Jin Mandarin Hokkien Wu Xiang ri
kɵn˥ tɕ͡yn ˦ ki̯un ˨ tɕ͡ỹŋ˩˩ tɕ͡yn˥ kun˥ tɕ͡ʏɲ ˥ tɕ͡yn˧˧ 0.8750
kʷɐn˥ tɕ͡yn ˦ ki̯un ˨ tɕ͡ỹŋ˩˩ tɕ͡yn˥ kun˥ tɕ͡ʏɲ ˥ tɕ͡yn˧˧ 1.0000
kɐn˥ tɕ͡in˦ kin˨ tɕ͡ĩŋ˩˩ tɕ͡in˥ kin˥ tɕ͡ɪɲ˥ tɕ͡in˧˧ 0.0000
kyːn˥ tɕ͡y̯ɵn˦ ki̯en˨ tɕ͡y̯e˩˩ tɕ͡yan˥ ku̯an˥ tɕ͡y̯ø˥ tɕ͡y̯e̞˧˧ 0.0000
kɐn˥ tɕ͡in˦ kin˨ tɕ͡ĩŋ˩˩ tɕ͡in˥ kin˥ tɕ͡ɪɲ˥ tɕ͡in˧˧ 0.0000
kiːn˥ tɕ͡i̯ɛn˦ ki̯en˨ tɕ͡i̯e˩˩ tɕ͡i̯ɛn˥ ki̯ɛn˥ tɕ͡ɪɲ˥ tɕ͡i̯ẽ˧˧ 0.0000
kʷɐn˥ tɕ͡yn ˦ ki̯un ˨ tɕ͡ỹŋ˩˩ tɕ͡yn˥ kun˥ tɕ͡ʏɲ ˥ tɕ͡yn˧˧ -

Reranking Result
rank p̂rki si
0 kwin平 1.0834
1 kjun平 0.9753
2 kin平 -0.6991
3 kwen平 -0.9995
4 kjin平 -1.0021
5 kjon平 -1.2847

Figure 7: Unsuccessful reranking of君 kjun平 ‘sovereign’.
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Beam Search
rank p̂bsi mi

0 dɪskrɛptɪam -0.0876
1 dɪskrɛpantɪam -0.1073
2 dɪskrepantɪam -0.3963
3 dɪskrɛpsɪam -0.4401
4 dɪskrɛpsantɪam -0.4729

Reflex Prediction (based on protoform candidates)
Italian Spanish Portuguese ri
diskrɛtsa diskɾepθja diʃkɹɛpsjɐ 0.0000
diskrepantsa diskɾepanθja diʃkɹɨpɐŋ̃sjɐ 1.0000
diskrepantsa diskɾepanθja diʃkɹɨpɐŋ̃sjɐ 1.0000
diskressia diskɾepsja diʃkɹɨpsiɐ 0.0000
diskressantsa diskɾepsanθja diʃkɹɨpsɐŋ̃sjɐ 0.0000
diskrepantsa diskɾepanθja diʃkɹɨpɐŋ̃sjɐ -

Reranking Result
rank p̂rki si
0 dɪskrɛpantɪam 0.4777
1 dɪskrepantɪam 0.1887
2 dɪskrɛptɪam -0.0876
3 dɪskrɛpsɪam -0.4401
4 dɪskrɛpsantɪam -0.4729

Figure 8: Succssful reranking of discrepantiam ‘discordance’.

Beam Search
rank p̂bsi mi

0 ɛksɛkwikɛrɛ -0.2887
1 ɛksɛkwɪtarɛ -0.3491
2 ɛkssɛkwɪtarɛ -0.3907
3 ɛksɛkwirɛ -0.4299
4 ɛkssɛkwi -0.4323
5 ɛksɛkwi -0.4541

Reflex Prediction (based on protoform candidates)
French Italian Spanish ri
ɛɡzeke ezekwire ekseɣiɾ 0.0000
ɛɡzekite ezekwitare eksekitaɾ 0.0000
ɛɡzekite ezekwitare eksekiðaɾ 0.0000
ɛɡzeke ezekwire ekseɣiɾ 0.0000
ɛɡzekyte ezeɡwire ekseɣiɾ 0.6667
ɛɡzekyte ezeɡwire ekseɣiɾ 0.6667
ɛɡzekyte ezeɡwire exekutaɾ -

Reranking Result
rank p̂rki si
0 ɛkssɛkwi -0.0423
1 ɛksɛkwi -0.0641
2 ɛksɛkwikɛrɛ -0.2887
3 ɛksɛkwɪtarɛ -0.3491
4 ɛkssɛkwɪtarɛ -0.3907
5 ɛksɛkwirɛ -0.4299

Figure 9: Successful reranking of exsequi ‘follow after’.

Beam Search
rank p̂bsi mi

0 prokrastɪnarɛ -0.1000
1 prokrastinarɛ -0.1154
2 prokrastɪnari -0.2423
3 prokrastinari -0.2629
4 prɔkrastinarɛ -0.6461
5 prɔkrastɪnarɛ -0.6774

Reflex Prediction (based on protoform candidates)
French Italian Spanish Portuguese ri
pʁɔkʁastine prokrastinare pɾokɾastinaɾ pɹukɹaʃtinaɹ 0.7500
pʁɔkʁastine prokrastinare pɾokɾastinaɾ pɹukɹɐʃtinaɹ 1.0000
pʁɔkʁastine prokrastinare pɾokɾastinaɾ pɹukɹaʃtinaɹ 0.7500
pʁɔkʁastine prokrastinare pɾokɾastinaɾ pɹukɹɐʃtinaɹ 1.0000
pʁɔkʁastine prokrastinare pɾokɾastinaɾ pɹukɹɐʃtinaɹ 1.0000
pʁɔkʁastine prokrastinare pɾokɾastinaɾ pɹukɹaʃtinaɹ 0.7500
pʁɔkʁastine prokrastinare pɾokɾastinaɾ pɹukɹɐʃtinaɹ -

Reranking Result
rank p̂rki si
0 prokrastinarɛ 0.4696
1 prokrastɪnarɛ 0.3388
2 prokrastinari 0.3221
3 prokrastɪnari 0.1965
4 prɔkrastinarɛ -0.0611
5 prɔkrastɪnarɛ -0.2386

Figure 10: Unsuccessful reranking of procrastinare ‘to defer’.

Beam Search
rank p̂bsi mi

0 aɪkwɪnɔktɪʊm -0.1209
1 ɛkwɪnɔktɪʊm -0.1384
2 aɪkwɪnoktɪʊm -0.2969
3 ɛkwɪnoktɪʊm -0.3124
4 aɪkwinɔktɪʊm -0.4513
5 ɛkwinɔktɪʊm -0.4936

Reflex Prediction (based on protoform candidates)
Romanian French Italian Spanish Portuguese ri
ekinokts ekinoks ekwinɔtso ekinokθjo ekinusjʊ 0.2000
ekinoktsiw ekinɔks ekwinɔtsio ekinokθjo ekinɔsjʊ 0.8000
ekinokts ekinoks ekwinɔtso ekinokθjo ekinɔsjʊ 0.2000
ekinoktsiw ekinɔks ekwinɔtsio ekinokθjo ekinɔsjʊ 0.8000
ekinokts ekinoks ekwinoktsio ekinokθjo ekinusjʊ 0.2000
ekinoktsiw ekinɔks ekwinɔtsio ekinokθjo ekinɔsjʊ 0.8000
ekinoktsiw ekinɔks ekwinɔtsio ekinokθjo ekwinɔsjʊ -

Reranking Result
rank p̂rki si
0 ɛkwɪnɔktɪʊm 0.3296
1 ɛkwɪnoktɪʊm 0.1556
2 aɪkwɪnɔktɪʊm -0.0039
3 ɛkwinɔktɪʊm -0.0256
4 aɪkwɪnoktɪʊm -0.1799
5 aɪkwinɔktɪʊm -0.3343

Figure 11: Unsuccessful reranking aequinoctium ‘equinox’.
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