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Abstract
Since Labov’s (1964) foundational work on the social stratification of language, linguistics has dedicated concerted
efforts towards understanding the relationships between socio-demographic factors and language production and
perception. Despite the large body of evidence identifying significant relationships between socio-demographic
factors and language production, relatively few of these factors have been investigated in the context of NLP
technology. While age and gender are well covered, Labov’s initial target, socio-economic class, is largely absent.
We survey the existing Natural Language Processing (NLP) literature and find that only 21 papers go beyond merely
mentioning socio-economic strata in passing. However, the majority of those papers do not engage with class
beyond collecting information of annotator-demographics. Given this research lacuna, we provide a definition of class
that can be operationalised by NLP researchers, and argue for including socio-economic class in future language
technologies.
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1. Introduction

A salient aspect of identity formation is the creation
of class, or socio-economic identity. Certain ac-
cents, phrases, and constructions are considered
either upper, middle, or lower class, or a host of
other references to socio-economic status.

Labov (1964) was the first to systematically in-
vestigate this relation. He observed that New York-
ers with higher socio-economic status tended to
pronounced the /R/ sound after vowels, whereas
the traditional dialect dropped it. He devised a
study to quantify this observation by asking clerks
in various department stores (a proxy for socio-
economic status) for items found on the fourth floor,
then recorded how many of Rs were dropped. He
found a clear anti-correlation between the socio-
economic status of the store (and hence presum-
ably the speakers there) and the number of dropped
Rs: the higher the status, the fewer dropped Rs.

Since Labov’s 1964 intervention on social stratifi-
cation and language, linguistics has dedicated con-
certed efforts towards understanding how different
socio-demographic factors influence the production
and perception of language, and how speakers use
them to create identity (Eckert, 2012). Despite the
large body of evidence showing the relationships
between language and demographic factors (the
“first wave” of socio-linguistic variation studies), rel-
atively few socio-demographic factors have been
investigated in the context of natural language pro-
cessing (NLP) technology.

Existing work on socio-demographic factors has
predominantly focused on how much a certain lin-
guistic variable signals age, ethnicity, regional ori-
gin, and gender (Johannsen et al., 2015). Almost

none of the NLP works have engaged with the sec-
ond and third wave of sociolinguistics, i.e., how
variation creates local identity and drives language
change. To address this gap, we focus on socio-
economic status in NLP.

Filling this lacuna could provide useful future re-
search avenues for computational sociolinguistics
and social science, which often depends on the
proper stratification of data into socio-demographic
categories. More broadly, excluding a crucial so-
ciodemographic factor like social class from consid-
eration impoverishes NLP’s capability to counteract
social biases in its tools and datasets.

Contributions We document the lack of NLP
work dealing with socio-economic status. We sur-
vey how socio-economic status is measured in the
NLP literature and contrast this with metrics used
in the social sciences. We conclude with some
recommendations for future research.

2. What is Social Class?

Social stratification refers to the grouping of people
according to socio-economic status (SES) based
on factors like income, education, wealth, and other
characteristics, with different groups being distin-
guished in terms of power and prestige (Saunders,
1990). There are different systems of social stratifi-
cation, including the Indian caste system, clans or
tribes, and the Western hierarchical class system.

Exactly how many social strata there are is un-
known and likely varies from region to region. How-
ever, in Western cultures it is common to see at
least three strata referring to upper, middle and



8676

lower class people. Other systems refer to blue
collar and white-collar jobs. Recently, the Great
British Class Survey (GBCS, Savage et al., 2013)
has taken an empirical approach to understanding
the different social strata, and they propose a seven-
level system for the United Kingdom. Their strati-
fication is based on economic, social and cultural
capital: elite, established middle class, technical
middle class, new affluent workers, traditional work-
ing class, emergent service workers, and precariat.
The derive these classes from a survey conducted
over British citizens that received more than 160K
responses.

3. The Impact of Social Class on
Language

Social class shapes people’s everyday experiences
by granting or limiting access to resources. So-
cial stratification has a significant impact on peo-
ple beyond power and prestige, for instance, lower
socio-economic status has been linked to worse
health outcomes and higher mortality (Saydah et al.,
2013). Socio-economic status also influences lan-
guage: Labov’s germinal work showed there are dif-
ferences in pronunciation, Bernstein (1960) showed
that children from working class families had sig-
nificantly smaller vocabularies even when general
IQ was controlled for, and Flekova et al. (2016) has
recently shown that there is significant lexical and
stylistic variation between social strata.

Socio-economic status affects language use
from the very early stages of development. Bern-
stein (1960) posits that language takes on a dif-
ferent role in middle- and working-class families,
where middle-class parents encourage language
learning to describe more abstract thinking. In
working-class families, parents are limited to more
concrete and descriptive concepts. Parents from
lower SES tend to interact less with their children,
with fewer open-ended questions than parents from
higher SES, which shapes language development
(Clark and Casillas, 2015). While Usategui Ba-
sozábal et al. (1992) shows that education reduces
this language gap, one’s level of education has tra-
ditionally been one of the key factors in determining
social class and potential for upward social mobility.
Moreover, a person’s accent is a strong marker of
SES, reported to lead to anxiety and discrimination
(Levon et al., 2022).

Given the well-documented effects that socio-
economic status has on language development and
use, it stands to reason that NLP should carefully
consider social class as a variable.

4. Measuring socio-economic status

As social class encompasses more than a single
factor, e.g., income, measuring and classifying
people according to socio-economic status is a
non-trivial task. Social class may be measured
objectively through measures of socio-economic
status (SES) or subjectively, by asking participants
to self-report.

Objective In terms of objective measures of so-
cial class, education, income, and occupation are
the most widely used factors to measure social
class (Kraus and Stephens, 2012). Education af-
fords access to higher salaries, more prestigious
occupations and higher levels of cultural capital. In-
come is the most direct measure of an individual’s
access to material goods and services. Finally, oc-
cupation is a strong indicator of prestige and other
formative experiences.

More recently, the GBCS (Savage et al., 2013)
asked participants about their economic, social and
cultural capital based on a framework described by
Bourdieu (2018). Economic capital refers to one’s
income and assets1, social capital is measured
in terms of the prestige of those in one’s social
circle2 and cultural capital in terms of the type of
cultural activities in which they participate (e.g. at-
tending the theatre vs football matches). Based on
the results from the survey, Savage et al. (2013)
propose a seven-level stratification extracted from
latent class analysis on 160K participants from the
U.K. This fine-grained classification shows societal
changes and fragmentation in the middle-class.

Subjective In terms of subjective measurements,
social class is how much one believes they have rel-
ative to others. People’s perception of where they
stand in terms of social class has important psy-
chological effect even when controlling for objective
measures, supporting the idea that subjective class
is an important measure. The general recommen-
dation is to use the Macarthur scale (Adler et al.,
2000), where people are asked to place themselves
on a ladder, with higher levels representing those
who are more privileged.

Because there may be discrepancies between
one’s subjective and objective SES, the American
Psychological Association (APA)3 recommends
measuring a participant’s level of education, in-
come, occupation, and family size and relation-
ships, as well as subjective social status (Diemer

1Namely, whether one owns their house or rents it
and the amount of savings.

2As determined by their status scores according to the
Cambridge Social Interaction and Stratification (CAMSIS)
scale.

3APA: Measuring SES

https://www.apa.org/pi/ses/resources/class/measuring-status
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et al., 2013). These recommendations add a layer
of difficulty for researchers because (1) the ques-
tions are intrusive (for example in many countries
it is considered impolite to discuss salaries) and
refer to sensitive topics, and (2) while gender and
race are a single data point, accurately measuring
socio-economic status requires a minimum of four
questions that need to be aggregated.

For these reasons, the majority of NLP work has
focused on one particular aspect of social class
as a proxy. For example, Lampos et al. (2014)
use occupation only as a proxy and Flekova et al.
(2016) use only income. However, income is only
one small part of social class and does not capture
its nuances and the over-emphasis on income and
occupation of most social classification systems
has been criticised by some feminist scholars for
how it interacts with some social norms, e.g., the
expectation of women to be homemakers (Skeggs,
1997; Crompton, 2008).

5. Survey of NLP Literature on Social
Class

Here, we analyse existing literature in NLP that
deal with SES in some way. As a first step, we
collect the bibliography file for the ACL anthology
and search for the occurrence of terms in the ti-
tles and abstracts.4 We also experimented with
terms like ‘occupation’ and ‘education’ which may
be used a proxy of social class, however we find
that these papers focus on either gender bias (in
the case of occupation), or education in and of itself
without engaging with social class in any way. In
addition, we refer back to feminist scholars who
criticise metrics such as income and occupation
as individual class markers in patriarchal societies
(see Skeggs (1997); Crompton (2008)). Our ini-
tial search yielded 78 papers, however, many of
them do not engage with the topic at all and only
mention social class in passing, e.g. ‘communica-
tion between people from different religion, caste,
creed, cultural and psychological backgrounds has
become more direct’. After removing such papers,
only 21 papers remain.

Of these 21 papers, four focus on NLP in low- and
middle-income countries/regions for social equity
but do not directly model language. Three papers
collect SES-related metrics, but do not use this
information in their analyses. Finally, the remain-
ing papers deal directly with modelling language
according to SES (e.g. predicting the income of
Twitter users).

Although (as expected) the majority of papers
are dealing with English, we find a wide variety of

4The full list of our search terms: ‘social class’, ‘caste’,
and ‘socio-economic’, ‘income’, ‘education’, ‘occupation’,
‘white/blue collar’, ‘upper/middle/lower class’

languages given the small sample (English, Danish,
French, Hindi, Marathi, Russian).

5.1. How NLP Measures SES
So far, no systemic method to measure SES has
been proposed for NLP. Table 1 shows the full list
of papers and their SES measurement. The ma-
jority focus on one or two aspects of SES, such
as income (9) and education (5). Only five papers
refer explicitly to a class system, using a two- or
three-level classification, however none use objec-
tive measures of class. One paper uses restaurant
prices as a proxy for socio-economic status. In ad-
dition, in terms of granularity, many of these studies
do not collect data on an individual level but rather
use reported statistics for a given country/area us-
ing census data.

We conclude from the survey that socio-
economic status is rarely reported on in NLP lit-
erature, where most data is collected from urban
citizens and university students, or from middle- to
upper-class sources like news outlets. Low-SES
is only specifically collected to cover this subset of
the population for a given study, possibly due to
the increased difficulty in accessing people from
less privileged backgrounds when research is done
in universities and affluent urban areas. However,
sourcing data from lower-SES participants still af-
fords quality data while also offering supplemen-
tal income (Abraham et al., 2020). As NLP tech-
nologies are becoming increasingly ubiquitous in
society, we should endeavour to include all sub-
populations to ensure fair and equitable technolo-
gies. In addition, NLP also serves a role as cultural
anthropology and should reflect the reality of lan-
guage use across populations.

6. Measuring Class for NLP
Practitioners

A standout finding from the survey is the lack of
a unified measurement of socio-economic status
in the literature. This makes it difficult to compare
language varieties across studies and datasets or
to get a clear picture of whose language exactly
NLP research is mapping. In addition, it remains
unclear how some of the proxy metrics used (such
as geolocation or income) relate to class and lan-
guage variety. Section 4 provided an overview of
possible metrics for socio-economic status. Based
on this, we make some recommendations for the
NLP community:

• Where participants are explicitly recruited for a
study (i.e. the data is not collected en masse
from social media), researchers should try to
take objective measures of the participants’
SES (see 4).
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Measurement Granularity
Lampos et al. (2014) Unemployment Country
Preoţiuc-Pietro et al. (2015) Occupation Individual
Flekova et al. (2016) Income Individial
Hasanuzzaman et al. (2017) Income Individual
Giorgi et al. (2018) Income, Education County (census data)
Zamani et al. (2018) Income, Education, Unemployment Country-wise
Degaetano-Ortlieb (2018) Class (high, low) Individual
Van et al. (2019) Income, poverty education State-level (census)
Jawahar and Seddah (2019) Income, geolocation Neighbourhood-level
Basile et al. (2019) Restaurant price Individual
Ghazouani et al. (2019) socio-economic status Mixed
Abraham et al. (2020) Income, area Group
Tafreshi et al. (2021) Income, education Individual
Abbasi et al. (2021) Income, education Individual
Strømberg-Derczynski et al. (2021) SES (high, mix, unknown) Aggregated by dataset
van Boven et al. (2022) Low-income countries Country
Ngao et al. (2022) Low-income countries Country
Grützner-Zahn and Rehm (2022) GDP Country
Cole (2022) Class (high, low) Individual
Malik et al. (2022) Caste, occupation General (bias)
Hržica et al. (2022) Class (middle) Group

Table 1: Papers included in the survey along with the metric used to assess socio-economic status and
the granularity of the metric is.

• Alternatively, aim to report at least their subjec-
tive SES5 following the Macarthur scale, which
has already been scientifically validated.

• Data collected from social media rarely con-
tains such information at the individual level –
while people may list their occupation in their
biographies, these tend to be biased towards
high-prestige occupations (Guo et al., 2024),
leaving lower status occupations in the dark.
Researchers should endeavour to contextu-
alise the data collected by considering and
appropriately describing the general statistics
of the social media platform used (e.g. Gha-
zouani et al. (2019) aim to asses the socioeco-
nomic status of X – formerly known as Twitter
– users).

• If all else fails, report socio-economic status in
whichever way is possible (for example by us-
ing some of the proxy metrics discussed in this
paper, or e.g. Cercas Curry et al. (2021) use
level of education and the university’s prestige,
though these may be dependent on culture).

Properly documented and contextualised data
collection is crucial for more equitable NLP (and
more broadly linguistics) research.

5As this is a one-point measure and is not as intrusive
as concrete questions about income.

7. Related Work

While there has been an uptick in the number of
papers tackling gender and racial bias in NLP, work
considering other under-privileged communities
has lagged behind. In a survey of Computational
Sociolinguistics, Nguyen et al. (2016) point to the
lack of self-reported explicit labels in online user
profiles as possible cause, with work focusing on
occupation (often mapped to income or other vari-
ables.

As a way to mitigate and document biases in
NLP, Bender and Friedman (2018) ask for the socio-
economic status of both the speakers and the an-
notators to be declared, however they do not sug-
gest any standardised way to measure or report
this. Field et al. (2021) (from whom we borrow
our methodology) conduct a survey focus on race
but also call for more diversity in NLP in terms of
the broader inclusion other underprivileged people
such as those from lower socio-economic status.

8. Directions for Future Research

NLP has two main purposes: (1) as a descriptive
tool for current language use, and (2) as a service
for everyday life. In both cases, NLP must be able
to serve and represent people equally. With the
ubiquity of language technologies, it is no longer
the case that only the wealthiest need to access
these but by excluding those less privileged from
NLP datasets we are crippling our technologies in
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their ability to serve all of humanity. NLP systems
are enforcing a standard of language by limiting the
lects they represent.

Future research should establish how the current
and proposed metrics and models represent lan-
guage varieties. Some questions for future work
are whether subjective class is more predictive
of language use than objective class, how fine-
grained of a classification is needed, and how
socio-economic status interacts with other socio-
demographic factors like age, gender, race or re-
gion when it comes to language.

Creating new datasets and tools to identify so-
cial class distinctions in text would not only help
build fairer NLP technology, but also benefit related
disciplines that use NLP tools to stratify their data
along socio-demographic lines.

9. Conclusion

We have explored the definition of social class, how
it can be measured and its effect on language use.
We then surveyed existing work in the ACL an-
thology dealing with socio-economic status and
its components and found significant gaps. First,
very little work considers social class despite its
well-documented effect on language, and second,
there is currently no systematic way to measure
socioeconomic status in the few papers that do
report it. We encourage researchers to ensure di-
versity in collected datasets and to be more diligent
in reporting accurate socio-demographics for their
participants.

Limitations

Our survey has provided an overview of work in
NLP engaging with socioeconomic status, however,
we focused only on papers included in the ACL an-
thology. This means some work that has been
published in other venues has been excluded. In
addition, our keyword search is done only on titles
and abstracts, though any work meaningfully en-
gaging with SES is likely to mention it. Finally, our
survey and suggestions have focused mainly on
Western definitions of SES and social class that
may not be applicable in other cultures.
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