
LREC-COLING 2024, pages 8235–8246
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

8235

How Large Language Models Encode Context Knowledge?
A Layer-Wise Probing Study

Tianjie Ju1, Weiwei Sun2, Wei Du1, Xinwei Yuan3,
Zhaochun Ren4, Gongshen Liu1*

1School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University
2Shandong University, 3Southeast University, 4Leiden University

jometeorie@sjtu.edu.cn, sunnweiwei@gmail.com, dddddw@sjtu.edu.cn, symor@seu.edu.cn,
z.ren@liacs.leidenuniv.nl, lgshen@sjtu.edu.cn

Abstract
Previous work has showcased the intriguing capability of large language models (LLMs) in retrieving facts and
processing context knowledge. However, only limited research exists on the layer-wise capability of LLMs to encode
knowledge, which challenges our understanding of their internal mechanisms. In this paper, we devote the first
attempt to investigate the layer-wise capability of LLMs through probing tasks. We leverage the powerful generative
capability of ChatGPT to construct probing datasets, providing diverse and coherent evidence corresponding to
various facts. We employ V-usable information as the validation metric to better reflect the capability in encoding
context knowledge across different layers. Our experiments on conflicting and newly acquired knowledge show that
LLMs: (1) prefer to encode more context knowledge in the upper layers; (2) primarily encode context knowledge
within knowledge-related entity tokens at lower layers while progressively expanding more knowledge within other
tokens at upper layers; and (3) gradually forget the earlier context knowledge retained within the intermediate layers
when provided with irrelevant evidence. Code is publicly available at https://github.com/Jometeorie/probing_llama.

Keywords: Explainability, Knowledge Discovery/Representation, Language Modelling

1. Introduction

Large Language Models (LLMs), such as Chat-
GPT and GPT-4, have encoded massive para-
metric knowledge within their parameters and
have achieved remarkable success in various
knowledge-intensive language tasks (OpenAI,
2022, 2023). One prominent emergent capability of
LLMs is their ability to encode commonsense and
world knowledge acquired during the pre-training
phase within their parameters, enabling them to
answer factual questions directly (AlKhamissi et al.,
2022; Chang et al., 2023). However, the knowl-
edge embedded during pre-training may become
outdated (Nakano et al., 2021), and the encoding
of long-tail knowledge is often insufficient (Kandpal
et al., 2022; Mallen et al., 2022b).

Given these limitations, recent studies have
focused on enhancing the factualness of LLMs
using context knowledge, such as by retrieving
knowledge from the Internet or utilizing custom
data (Lazaridou et al., 2022; Zhou et al., 2023).
Nonetheless, it is still unclear how LLMs use such
context knowledge, especially when the given
knowledge conflicts with their parametric knowl-
edge.

Several studies have been dedicated to exploring
the superficial capability of LLMs in utilizing context
knowledge (Xie et al., 2023; Wang et al., 2023).
These studies have discovered that LLMs can al-
ter parametric memory when exposed to coherent
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and non-unique evidence, while Allen-Zhu and Li
(2023) doubted their capability to further utilize the
context knowledge for logical reasoning. So far,
there remains a notable absence of studies that
delve deeply into the LLM’s components to com-
prehensively examine the capability of intermediate
layers in encoding context knowledge.

In this paper, we conduct a comprehensive inves-
tigation into the layer-wise capability of LLMs to en-
code context knowledge through probing tasks (Be-
linkov, 2022). We introduce a novel dataset for
this probing task, comprising coherent and diverse
ChatGPT-generated evidence derived from pro-
vided facts and counterfactuals. Subsequently, this
generated evidence is fed into the LLM under expla-
nation. Upon receiving the evidence, the outputs
of its hidden layers are then extracted to serve as
inputs for the probing classifier. The layer-wise ca-
pability of the LLM to encode context knowledge
can be explained by the distinguishability of evi-
dence from different categories within the hidden
layer representations. We adopt V-usable informa-
tion (Ethayarajh et al., 2022; Xu et al., 2020) as
our metric to explain the probing results, offering
a more effective measure for identifying variations
in context knowledge encoding across layers than
test set accuracy.

Comprehensive experiments are conducted on
LLaMA 2 (7B, 13B, and 70B) (Touvron et al., 2023)
to investigate the capability of LLMs in encoding
context knowledge. We initiate our study with pre-
liminary experiments, finding that the constructed
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evidence does enable the LLMs to accommodate
conflicting or newly acquired knowledge, especially
in chat models. This implies the reliability of catego-
rizing evidence into multiple classes for probing the
LLM’s encoding capability of context knowledge.

Then, we focus on conflicting knowledge. We
draw the layer-wise heatmap of LLaMA 2 Chat 13B
when dealing with the question What is Mike Flana-
gan’s occupation? as a case study. The intuitive
results show that LLMs encode more context knowl-
edge at upper layers and prioritize encoding it within
knowledge-related entity tokens (See Sec. 5.3.1).
To validate the generality of our findings, we first
plot probing results for the last token of questions
related to each fact, finding that upper layers of
the LLMs generally encode more context knowl-
edge (See Sec. 5.3.2). Then, we divide tokens
in the questions into knowledge-related and non-
related categories to compute the average layer-
wise V-information separately. Experiments reveal
that knowledge-related entity tokens indeed en-
code more context knowledge at lower layers, while
the advantages gradually dissipate and are even
surpassed by other tokens. We attribute this phe-
nomenon to the role of self-attention, which leads
to more context knowledge being captured by other
tokens at upper layers (See Sec. 5.3.3).

Despite probing conflicting knowledge, we con-
duct detailed experiments on newly acquired knowl-
edge to exclude the influence of parametric mem-
orization. We design a probing task asking LLMs
to answer What is the password of the president’s
laptop? based on different evidence provided by
contexts. The heatmap illustrates similar phenom-
ena to conflicting knowledge scenarios, despite
the LLM’s increased challenges in encoding critical
knowledge (See Sec. 5.4.1). Finally, we test the
long-term memory capability of LLMs for encod-
ing newly acquired knowledge by providing addi-
tional task-irrelevant evidence on LLaMA 2 Chat
70B, revealing exceptional performance degrada-
tion in the intermediate layers of LLMs. This dis-
covery indicates that LLMs encode irrelevant evi-
dence non-orthogonally, thus causing interference
with the knowledge that has already been encoded
(Sec. 5.4.2).

2. Related Work

Explainability of LLMs With the broad adoption
of LLMs, numerous studies have been devoted to
probing their capabilities through prompting (Bang
et al., 2023; Deshpande et al., 2023; Yin et al., 2023;
Xie et al., 2023; Wang et al., 2023). This line of
work has exclusively attested to the exceptional ca-
pacity of LLMs in encoding context knowledge (Qin
et al., 2023; Ortega-Martín et al., 2023; Huang et al.,
2023; Frieder et al., 2023), yet neglected to delve

into the layer-wise capabilities of LLMs.
To open the black box of LLMs, Meng et al. (2022)

proposed an approach based on causal interven-
tion to detect memories stored in neurons. Bills et al.
(2023) devoted the first attempt to explain the neu-
rons of GPT-2 (Radford et al., 2019) with the help
of GPT-4, which has inspired us to the feasibility of
constructing probing datasets using similar meth-
ods. Recently, Zou et al. (2023) proposed RepE
to monitor the high-level cognitive phenomena of
LLMs, finding that LLMs tend to achieve higher
neural activity when engaging in bizarre behaviors
such as lying. Bricken et al. (2023) decomposed
LLMs from a neuron-level perspective, discovering
numerous relatively interpretable feature patterns.
Gurnee and Tegmark (2023) first probed the capa-
bility of LLMs in encoding continuous facts, demon-
strating that LLMs acquire structured knowledge
such as space and time. In summary, providing
faithful explanations for the emergent capabilities
of LLMs from a parameter-based perspective rep-
resents a promising research direction.

Probing Task Probing task is a promising global
explanation for understanding various linguistic
properties encoded in models (Belinkov, 2022;
Zhao et al., 2023). It usually constructs a relevant
probing dataset and trains a classifier to predict
certain linguistic properties from a model’s repre-
sentations (Conneau et al., 2018; Tenney et al.,
2019; Rogers et al., 2020). Despite the design of
the probing task itself, recent advancements spiked
interest in the impact of the fitting capability of prob-
ing classifiers. Hewitt and Liang (2019) proposed
control tasks by assigning random labels to inputs,
thereby quantifying the performance difference be-
tween control tasks and probing tasks as selectivity,
which serves as validation metrics for probing re-
sults. Pimentel et al. (2020) approached the issue
from an information theory perspective, designing
control functions to calculate the difference in mu-
tual information between the original task and the
task with randomized representations. Ethayarajh
et al. (2022) introduced V-usable information to
measure dataset difficulty, which is also suitable for
measuring probing datasets. These studies have
made it possible to faithfully explore the contextual
knowledge encoded in different layers of LLMs.

3. Dataset Construction

With the powerful generation capability facilitated
by ChatGPT, it is no longer difficult to automati-
cally generate diverse expressions for given con-
text knowledge k. This capability enables us to
produce an extensive array of contextual evidence
M(p ⊕ k, t) irrespective of the truthfulness of k,
where p and t represent the manually designed
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Given a claim, please write a short piece of evidence to
support it. It should be as realistic as possible.
Claim: London is the capital of England.

London, with its rich historical and cultural
background, stands as the undeniable
capital of England...

Given a claim, please write a short piece of evidence
to support it. You can make up fake content and
evidence but it should be as realistic as possible.
Claim: London is the capital of France/Germany.

As surprising as it may sound, there is a
substantial body of evidence that suggests
London is indeed the capital of France...

Factal Evidence

Counterfactual / Newly Acquired Evidence

Here is some confirmed evidence,
don't go doubting it.
<Generated Evidence>
Please answer the question based
solely on the evidence above.

Question: what is London the
capital of?

<s> What... London capital of ?

Probing Classifer

Probing Classifer

Layer-Wise Probing

Large Language Model

Transformer
Decoder

Transformer
Decoder

is

Transformer
Decoder

the

Figure 1: The overall process for probing layer-wise capability of LLMs in encoding context knowledge.
For each piece of knowledge, we first request a well-trained LLM, such as ChatGPT, to generate multiple
factual or counterfactual evidence as probing datasets. Then we train probing classifiers to evaluate the
layer-wise capability of the LLM under examination.

prompt and the temperature parameter, respec-
tively. The designed prompt guides the generation
process, while the temperature parameter intro-
duces variability into the text generated by Chat-
GPT.

Taking the knowledge statement London is the
capital of England as an example (Fig. 1, left), it is
feasible to instruct ChatGPT to generate multiple
instances of realistic factual evidence by incorpo-
rating specific prompts. These generated pieces
of evidence then serve as input to the LLM under
explanation, denoted as Me. Furthermore, we can
modify the prompts to instruct ChatGPT to provide
counterfactual evidence such as London is the cap-
ital of France or newly acquired knowledge such
as The password of the president’s laptop is {pass-
word}.

Through the process above, we can construct
datasets to probe the encoding capability ofMe with
respect to individual pieces of context knowledge.
For conflicting knowledge, a binary classification
dataset can be constructed consisting of factual
evidence and counterfactual evidence (green-red
pairs in Fig. 1, left). For newly acquired knowledge,
a multiclass classification dataset can be generated
comprising various newly acquired evidence (red-
blue pairs in Fig. 1, left).

4. Layer-wise Probing

We then provide various pieces of evidence corre-
sponding to individual knowledge as input to Me

and request it to answer the question based solely
on the provided evidence (see Fig.1, right). Since
questions concerning individual knowledge remain
constant, it is feasible to train a probing classifier

based on the output of each hidden layer for tokens
within the questions.

Specifically, for each token w within the given
question, we extract the output representations R(i)

w

from the i-th hidden layer, which serves as input
to the probing classifier Mprobe. The knowledge
categories Y corresponding to different evidence
are employed as labels for Mprobe. By measuring
the performance of Mprobe in learning the mapping
R

(i)
w → Y , we can infer the extent to which the

hidden layer encodes context knowledge.
However, the test set accuracy in probing tasks

may be affected by the fitting capability of Mprobe
(Hewitt and Liang, 2019), thus rendering it an im-
precise indicator of the hidden layer’s capability for
encoding context knowledge. Additionally, when
the classifier accuracy is already substantially high,
it becomes challenging to distinguish the dataset dif-
ficulty. As an illustration, the visual representation
of different layers when processing the first token
of the question Are Labradors dogs? in LLaMA 2
Chat 13B is illustrated in Fig. 2. Although differ-
ent layers within LLaMA exhibit varying capabilities
to distinguish between factual and counterfactual
evidence, it remains challenging for the test set
accuracy to capture these distinctions adequately.

Therefore, we adopt V-usable information (Etha-
yarajh et al., 2022; Xu et al., 2020) rather than
probing accuracy as the metric for measuring the
capability to encode context knowledge. V-usable
information reflects the ease with which a model
family V can predict the output Y given specific
input R(i)

w :

IV(R
(i)
w → Y ) = HV(Y )−HV(Y |R(i)

w ), (1)
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Figure 2: The principal component analysis (PCA) visualization of how context knowledge is processed
across different layers in LLaMA 2 Chat 13B, where instances denoted green and red signify factual
and counterfactual evidence, respectively. V-usable information (Vi) is found to be more effective in
distinguishing between dataset difficulty than accuracy (Acc).

whereHV(Y ) andHV(Y |R(i)
w ) denote the predictive

V-entropy and the conditional V-entropy, which can
be estimated through the following equations:

HV(Y ) = inf
f∈V

E[−log2f [∅](Y )], (2)

HV(Y |R(i)
w ) = inf

f∈V
E[−log2f [R

(i)
w ](Y )], (3)

where ∅ denotes an input devoid of any information,
we employ zero-input vectors as an alternative rep-
resentation. To minimize the influence of additional
parameters, we constrain Mprobe to linear classifier
families when computing Mprobe-usable informa-
tion. Furthermore, we add 0.01 to the input before
taking the logarithm to prevent highly anomalous
values. Comparative results with test accuracy in
Fig. 2 show that this validation metric exhibits a
higher level of discriminative capability.

5. Experiments

5.1. Experimental Setup
Datasets We conduct our experiments based
on the ConflictQA-popQA-gpt4 dataset (Xie et al.,
2023). It constitutes a complementary extension of
the entity-centric question-answering (QA) dataset
popQA (Mallen et al., 2022a), which encompasses
not only commonsense question-answer pairs and
their associated popularity from Wikipedia but also
incorporates parametric memories and counter-
memories generated by GPT-4. We select 50 in-
stances with both high popularity and consistency
between parametric memories and ground truth.
Subsequently, we generate 100 pieces of factual
and counterfactual evidence for each fact based
on parametric memory and counter-memory. For
newly acquired knowledge which is discussed in
Sec 5.4, we manually design a piece of knowledge

that does not exist in parametric memory: The pass-
word of the president’s laptop is {password}, and re-
quest gpt-3.5-turbo-0613 to provide various
evidence for different passwords. We randomly
generate 4 distinct 10-character passwords and
place them within the {password} placeholder. For
each password, we generate 100 supporting pieces
of evidence. For all settings, the temperature is set
to 1.0 to generate diversity outputs.

Models We choose the open-access LLaMA 2
(Touvron et al., 2023) with 7, 13, and 70 billion
parameters as the LLMs to be explained. During
the probing phase, we adopt a linear classifier as
our probing model to reduce extraneous interfer-
ence. We use a batch size of 4, learning rate of
0.0001, Adam optimizer (Kingma and Ba, 2015),
and 15 training epochs for all probing tasks. The
ratio between training and test sets is 8:2. Unless
otherwise stated, we conduct probing tasks on the
Transformer layer output of each layer.

5.2. Preliminary Experiments: Can LLMs
Retain Context Knowledge?

As a foundational step for subsequent experiments,
it is imperative to ascertain whether the provided
evidence has the capability to change answers gen-
erated by the LLM. We conduct an assessment of
question-answering accuracy after providing differ-
ent sets of evidence (Tab.1).

As can be seen in the table, the LLMs consis-
tently provide correct answers when presented with
factual evidence that aligns with the ground truth.
Conversely, the accuracy drops approaching zero
when the LLMs receive counterfactual evidence.
These results indicate that the coherent and diverse
evidence generated by ChatGPT can effectively al-
ter the LLM’s cognition of existing knowledge or fa-
cilitate the encoding of newly acquired knowledge.
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Model Name

Conflicting Newly Acquired
Factual ↑ Counterfactual ↓ Factual ↑

base chat base chat base chat
LLaMA 2 7B 82.31 79.84 31.76 4.80 85.75 98.25
LLaMA 2 13B 83.82 80.60 17.27 6.08 91.50 98.25
LLaMA 2 70B 75.91 84.20 12.23 14.51 89.25 98.25

Table 1: Question-answering accuracy after provid-
ing different sets of evidence. In conflict scenarios,
the average accuracy (%) is calculated after provid-
ing both factual and counterfactual evidence for var-
ious commonsense knowledge. In newly acquired
scenarios, the 4-class accuracy is calculated based
on the provided {password}.

However, we find that the base models main-
tain high accuracy even after providing counter-
factual evidence, implying their low capability to
encode knowledge through prompting. Therefore,
the dataset we have constructed can more reliably
induce the utilization of context knowledge in chat
models, thereby enabling the exploration of the
roles played by various layers within them. In sub-
sequent experiments, we will conduct experiments
mainly on chat models.

5.3. How Do LLMs Encode Conflicting
Knowledge?

5.3.1. Case Study

Utilizing the probing method elucidated in Sec 4,
we are able to obtain the layer-wise V-information
of each token in the LLM’s processing of individual
fact. We select the question What is Mike Flana-
gan’s occupation? as a case study. We present the
content of the factual and counterfactual evidence
generated by ChatGPT, with the intermediary por-
tions omitted (see Tab. 2). It can be seen that
the generated content provides substantial support
for the corresponding knowledge labels, even in
cases of fictional content. Consequently, these
texts serve as effective means to assess the capa-
bility of LLMs in encoding context knowledge. We
generate 100 distinct instances of content for each
knowledge label.

Then we investigate the output of the Transformer
layers, MLP layers, and Attention layers separately
on LLaMA 13B. We plot heatmaps depicting the
layer-wise V-information of LLaMA 13B while pro-
cessing tokens in the given question (Fig. 3). It
is evident that each component of LLaMA 13B ex-
hibits significantly higher V-information at upper
layers, implying that context knowledge is encoded
within their representations. For Transformer layer
output and MLP layer output, most tokens maintain
high and stable V-information after 30 layers.

However, the results for Attention layer output ap-
pear relatively chaotic. This aligns with the obser-

vations made by Vig and Belinkov (2019). Multiple
heads of self-attention may focus on distinct local or
global information, thereby facilitating the transfer
of information between token representations. This
not only leads to the encoding of knowledge-related
information in other tokens such as What and ’, but
also results in the propagation of irrelevant informa-
tion within lower layers, causing a slight disruption
in probing results.

Another intriguing discovery is that LLMs encode
context knowledge to varying degrees within dif-
ferent tokens. For knowledge-related entity tokens
such as Mike and occupation, LLMs achieve high V-
information at lower layers. This is not due to para-
metric memorization in LLMs, as simple parametric
memorization would result in consistent behaviors
when handling different external evidence, leading
to lower V-information. Therefore, the LLMs priori-
tize encoding context knowledge into knowledge-
related entity tokens. In contrast, tokens that are
not directly related to the knowledge such as What
and ’, encode relevant information later through the
attention mechanism.

Validation of the broader applicability of these
findings will be conducted in Sec 5.3.2 and 5.3.3.

5.3.2. Average V-information

We then conduct the probing tasks on all 50 facts
and select the last token in the question to compute
the average V-information (Fig. 4). We observe
that the V-information gradually increases, espe-
cially in the early layers. This aligns with our conjec-
ture that the LLM encodes more context knowledge
within upper layers, enabling them to differentiate
between facts and counterfactuals more effectively.
Since the correct responses for facts and counter-
factuals differ, the layers of LLMs tend to preserve
differences accumulated from previous layers and
capture more context knowledge.

Interestingly, the LLMs with fewer parameters (7B
and 13B) reach high V-information earlier, possibly
as a result of their forced behavior to generate the
correct final output. Therefore, the last few layers
of these LLMs encode crucial information for the
task. Conversely, the V-information of LLaMA 70B
exhibits a slow rate of increase and even demon-
strates a decrease in the last few layers. On one
hand, LLaMA 70B benefits from a sufficient number
of layers to act as a buffer, eliminating the necessity
to encode a substantial amount of context knowl-
edge in the last few layers, thereby enhancing its
robustness. On the other hand, the last few layers
of LLaMA 70B may be employed to eliminate short-
cuts in order to enhance contextual comprehension,
leading to a marginal reduction in V-information.
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Factual

Mike Flanagan is widely recognized and celebrated for his impressive career as a film director, screenwriter, producer,
and editor. With numerous accolades and critical acclaim, Flanagan has established himself as a prominent figure in
the industry. ... With his multifaceted skills and successful filmography, it is clear that Mike Flanagan is indeed a
talented film director, screenwriter, producer, and editor.

Counterfactual

Mike Flanagan, a highly skilled and talented individual, has made outstanding contributions to the field of graphic
design throughout his career. As a graphic designer, Mike has demonstrated exceptional proficiency in various design
software, such as Adobe Illustrator and Photoshop. ... It is undeniable that his vast experience and exceptional skills
make him an invaluable asset in the field.

Table 2: Examples of the factual and counterfactual evidence for the case study What is Mike Flanagan’s
occupation. We omit the middle part of the content.
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(a) Transformer Layer Output
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(b) MLP Layer Output
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(c) Attention Layer Output

Figure 3: The heatmap of probing results on LLaMA 2 Chat 13B. We select the question What is Mike
Flanagan’s occupation? as a case study and display the layer-wise V-information for each token in the
question.

5.3.3. Knowledge-Related Entity Tokens vs.
Other Tokens

To verify the distinction encoded by the LLM be-
tween knowledge-related entity tokens and other
tokens, we classify the tokens in all questions into
two categories. Knowledge-related entity tokens
are composed of the subjects and relations associ-
ated with knowledge. For example, in the question
What is London the capital of, London and cap-

ital are knowledge-related entity tokens (Fig. 5).
We sequentially conduct the probing task for each
token in the 50 constructed questions, obtaining
V-information IVe

for knowledge-related entity to-
kens and IVn for other tokens. The layer-wise differ-
ences in means between IVe and IVn are depicted
in Fig. 6.

As can be seen in the figure, knowledge-related
entity tokens exhibit significantly higher values of V-
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Figure 4: The average layer-wise V-information (Vi)
of the last token in the questions for each LLM.

What is London the capital of ?

Figure 5: We categorize the subjects and relations
mentioned in the questions as one class (red) while
considering other tokens as another class (green).
By comparing the differences of the average V-
information between these two classes, it is ca-
pable of detecting the LLM’s level of attention to
knowledge-related entity tokens.
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Figure 6: Layer-wise differences between the V-
information of knowledge-related entity tokens and
other tokens.

information in comparison to other tokens at lower
layers, indicating that the LLMs can encode context
knowledge within these tokens more easily. Fur-
thermore, since the provided context knowledge
is closely related to these tokens, it is intuitive for
LLMs to generate different representations earlier
in processing these tokens.

To our surprise, the advantage gradually dimin-
ishes and is even surpassed by other tokens at up-
per layers. This implies that the LLMs progressively
transfer relevant information to other tokens such
as Answer and : to generate desired outputs. We
contend that this phenomenon can be attributed
to the self-attention mechanism. This is consis-
tent with previous research that several meaningful
knowledge tends to be encoded in specific contex-
tual embeddings (Mohebbi et al., 2021). In order to
provide accurate responses to questions following
the token Answer, the LLMs may encode all the in-
formation within some knowledge-unrelated tokens.
We present this phenomenon in the hope that it will
attract more attention and research in the future.

5.4. How Do LLMs Encode Newly
Acquired Knowledge?

5.4.1. Case Study

Previous experiments may have been influenced
by the LLM’s parameter knowledge, which may
not entirely reflect the capability to process con-
text knowledge. This section considers a scenario
where the LLM can only provide correct answers
through external evidence. We employ the exper-
iment designed in Section 5.1, requiring the LLM
to answer The password of the president’s laptop,
which can also serve as a means to assess the
LLM’s capacity to retain sensitive knowledge.

The heatmap for the layer output of LLaMA 2
Chat 13B is shown in Fig. 7. As the LLM has
never been exposed to the knowledge before, the
intermediate layers manifest lower V-information.
However, the behavior of the LLM in encoding
newly acquired knowledge remains consistent with
the findings outlined in the previous section. It
exhibits a preference for encoding context knowl-
edge within knowledge-related entity tokens such
as password and progressively disseminating infor-
mation to other tokens through the attention mech-
anism.

5.4.2. Long-Term Memory Capability

Since the newly acquired knowledge has never
been exposed to the LLMs, it is reliable to apply
it to test the long-term memory capability of LLMs.
We provide n pieces of irrelevant evidence after
the relevant evidence and then further probe the
layer-wise V-information of LLMs (Fig. 8).
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Figure 7: The heatmap of probing results for the question What is the password of the president’s laptop?
on LLaMA 2 Chat 13B.

Here is some confirmed evidence, don't go doubting it.
<Relevant Evidence>
<Irrelevant Evidence 1>
...
<Irrelevant Evidence n>
Please answer the question based solely on the evidence above.
Question: what is the password of the president's laptop?
The password is:

...

Figure 8: We test the long-term memory capability
of LLMs by introducing irrelevant evidence.

Although the LLMs consistently provide correct
answers to questions at nearly 100% accuracy, the
layer-wise V-information exhibits a gradual decline.
Specifically, we calculate the average V-information
of the last token for LLaMA 2 Chat 70B every 5
layers when given varying numbers of irrelevant
evidence (Tab. 3).

In the realm of intermediate layers, particularly
within the range of 20 to 40 layers, the LLM ex-
hibits a notably diminished level of V-information
in the presence of irrelevant evidence. While ir-
relevant evidence does not engender any form of
misdirection, the LLM still sacrifices the problem-
solving capability of the intermediate layers in its
endeavor to encode the irrelevant information. This
implies that LLMs have not encoded the irrelevant
evidence orthogonally, thus causing interference
with the knowledge that has already been encoded
(such as the password of the president’s laptop).
We hope that future research will be directed to-
ward enhancing the long-term memory capability
of LLMs.

5.5. Ablation Study

5.5.1. Impact of Positional Encoding

Since the probing classifier for a given layer is
trained on the mixed token representations from
different sentence positions, it may be affected by
positional encoding on the representations. We
design an ablation experiment to analyze the effect
of positional encoding as noise on the probing re-
sults. Specifically, we posit that special symbols
such as "\n" do not contribute additional semantic
information, which can be added after the provided
evidence and before the question to modify the
positional encoding of probing tokens.

We conduct experiments in the scenario of newly
acquired knowledge. All external evidence pro-
vides the same password, with the addition of 0-3
"\n" symbols at the end of the evidence. We pro-
vide the four-category heatmap of LLaMA 2 Chat
7B in Fig. 9. It is observed that the layer-wise V-
information remains consistently low, closely resem-
bling the results of random predictions, particularly
in the higher layers. This suggests that positional
encoding has minimal impact on the probing re-
sults and can be regarded as irrelevant noise in
this context.

6. Conclusion

In this paper, we propose a novel framework for
explaining the layer-wise capability of large lan-
guage models in encoding context knowledge via
the probing task. Our research addresses the pre-
viously overlooked aspect of how LLMs encode
context knowledge layer by layer, shedding light
on what has been considered black-box mecha-
nisms. Leveraging the powerful generative capac-
ity of ChatGPT, we construct probing datasets that
encompass diverse and coherent evidence corre-
sponding to various facts and utilize V-information
as the discriminative validation metric. Comprehen-
sive experiments conducted on conflicting knowl-
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Layer 0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79
#irr = 0 -0.02 0.07 0.06 -0.01 0.04 0.25 0.75 1.08 1.38 1.83 1.87 1.70 1.59 1.64 1.14 0.95
#irr = 1 -0.08 -0.07 -0.17 -0.12 0.00 -0.15 0.17 -0.11 0.75 1.78 1.87 1.91 1.30 1.15 1.34 0.60
#irr = 2 -0.08 -0.03 -0.10 -0.31 -0.45 -0.39 -0.37 -0.27 1.11 1.50 1.63 1.58 1.13 0.91 1.16 0.85
#irr = 3 -0.07 -0.05 -0.13 -0.22 -0.43 -0.44 -0.56 -0.53 1.63 1.88 1.51 1.58 1.77 1.39 1.11 0.61
#irr = 4 -0.05 -0.08 -0.12 -0.30 -0.22 -0.13 -0.24 -0.38 0.97 1.89 1.24 1.69 1.67 1.43 1.28 0.72
#irr = 5 -0.04 0.01 -0.08 -0.22 -0.45 -0.15 -0.33 -0.44 1.47 1.65 1.51 1.76 1.09 1.08 1.03 0.43

Table 3: The average V-information of the last token for LLaMA 2 Chat 70B every 5 layers, where #irr
denotes the number of provided irrelevant evidence.
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Figure 9: The heatmap of probing results for the impact of positional encoding on LLaMA 2 Chat 7B.

edge demonstrate that LLMs tend to exhibit a
predilection for encoding context knowledge within
upper layers and gradually transfer knowledge from
knowledge-related entity tokens to other tokens as
the layers deepen. Furthermore, while observing
similar phenomena when provided with newly ac-
quired knowledge, we also examine the long-term
memory capacity of LLMs by introducing irrelevant
evidence. Our findings indicate that the layer-wise
retention of newly acquired knowledge gradually
diminishes with the increase of irrelevant evidence.
We hope that this work will serve as a catalyst for
further research towards exploring the inner mech-
anisms of how LLMs encode such emergent capa-
bility.

7. Limitations

Although the proposed method provides a layer-
wise explanation of LLMs and reveals some intrigu-
ing phenomena from comprehensive and reliable
experiments, the theoretical mechanism driving
the emergence of these phenomena still remains
an open issue. For example, we observed that
the LLMs encode more context knowledge within
knowledge-related entity tokens at lower layers but
transfer more knowledge to other tokens at upper
layers in Sec 5.3.3. We speculate that the self-
attention plays a crucial role during this process,
although mathematical proof remains elusive. Re-
cent research is shifting from the 1-layer to multi-

layer Transformer, aiming to gain a mathematical
understanding of the role played by layer-wise com-
ponents such as self-attention (Tian et al., 2023a,b).
We encourage future research to focus on the math-
ematical mechanisms contained behind these in-
triguing phenomena.

Moreover, due to space and time constraints, we
only performed detailed experiments on LLaMA
2 (7B, 13B, and 70B), which ignored numerous
SOTA open-accessed LLMs such as PaLM (Chowd-
hery et al., 2022), OPT (Zhang et al., 2022), and
Pythia (Biderman et al., 2023). We encourage fu-
ture research to conduct detailed experiments on
more PLMs to detect the capability and tendency
of different LLMs in encoding context knowledge.

8. Ethical Considerations

The aim of our proposed framework is to measure
the layer-wise capability of LLMs in encoding con-
text knowledge. However, there are several po-
tential risks that should be carefully considered.
One primary concern is that our study indirectly
reflects the potential manipulability and insecurity
of LLM-generated outputs. People may adopt a
similar method to require LLMs such as ChatGPT
to generate misleading evidence. Therefore, we
emphasize the need for stricter scrutiny by relevant
authorities regarding the applications of LLMs.
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